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Abstract: Inhalation of small numbers of Francisella tularensis subspecies tularensis (Ftt) in the form of
small particle aerosols causes severe morbidity and mortality in people and many animal species.
For this reason, Ftt was developed into a bona fide biological weapon by the USA, by the former
USSR, and their respective allies during the previous century. Although such weapons were never
deployed, the 9/11 attack quickly followed by the Amerithrax attack led the U.S. government to
seek novel countermeasures against a select group of pathogens, including Ftt. Between 2005–2009,
we pursued a novel live vaccine against Ftt by deleting putative virulence genes from a fully
virulent strain of the pathogen, SCHU S4. These mutants were screened in a mouse model, in
which the vaccine candidates were first administered intradermally (ID) to determine their degree
of attenuation. Subsequently, mice that survived a high dose ID inoculation were challenged by
aerosol or intranasally (IN) with virulent strains of Ftt. We used the current unlicensed live vaccine
strain (LVS), first discovered over 70 years ago, as a comparator in the same model. After screening
60 mutants, we found only one, SCHU S4 ∆clpB, that outperformed LVS in the mouse ID vaccination-
respiratory-challenge model. Currently, SCHU S4 ∆clpB has been manufactured under current good
manufacturing practice conditions, and tested for safety and efficacy in mice, rats, and macaques.
The steps necessary for advancing SCHU S4 ∆clpB to this late stage of development are detailed
herein. These include developing a body of data supporting the attenuation of SCHU S4 ∆clpB to a
degree sufficient for removal from the U.S. Select Agent list and for human use; optimizing SCHU
S4 ∆clpB vaccine production, scale up, and long-term storage; and developing appropriate quality
control testing approaches.

Keywords: tularemia; Francisella tularensis; live attenuated vaccine; product development

1. Introduction

Tularemia is the generic term for a spectrum of infectious diseases caused by the facul-
tative intracellular bacterium, Francisella tularensis subspecies tularensis (Ftt), or F. tularensis
subspecies holarctica (Fth) [1,2]. Ftt is only found in North America, while Fth is found
throughout the Northern hemisphere. Tularemia is uncommon in the USA, but certain
European countries and especially Sweden experience hundreds to thousands of cases
of Fth infection annually [3,4]. Disease symptoms range from local eschar formation and
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lymphadenopathy, to high mortality following fulminant systemic infection that dissemi-
nates to lungs, liver, spleen, and blood, particularly after inhalation of Ftt small particle
aerosols [5].

Although Francisella infects a wide range of animals as well as humans [1], no cases of
human-to-human transmission have ever been convincingly documented. Nonetheless,
despite the lack of contagiousness, Ftt’s virulence made it a primary target for bioweapon
development between the 1940s and 1980s [2,6,7]. To counter the threat of biowarfare
using Ftt, beginning in the 1940s, several vaccines were developed, ranging from so-called
“Foshay” killed bacterial vaccines to the live vaccine strain (LVS) developed in the USA from
live attenuated strains used in the USSR [8–10]. Non-human primate (NHP) experiments,
field observations, and human vaccination and challenge studies have suggested that both
killed and live vaccines protected against dermal exposure to virulent Ftt [11–16]. However,
only LVS, administered by skin scarification, alleviated infections due to Ftt inhalation; but
protection was suboptimal and could be overwhelmed by exposure to larger challenge
doses [16]. Efficacy improved if LVS was administered by aerosol, but aerosol vaccination
was accompanied by substantial reactogenicity [17]. Despite the drawbacks, large amounts
of LVS have been produced under contract for the U.S. Department of Defense and studied
as an investigational vaccine [18], but LVS remains unlicensed.

Interest in tularemia vaccines declined as the Cold War waned and bioweapon treaties
were enacted. However, the 9/11 terrorist attack, followed quickly by the Amerithrax attack
via the U.S. mail, rapidly rekindled interest in the development of effective countermeasures
against potential biothreat agents, including Ftt [19,20]. From 2003 to 2010, U.S. spending
on biodefense spurred significant activity to develop a new tularemia vaccine, and a variety
of approaches have been explored as reviewed previously [21–23]. We hypothesized that a
rationally attenuated vaccine based on a Ftt strain, such as SCHU S4, might outperform
Fth-based LVS in terms of both safety and efficacy against Ftt threats [24,25]. We previously
reported developing new methods to generate unmarked deletion mutants of Ftt SCHU
S4 [26], first, resulting in defined mutants that lacked either FTT0918 (now called fupA) or
FTT0919 (fupB) genes [24]. These were targeted because LVS, as well as another attenuated
strain, Ftt FSC043, previously designated as SCHU AV [24], contained a genetic lesion
spanning these two genes; this mutation was subsequently shown to be responsible for
most of the attenuation of LVS [27]. However, ∆FTT0919 was not overtly attenuated for
BALB/c mice, and ∆FTT0918 was only moderately attenuated as compared with LVS
and FSC043.

Therefore, we elected to generate and screen many mutant strains, with the goal
of identifying another single gene deletion mutant of Ftt SCHU S4 that was at least as
attenuated as LVS in mice but more effective against respiratory challenge with virulent
bacteria. The screening approach is outlined in Figure 1. Briefly, each mutant’s virulence
was evaluated by administering 103 colony forming units (CFU) ID, a route chosen to
mimic scarification used to vaccinate humans with LVS. If mice displayed no overt disease
at 103 CFU ID, additional mice were immunized ID with 105 or 107 CFU. All mice surviving
vaccination were subsequently challenged ID or by aerosol with virulent Ftt FSC033 or
SCHU S4.

In all, 60 gene deletion mutants, including 57 individual gene deletion mutants and
three mutants spanning several genes, were generated and screened (Table 1). The virulence
properties of most of these mutants have been previously reported by us [24,25,28–36].
Intradermal administration of several of the most highly attenuated SCHU S4 mutants,
e.g., ∆wbtc, ∆gplX, and ∆clpB, as well as FSC043 and LVS, protected BALB/c mice from a
subsequent 1000 CFU ID challenge with Ftt SCHU S4 [29]. However, only Ftt SCHU S4
∆clpB (hereafter, ∆clpB), given ID, protected BALB/c mice against aerosol or IN challenge
with up to 100 CFU of SCHU S4 [37,38]. Of note, ∆clpB was generated by deletion of
2463 out of 2580 bp of the ∆clpB gene, and complementation restored a wild-type level
of virulence. Furthermore, deleting other genes from Columns 1–3 in Table 1 from ∆clpB
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to yield double mutants always led to a significant decrease in protection against IN Ftt
challenge of BALB/c mice [25]. Therefore, ∆clpB was chosen for additional development.
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overt signs of illness were inoculated ID at 105 or 107 CFU. Mice that survived the 107 ID dose were 
then exposed to a low dose aerosol (~100 CFU) of either Ftt strain FSC033 or SCHU S4 and were 
monitored for survival. ΔclpB was the only mutant that was able to provide protection (survival and 
prolonged time to death) against aerosol challenge. 
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produced large (-L) and small (-S) colony types; e single gene copy deleted; f 60–100% survival against respiratory challenge 
(~100 CFU IN or aerosol with SCHU S4 and/or FSC033); g deletion spanned several adjacent genes; h gene designation 
describing deletion found in LVS. For FTT designations see supplementary Table S1). 

Because tularemia is not only rare and sporadic in nature, but also can cause high 
morbidity and mortality, we expect clinical development and licensure in the USA to be 

Figure 1. Mouse screening protocol for identifying SCHU S4 mutants with vaccine potential against respiratory challenge
with fully virulent Ftt. For initial screening, mutants were tested for virulence at an ID inoculum of 103 CFU in young adult
female BALB/c mice. Then, mutants that caused no overt signs of illness were inoculated ID at 105 or 107 CFU. Mice that
survived the 107 ID dose were then exposed to a low dose aerosol (~100 CFU) of either Ftt strain FSC033 or SCHU S4 and
were monitored for survival. ∆clpB was the only mutant that was able to provide protection (survival and prolonged time
to death) against aerosol challenge.

Table 1. Virulence properties of SCHU S4 deletion mutants for BALB/c mice.

ID Virulence for BALB/c Mice of 60 Distinct Single Gene Deletion Mutants of SCHU S4

ID LD50 <30 CFUa ∆Ftt ID LD50 >102 but <106 CFU ∆Ftt: ID LD50 ≥ 107 CFU ∆Ftt

ahp b, capB, chiX, fadAD2, fadD2, feoB, gpx, hfq, katG,
mdaB, oppD, oxyR c, pckA-L d, pdpC c,e, pdpD, pepO, PI1
c,g, PI2 b,g, PilAEV f, pilB, pilC, pilQ, PilT, pmrA c, pyrB,
qseC b, RD5, RD8, recA, relA, rimK, sodC, tet, usp, 0023,
0024, 0029, 0069, 0086, fupB, 1023 c, 1149 b, 1564 b

pckA-S d, fupA c, ggt f
iglB, iglC, iglD, gplX, wbtC, wbtI,
clpB f kdtA, lpcC, purF, sspA,
mglA, FLT0439 g,h FTT0085,

a Actual inocula ranged between 5 and 30 CFU; b extended time to death compared to SCHU S4; c ≤40% survival; d pckA produced large
(-L) and small (-S) colony types; e single gene copy deleted; f 60–100% survival against respiratory challenge (~100 CFU IN or aerosol
with SCHU S4 and/or FSC033); g deletion spanned several adjacent genes; h gene designation describing deletion found in LVS. For FTT
designations see Supplementary Table S1).

Because tularemia is not only rare and sporadic in nature, but also can cause high
morbidity and mortality, we expect clinical development and licensure in the USA to be
pursued via the FDA “Animal Rule.” This regulatory pathway allows for evaluation of
efficacy using two animal models, and the approach depends on developing a rational
means to bridge the outcomes from animal data to humans [39,40]. Mice are useful for
virulence screening and immunological studies, while Fischer 344 rats have advantages
for vaccination studies. In particular, rat infections mimic the different infection outcomes
seen in humans following F. novicida or Fth infections (survival of moderate doses) as
compared with Ftt infections (increased virulence) [41–43]. Product characterization studies
of ∆clpB described here, therefore, have taken advantage of both animal models. Efficacy
and immunological correlate studies using Fischer 344 rats and cynomolgus macaques
are subjects of manuscripts in preparation, while production and manufacturing-related
studies are the subject of the present report.

2. Results
2.1. Studies Supporting Attenuation and Removal of SCHU S4 ∆clpB from the U.S. Select
Agent List

Mutants of fully virulent F. tularensis, classified as a Select Agent in the USA, continue
to be considered Select Agents themselves (https://www.selectagents.gov/, accessed on
25 May 2021) until evidence to the contrary is considered sufficient for any such mutants
to be formally removed from the Select Agent list. In order to develop ∆clpB as a vaccine,

https://www.selectagents.gov/
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it is crucial to understand the extent of its attenuation and also to explore characteristics
specifically supporting an application to remove it from Select Agent classification. Since
LVS has been studied in humans and was excluded from the Select Agent list by describing
evidence for its attenuation, we performed a series of experiments comparing the virulence
properties of ∆clpB to LVS. These experiments are summarized in Table 2. As compared
to LVS, ∆clpB infection was notably less lethal for BALB/c mice when administered in-
tranasally (IN), produced similar or less skin necrosis and clinical signs in mice, and grew
similarly in human and mouse macrophages (not shown).

Table 2. Comparisons of LVS and SCHU S4 ∆clpB undertaken over the past 22 years (LVS) or 14 years (SCHU S4 ∆clpB) at
the National Research Council of Canada (NRC-C) that formed part of the Select Agent removal request.

Criterion LVS ∆clpB FSC033 a, SCHU S4 a (MTD) b

ID LD50 >107 CFU >107 CFU <10 CFU (7)
IN LD50 ~103 CFU c 104–106 CFU d <10 CFU (6)

% deaths following ~105 CFU ID e 2.1 (n = 185) f 1.4 (n = 560) f 100
Necrosis score at site of injection 2–3 g 0–1 g 4 g

SCID mice MTD ID 103 CFU ID 15 17 h ND
SCID mice MTD IN 102 CFU IN 14 19 ND

Clinical signs given at 105 ID Mild Mild severe
Survival SCHU S4 20–100 CFU IN i ≤20% 60–100% i NA

a Two distinct virulent strains of Ftt; b (MTD) = median time to death; c ~1 × 103 CFU of LVS IN invariably killed all BALB/c mice over a
20 year span at NRC-C; d inter- experimental range; e normal ID vaccination dose; f not always head-to-head comparisons; g score range
1–6 (see Golovliov et al. [25]; h significantly longer survival as compared with LVS; i survival 42 days after immunization followed by IN
challenge with 20–100 CFU of SCHU S4.

An infection of highly immunodeficient SCID mice is often used to evaluate the extent
of microbial attenuation, even when the ultimate outcome of infection is death. Here, an
infection of SCID mice with ∆clpB resulted in longer times to death than those observed
after LVS infection [25]. Moreover, only an infection with very large doses of ∆clpB led to
death of guinea pigs, which, like mice, are highly susceptible to virulent F. tularensis [9]
(Figure 2).
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Figure 2. Attenuation of ∆clpB for guinea pigs. Guinea pigs, which are as susceptible to virulent Ftt
challenge as mice, were administered the indicated doses of SCHU S4 or ∆clpB SC and monitored
for morbidity and mortality to further evaluate the attenuation of ∆clpB. Whilst a dose of 17 CFU of
SCHU S4 administered SC killed all guinea pigs within 10 days, 1010 CFU ∆clpB led to significantly
lower morbidity and mortality.
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Then, we evaluated the potential for ∆clpB to revert to a virulent phenotype. For these
experiments, death of BALB/c mice when given an IN dose of 104 CFU (the lowest LD50
reported for ∆clpB, Table 2) was considered to be to reflect gain of virulence. ∆clpB was
passaged in vivo through mice five times, and in vitro ten times on cysteine heart agar
supplemented with hemoglobin (CHAH) [24], and stocks prepared for infection after the
last passage of each. For ∆clpB bacteria passaged either in vivo or in vitro, all BALB/c mice
survived IN inoculation at a dose of 104 CFU (Table 3, top half).

Table 3. Effect of culture conditions on attenuation of original ∆clpB.

Source of ∆clpB % Survival after IN
Inoculation with ~104 CFU

% Survival after IN Challenge with
~100 CFU SCHU S4 42 Days Later

Original stock 100% 100%
10× in vitro 1 100% 100%
5× in vivo 2 100% 100%

Original stock 100% 100%
5× in CDM 3,4 60% 100%

Fermenter CDM 5 40% 100%
1 Original stock passaged by serial streaking for confluent growth on CHAH followed by 48 h incubation at 37 ◦C,
final passage was resuspended in freezing medium and used herein [24]; 2 serial passage of infected spleens by IP
inoculation without intervening in vitro passage, spleen from the 5th passage was grown to confluence on CHAH
agar, resuspended in freezing medium, and used herein; 3 CDM, Chamberlains defined broth [44]; 4 passaged 5×
in CDM for acclimation prior to 5 fermenter growth.

To evaluate the potential for recombination, we further evaluated stocks of bacteria
in which ∆clpB was co-cultured on CHAH agar with a distinct SCHU S4 ∆iglC deletion
mutant through 5 passages in vitro. All of the mice survived infection with 108 co-cultured
bacteria (Figure 3); furthermore, these mice were effectively vaccinated, since all survived
when subsequently challenged with fully virulent SCHU S4. Other mice received the same
amount of co-cultured bacteria spiked with 50 CFU SCHU S4; about 35% of these mice
survived. Normally, ID inoculation of 50 CFU of SCHU S4 alone would result in 100%
deaths (mean time to death of 7 days). However, mixing with co-cultured bacteria seems
to have somewhat blunted the virulence of the fully virulent bacteria, possibly because
the massive excess of the co-cultured bacteria induced concomitant inflammatory immune
responses. The combined data above led to the removal of ∆clpB from the Select Agent
list in 2014 (https://www.selectagents.gov/sat/exclusions/hhs.htm, accessed on 27 May
2021). Subsequently, exclusion was applied to ∆clpB carrying any additional mutations (T.
Wu, personal communication).

2.2. Clearance of ∆clpB from Fischer Rat Tissues

As noted, Fischer 344 rats provide a valuable model for testing tularemia vaccines [42,43,45–47].
Therefore, we expect rats to be used for testing tularemia vaccines under the “Animal
Rule”. Thus, we evaluated distribution and clearance of ∆clpB from the spleens of infected
male and female rats given ID doses of ∆clpB ranging from 103–109 CFU. All rats survived
infection, and no bacteria were detected in spleens by 40 days after infection (Figure 4).
No significant differences in bacterial burdens were found between male and female rats
at any dose on any day. While rats survived ID infection with 109 CFU, 1010 CFU ID was
uniformly lethal for both sexes (data not shown).

In a separate experiment, male and female rats were inoculated ID with 30, 300, or
3000 CFU of ∆clpB, and splenic burdens were determined on Day 14. One spleen from
a female rat inoculated with 30 CFU was sterile. All other rats had a splenic burden of
~4.5 log10, with no significant differences among groups (data not shown). Taken together,
these data support performing challenge studies of vaccinated rats after Day 30, when
vaccinating bacteria are no longer present in tissues.

https://www.selectagents.gov/sat/exclusions/hhs.htm
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SCHU S4 ∆iglC mutant. The mutants were both co-cultured on CHAH agar for 48 h through five passages, as described in
Materials and Methods. Thereafter, proteomics (2D PAGE followed by mass spectrometry) confirmed the presence of the
clpB and iglC proteins at levels expected from either mutant alone. BALB/c mice were administered the indicated CFU of
co-cultured bacteria ID and monitored for survival. Co-cultured bacteria remained as attenuated for BALB/c mice as the
individual mutants, whereas spiking the co-culture preparation with as few at 50 CFU of wild-type SCHU S4 was sufficient
to cause death. Co-cultured bacteria also engendered protection; following administration of co-cultured bacteria, surviving
mice were also challenged with 50 CFU SCHU S4, and all survived.

Pathogens 2021, 10, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 4. Clearance of ΔclpB from the spleens of vaccinated Fisher 344 rats. Young adult male and female Fischer rats were 
inoculated ID with the indicated doses of ΔclpB. At the indicated times after inoculation, rats (n = 3/group) were euthanized 
and the splenic burdens of ΔclpB determined. As illustrated, rats of either sex cleared ΔclpB between 30 and 42 days after 
vaccination. Dashed horizontal line shows limit of detection. 

2.3. ΔclpB Vaccine Production Optimization, Scale-Up, and Quality Control Testing 
The original clinical lots of LVS, made in the 1960s, and the LVS lots made in the 

2000s by the DynPort Vaccine Company (DVC), were both produced by growing LVS in 
modified casein partial hydrolysate (MCPH) broth [9,18]. At NRC-C, an initial stock of 
ΔclpB was made from a slant growth of the mutant obtained from Umea University. This 
was expanded by confluent growth on CHAH, and then subsequently harvested and 
resuspended in freezing medium [24], dispensed into 1.0 ml aliquots, and stored at −80 
°C. This is referred to as “original stock” throughout the current manuscript. Then, a 
working research cell bank was prepared at NRC-C by passaging original ΔclpB five times 
in MCPH broth, and the final passage was used to prepare 1000 × 1.0 mL vials that were 
stored at −80 °C. This is referred to as “new stock” throughout the current manuscript and 
served as a research cell bank. Vials of new stock were shared among the vaccine 
development teams (see authorship for affiliations) and were used as the starting material 
for all subsequent vaccine development studies reported herein and elsewhere. The 
characteristics of new stock ΔclpB are listed in Table 4 as compared with “original stock” 
(i.e., before passage through MCPH broth); all were considered to be representative of 
results to date and acceptable as bacterial source stocks for future work. Subsequently, a 
cGMP master cell bank was prepared at a commercial manufacturing organization, Ology 
Bioservices, from a single isolated colony, frozen in freezing medium in 1 mL vials, and 
characterized, as described in Supplementary Table S2.  

Table 4. Characterization of ΔclpB used to produce a research cell bank. 

Characteristic  
Time of harvest from flask 20.75 h 
CFU/ml at harvest a 3.9 × 109 
Cryopreservative Sucrose 10% w/v 
Colony morphology b Typical of Ftt and Fth 
Gram stain c Typical of Ftt and Fth 
Lytic phage Negative 
Lysogenic phage Negative 

Figure 4. Clearance of ∆clpB from the spleens of vaccinated Fisher 344 rats. Young adult male and female Fischer rats were
inoculated ID with the indicated doses of ∆clpB. At the indicated times after inoculation, rats (n = 3/group) were euthanized
and the splenic burdens of ∆clpB determined. As illustrated, rats of either sex cleared ∆clpB between 30 and 42 days after
vaccination. Dashed horizontal line shows limit of detection.
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2.3. ∆clpB Vaccine Production Optimization, Scale-Up, and Quality Control Testing

The original clinical lots of LVS, made in the 1960s, and the LVS lots made in the
2000s by the DynPort Vaccine Company (DVC), were both produced by growing LVS
in modified casein partial hydrolysate (MCPH) broth [9,18]. At NRC-C, an initial stock
of ∆clpB was made from a slant growth of the mutant obtained from Umea University.
This was expanded by confluent growth on CHAH, and then subsequently harvested and
resuspended in freezing medium [24], dispensed into 1.0 ml aliquots, and stored at −80 ◦C.
This is referred to as “original stock” throughout the current manuscript. Then, a working
research cell bank was prepared at NRC-C by passaging original ∆clpB five times in MCPH
broth, and the final passage was used to prepare 1000 × 1.0 mL vials that were stored at
−80 ◦C. This is referred to as “new stock” throughout the current manuscript and served as
a research cell bank. Vials of new stock were shared among the vaccine development teams
(see authorship for affiliations) and were used as the starting material for all subsequent
vaccine development studies reported herein and elsewhere. The characteristics of new
stock ∆clpB are listed in Table 4 as compared with “original stock” (i.e., before passage
through MCPH broth); all were considered to be representative of results to date and
acceptable as bacterial source stocks for future work. Subsequently, a cGMP master cell
bank was prepared at a commercial manufacturing organization, Ology Bioservices, from
a single isolated colony, frozen in freezing medium in 1 mL vials, and characterized, as
described in Supplementary Table S2.

Table 4. Characterization of ∆clpB used to produce a research cell bank.

Characteristic

Time of harvest from flask 20.75 h
CFU/ml at harvest a 3.9 × 109

Cryopreservative Sucrose 10% w/v
Colony morphology b Typical of Ftt and Fth
Gram stain c Typical of Ftt and Fth
Lytic phage Negative
Lysogenic phage Negative
Contaminant bacteria d Negative
Genomic sequence e Identical to original mutant
42-day survival of mice after 104 CFU IN administration
(original stock/new stock) f 100%/60% at day 42; NS h

42-day survival of mice following 105 CFU ID administration
(original stock/new stock)

100%/100%

Clinical signs g (original vs. new stock) Significantly greater vs. old stock on days 3, 4, and 5
Skin reactogenicity g (original vs new stock) NS h

∆clpB organ load (skin, spleen, liver, lung) 4 days after ID
vaccination with 105 CFU of original vs. new stock.

∆clpB lung burden was significantly higher (p = 0.016) for new
vs. original stock

Day 4 serum cytokine/chemokine levels (21-plex assay)
(original vs. new stock) NS h

28-day survival against IN challenge with ~100 CFU SCHU S4
after IN vaccination (original/new stock) 100%/100%

Protection against IN challenge with ~100 CFU SCHU S4 after
ID vaccination original/new stock (MTD in days) 60% (28)/0% (16). NS h,i

Protection against ID challenge with 105 CFU SCHU S4 or
FSC033 after ID vaccination

100%/100%

a Average from plating of 2 vials each by three individuals; b after 48 h growth on Oxoid chocolate II agar; c no evidence of contaminating
bacteria; d several vials were plated on regular Oxoid chocolate agar or sheep blood agar, and incubated aerobically, microaerophilically,
or anaerobically at 37 ◦C for 72 h; e no evidence of any contaminating DNA; f inocula for old vs. new stock were 7 × 103 CFU vs.
1.32 × 104 CFU; g scored blind by NRC-C animal resources staff; h, not significantly different from each other; i when compared to naïve
mice (MTD 5 days) and corrected for multiple comparisons.

A major hurdle in vaccine development is the ability to scale-up production to levels
suitable for the target population. Previously, LVS growth for extraction of F. tularensis LPS
in a 30-liter BSL3 fermenter (working volume 22 L) at NRC-C [48] resulted in yields of
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1014 CFU, an amount sufficient for ~10 million ID human doses or 1 million scarification
doses, assuming a dose similar to LVS [49], the difference reflecting the wastage inherent
to the latter administration route. Therefore, we evaluated growth approaches amenable
to a ~22 L scale and which were appropriate for GMP production. First, we explored
growth in Chamberlain’s defined broth (CDB), since all ingredients are available in a
highly purified form and not sourced from cows (minimizing the risk of contamination
by bovine spongiform encephalopathy prions). Because previous reports [50] indicated
that LVS grown in CDB increased in virulence for mice, we tested the virulence of ∆clpB
grown to 22 L scale in CDB. The results showed that fewer mice infected IN with ∆clpB
either passaged in CDB or grown at scale in CBD survived infection with 104 CFU as
compared with the starting stocks grown at lab scale (Table 3, bottom half). Although the
significance of the subtle change in ∆clpB when grown in CDB is not clear, we elected to
evaluate growth of ∆clpB in MCPH, the medium used to develop the original human lots
of LVS and later used by DVC. We produced three 22 L fermenter batches at NRC-C at
1–2-year intervals, the latter two using ∆clpB research cell bank stocks. The outcomes of
fermentation at scale appeared to be highly reproducible in terms of yield from the starter
culture flasks, yields from fermenter growth, bacterial doubling time, and biomass (Table 5).
The ∆clpB growth curve from the second NRC-C fermenter run (Table 5) as monitored
by OD600, illustrates growth in MCPH. During fermenter runs two (Figure 5A) and three
(not shown), ∆clpB cultures were sampled at various intervals which represented late log
phase, early stationary phase, and mid-stationary phase. On the basis of the results from
testing these samples in putative lot release and biological characterization assays (see
below), we considered the early mid-stationary phase to be the optimal time period for
harvest. Approximately 200 mL/time point of fermenter growth was sufficient for R&D
purposes at NRC-C. Fermenter contents collected at the end of NRC-C fermenter Run 1
(Table 5) were used for long-term preservation studies. To mimic large-scale diafiltration
prior to lyophilization, ~100 mL was centrifuged at 6700× g for 20 min at +4 ◦C. The pellet
was washed once in lyophilization medium and resuspended in 50 mL of the same, and
then aliquoted into 5 mL lyovials in 2 mL volumes (concentrated stock). Additionally,
a 1/1000 dilution of the concentrated stock was made in lyophilization medium and
dispensed as above for freeze-drying. The LVS vaccine produced in the 1960s contained
50 doses/vial, whilst that produced by DVC contained a single (2 × 107 CFU) dose.
Therefore, we attempted to mimic both of these situations with ∆clpB. For all other purposes,
sucrose was added to 10% w/v to the MCPH growth, aliquoted in 1.0 mL volumes, and
frozen at −80 ◦C until required. The bulk of the fermenter growth was harvested by
centrifugation, and the cell paste stored in 50–200 g amounts and frozen at −80 ◦C.

SOPs developed during fermenter Run 2 were transferred to Ology Biosciences. Sev-
eral process development runs were performed to demonstrate the reproducibility of the
procedure developed at NRC-C. As shown in Figure 5B,C, the growth patterns of ∆clpB
in two difference process runs were nearly identical, and very similar to Run 2 at NRC-C
(Figure 5A). Then, a 25 L scale manufacturing run was performed. The product from the
initial 25 L run was characterized, and the bulk product conformed to expected characteris-
tics (Supplementary Table S3). The products generated from these runs were then diluted
in lyophilization buffer to a target concentration of 5 × 108 CFU/mL and subsequently
lyophilized (see below). The final drug product was then characterized using a panel of
working lot release assays, as described in Table 6.
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Table 5. Comparison of ∆clpB yields from 22 L fermenter runs at NRC-C in MCPH broth.

Date of Run Flask Starting
Inoculum CFU/mL

Flask Harvest
Concentration CFU/mL

(Culture Time, h)

#Doublings
(Doubling Time, h)

Fermenter
Inoculum CFU/mL

Fermenter Harvest
Time, h

(CFU/mL)

#Doublings
(Doubling Time, h)

Total CFU × 1014

(# Doses × 106) 1 Biomass g

December 2014 4.0 × 107 5.2 × 109 (18.5) 7 (2.6) 3.90 × 106 22 (1.1 × 1010) 12 (1.85) 242 (24) 177.3
September 2015 2.6 × 107 9.0 × 109 (18.25) 8.4 (2.1) 1.40 × 107 20.5 (1.1 × 1010) 10 (2.3) 242 (24) 204.1

June 2017 7.8 × 106 9.0 × 109 (18.5) 10.2 (1.8) 1.43 × 107 26 (1.1 × 1010) 10 (2.9) 242 (24) 74.9 2

1 # of human doses based on an inoculum size of 107 CFU/ml as used for LVS; 2 remaining biomass after periodic sampling.
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Aliquots were sampled from approximately 15 h onwards and growth was monitored by OD600; samples were diluted
1:10 prior to reading. The line from 0 to 15 h is stylized from the fermenter printouts to avoid potential contamination of the
fermenter vessels by sampling at low ∆clpB levels. (A) NRC-C Run 2); (B) ology process Run 1; (C) ology process Run 2.

Table 6. Quality control testing of the final drug product.

Parameter Test Method Specification

clpB specific PCR Identity confirmed a

Purity Absence of contaminating organisms b

CFU/mL Report result
Gram Stain Gram negative coccobacillus

TBD c Round, smooth and slightly mucoid single colonies
CFU/Ml d Report result

LAL e <5 EU/kg/dose
Susceptible to tetracycline, levofloxacin,

gentamycin, chloramphenicol, ciprofloxacin,
streptomycin, rifampin f

Susceptible

Karl Fisher g Report Result
Appearance of cake h Report result

a Whole genome sequencing was performed on Master Cell Banks, the PCR method developed to demonstrate the absence of intact clpB
gene is described in methods section; b growth on multiple media known to support and inhibit the growth of ∆clpB ; c bacteria were grown
on chocolate agar plates; d Bacteria were counted prior to placing into a known volume of media, samples were taken at various times,
plated on agar plates, and colonies counted; e LAL = limulus amoebocyte lysate assay using an Endosafe nexgen-PTS system (depending
on the safety margin required by the regulator, the required test dose of ∆clpB could fail this test because it possesses intact LPS albeit with
low endotoxicity [51], f by antibiotic disc assay on chocolate agar medium; g for dryness of lyophilized cake; h color and form as compared
with a standard sample, ease of solubilization, residual solids after reconstitution.
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2.4. Long-Term Storage of ∆clpB

The LVS produced in the 1960s was lyophilized and frozen at −80 ◦C at a concentra-
tion of 5 × 1010 CFU; the original lyophilized vials have been used for in vitro, preclinical,
and clinical studies up to the present [9,52–54]. This experience with successful long-term
storage of LVS was the basis for testing similar storage conditions for ∆clpB. The original
vaccine lots and the newer lots produced by DVC both used 10 mM phosphate buffer con-
taining 10% w/v sucrose and 1.3% gelatin as the lyophilization medium [9,18]. In the former
case, a 90% loss in viability, measured as a decline in CFU, was associated with lyophiliza-
tion and reconstitution in water for injection, whereas DVC did not report similar data
in published work. Others empirically tested multiple other matrices for foam-drying of
LVS [55], the best of which showed no loss of viability after twelve weeks of storage at 25 ◦C.
The lyophilization process described by Eigelsbach and Downs [9] and Pasetti et al. [18],
when applied to ∆clpB, resulted a in viability loss of >99% (not shown). Furthermore, we
did not have access to the foam drying apparatus used by Ohtake et al. [55]. Therefore,
we empirically tested lyophilization formulations comprised of various concentrations of
mannitol, sucrose, trehalose, and gelatin in 10 mM phosphate buffer. Ultimately, we found
that lyophilization in 10 mM phosphate buffer, containing 1% w/v sucrose, 1% w/v mannitol,
and 0.25% w/v gelatin, resulted in an approximately 50% decrease in viability immediately
following lyophilization and reconstitution which was considered to be an acceptable
outcome (Figure 6). Recovery was similar when ∆clpB prepared using this formulation
was stored at −20 or −80 ◦C for more than 3 years (Figure 6). In contrast, storage at +4 ◦C,
for the same period of time, resulted in an additional 50% decrease in viability. In contrast,
no viable bacteria were recovered after storage at an ambient temperature for <6 months
(not shown). Viability was similar whether ∆clpB was lyophilized neat (1010 CFU/vial) or
a 1:1000 dilution (107 CFU/vial), as shown in Figure 6.
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Figure 6. Viability of ∆clpB following lyophilization and prolonged storage at different tempera-
tures. ∆clpB was obtained from a fermenter run, and the suspension buffer was exchanged with
lyophilization matrix by centrifugation and washing twice with matrix. At high concentration
(~1010 CFU/mL), freezing the samples prior to lyophilization had no impact of the viability of ∆clpB,
but at a lower concentration (~107 CFU/mL), this was reduced by ~25% (not shown). On Day 1
following lyophilization, the viability of ∆clpB decreased ~50% and ~75% at the higher and lower
concentration, respectively. Next, lyophilized ∆clpB was stored for 3 years at +4 or −20 ◦C or −80 ◦C.
Lyophilized ∆clpB stored at +4 ◦C only decreased further in viability to ~50% at this time point.

2.5. Quality Control and Lot Release Assays for Clinical Lots of ∆clpB

Establishment of a panel of robust in-process quality control (QC) assays and lot
release assays, including those used for stability testing, are an essential component of
product development. We expected to include traditional QC testing applied to control
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consistent production of live attenuated vaccines (e.g., monitoring bacterial growth, steril-
ity, pH, osmolarity, moisture retained in final lyophilized vials, endotoxin, and tests for
excipients and residual materials of concern, as detailed in Table 6 and Supplementary
Tables S2 and S3. Additionally, in the current studies, samples of ∆clpB collected at various
stages of the development process (Supplementary Tables S4 and S5) were subjected to a
battery of biological tests to determine whether these showed any deviations that might
correlate with a loss of potency. In total, eight different experiments performed over a
period of 10 years yielded comparable results with all parameters tested. Among other
assessments, serum cytokine and chemokine levels four days after ID vaccination with
the various ∆clpB samples were comparable, including when measured using different
Luminex technologies (fluorescent versus magnetic beads) and instruments (Luminex
Magpix vs LS100). This outcome suggests the robustness of this assay.

3. Discussion

The development of vaccines against tularemia was originally prompted by the need
to control endemic disease. In the early half of the 20th century, Fth was responsible for
large epidemics involving millions of cases in the former USSR [10]. In North America,
tularemia caused by both Fth and Ftt was recognized as an occupational and recreational
hazard [15,56–58]. Historically, inhalation of Ftt had a mortality rate of >30% before the
antibiotic era [1], and human infection studies have demonstrated that inhalation of as few
as 20 CFU of Ftt caused severe infection that required intervention with streptomycin [12].
The incidence of tularemia worldwide declined dramatically during the latter part of
the 20th century, likely related to changes in housing and work patterns, and antibiotic
development made tularemia a treatable disease when promptly diagnosed. More recently,
tularemia vaccines have been of interest due to the biodefense considerations. Nonetheless,
some areas of the former Soviet Union continue to use live attenuated vaccines to respond
to tularemia outbreaks [59], and vaccination may be of interest here and in areas such
as central Sweden and Turkey [60,61], which suffer episodic disease. Therefore, vaccines
such as ∆clpB may be useful as a biowarfare deterrent and response, and for public
health purposes.

Standards and expectations for biological product development, including new vac-
cines, have changed dramatically since LVS was derived and human studies initiated in
the 1960s. Currently, most new vaccines are subunit formulations, comprised of pathogen
components and adjuvants. These approaches are most applicable to viral and bacterial
pathogens for which induction of specific antibodies and memory B and T follicular helper
(Tfh) cells dominate protective mechanisms, as reviewed in [62]. In contrast, relatively
few vaccines have been developed against intracellular bacteria such as Francisella. For a
variety of reasons, some of which remain poorly understood, live attenuated vaccines have
held the most promise for providing substantial and durable protection against this class
of microbes [63]. For example, Fth-derived Strain 15 was used in mass vaccination cam-
paigns in the USSR that ameliorated large natural tularemia outbreaks [10,64]. However,
because growth conditions may alter bacterial properties and because terminal steriliza-
tion is not possible for a live bacterial product, production of live attenuated vaccines
presents unique challenges. Moreover, by definition, live attenuated strains pose inherently
more risk for human use than static vaccines, inviting scrutiny that necessitates additional
product characterization.

The difficulties in advancing vaccine candidates to market is perhaps illustrated
by the experience with LVS, which remains unlicensed despite decades of study. Strain
15, one of the predecessors of LVS, and LVS itself, have been developed empirically by
repeated passages in vitro and in vivo [9,65]. A lack of understanding about the genetic
basis for attenuation has been accompanied by concerns about reversion of LVS to wild-
type Francisella, and underlying genetics were not understood until the development of
sequencing methods that allowed complete evaluation of the entire bacterial chromosome.
This concern has largely been alleviated by subsequent genetic studies [27], and DVC’s
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efforts supported by NIH have produced new lots of LVS for human use by better controlled
manufacturing procedures [18,66]. Nonetheless, to the best of our knowledge, no party is
currently interested in advancing LVS toward licensure.

Other new tularemia vaccine candidates include the use of killed or subunit protein
vaccines with various adjuvants, heterologous attenuated recombinant vaccines, and
attenuated mutants of LVS, F. novicida, Ftt, and Fth. The properties and relative merits of
these have been reviewed elsewhere [67]. We propose that ∆clpB provides a genetically
stable, well-defined alternative to LVS. The focus on ∆clpB was based in part on the
observation that a natural mutant of SCHU S4, Ftt strain FSC043, which contains a similar
genetic lesion as LVS, was at least as attenuated for mice as LVS but protected mice better
against aerosol challenge with Ftt strain FSC033 [24]; notably, FSC033 is a clinical isolate
that is more virulent than SCHU S4 in rodents [68]. This may be because Ftt expresses
several immunogenic antigens that are lacking in Fth strains, some of which could provide
additional protection against the most virulent Ftt strains as compared with LVS. This
hypothesis has also been borne out by data involving various mutants of Ftt and Fth lacking
the ∆clpB gene [25]. Most recently, extensive efficacy studies using rats and cynomolgus
macaques have demonstrated that ∆clpB provided excellent and durable protection against
aerosol challenge with Ftt SCHU S4 (manuscripts in preparation).

An emphasis has been placed on developing live vaccines, which contain two atten-
uating mutations, to decrease risk of reversion. However, data following initial screen-
ing indicated that ∆clpB was an excellent candidate in terms of both safety and efficacy
(Tables 1, 3 and 4, and Figure 3 [25,29,38,69]), but further deletions impaired its efficacy
potential [25]. Instead of seeking double mutants, therefore, we focused on extensive
safety-related characterizations of ∆clpB, as detailed here. In vitro passage studies, includ-
ing co-culture studies to mimic the worst-case scenario of recombination with virulent
Francisella in nature (Table 3, Figure 3), support the conclusion that the risk of revision of
this large deletion is below any limit of detection. Studies in vivo using mice, guinea pigs,
and rats (Table 2, Figures 2 and 4) further support a very high level of ∆clpB attenuation. We
considered clearance studies using rats to be particularly important. Although evaluation
of some tissues was limited by microbiota-related overgrowth, rat spleens were uniformly
free of contaminants. In mice, the spleen is the last of the organs to clear LVS, ∆clpB, and
other mutant F. tularensis strains [29,37,70]. If the same holds true for rats, then, splenic
clearance is the most important tissue to monitor.

A package including all safety-related data described was submitted to the CDC
for review, and the request to exclude ∆clpB from the Select Agent list was granted in
November 2014. The same data package was sent to the Public Health Agency of Canada
(PHAC), and ∆clpB was reclassified to containment level 2 (CL2/BSL2) for in vivo and
in vitro uses, including large-scale production. Additionally, based on the relative virulence
for mice of ∆clpB, the PHAC also reclassified SCHU S4 ∆wbtC, ∆wbtI, ∆kdtA, glpX, and
∆lpcC mutants as CL2 pathogens (https://health.canada.ca/en/epathogen, accessed on 27
May 2021). Since the approvals from CDC and PHAC, we further evaluated the stability
of the ∆clpB genome at various stages of the development process described herein. We
found that no genomic changes occurred as a result of the various manipulations used in
the manufacture of this mutant strain; demonstrated the lack of detectable contamination
of ∆clpB research lots by exogenous bacteria; and demonstrated the lack of detectable lytic
or lysogenic phages from ∆clpB stocks used in all stages followed for the GMP production
of ∆clpB (data not shown). Collectively, the available data support the substantial degree
of irreversible attenuation of ∆clpB.

Production studies described here (Tables 4–6, Figure 5) clearly demonstrate successful
scale-up. Of note, most studies described here were performed with ∆clpB produced at
a 20–22 L scale, sufficient for millions of doses. Equally important, experience with LVS
and now with ∆clpB indicate that lyophilization conditions have been defined that allow
for long-term storage (Figure 6). This is an important feature for inclusion in stockpiles
held for biodefense purposes. Given the excellent preservation of viability of ∆clpB in the

https://health.canada.ca/en/epathogen
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medium developed here for a minimum of 3 years and given the prolonged preservation
of lyophilized LVS following an initial 90% decline in viability, we anticipate successful
storage of the former at +4, −20, or −80 ◦C could lead to multi-decade preservation similar
to that observed with LVS.

Working quality control tests to evaluate newly produced lots as well as stability have
been established and continue to be refined. Our research and product development expe-
rience, to date, further suggests several additional approaches for ∆clpB-specific identity,
safety, and potency tests. For example, identity testing by qRT-PCR based on deletion of the
∆clpB gene and the expected sequences of the surrounding bacterial chromosomal changes
has been established and qualified by Ology Biosciences. Understanding of the residual
virulence and behavior during infections of mice and rats (Tables 1–4) suggests options
for initial safety testing that may ultimately be replaced by in vitro measures, including
sequence data.

Arguably, the most critical test performed is potency testing, and its design merits
careful consideration. For many years, potency testing of LVS has relied on parenteral
vaccination of mice, which allows for assessment of residual vaccine virulence, followed
by parenteral challenge with fully virulent F. tularensis. Ideally, future options will move
away from extensive use of animals, particularly one such as this that depends on lethal
challenges with BSL-3 Select Agents. Full development of potency testing should include
consideration of a stressed preparation of ∆clpB that exhibits reduced protection of animals
against respiratory challenge with fully virulent F. tularensis SCHU S4. Relevant measure-
ments, some of which avoid lethal challenge in vivo, may include tests that have been
used to evaluate multiple different iterations of ∆clpB over time. For example, original
∆clpB stocks, research production lots, lyophilized lots, and stored lots have been tested
for in vivo virulence in mice (IN LD50) and for protection against IN challenge with fully
virulent F. tularensis, analogous to LVS potency testing (Supplementary Table S3). Clinical
scores after vaccination, skin reactogenicity, bacterial genomes (Supplementary Table S4),
and levels of cytokines in sera within 4 days after vaccination (Supplementary Table S5)
have been monitored, all options that do not depend on lethal infections. Moreover, we
have extensively explored the use of an in vitro co-culture assay that measures the ability
of lymphocytes from ∆clpB vaccinated mice or rats to control the intramacrophage growth
of Francisella bacteria [46,54,71–74]. The degree of bacterial growth control tracks well
with the degree of in vivo protection [54,73,75], making this assay a potential potency
assay. Only small numbers of vaccinated animals are required, and macrophages can be
infected with BSL-2 strains of F. tularensis (including ∆clpB and LVS), eliminating the need
for BSL-3 biocontainment.

Taken together, to date, studies of ∆clpB indicate that it is an excellent tularemia
vaccine candidate. The stable, high degree of attenuation by many criteria coupled with its
strong efficacy profile yield a favorable risk/benefit relationship. Moreover, commercial
production at scale is feasible and economical. These factors support completing animal
studies coupled with derivation of immunological correlates of vaccine-induced protection,
in anticipation of proceeding to human clinical trials.

4. Materials and Methods
4.1. Generation of ∆clpB and Evaluation of Its Potential for Reversion to Wild Type

Mutant ∆clpB was created by deletion of 2463 out of 2580 bp of the clpB gene using
technology developed at Umea University [26]. Complementation was performed, as
previously described [76]. Tests for reversion included passage of ∆clpB through mice
without intervening plating. An initial mouse was injected intraperitoneally (IP) with
∆clpB and was euthanized on Day 3 of infection; its spleen was removed, homogenized,
and re-injected into a second mouse. Mice 3–5 were similarly infected, for a total of
5 passages without intervening plating. Then, a stock of in vivo passaged ∆clpB was
prepared by plating a 1/1000 dilution of the spleen from Mouse 5 on cysteine heart agar
supplemented with hemoglobin (CHAH). The resulting bacterial lawn was used to make
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liquid suspensions that were aliquoted in small volumes and frozen at −80 ◦C, as previously
described [24]. Additionally, we passaged ∆clpB 10 times daily on CHAH agar, and then
made stocks of the final passage, as above. Finally, to evaluate general stability and protein
production of the bacterial mutants, we co-cultured ∆clpB and SCHU S4 ∆iglC on CHAH
through 5 daily passages in vitro. Assuming a 2-hour doubling time, this represents at
least 60 doublings, or a >1 × 1018-fold increase in viable bacteria over the initial inoculum.
Bacteria from the fifth passage were lysed, and the presence of clpB and iglC proteins was
demonstrated by mass spectrometry in approximate proportions to the quantities found in
the individual mutants using previously described methods [69]

4.2. Fermenter Growth of ∆clpB at NRC-C

Fermenter growth of ∆clpB used a working volume of 22 L in a 30 L new MBR Vessel
(Multiple Bioreactors and Sterile Plants AG, Zurich, Switzerland). All fermenter parameters
were monitored and controlled by custom software. As proof-of-principle, we first tested
large-scale ∆clpB growth in Chamberlains defined broth (CBD) [44]. A 1 mL vial of a frozen
stock of ∆clpB that had been passaged 5 times in CBD was thawed and transferred to a
4 L baffle flask containing 1 L of CMB. After overnight incubation at 37 ◦C with shaking,
sufficient starter culture was added to a fermenter vessel containing 22 L of sterile CBD
to give a final OD600 reading of 0.1. At 16, 19, and 21.5 h, 150 mL samples were sterilely
withdrawn from the fermenter, sucrose added to 20% w/v, and then 1.0 mL aliquots were
dispensed and frozen at −80 ◦C. Thawed aliquots of frozen stocks were used for testing
in mice. Subsequent runs were performed as above using the modified casein partial
hydrolysate broth described by Karlsson et al. [77].

4.3. Manufacturing of ∆clpB at the 25 L Scale at Ology Bioservices

To make a master cell bank, single isolated colonies of ∆clpB were grown and selected
on buffered charcoal yeast extract (BCYE) agar plates. Then, single colonies were expanded
in MCPH broth. Production runs were performed under Current Good Manufacturing
Procedures (cGMP) and documented with Master Batch Records. Seed strains were estab-
lished by inoculating 1 L shake flasks containing 250 mL of MCPH broth. Cultures were
incubated for up to 24 h at 37 ◦C, shaking at 200 RPM until the OD600 reached 1.5 ± 0.3.
Samples of the broth were evaluated for CFU/mL prior to freezing. Bacteria were aliquoted
as 1 mL in 2 mL cryovials. The bacteria were frozen at <−70 ◦C in a solution of 1 g/L
sucrose in MCPH media. The ∆clpB production runs were performed as follows: ∆clpB
seed strains were established by inoculating 1 L shake flasks containing 250 mL of MCPH
broth with a single vial of the research cell bank. Cultures were incubated for up to 24 h
at 37 ◦C shaking at 200 RPM, until the OD600 reached 1.5 ± 0.3. The fermentation runs
were performed by inoculating 24.5 L of MCPH broth with a dilution of the shake flask
culture, to reach an initial OD600 = 0.0015 with a total of 25 L of MCPH broth in a 50 L
XDR-50 fermenter (Cytiva, Marlborough, MA). The fermentation process was conducted
by incubating the cells at 37 ◦C for approximately 20 h.

4.4. Lyophilization of ∆clpB Drug Product

At NRC-C, small volumes of ∆clpB (50–100 mL) were buffer exchanged with lyophiliza-
tion buffer (10 mM potassium phosphate, 1% mannitol, 1% sucrose, 0.25% gelatin, pH 7.2.)
by centrifugation, washed, and resuspended to the original volume. The GMP ∆clpB
drug product from Ology Biosciences was lyophilized by Lyophilization Technology Inc.
(Warminster, PA, USA). In this case, ∆clpB was buffer exchanged by diafiltration. Thereafter,
rinsed 2 cc/13 mm vials were filled to a target volume of 0.50 mL, and then lyophilized
using a proprietary cycle program. Then, final vialed drug product samples were charac-
terized for release testing.
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4.5. Analytical Assays

Colony forming units were determined by plating serial dilutions of ∆clpB on CHAH,
BCYE, or supplemented chocolate agar plates (as available, with equivalent results) that
were incubated at 37 ◦C for 48–72 h. Antibiotic resistance was performed by plating
∆clpB onto peptone cysteine agar plates and incubated for 72 h at 37 ◦C. Antibiotic discs
containing each antibiotic were placed on the surface of the bacterial lawn and the plates
incubated for 48 h at 37 ◦C. The resulting zone of complete inhibition was measured
in millimeters. Endotoxin testing was performed using the Limulus Amebocyte Lysate
Endosafe nexgen-PTS system, following the manufacturer’s instructions (Charles River
Laboratories, Wilmington, MA, USA). Whole genome sequencing was performed by
Omega Bioservices (Norcross, GA, USA) and in-house by NRC-C. A PCR-based method for
identification of the deletion mutant was developed using the Phusion Flash Master Mix
(Thermo Scientific, Waltham, MA, USA). Two sets of primer were designed. The first set of
primers were based on the sequences outside of the clpB gene and the other set included
sequences from within the gene. Thirty-five cycles of the PCR reaction were completed
followed by a five-minute elongation step.

4.6. Biological Assays

Samples of ∆clpB generated at various stages of the product development cycle were
subjected to a battery of in vivo tests in young adult female BALB/c mice. These assays
included in vivo organ growth, ID and IN virulence determinations, clinical scores and skin
reactogenicity, potency against ID or IN challenge with SCHU S4 or FSC033, and serum
cytokine production after ID vaccination with 105 CFU (Supplementary Tables S4 and S5).

5. Patents

Some of the work published herein is the subject of patents US8993302B2, EP2424974B1,
CA2760098C, ES2553763T3, US20210008191A1 (pending), CA3094404A1 (pending), EP3768820A1
(pending).
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