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Plasma dynamics and vacuum pair creation using the Dirac-Heisenberg-Wigner formalism
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We derive a system of coupled partial differential equations for the equal-time Wigner function in an arbitrary
strong electromagnetic field using the Dirac-Heisenberg-Wigner formalism. In the electrostatic limit, we present
a system of four coupled partial differential equations, which are completed by Ampères law. This electrostatic
system is further studied for two different cases. In the first case, we consider linearized wave propagation in
a plasma accounting for the nonzero vacuum expectation values. We then derive the dispersion relation and
compare it with well-known limiting cases. In the second case, we consider Schwinger pair production using
the local density approximation to allow for analytical treatment. The dependence of the pair production rate on
the perpendicular momentum is investigated and it turns out that the spread of the produced pairs along with
perpendicular momentum depends on the strength of the applied electric field.
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I. INTRODUCTION

Quantum relativistic treatment of plasmas are of inter-
est in several different contexts [1–3]. Dense astrophysical
objects can have a Fermi energy approaching or exceeding
the electron rest mass energy, the strong magnetic fields
of magnetars give rise to relativistic Landau quantization,
and the high plasma density in the early universe imply yet
new phenomena. In the laboratory, the continuous evolution
of laser intensity brings a variety of quantum relativistic
phenomena accessible to experimentalists. Upcoming laser
facilities of interest in this context include, e.g., the extreme
light infrastructure (ELI) [4,5] and the European x-ray free
electron laser (XFEL) [6,7], that will facilitate experimental
observations of various fundamental processes. Already with
existing technology, laser-induced spin polarization seems
possible [8–10]. Moreover, radiation reaction might take place
at least partially in the quantum relativistic regime [11]. A
particular phenomena of much interest is electron-positron
pair production [12–19], that has received much attention
since this interesting process might eventually be viable in the
laboratory.

Simplified quantum relativistic models of plasmas have
been presented by, e.g., Refs. [20,21], focusing on the weakly
relativistic regime. Extensions to the strongly relativistic
regime have been made by, e.g., Refs. [22–24], although
certain simplifying assumptions have been made concerning,
e.g., the scale lengths of interest. However, quantum kinetic
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relativistic models based of the full Dirac equation are derived
in [19,25–28]. While these equations are applicable to plasma
dynamics in general, much of the analysis of these models
has been devoted to the phenomena of pair production in
vacuum by high-intensity fields due to the Schwinger mecha-
nism [29,30].

In the present paper, we will adopt the Dirac-Heisenberg-
Wigner (DHW) formalism of Ref. [25] and apply it to
electrostatic phenomena in plasmas and vacuum. Specifically,
we will reduce the general DHW system to four coupled equa-
tions, in the limit of one-dimensional (1D) spatial variations.
The simplified system is used to derive a dispersion rela-
tion for Langmuir waves, demonstrating that wave-particle
interaction with the quantum vacuum is possible, leading
to electron-positron pair creation. Moreover, the reduced
electrostatic equations are used to study the influence of
perpendicular momentum (perpendicular referring to the di-
rection of the electric field) on the process of pair production
in vacuum. While the common omission of perpendicular
momentum can be justified to some degree, we point out
some significant corrections introduced by incorporating the
full momentum dependence. Finally, we present our main
conclusions and provide an outlook for future work.

II. DHW FORMALISM

In this section a brief review of the DHW formalism of
Ref. [25] is given. The theory is then applied to the case of
one-dimensional electrostatic fields. In this limit, the full set of
16 scalar DHW functions is reduced to four scalar equations,
which form a self-consistent system together with Ampere’s
law.

A. DHW equation of motion

In this subsection, we derive a set of expansion coefficients,
which we term the DHW functions, of the equal-time Wigner
operator Ŵ (r, p, t ). We use the temporal gauge where the
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scalar potential φ is set to zero; thus the electromagnetic field
is given by E = −∂t A and B = ∇ × A. The gauge fixing
slightly simplifies the derivation of the evolution equations
for the DHW functions. However, since a gauge-independent
Wigner transformation is utilized, the end result will be gauge
invariant.

Our starting point is the Dirac equation in the temporal
gauge

[i∂t + α · (i∇ + eA) + βm]�̂(r, t ) = 0, (1)

where we have used units where c = h̄ = 1. We use the gauge
independent Wigner transformation

Ŵ (r, p)

=
∫

d3z exp

(
−ip · z − i e

∫ 1/2

−1/2
dλ z · A(r + λz, t )

)

× Ĉ(r, p, t ), (2)

where

Ĉ(r, p, t ) = − 1
2 [�̂(r + z/2, t ), ˆ̄�(r − z/2, t )]. (3)

In Eq. 2 we use the Wilson line factor to ensure the gauge
invariance. The Wigner function W (r, p, t ) is defined as the
expectation value of the Wigner operator

W (r, p, t ) = 〈�|Ŵ (r, p, t )|�〉 , (4)

where |�〉 〈�| is the state of the system. In order to derive an
equation of motion for the Wigner function, we take the time
derivative of Eq. 4. We use the Hartree approximation where
the electromagnetic field is treated as a nonquantized field.
This approximation is well justified for high electromagnetic
field strengths and amounts to neglecting the quantum fluctu-
ations. Applying the Hartree approximation we replace

〈�|E(r, t )Ĉ(r, p, t )|�〉 → 〈�|E(r, t )|�〉 〈�|Ĉ(r, p, t )|�〉 ,

〈�|B(r, t )Ĉ(r, p, t )|�〉 → 〈�|B(r, t )|�| 〈�|Ĉ(r, p, t )|�〉 .

(5)

This approximation corresponds to ignoring higher-loop ra-
diative corrections and is appropriate for fields that vary
slowly with time [31]. Finally, the equation of motion of the
Wigner function is given by [25]

iDtW (r, p, t ) = m[β,W ] + [p̃ · α,W ] − i

2
{D,W }, (6)

where we have the nonlocal operators

Dt = ∂

∂t
+ eẼ · ∇p, (7)

p̃ = p − i e
∫ 1/2

−1/2
dτ τ B(r + iτ∇p) × ∇p, (8)

D = ∇r + e
∫ 1/2

−1/2
dτ τ B(r + iτ∇p) × ∇p, (9)

Ẽ =
∫ 1/2

−1/2
dτ E(r + iτ∇p), (10)

which reduce to their local approximations (i.e., Dt → ∂/∂t +
eE · ∇p and Ẽ → E, etc.) for scale lengths much longer than
the characteristic de Broglie length.

B. DHW expansion

Even though the equation of motion of the Wigner function
Eq. 6 has only a couple of terms, it is not simple to interpret it
since the particle and antiparticle states are mixed. However,
expanding the Wigner function W (r, p, t ) in terms of an irre-
ducible set of 4 × 4 matrices {1, γ5, γ

μ, γ μγ5, σ
μ,ν} where 1

is a 4 × 4-identity matrix, we get

W (r, p, t ) = 1
4 [s + iγ5� + γ μvμ + γ μγ 5aμ + σμνtμν],

(11)
where the expansion coefficients {s, �, vμ, aμ, tμν} are called
the DHW functions. This expansion leads to a number of
coupled differential equations. The tensor part σμν in Eq. 11
can be decomposed into

t1 =
⎛
⎝t10

t20

t30

⎞
⎠, t2 =

⎛
⎝t23

t31

t12

⎞
⎠. (12)

Using the expansion in Eq. 11 in Eq. 6, and comparing the
coefficients of the basis matrices, we get the following system
of partial differential equations:

Dt s − 2p̃ · t1 = 0, Dt� + 2p̃ · t2 = 2ma0,

Dtv0 + D · v = 0, Dt a0 + D · a = −2m�,

Dt v + Dv0 − 2p̃ × a = −2mt1, Dt a + Da0 − 2p̃ × v = 0,

Dt t1 + D × t2 + 2p̃s = 2mv, Dt t2 − D × t1 − 2p̃� = 0.

(13)

Thus we have 16 scalar components of coupled partial differ-
ential equations. This system can be expressed in matrix form
as

Dt

⎛
⎜⎝

G1

G2

G3

G4

⎞
⎟⎠ =

⎛
⎜⎝

0 0 0 M1

0 0 −M2 0
0 −M2 0 −2m

−M1 0 2m 0

⎞
⎟⎠

⎛
⎜⎝

G1

G2

G3

G4

⎞
⎟⎠, (14)

where we have divided the DHW functions into four groups,

G1 =
(

s
t2

)
, G2 =

(
v0

a

)
,

G3 =
(

a0

v

)
, G4 =

(
�

t1

)
, (15)

and we have defined

M1 =
(

0 2p̃
2p̃ Dx

)
, M2 =

(
0 D
D −2p̃x

)
, (16)

where Dx is the antisymmetric representation of D.
One can show that some of the DHW functions have a clear

physical interpretation. First, the electromagnetic current Jμ

can be expressed as

Jμ = e

(2π )3

∫
d3 pvμ(r, p, t ), (17)

where the total charge Q is

Q = e

(2π )2

∫
d3 p d3r v0(r, p, t ). (18)
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Moreover, the total energy W is given by

W = 1

(2π )3

∫
d3 p d3r[p · v(r, p, t ) + ms(r, p.t )]

+ 1

2

∫
d3r[E2 + B2]. (19)

The linear momentum is

p = 1

(2π )2

∫
d3 p d3r pv0(r, p, t ) +

∫
d3r E × B (20)

and the total angular momentum M is

M = 1

(2π )2

∫
d3 p d3r

[
r × pv0(r, p, t ) + 1

2
a(r, p, t )

]

+
∫

d3r r × E × B. (21)

The interpretation can be done from the expressions above
that s(r, p, t ) is the mass density, v0(r, p, t ) is the charge
density, and v(r, p, t ) is the current density. Moreover, the
function a(r, p, t) can be associated with the spin density.

The classical, but still relativistic, Vlasov equation can be
obtained in the limit h̄ → 0 (which would require us to first
reinstate h̄ in the governing equations; see, e.g., Ref. [25]).
Note, however, that the variable v0, which is proportional to
the charge density, must be kept nonzero. Thus the procedure
to reach the classical limit, which is outlined in Ref. [25], must
be somewhat modified.

C. Space and time-dependent electrostatic fields

In this subsection, we simplify the DHW system Eq. 14
by considering one-dimensional electrostatic fields, E(t, r) =
E (t, z)ez. This simplifies the operators M1 and M2 to

M1 =
(

0 2p
2p ∇x

)
, M2 =

(
0 ∇
∇ −2px

)
. (22)

By considering an electrostatic geometry, we thus get rid
of some of the more complicated operators that depended
on the magnetic field. However, we still have 16 coupled
scalar functions, where we will show that eight are nonzero
in the electrostatic 1D limit. However, the situation simplifies
further, as only four out of the eight nonzero DHW compo-
nents are linearly independent. The problem of identifying the
nonzero DHW components, as well as the smaller number of
independent variables, can be formulated as finding new basis
vectors for the matrix system Eq. 14. In general, the origi-
nal DHW functions can be expressed in terms of variables
χi(z, p, t ), defined by

G(z, p, t ) = {G1, G2, G3, G4} =
16∑

i=1

χi(z, p, t )ei(z, p, t ),

(23)
Here ei(z, p, t ) are a set of orthonormal basis vectors. The aim
is to find basis vectors such that the system Eq. 14 reduces to
equations for the linearly independent variables. The task is
simplified by noting that the operator Dt will not be acting on
basis vectors that depend only on p⊥. As a result, the problem
of finding the linearly independent variables is reduced to
straightforward (but somewhat tedious) linear algebra. The

end result for the electrostatic 1D case can be expressed in
terms of only four basis vectors, namely

e1 =

⎛
⎜⎜⎜⎜⎝

0
0(
0
ez

)
0

⎞
⎟⎟⎟⎟⎠, e2 = 1

ε⊥

⎛
⎜⎜⎜⎜⎜⎜⎝

(
m
0

)
0(
0

p⊥

)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

e3 = 1

ε⊥

⎛
⎜⎜⎜⎜⎜⎜⎝

0(
0

ez × p⊥

)
0(
0

−mez

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, e4 =

⎛
⎜⎜⎜⎜⎝

0(
1
0

)
0
0

⎞
⎟⎟⎟⎟⎠, (24)

such that only four independent variables χ1 − χ4 are needed

to fully describe the system. Here ε⊥ =
√

m2 + p2
⊥. Note that

one only needs the basis vectors e1 − e3 to consider the homo-
geneous electrostatic case. Adding the spatial dependence into
the picture makes the charge density v0 nonzero. As a result
one extra variable and one extra basis vector e4 is needed,
as compared to the homogeneous case considered in [13], to
completely describe the system. Applying Eq. 23 in Eq. 14
for the given basis vectors, the equations in terms of χ1 − χ4

become

Dtχ1(z, p, t ) = 2ε⊥(p⊥)χ3(z, p, t ) − ∂χ4

∂z
(z, p, t ),

Dtχ2(z, p, t ) = −2pzχ3(z, p, t ),

Dtχ3(z, p, t ) = −2ε⊥(p⊥)χ1(z, p, t ) + 2pzχ2(z, p, t ),

Dtχ4(z, p, t ) = −∂χ1

∂z
(z, p, t ). (25)

This system of four coupled equations is closed by Ampére’s
law

∂E

∂t
= e

(2π )3

∫
χ1d3 p, (26)

where we have used the relation between the original DHW
functions and the expansion functions χi(z, p, t ). The com-
plete list of relations between the two sets of variables are as
follows:

s(z, p, t ) = m

ε⊥
χ2(z, p, t ), v0(z, p, t ) = χ4(z, p, t ),

v⊥(z, p, t ) = p⊥
ε⊥

χ2(z, p, t ), vz(z, p, t ) = χ1(z, p, t ),

ax(z, p, t ) = − py

ε⊥
χ3(z, p, t ) ay(z, p, t ) = px

ε⊥
χ3(z, p, t ),

t1z(z, p, t ) = − m

ε⊥
χ3(z, p, t ). (27)

As seen above, for the electrostatic case of consideration we
have eight scalar nonzero DHW functions. The PDE system
in Eq. 25 can be verified by using the relations between these
eight DHW functions in the general system of Eq. 13.
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III. LINEAR WAVES

In this section, we will demonstrate the usefulness of
Eqs. (25) and (26) by considering linearized wave propaga-
tion in plasmas, accounting also for the contribution from
the nonzero vacuum background expectation values. For our
case with no background electromagnetic fields, we get the
unperturbed vacuum contributions as the Wigner transform of
the expectation value of the free Dirac field operators.

From now on and until the end of this section, we will
reinstate h̄ in order to separate quantum effects from classical
physics. Forgetting about the contribution from real electrons
and positrons to start with, we note that the only nonzero
DHW functions in the vacuum background are

svac(p) = −2m

ε
, vvac(p) = −2p

ε
, (28)

where ε =
√

m2 + p2. The expressions above are obtained
by calculating the Wigner operator for the free particle
Dirac equation and taking the vacuum expectation value. The
nonzero vacuum contributions to the functions χi become

χ1(p) = −2pz

ε
, χ2(p) = −2ε⊥

ε
. (29)

A background distribution function fe(p) of electrons [ fp(p)
for positrons], normalized such that the unperturbed number
density n0 is

n0e,p = 2

(2π h̄)3

∫
fe,p(p)d3 p, (30)

can be added to the vacuum background as follows:

v0 = 2(F + 1), (31)

s(p) = 2m

ε
F (p), (32)

v(p) = 2p
ε

F (p), (33)

where F (p) = [ fp(p) + fe(p) − 1]. Here we have assumed
a neutral electron-positron background (i.e., n0 = n0e = n0p).
Adding an ion species and letting the electron and positron
background densities differ is trivial, however. The func-
tion fe,p(p) can be picked as any common background
distribution function from classical kinetic theory, i.e., a
Maxwell-Boltzmann, Synge-Juttner, or Fermi-Dirac distribu-
tion, depending on whether the characteristic kinetic energy is
relativistic and whether the particles are degenerate.

Note that for a completely degenerate (T = 0) Fermi-Dirac
background of electrons (and no positrons fp = 0), the elec-
tron and vacuum contributions cancel inside the Fermi sphere.
Consequently, for momenta p � pF , where pF = h̄(3π2n0)1/3

is the Fermi momentum, we have F (p) = 0. In terms of the
functions χi, we have

χ0
1 (p) = 2pz

ε
[ fp(p) + fe(p) − 1],

χ0
2 (p) = 2ε⊥

ε
[ fp(p) + fe(p) − 1],

χ0
4 (p) = 2[ fp(p) − fe(p)], (34)

using upper index 0 for the unperturbed background values.
Next, we divide the variables into unperturbed and perturbed
variables according to

χi(z, p, t ) = χ0
i (p) + χ1

i (p)ei(kz−ωt ) (35)

[with χ0
3 (p) = 0 and only a perturbed electric field E ] and

linearize Eqs. (25) and (26). Making use of the relation

Ẽ · ∇pχ
0
i = Ẽ

∂χ0
i

∂ pz
= E

χ0
i (pz + h̄k/2) − χ0

i (pz − h̄k/2)

h̄k
,

(36)
the problem is reduced to linear algebra. Solving for χ1

i (p) we
obtain

χ1(p) =
∑
±

±i2eωE/(h̄k)(
ω2 − k2

)(
h̄2ω2 − 4p2

z

) − 4ε2
⊥ω2

[
4pzε

2
⊥

F (p±)

ε±
− (

h̄2ω2 − 4p2
z

)( p±
ε±

F (p±) + k

ω
[ fp(p±) − fe(p±)]

)]
, (37)

χ2(p) =
∑
±

∓iωeEε⊥/(h̄k)

(ω2 − k2)
(
h̄2ω2 − 4p2

z

) − 4ε2
⊥ω2

[(
h̄2ω2 − h̄2k2 − 4ε2 ∓ h̄k

2
pz

)
F (p±)

ε±
− 4pz

k

ω
[ fp(p±) − fe(p±)]

]
, (38)

χ3(p) =
∑
±

∓4ωeEε⊥
(ω2 − k2)

(
h̄2ω2 − 4p2

z

) − 4ε2
⊥ω2

[(
pz

k

ω
± h̄ω

2

)
F (p±)

ε±
+ fp(p±) − fe(p±)

]
, (39)

χ4(p) =
∑
±

±2iωeE/(h̄k)

(ω2 − k2)
(
h̄2ω2 − 4p2

z

) − 4ε2
⊥ω2

[
(4ε2 − h̄2ω2)

(
kpz

ω

F (p±)

ε±
+ fp(p±) − fe(p±)

)
± h̄k2

2ω

(
4p2

z − h̄2ω2
)F (p±)

ε±

]
,

(40)

where

p± = pz ± h̄k

2
, (41)

ε± =
√

m2 + p2
⊥ +

(
pz ± h̄k

2

)2

. (42)
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Note that F (p±) and fe,p(p±) depend on the full momentum, but we suppressed the perpendicular momentum to simplify the
notation. Combining the above results for χi(p) with Ampere’s law Eq. 26 we obtain the dispersion relation D(k, ω) = 0 with

D(k, ω) = 1 +
∑
±

∫
d3 p

(2π h̄)3

±2e2/(h̄k)

(ω2 − k2)(h̄2ω2 − 4p2±) − 4ε2
⊥ω2

×
[

4
ε2
⊥
ε

p±F (p) − (h̄2ω2 − 4p2
±)

(
pz

ε
F (p) + k

ω
[ fp(p) − fe(p)]

)]
. (43)

The classical, but relativistic, limit of the dispersion relation is obtained by letting h̄ → 0. Taking this limit, the dispersion
function (43) reduces to

D(k, ω) = 1 + e2

ω

∫
d3 p

(2π h̄)3

pz

ε

(
1

ω − kpz/ε
+ 1

ω + kpz/ε

)[(
1 + kpz

εω

)
∂ fp(p)

∂ pz
+

(
1 − kpz

εω

)
∂ fe(p)

∂ pz

]
, (44)

which can be shown to agree with the standard result after
some straightforward algebra. Note that the appearance of h̄ in
the integration measure d3 p

(2π h̄)3 is just a matter of normalization
[compare Eq. 30], and not a sign of any remaining quantum
features.

The main purpose of this section has been to demonstrate
the usefulness of Eqs. 25 and 26 to problems in plasma
physics, including effects due to the vacuum background.
However, the quantum relativistic generalization of Langmuir
waves is interesting in its own right, and the full dispersion
function (43) will be thoroughly investigated in a forthcoming
paper. Here the vacuum polarization contribution to (43) will
be of much interest, and also the issue of pair production,
as induced by wave-particle interaction with the quantum
vacuum. As it turns out, a complete treatment of the quantum
vacuum will require a renormalization, in order to remove the
ultraviolet divergences [25], i.e., the high momentum diver-
gences in the integrals Eqs. (37) to (40). These divergences are
of logarithmic type. We note that Ref. [25] presents concrete
methods to perform the renormalization for time-independent
(but inhomogeneous) fields in the DHW formalism, whereas
Ref. [19] addresses the same problem for time-dependent (but
homogeneous) fields within quantum kinetic theory (closely
related to the DHW formalism).

IV. SCHWINGER PAIR PRODUCTION

Next, we will abandon the simplifying assumption of lin-
earized theory, and allow for an electric field of arbitrary
strength, in order to study Schwinger pair production. To sim-
plify matters, and allow for an analytical treatment, we will
make two simplifying assumptions. First, we will consider a
pure vacuum initially and, second, we will not solve for the
electrostatic field self-consistently (using Ampere’s law), but
instead consider the response to a prescribed pulse, localized
in space and time.

A. Pair-production rate

To derive an expression for the number of produced pairs,
we can make use of the conservation of energy in Eq. 19. By
requiring that the total energy of particles is

W = 1

(2π )3

∫
d3 p d3r ε(p) n(z, p, t ), (45)

where n(z, p, t ) is the number particle density, we get

n(z, p, t ) = m

ε
s(z, p, t ) + p

ε
· v(z, p, t ). (46)

Hence the number of produced particles due to the prescribed
electric field is

n(z, p, t ) = m

ε
[s(z, p, t ) − si(p)] + p

ε
· [v(z, p, t ) − vi(p)],

(47)

where si and vi are the mass and current density initially. As-
suming that we have vacuum before the electric pulse appears,
we can use Eq. 28 for these initial values and Eq. 47 reduces
to

n(z, p, t ) = 2 + 1

ε
[ms(z, p, t ) + p · v(z, p, t )]. (48)

Next we want now to utilize Eq. 25 and Eq. 27, to simplify
the expression for the number of pairs n(z, p, t ). After some
algebra, Eq. 25 and Eq. 27 gives us the following relation:

pzs(z, p, t ) = m

4ε2
⊥

Dt

[
Dtvz + ∂v0

∂z

]
+ mvz. (49)

This can be used in Eq. 48 to express the number of pairs
n(z, p, t ) in terms of the current density vz(z, p, t ) and the
charge density v0(z, p, t ). Performing this final step, we get

ñ(z, p, t ) = 2pz +
[
ε + 1

4ε

(
D2

t − ∂2

∂z2

)]
vz(z, p, t )

− e

4ε

∂E

∂z

∂v0

∂ pz
, (50)

where we have introduced ñ(z, p, t ) = pzn(z, p, t ).
In the next subsection, we will study the number of pairs

expressed in Eq. 50 using the local density approximation.

B. Local density approximation

For an electric field that is given in the form

E (z, t ) = E0g(t ) f (z) (51)

and assuming that the spatial variation of the electric field
is much longer than the Compton wavelength λ � λc, it
is possible to describe the Schwinger effect at any point
zfix independently. This is referred to as the local density
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approximation. The validity condition for this has been inves-
tigated in some detail by Refs. [12,15]. To summarize their
findings in this regard quickly but somewhat crudely, the local
density approximation is very accurate for pulse lengths L
of the order L ∼ 50λc and larger, and applicable with decent
accuracy down to scales of the order L ∼ 10λc.

Our goal here is to apply the local density approximation
and use the analytical solution of the one-particle distribution

function F (p, t ) for a homogeneous electric field [12,27,28].
Thus we approximate the current density vz(p, t, z) as

vz(p, t, z) ≈ vh
z [p, t, E0 f (z)], (52)

where vh
z [p, t, E0 f (z)] is the current density from the analyt-

ical solution of the homogeneous case where E (t ) has been
replaced by E (t ) f (zfix). Thus the number of produced pairs in
local density approximation is

ñloc(p, t ) =
∫

dz

(
2pz +

[
ε + 1

4ε

(
D2

t − ∂2

∂z2

)]
vh

z [p, t, E0 f (z)] − e

4ε

∂E

∂z

∂v0

∂ pz

)
. (53)

For a spatially and temporally well-localized pulse, the
electric field is ideally given by

E (z, t ) = E0 exp

(
− z2

2λ2

)
sech2

( t

τ

)
, (54)

where τ is the time duration of the pulse. We are interested
in studying the number of produced pairs at a time when the
electric field has vanished. This is because the interpretation of
ñloc(p, t ) as the momentum distribution of real particles is not

sharply well defined until we take the asymptotic limit t →
∞. Moreover, the analytical expression of vh

z [p, t, E0 f (z)]
becomes much simplified when we take the limit t → ∞.
By taking the asymptotic limit, we note that the third term
in ñloc(p, t ) vanishes. However, we need to calculate the oper-
ators that are acting on vh

z [p, t, E0 f (z)] in the second term of
Eq. 53 before we take the limit of t → ∞. We then get

ñloc(p, t → ∞) = 2pz

∫
dz F (p, E0 f (z), t → ∞), (55)

where

F (p, E0 f (z), t → ∞) = 2 sinh
(

πτ
2 [2τeE0 f (z) + ε̃ − ε]

)
sinh

(
πτ
2 [2eE0 f (z)τ − ε̃ + ε]

)
sinh(πτ ε̃) sinh(πτε)

(56)

and

ε̃ =
√

m2 + p2
⊥ + [pz − 2τeE0 f (z)]2. (57)

This result agrees with Ref. [12]. The arguments of the hyper-
bolic functions in Eq. 56 are large enough that we approximate
the function F as

F (p, E0 f (z), t → ∞) ≈ 2 eπτ (2τeE0 f (z)−ε−ε̃). (58)

The results Eqs. (55) to (58) will be used throughout the next
subsection.

C. Dependence on perpendicular momentum

As seen from Eq. 56, the perpendicular momentum only
enters in the equation system through the energy ε. Con-
sequently, the perpendicular momentum has a limited effect
on the basic physics of the problem, as pointed out by, e.g.,
Ref. [12], which states that “It is known from the analysis of
the Schwinger effect in spatially homogeneous electric fields
that the orthogonal momentum solely acts as an additional
mass term and does not change the qualitative behavior.”
Consequently, Ref. [12] put p⊥ = 0 in their further analysis.
This simplification can be further supported by plotting the
dependence of the pair production rate on the pz for differ-
ent perpendicular momenta p⊥. Considering the number of
pairs ñloc(p, t → ∞) in Eq. 55 where we use the configu-
ration of the electric field in Eq. 54, the result is displayed
in Fig. 1. We can see that the production rate is diminished

with increasing p⊥, just as if extra mass has been added to
the electrons and positrons. This indeed confirms the given
motivations for neglecting the perpendicular momentum in
the pair production process, particularly if the main aim is
just to gain a qualitative understanding for the dynamics. On
the other hand, in a dynamical context, having a spectrum of
effective masses (through p⊥) is not necessarily the same as
having a single mass. This point is supported by the results
in Ref. [32], where nontrivial features of the perpendicular
momentum distribution are found, depending on details of the
electric field profile.

As a consequence, there are a number of questions related
to the perpendicular momentum that need to be answered.
To start with, how does the full momentum distribution
ñloc(pz, p⊥) of the generated pairs look? Importantly, depend-
ing on the magnitude of the perpendicular momentum, the
production rate can be more or less suppressed. Moreover,
to what extent does the overestimation of the production
rate, introduced by omitting the perpendicular momentum,
depend on the parameters of the problem? In order to answer
these questions, we compute the full momentum distribution
ñloc(pz, p⊥) from Eq. 55.

In Fig. 2, the distribution function ñloc(pz, p⊥) is displayed
for different magnitudes of the electric field. As we can see,
the contour curves are centered around an average value of
pz that is higher for a stronger electric field. Moreover, the
characteristic spread in p⊥ and pz are both increasing with
a stronger electric field. The effective mass added in the
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FIG. 1. Number of pairs ñloc(p, t → ∞) as a function of the
normalized parallel momentum pz/m for three different values of
the normalized perpendicular momentum p⊥/m: the solid curve has
p⊥/m = 0, the dotted curve has p⊥/m = 0.2, and the dashed curve
has p⊥/m = 0.5.

production process is proportional to the average value of
p⊥, which in turn is proportional to the spread in p⊥. Since
this is dependent on the magnitude of the electric field, we
can deduce that the error introduced by neglecting p⊥ is
dependent on the magnitude of the electric field. In Fig. 3 we
have quantified this observation by plotting �p, the spread
in p⊥, as a function of E/Ecr . Loosely equating �p with the
added effective mass of the pairs, gives a quick way to assess
the accuracy in the common approximation of dropping the
dependence on p⊥. In principle, the spread in momentum also
depends on the length of the pulse duration. However, the
dependence on the pulse duration is more or less negligible,
and hence we omit plotting the result.

A consequence of omitting the perpendicular momentum
appears when studying the number density of produced pairs.
For the general expression, we have

N = 1

(2π )3

∫
d3 p ñloc(p, t → ∞), (59)

and we must use the simplified expression

N‖ = 1

(2π )3

∫
d pz ñloc(pz, t → ∞) (60)

when there is no dependence on perpendicular momentum.
However, the pair-production rate depends on the width of the
distribution in perpendicular momentum space, which in turn
depends on the magnitude of the electric field. As a result,
the pair production rate N‖ with the perpendicular momentum
omitted and the full expression N will scale differently with
the electric field magnitude. In Fig. 4 we have studied this
effect in the local density approximation using the same elec-
tric field profile as before. As can be seen, there is a general
overestimation of the number of pairs using the approximation

FIG. 2. Number of pairs ñloc(p) for (a) different amplitudes of the
electric fields E = 0.1, 0.5, 1 (the upper subfigure) and (b) different
time duration τ = 10, 15, 20 (the lower subfigure).

of parallel momentum only. To some extent the general over-
estimation could be fixed quite easily by introducing an
overall correction factor in the evolution equation. However,
for a self-consistent model with a dynamically varying elec-
tric field, we cannot in general compensate for the fact that

FIG. 3. Spread of the perpendicular momentum �p as a function
of the normalized electric field En = E/Ecr .
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FIG. 4. Fraction of the parallel number density N‖ and the num-
ber density N as a function of the normalized electric field E/Ecr .

the overestimation of the produced pairs is dependent on the
electric magnitude. As seen in Fig. 4, this overestimation is
considerably larger for a weaker electric field.

The present study covers some generic aspects of the per-
pendicular momentum dependence that play a role in basic
pair-production scenarios of Schwinger type. However, as
the complexity of the dynamical scenarios increases, more
intricate behavior can be expected. For results that highlight
the nontrivial dependence of the perpendicular momentum
distribution on the temporal shape of the electric field, see
Ref. [32].

V. SUMMARY AND DISCUSSION

In this paper, we have studied the DHW formalism in
the 1D electrostatic limit. It turns out that, for this case,
the 16 scalar equations of the general theory can be re-
duced to four scalar equations given in (25), which only
needs to be complemented by Ampere’s law (26). Systems
similar to Eqs. (25) have been studied previously, e.g., by
Ref. [15], which, however, did not include the dependence on
perpendicular momentum. While a perpendicular momentum
dependence was included in Ref. [12], this paper only studied
the homogeneous limit. Also, none of these works treated
the field self-consistently by simultaneously solving (26), al-
though there are works studying pair-production, that do make
a self-consistent treatment, see e.g., [28].

To demonstrate the versatility of Eqs. (25) and (26), we
first applied the system to linearized electrostatic waves in
plasmas. The dispersion relation was derived and shown to
agree with well-known limiting cases. The issue of renormal-
ization, which is needed to treat the ultraviolet divergences
associated with the vacuum background, is left for a future
paper, however. In this context, it should be pointed out that
a quantum-relativistic treatment of plasma waves is needed
for very high plasma densities, such that the Fermi velocity
is relativistic, as is the case for, e.g., dense astrophysical
objects.

For problems of pair production in given fields, it has been
common not to cover the full momentum dependence (leave
out the dependence on perpendicular momentum). While this
is a rather natural simplification [since the only appearance
of p⊥ is in the energy functions ε(p⊥), ε⊥(p⊥), etc. adding
some effective mass to the pairs], nevertheless the accuracy
of this approximation might not be very high, as indicated by
the results of [32]. However, studying Eqs. (25) for a given
electric pulse with a temporal sech profile [notably different
from the pulse profile with

∫
E (t )dt = 0 used in [32]], it is

found that the approximation can be a useful one. Still, even
for the specific case of ours, it is somewhat problematic to
omit the perpendicular momentum dependence, as the error
in the pair-production rate induced by this omission depends
on the parameters of the problem. Specifically, for weakly
inhomogeneous systems (such that the local density approx-
imation is applicable), the perpendicular momentum of the
generated pairs is close to linearly proportional to the electric
field (cf. Fig. 3.) As a result, there is a general overestimation
of the produced pairs when the perpendicular momentum is
overlooked. While, in principle, a correction factor could be
introduced to compensate for the overestimation, such a solu-
tion is not entirely satisfactory, as the correction factor would
be dependent on the electric field magnitude that could be
varying dynamically in a self-consistent field model. Gener-
ally speaking, treating the perpendicular momentum as simply
some extra mass cannot be done without rigorous justification
and then only in specific cases.

The broader conclusion from the present study is that the
equation system (25) and (26) provides a useful basis for
studying pair creation in a plasma medium self-consistently.
However, for field strengths sufficiently high to give appre-
ciable pair production, the plasma dynamics will become
strongly nonlinear. Thus, in order to study pair production in
a plasma, the analytic treatment of the present paper must be
replaced by a numerical approach.
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