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Abstract
The mathematical theory for optimal switching is by now relatively well developed, 
but the number of concrete applications of this theoretical framework remains few. 
In this paper, we bridge parts of this gap by applying optimal switching theory to 
a conceptual production planning problem related to hydropower. In particular, we 
study two examples of small run-of-river hydropower plants and provide an outline 
of how optimal switching can be used to create fully automatic production schemes 
for these. Along the way, we create a new model for random flow of water based on 
stochastic differential equations and fit this model to historical data. We benchmark 
the performance of our model using actual flow data from a small river in Sweden 
and find that our production scheme lies close to the optimal, within 2 and 5 %, 
respectively, in a long term investigation of the two plants considered.
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1 Introduction

Small-scale hydropower plants are in many cases of “run-of-river” type (ROR) 
meaning that any dam or barrage is small, usually just a weir, and generally little 
or no water can be stored. ROR hydropower plants preserve the natural flow of 
the river (besides of course at the location of the power plant) and are therefore 
among the most environmentally benign existing energy technologies. Due to a 
low installation cost, ROR hydropower plants are often cost-efficient and, as such, 
useful both for rural electrification in developing countries and for new hydro-
power developments in industrialized countries (Paish 2002). ROR hydropower 
plants are common in smaller rivers but also exist in larger sizes such as the 
Niagara Falls hydroelectric plants (Canada/USA), the Chief Joseph dam on the 
Columbia River (Washington, USA) or the Saint Marys Falls hydropower plant in 
Sault Sainte Marie (Michigan, USA).

The optimal sizing of ROR hydropower plants has been considered by several 
authors, see, e.g., (Anagnostopoulos and Papantonis 2007; Bozorg Haddad et al. 
2011; Fahlbusch 1983; Garrido et al. 2009) and the references therein. In the esti-
mation of the performance of a given power plant, all these authors omit the cost 
of switching between different production modes. Doing so, the optimal manage-
ment strategy can be found trivially by starting the machine when flow is suffi-
cient and stopping it when flow is insufficient. However, in rivers with large and 
rapid flow fluctuations, which is typically the case in smaller unregulated rivers, 
such strategies can lead to a large number of changes in the production, the cost 
of which can not be neglected; for example, starting and stopping the turbines 
induces wear and tear on the machines and may also require intervention from 
personnel. Moreover, each start and stop involves a risk which can be considered 
a cost. To give an example, the major breakdown in the Akkats hydropower plant 
(Lule river, Sweden) 2002 was caused by a turbine being stopped too quickly, 
resulting in rushing water destroying the foundation of both the turbine and the 
generator (Yang 2010; Yang et al. 2018).

In this paper we create fully automatic production schemes for two canonical 
examples of ROR hydropower plants, with stochastic flow of water and with non-
zero cost of switching between different states of production. Our method is based 
on optimal switching and provides, to the best of our knowledge, a novel way to han-
dle hydropower production planning using stochastic control theory. Along the way 
of deriving the production strategies, we create a new model for river flow based on 
stochastic differential equations (SDEs) and fit this model to historical data. The sto-
chastic flow model can incorporate a given flow forecast in order to catch up short 
term fluctuations.

Our primary goal is to provide the reader with a theroretical background of opti-
mal switching theory and to give an accessible walk-through of the steps required 
to apply the theory to real-life production planning. We therefore stay within a sim-
ple setup, studying management of a single (fictitious) power plant without storage 
capacity or means to control the flow of water, i.e., a ROR hydropower plant, with 
few different production states and a single underlying stochastic quantity (the flow 
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of water) affecting the production. Although this is restrictive from a practitioner’s 
point of view, we stress that the mathematical framework presented here can be 
extended to multiple production states and multiple underlying stochastic processes 
influencing the production; the cost of such generalizations being mainly computa-
tional. We also expect the theory to be useful in much more general settings, includ-
ing hydropower plants with dams and sequential power plants.

The rest of this paper is outlined as follows. In Sect. 1.1 we give a literature sur-
vey and explain the contribution of this paper. Section 2 contains an introduction to 
optimal switching problems and, in particular, an outline of the theory in the con-
text of hydropower planning. (The mathematics presented is well-known in the sto-
chastic control-community, but it is nevertheless non-trivial and we believe the more 
applications-minded reader may benefit from an overview.) Sections 3 and 4 contain 
models for the flow of water and the power plants under consideration, respectively. 
Section 5 contains a very brief outline of the numerical approach taken to solve the 
variational inequalities appearing. We present the result of our parameter estimation 
and the performance of the constructed strategy in Sect. 6 and end with Sect. 7 in 
which we discuss our approach in general, and our results in particular, and make 
some concluding remarks.

1.1  Literature survey and our contribution

Optimal switching is a relatively new and fast growing field of mathematics com-
bining optimization, SDEs and partial differential equations (PDEs) (Barkhudaryan 
et  al. 2020; Biswas et  al. 2010; Djehiche et  al. 2010; El-Asri and Fakhouri 2017; 
El-Asri and Hamadéne 2009; Hamadéne and Morlais 2013; Hu and Tang 2010; 
Kharroubi 2016; Lundström et al. 2014a, b, 2019; Martyr 2016a, b; Perninge 2018, 
2020, 2020, Lundström and Olofsson 2021). However, a literature survey shows 
that, although the mathematical theory is well developed, applications of optimal 
switching to real life problems is a far less explored area. A possible explanation for 
this discrepancy could be the difficulty of formulating real problems in mathemati-
cal terms and, conversely, to interpret the theoretical results in practical terms.

Most commonly, applications are found in the context of real options, see (Brekke 
and Øksendal 1994; Brennan and Schwartz 1985; Carmona and Ludkovski 2008; 
Duckworth and Zervos 2001; Goutte et al. 2018). In Aïd et al. (2014) the authors 
provide a probabilistic numerical scheme for optimal switching problems and test 
their scheme on a fictitious problem of investment in electricity generation. In Car-
mona and Ludkovski (2010) valuation of energy storage is studied with the help of 
optimal switching and in Perninge (2020), Perninge and Eriksson (2017) the authors 
study how the framework can be used to track electricity demand.

A main feature of optimal switching-based production planning is that it allows 
for random factors influencing the production strategy (for details see Sect. 2 below). 
This randomness is in general given by a Markovian stochastic process and can 
incorporate any number of different variables. However, to reduce computational 
strain we focus on how the flow of water impacts the production. Popular streamflow 
models include linear time series models, such as ARMA models with Gaussian or 
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GARCH noise (Modarres and Ouarda 2013; Mujumdar and Nagesh Kumar 1990; 
Wang et  al. 2005), and non-linear time series models, such as SETAR models 
(Fathian et al. 2019). Modern approaches also include neural networks and machine 
learning techniques, see, e.g., (Moeeni et  al. 2017; Matos and Schleiss 2017) and 
the references therein. Another suitable approach, and the approach that we have 
adopted here due to its natural relation to the optimal switching framework, is SDEs 
driven by Gaussian white noise and/or compound Poissonian impulses (Bodo et al. 
1987). In particular, we develop a new stand-alone SDE-based model for the flow of 
water Q, based on historical data and driven by Brownian motion, which mimics the 
long term seasonal variations of the flow while still allowing for short term fluctua-
tions and flow forecasts.

When trying to maximize monetary profit instead of kWh of produced electric-
ity, the electricity spot price Pt at which the electricity produced at t is sold is of 
course also of interest when planning the production. In general, P is an exogenous 
stochastic process which can be incorporated into our model similarly to the flow of 
water. However, modelling electricity prices is a non-trivial task and prices are usu-
ally not Itô diffusions, but rather discontinuous jump-processes, see, e.g., (Hellström 
et al. 2012; Weron et al. 2004, 2004), making the operator in the variational inequal-
ity to be solved non-local (see, e.g., Lundström et al. 2014a, b). For simplicity, we 
therefore let P be a continuous deterministic process in the current paper. We stress, 
however, that our approach can readily be extended to random electricity prices (and 
streamflow models) with compound Poisson impulses at the cost of computational 
complexity.

This paper extends the use of optimal switching theory by applying the general 
framework to two canonical examples of ROR hydropower plants. In particular, we 
adapt and calibrate the theory to construct management strategies which we bench-
mark using real flow data. We deliberately work in a rather simplistic setting, using 
fictitious power plants and general parameters. Our contribution should be seen as 
conceptual; we outline the steps required to apply the optimal switching theory in 
practice and indicate with numerical examples that the constructed strategies are 
close to optimal. Adaptation for use in any particular case must be done “on-site” to 
account for the specific conditions.

We have chosen not to let deeper knowledge of different types of generators and 
how they operate be a prerequisite for the understanding of this paper and we hence 
avoid going into any such technical details. A comprehensive survey of different tur-
bines and generators and their distinct characteristics can be found in, e.g., (Boldea 
2015; Brekke 2001; Warnick 1984).

2  Optimal switching in the context of hydropower

Tailored to the setting of hydropower plants, the optimal switching problem can be 
described as follows: We consider a manager of a hydropower plant with several 
units, each unit being a sub-power plant, i.e., a turbine and a generator. Each unit 
can be started and stopped separately in order to adjust the production of the power 
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plant to the supply of water or to the production demand. This implies that the man-
ager has the option to run the plant in m ≥ 2 production modes, corresponding to 
running different combinations of units. Starting and stopping units induces wear 
and tear on the units and therefore the manager finds herself in a trade-off, weighing 
the benefits of changing production mode/state against the costs induced by making 
these changes.

Let X = {Xt}t≥0 denote a Markovian stochastic process representing the features 
which influence the production. For small hydropower plants, X may represent the 
flow of the river, but it may also be interpreted as, e.g., production demand for a fre-
quency regulating plant, the spot price of electricity, or a varying cost of production 
such as for an oil driven power plant. The process X may be multi-dimensional and 
hence incorporate all of the above and more (but for simplicity we will in the bulk of 
this paper consider X = (Q,P) where Q and P are one-dimensional processes repre-
senting flow of water and deterministic price of electricity, respectively). Moreover, 
we let fi(Xt, t) denote the instantaneous payoff generated in production mode i at 
time t, when the state of the underlying process is Xt . Depending on the interpreta-
tion of X and the choice of f, fi(Xt, t) can be interpreted as, e.g., the power delivered 
by a power plant or as the instantaneous monetary profit per unit time. Finally, we 
associate a cost cij(Xt, t) for switching from production mode i to production mode j 
at time t, where i, j ∈ {1,…m}.

The manager of the power plant controls the production by choosing a manage-
ment strategy, i.e.,  a combination of a non-decreasing sequence of stopping times 
{�k}k≥0 , where, at time �k , the manager decides to switch the production from its 
current mode to another, and a sequence of indicators {�k}k≥0 , taking values in 
{1,… ,m} , indicating the mode to which the production is switched. More precisely, 
at �k the production is switched from mode �k−1 to �k and when starting in mode i at 
time t, we have �0 = t and �0 = i . We stress that �i is required to be a stopping time 
and as such it is adapted to the filtration FX generated by the underlying process X. 
In less mathematical terms, this simply means that the decision to switch at time t 
must be based solely on the information made available up to time t, i.e., the man-
ager cannot“peek into the future” when making her decision1.

A strategy ({�k}k≥0, {�k}k≥0) can be represented by the random function 
� ∶ [0, T] → {1, ...,m} defined as

which indicates the state of production at time s. Given that the stochastic process X 
starts from x at time t, the profit made over [t, T] using a strategy � which starts in 
mode i at time t, i.e., a strategy with �0 = t and �0 = i , is

�s ≡ �(s) =
∑
k≥0

�[�k ,�k+1)
(s)�k,

1 Although this is obviously impossible from a practical point of view, it must be stated as an explicit 
restriction in the mathematical formulation.
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The task of the manager is now to maximize the expected payoff, i.e.,  to find the 
most profitable trade-off between switching to more efficient states and minimizing 
the total cost of switches. In general, this problem, often referred to as an optimal 
switching problem, consists in finding the value function

where Ai(t) is a set of strategies with �0 = t and �0 = i , and the optimal management 
strategy �∗ ∈ Ai(t) , defined by ({�∗

k
}k≥0, {�∗k }k≥0) , such that

for any other strategy � ∈ Ai(t).
From the dynamic programming principle, see, e.g., (Tang and Yong 1993), one can 

derive that the value function u(x, t) = (u1(x, t),… , um(x, t)) satisfies the following sys-
tem of variational inequalities

for x ∈ ℝ , t ∈ [0, T] , i ∈ {1, ...,m} and where

is the infinitesimal generator of the underlying dX-dimensional stochastic process X 
with dynamics

The operator L is a linear local operator whenever the process X is driven by a 
Brownian motion (which we assume in this work) and the system (2.2) has a unique 
continuous solution under the assumptions of this paper, see, e.g., (Arnarsson et al. 
2009; El-Asri and Hamadéne 2009; Lundström et al. 2014b). Moreover, the optimal 
strategy when starting in mode i at time t is given iteratively by the solution to (2.2) 
by

(2.1)Ji(x, t,𝜇) = E

[ T

�
t

f𝜇s
(Xs, s)ds −

∑
k≥1,𝜏k<T

c𝜉k−1,𝜉k (X𝜏k
, 𝜏k)

||||Xt = x

]
.

ui(x, t) = sup
�∈Ai(t)

Ji(x, t,�),

Ji(x, t,�
∗) ≥ Ji(x, t,�)

(2.2)

min

{
−�tui(x, t) − Lui(x, t) − fi(x, t), ui(x, t) −max

j≠i
{
uj(x, t) − cij(x, t)

}}
= 0,

ui(x,T) = gi(x),

Lu(x, t) ∶=

dX∑
i=1

bi(x, t)
�

�xi
u(x, t) +

dX∑
i,j=1

1

2
(��∗)i,j(x, t)

�2

�xi�xj
u(x, t)

(2.3)dXt = b(Xt, t)dt + �(Xt, t)dWt.
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3  Modeling river flow with an SDE

To apply the theory outlined above to our ROR-hydropower production, we must 
first find a model for the stochastic flow of water Q following an SDE as in (2.3). 
More specifically, we are looking for functions bs and �s , such that the solution to 
the SDE

where W̃t is a standard Brownian motion, resembles the actual (given) flow of water 
(in some appropriate sense). This resemblence must hold in the long-term seasonal 
sense, but at the same time admit for short-term fluctuations due to inter-yearly vari-
ations. Our central idea in this regard is to consider the flow of water as the sum 
of its seasonal variations and a mean-reverting (mean 0) stochastic process, see 
Sect. 3.1. Forecasts are then treated by altering the estimated seasonal variation on 
the time-span of the forecast, see Sect. 3.2.

Results indicate that log-transformation of river flow data may increase predic-
tion accuracy of flow models, see (Adnan et al. 2017), and we therefore work with 
the logarithm of the flow rather than the flow directly.

3.1  Seasonal variations and short term fluctuations

Starting with the seasonal variations, we define Rt = logQt and let r(t) be a function 
describing the expected value of the logarithm of the flow at time t, independent 
from current observations. Defined as such, r(t) reflects the expected seasonal vari-
ation in flow due to spring flood, autumn rains etc., but without any consideration 
taken to observations from the current year2, and we may thus estimate the deter-
ministic function r(t) from historical flow. More precisely, we will construct r(t) as a 
one-week moving average of the logarithm of the flow, see Sect. 6.1. The choice of a 
one-week moving average is a trade-off between capturing seasonal variations, such 
as the spring flood, without letting the mean flow depend too much on the flows of 
particular years.

𝜏∗
0
= t, 𝜉∗

0
= i,

𝜏∗
k
= inf

{
s > 𝜏∗

k−1
∶ u𝜉∗

k−1
(Xs, s) ≤ max

j≠𝜉∗
k−1

{uj(Xs, s) − c𝜉∗
k−1

j(Xs, s)}

}
,

𝜉∗
k
= argmax

j∈{1,…m}

{
uj(X𝜏∗

k
, 𝜏∗

k
) − c𝜉∗

k−1
j(X𝜏∗

k
, 𝜏∗

k
)
}
.

dQt = bs(Qt, t) dt + 𝜎s(Qt, t) dW̃t, if t ∈ [s,T],

Qs = q

2 As an example, one would expect that heavy snowfall from January to March would increase the prob-
ability of a long and intensive spring flood. Such considerations are not included in r(t).
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Next, we consider the fluctuations around the expected mean, St = Rt − r(t) , and 
assume that these fluctuations are given by an Ornstein-Uhlenbeck process reverting 
towards 0, i.e.

where 𝜅 > 0 and 𝜎 > 0 are constants to be determined and Wt is a standard Brown-
ian motion. By standard Itô calculus, the flow Qt = exp

(
r(t) + St

)
 , then satisfies the 

following stochastic differential equation

where r�(t) is the derivative of the function r(t). Note that the particular form of (3.1) 
ensures that Qt stays positive.

With the dynamics (3.1) of the flow in place, what remains is to estimate the 
parameters � and � . To do this, we consider the asymptotic variance and asymp-
totic autocorrelation for lag � of an Ornstein-Uhlenbeck process, which are given 
by

repectively. Indeed, for a given set of historical flow data, we take the logarithm 
of the data and subtract the running-mean r(t) from above to obtain an empirical 
time series for St . We then calculate the sample autocorrelation function of this time 
series and estimate the value of � by a linear regression with the logarithm of the 
sample autocorrelation function as the dependent variable and the lag as the covari-
ate. Finally, we calculate the sample variance of the time series and deduce an esti-
mate of � from the first equation in (3.2) and the estimated value of �.

3.2  Forecasts

The flow model constructed so far respects seasonal variations whilst still allow-
ing for inter-yearly forecasts. However, in order to perform optimally, our model 
must also be able to treat short-term fluctuations based on, e.g., weather forecasts or 
upstream measurements of the flow. Such forecasts will be included in the model by 
altering the dynamics of Q, i.e., by changing (3.1), on a short time span close to the 
present time s.

More precisely, we let for t ≥ s

where

as before and

dSt = −�St dt + � dWt,

(3.1)dQt =
(
r�(t) +

1

2
�2 − �

(
logQt − r(t)

))
Qt dt + �Qt dWt,

(3.2)Variance =
�2

2�
and Autocorrelation = e−�� ,

(3.3)dQt = bs(Qt, t) dt + �s(Qt, t) dWt,

(3.4)�s(Q, t) = �Q
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where bfs is a function constructed below. In the above, l and � are parameters repre-
senting the length of the forecast and the (estimated) time it takes for the forecasted 
flow to return to the long term mean r(t), i.e., the (estimated) “inertia” of the flow.

Starting at time s with current flow Qs and given a forecast {Fr}s<r≤s+l of the 
future flow at times t ∈ (s, s + l) we set

and let

More explicitly, we calculate the drift bfs as in (3.1) but with the (log-) mean r(t) 
replaced by gs(t) , where gs(t) is given directly by the forecast for t ∈ (s, s + l] , 
coincides with r(t) for t > s + l + � and is linearly interpolated between s + l and 
s + l + � . The impact of such forecasts are illustrated in Fig. 3.

We stress that as time evolves, the forecast will be updated and the function bfs(t) 
needs to be updated accordingly each time s that a new forecast becomes available. As 
the starting time s will be clear from context, we will drop the subscript s and simply 
write bf (Q, t) in the following, although this function varies with s as parameter.

4  Modeling the payoff structure of power plants

As mentioned above, we will consider two canonical examples of ROR hydropower 
plants and outline the payoff structure of these in the current section. We will measure 
the performance in monetary units (m.u.), but one can easily modify the below to have, 
e.g., total electricity produced as the trait for optimization.

4.1  Power plant I: One adjustable unit

We consider first the simple case of a hydropower plant having a single unit. The unit is 
designed for the flow Qd , but can be run over a wide flow range [Qmin,Qmax] with lower 
efficiency. We assume that the unit, automatically and at negligible cost, adjusts to the 
available flow, and the task of the manager is thus to find out when to start and stop 
the unit. In the setting of optimal switching, we model the above power plant as fol-
lows. The power plant can be run in two states, ‘1’ and ‘0’, representing ‘on’ and ‘off’, 
respectively, and for each switch from 0 to 1 or from 1 to 0 the manager must pay a cost 

(3.5)bs(Q, t) =

{
b
f
s(Q, t) if s ≤ t ≤ s + l + �,(
r�
t
+

1

2
𝜎2 − 𝜅

(
logQ − rt

))
Q if s + l + � < t,

gs(t) =

⎧
⎪⎨⎪⎩

log(Qs) for t = s

log(Ft) for t ∈ (s, s + l]

log(Fs+l) + (t − (s + l))
rs+l+�−log(Fs+l)

�
for t ∈ (s + l, s + l + �]

bf
s
(Q, t) =

(
g�
s
(t) +

1

2
�2 − �

(
logQ − gs(t)

))
Q.
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c01 or c10 , respectively. We assume that the electricity output (in Watts) of the unit when 
in state 1 is given by

where the constant c is simply given by c = � g h , where � = 103 kg/m3 is the 
(approximate) density of water, g = 9.82 m/s2 is the (approximate) gravitational con-
stant, and h is the water head in meters, and �(Q) ∈ (0, 1) is the flow-dependent effi-
ciency. In practice, this latter function is given by the specific characteristics of the 
turbine and generator, but in general it is a concave down function with a maximum 
at the design flow Qd , see, e.g., Fig. 2 and [IPCC (2007), Fig. 9]. To mimic such 
behaviour, we let

where � is the efficiency at design flow and 𝛽 > 0 quantifies the concavity. Multi-
plying W1 with the spot electricity price and integrating over time gives the income 
when running the plant in state 1.

To be able to determine an optimal strategy in terms of monetary profit, we need 
to consider not only the produced electricity, but also running-costs of the plant as 
well as electricity prices.

We assume that the running cost of the unit is crun per unit time, the electricity 
price at time t is Pt , and that a large additional cost clow must be paid for each unit of 
time that the production unit is run with insufficient flow Q < Qmin . The cost clow is 
motivated by excessive deterioration of the power plant and the cost should be high 
enough to avoid running the unit with insufficient flow. Summarizing the above, we 
find that a reasonable generic payoff function for a unit is given by

where Qt and Pt represent the flow of water and spot price of electricity at time t, 
respectively, and where the parameters c, �, clow, crun,Qmin and Qmax in practice are 
determined by the specific unit under study. We assume that all the above numbers 
are normalized so that we can take f0 ≡ 0 , i.e., the running cost/payoff when in 
state 0 is 0 and, without loss of generality, omit fixed costs such as maintenance of 
buildings, insurances, etc. as these costs do not influence the optimal management 
strategy.

W1(Q) =

⎧
⎪⎨⎪⎩

0 if Q < Qmin,

c 𝜂(Q)Q if Qmin ≤ Q < Qmax,

c 𝜂(Qmax)Qmax if Qmax ≤ Q,

(4.1)�(Q) = � − �

(
Q

Qd

− 1

)2

,

(4.2)f1(Qt,Pt) = −crun +

⎧⎪⎨⎪⎩

−clow if Qt < Qmin,

Pt c 𝜂(Qt)Qt if Qmin ≤ Qt < Qmax,

Pt c 𝜂(Qmax)Qmax if Qmax ≤ Qt,
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4.2  Power plant II: two homogenous adjustable units

In our second case, we expand the above power plant with another identical unit so 
that there are in total three different states available to the manager; running no unit 
(state 0), running a single unit (state 1), or running both units (state 2). As the units 
are assumed to be identical, there is no difference between running unit 1 or unit 2 
in state 23. We assume that the payoff structure of both units is as specified in (4.2).

In this setting, a difficulty beyond that of the extra state is introduced. Indeed, 
with both units running, the manager may control how much of the current flow 
Qt that is directed towards each of the two running units. With � representing the 
fraction of water directed towards unit 1, we see that the payoff in state 2 is

and � is thus an additional degree of freedom to optimize over. However, as long as 
the cost of adjusting units and diverting water is negligible, this optimisation can 
be done independently of the switching problem. The two-dimensional optimization 
problem involving two homogenous adjustable units can thus be reduced to a pure 
switching problem by introducing the payoff function

in addition to f0 ≡ 0 and f1 as in (4.2). The optimization in (4.3) can be carried out 
analytically if f1 is sufficiently nice. However, since our final scheme is based on 
numerical solutions to PDEs, it is merely a question of computational power if the 
optimization problem (4.3) can only be solved numerically. In any case, this opti-
mization can be done in advance without consideration of current and forecasted 
flow and to arbitrary precision, making the remaining optimization problem purely a 
question of optimal switching.

To further facilitate the analysis and understanding of the results, we from 
here on in let Pt ≡ P0 and perform our numerical analysis with constant electric-
ity price. However, we stress and that a time-varying deterministic electricity 
price causes no other problems than obstructing the intuitive understanding of the 
results.

Remark 1 The above case can easily be expanded to the case of heterogeneous units. 
In this case, we assume that unit 2 yields payoff

f1(�Q,P, t) + f1((1 − �)Q,P, t)

(4.3)f2(Q,P, t) = max
�∈[0,1]

{
f1(�Q,P, t) + f1((1 − �)Q,P, t)

}

f̃1(Q,P, t) = −c̃run +

⎧⎪⎨⎪⎩

−c̃low if Q < Q̃min,

P c �̃�(Q)Q if Q̃min ≤ Q < Q̃max,

P c �̃�(Q̃max)Q̃max if Q̃max ≤ Q,

3 No difference seen by our model, that is. There could of course be a difference in practice given differ-
ent wear of the units, planned maintenance, etc.
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i.e., unit 2 has the same payoff structure as unit 1 but with parameters

This problem can now be handled in the same way as above by introducing the pay-
off function

and studying the resulting 4-state optimal switching problem with payoff functions 
f0, f1, f̃1 and f3 , depending on whether no, either or both of the units are active.

4.3  Switching costs

Allowing for costs when switching between different states is one of the major 
benefits of an optimal switching approach to production planning. However, these 
costs (along with the risks involved when switching) are difficult to quantify, and 
may be so even for an experienced operator. In particular, they depend on the trait 
of optimization, e.g., maximizing profit, minimizing risk of stoppage, or mini-
mizing wear of the units. Due to the uncertainty regarding the size of these costs, 
we study the sensitivty of them in Sect. 6, i.e., the performance of our strategy 
with different (constant) switching costs.

As our purpose is to study the conceptual idea of optimal switching theory in 
practice (and not to model any particular power plant) we refrain from explic-
itly modeling switching costs in the current paper. If time- and/or state dependet 
switching costs cij(Xt, t) are available, they can be incorporated into the current 
scheme without any modifications. We encourage further studies on how to model 
and construct such “switching costs”.

5  Solving the system of PDEs

With the parameters set above, we are ready to turn to solving (2.2). More pre-
cisely, we will solve a discretized version of (2.2) based on the time-discretization 
{0 = t0, t1, t2,… , tN = T} with Δt = tn+1 − tn = T∕N , and to do so we utilize an 
iterative implementation of the Crank-Nicolson scheme outlined in Algorithm 1.

From here on in, we let {Qn ≡ Qtn
}0≤n≤N and {Pn ≡ Ptn

}0≤n≤N denote the dis-
crete versions of Q and P based on this discretization. Moreover, starting at time 
tk with current flow Qk , and given a discrete forecast {Ftk+1

,… ,Ftk+l
} of future 

flows we define the discrete versions of (3.4) and (3.5) by

and

Q̃min, Q̃max, �̃�, 𝛽, Q̃d, �̃�, c̃run, and c̃low.

f3(Q,P, t) = max
𝛿∈[0,1]

{
f1(𝛿Q,P, t) + f̃1((1 − 𝛿)Q,P, t)

}
.

�k(Qn, tn) = �Qn
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where

gk(tn) ∶= gtk (tn) and g′
k
 is calculated as a finite difference g�

k
(tn) ∶=

gk(tn)−gk(tn−1)

Δt
.

In the discretized version, and hence in the automated scheme to be con-
structed, the task is to find a strategy which maximizes the payoff

where �n ≡ �(tn) ∶ {t0, t1,… , tN} → {1,… ,m} is a discrete valued function indicat-
ing the chosen production state between tn and tn+1.

Recall that we are aiming at maximizing payoff from the current time tk up to 
some fixed terminal time T. Moreover, the function bk is updated as soon as our 
forecast is updated (in our case daily) and, consequently, from each starting time tk 
we will have a new function (5.1) and a new operator Lk in (2.2) (based on the func-
tion bk ). Thus, our optimization problem differs slightly from time step to time step 
and we are bound to solve it repeatedly, for each point tk and with varying time span 
[tk, T] . For k fixed, our solution procedure is given by pseudo code of Algorithm 1.

6  Results

This section contains results of our parameter estimation and shows the performance 
of our PDE-based strategy.

6.1  Parameter values

We test our model using flow data from the Swedish river Sävarån4 during the years 
1980–2018, of which we use the first 35 years (1980–2014) for model calibration 
and the last four (2015–2018) for benchmarking. We also use data from 1980–2014 
for a long term evaluation of the performance of our scheme. Leap days are excluded 
in favour of a coherent presentation of the results.

(5.1)

bk(Qn, tn) =

{
b
f

k
(Qn, tn) if k < n ≤ k + l + �,(
r�(tn) +

1

2
𝜎2 − 𝜅

(
logQn − rtn

))
Q̂n if k + l + � < n,

b
f

k
(Qn, tn) =

(
g�
k
(tn) +

1

2
�2 − �

(
logQn − gk(tn)

))
Qn,

(5.2)
N−1∑
n=0

f�n
(Qn,Pn, tn)Δt −

∑
N−1≥i≥0

c�n−1�n
(Qn,Pn, tn),

4 The choice of Sävarån as our data source is made for no other reason than that the river lies close to 
Umeå University where most of the work on this paper was done.
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We study optimization over a one year horizon with possibility to change the 
state of production once every day, i.e. T = 365 days and Δt = 1 day5.

Remark 2 For hydropower plants with several units, i.e., plant II, the total flow of 
Sävarån is somewhat low and a non-regulated river with higher flow would be more 
suitable for our model. For simplicity of the presentation however, we have chosen 
to limit ourselves to a single river. Specific parameters, such as running costs, dete-
rioration costs, etc., vary over time and between different hydropower plants and the 
parameters used here should, as with the choice of flow data, be seen merely as an 
example.

6.1.1  Flow parameters

From the historical flow data6 of Sävarån, the estimated values of the parameters 
in (3.2) are � = 0.0208 and � = 0.1018 . Figure 1a shows er(t) and the flow during 
2015 − 2018 and Fig. 1b shows independent random realisations of (3.1) with these 
parameters.

5 This coarse time-discretization is simply because the flow data available to us is given with one data 
point per day.
6 Flow data was downloaded from SMHI (http://vattenwebb.smhi.se/station) on June 15, 2020.
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6.1.2  Power plant parameters

The parameters used in modeling our power plants are summarized and presented in 
Table 1.

Starting with the efficiency curve of our power plant units, i.e., the coefficients of 
(4.1), Fig. 2 shows measured efficiency of two Swedish Kaplan units together with 
the assumed efficiency curve in (4.1) with least squared fitted coefficients � and � . 
Based on this data and the flow in Sävarån, we found it reasonable to choose the unit 
parameters as in Table 1.

The running cost is estimated from Ström (2012) to be approximately 1/5 of 
the electricity price. The power of our unit is approximately 500 kW, and with 
Pt = P0 ≡ 1 it is thus reasonable to set crun = 100 m.u./h. It is difficult to estimate 
the cost clow reflecting the running loss when the machine is run on too little water. 
The rotational speed of the turbine may drop so that the frequency of the produced 
electricity falls, resulting in a non-sellable production. We choose a value simply 
by multiplying crun with 10 and note that such a choice forces our algorithm to effi-
ciently shut down the plant when the water supply fails.

It is not a trivial task to estimate a reasonable value of the switching costs. It may 
heavily depend on machine parameters related to the intake and specific properties 
of the turbine, tubes and the generator. Cost of personnel and environmental param-
eters such as local fish habitat may also be included, as well as the type of contract 
to which the electricity is sold. Due to these difficulties, we handle the switching 
costs as a parameter. In particular, we assume the switching costs to be constant and 
study the impact of varying this constant in Sect. 6.

Moreover, when considering power plant 2, we assume that the cost of switching 
directly from state 0 to state 2 is cheaper than going through the intermediate state 1, 
and vice versa. In particular, this implies that at any fixed time t, at most one switch 
is made. Exactly how much cheaper a direct switch from mode 0 → 2 (or vice versa) 
should be compared to the alternative 0 → 1 → 2 depends on the actual power plant 
under consideration. Here, we simply assume that the alternative route is 50% more 
expensive. We summarize the switching costs in Table 2. Note that we have assumed 
all switching costs to be positive. When applicable, negative switching costs repre-
senting a gain rather than a cost when, e.g., reducing production capacity or moving 
to a more environmentally friendly production mode, can be used as well.

6.1.3  Forecasts

As already stated in the introduction, our main purpose is to highlight the use of 
optimal switching theory in production planning for ROR hydropower plants. The 
ambition is not to provide methods for forecasting river flow, and to avoid such dis-
cussions, we will simply use the true flow as forecast. However, we keep the stochas-
tic component in the dynamics (3.3) unchanged so that, even with forecast applied, 
our model does not know the future flow with certainty. Instead, this “forecast” only 
provides our model with a more accurate estimate of the average flow during the 
validity period of the forecast. We depict the impact of forecasts in Fig. 3.
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6.2  Comparison of different strategies

We benchmark the performance of our strategy to the a fortiori optimum, i.e.,  the 
optimal strategy in hindsight, with all information available. From a practical point 
of view, this value can only be achieved with certainty by “looking into the future”, 
using the future flow of the river when making decisions. As this is of course impos-
sible in practice, our comparison is slightly skew to the disadvantage of the model 
presented here. However, this value, the theoretical maximum output of the plant, 
is indeed achievable and should therefore be considered as the ultimate goal in any 
attempt to construct a production strategy. We emphasize and stress that, although 
the benchmark strategy can be found only in hindsight, our PDE-based strategy uses 
no other information when making a decision at time tk than historical information 
up to that point and the forecast starting at tk.

As a comparison, we also show the result of using a naïve strategy in which the 
manager always switches to the production mode which momentarily has the highest 
payoff. To ease the presentation, we assume in all cases that the starting state is 0, 
i.e., that the plant is “off” at the beginning of the planning period.

To get comparable results, we normailze with a fixed constant D, depending on 
the power plant under consideration, but not on the switching costs or the flow of the 
river. More precisely, D is calculated as the profit generated by the plant if it works 
at maximum capacity for a full year without interruptions (and starting in the most 
beneficial state), i.e.,

where i = 1 or i = 2 depending on the plant under consideration and t ∈ [0, 365] 
is arbitrary (since (4.2) and (4.3) are independent of t). After determining D, the 
switching cost constant C (cf. Table 2) is taken as a fixed percentage of D.

Last, for comparison of strategies, we use the quotient �(�) , defined as the total 
payoff from the strategy � divided by D,

D = fi(Qmax,P0, t) ∗ 365,

Fig. 1  A visual comparison of the seasonal model er(t) , solutions to (3.1) and actual flow during 2015–
2018
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where q0 is the flow at the starting time t0 = 0 and J0 is as defined in (2.1), i.e., the 
profit made using strategy � over the time horizon [0, T].

Results are provided for T = 365 days with forecast lengths l ∈ {0, 5, 10} days and 
with linear return to the long-term mean er(t) over � = 20 days. Here, l = 0 means no 
forecast. We give detailed descriptions of the suggested strategies for 2015 and show 
summarized results for 2016 − 2018 . Moreover, we provide results on the long term 
performance of our strategy by comparing results from the years 1980 − 2014 for a 
fixed parameter set.7

The different production schemes (optimal, PDE-based, naïve) for plant I (II) 
during 2015, l ∈ {0, 5, 10} and C∕D = 0.01 are presented in Fig.  5a (Fig.  5b) and 
Table  3 (Table  4). The relative payoffs as a function of C/D for l ∈ {0, 5, 10} are 

�(�) =
J0(q0, 0,�)

D
,

Fig. 2  Efficiency values of two 
Swedish Kaplan units with 
design flow of approximately 
100 m3∕s (red squares) and 
170 m3∕s (black diamonds). 
The curves are �(Q) defined in 
(4.1) with least square fitted 
coefficients. For the smaller 
unit � = 0.917 , � = 0.430 (red 
dotted) and for the larger unit 
� = 0.935 , � = 0.464 (black 
solid)
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Table 1  Parameter values used 
in our numerical investigation

P
0

1 [m.u. /kWh] clow 1000 [m.u./h]

h 5 [m] crun 100 [m.u./h]
T 365 [days] Qmin 5 [m3∕s]

� 0.92 Qmax 13 [m3∕s]

� 0.45 Qd 10 [m3∕s]

7 It should be noted that, for convenience, this data set is the same as that used for calibrating param-
eters. Thus, for each year in the long term evaluation, the data tested is part of the data used for calibra-
tion. However, a single year out of the 35 used has minimal impact on the end calibration and the long 
term results are therefore still valid.
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given for all years in Fig. 4 (Fig. 6). The long term performance of the PDE-based 
strategy for plant I (II) with C∕D = 0.01 is presented in Fig. 7a (Fig. 7b).

The PDE-based strategy in most cases performs very close to the optimal strat-
egy, with a difference of less than 2 % (5 %) from the theoretical maximum in the 
long term tests for plant I (plant II) with C∕D = 0.01 and 10 days forecast. The most 
common mistake of the PDE-based strategy is delaying the decision to change pro-
duction mode. In all but a few cases, longer forecast also means better results.

7  Discussion

The theoretically based optimal swithcing schemes constructed in this paper perform 
well when tested with real data. When comparing our constructed strategy to the 
optimal one, we see that differences between these arise as our strategy occasionally 
recommends switching mode too late due to uncertainty regarding the future flow, 
see, e.g., Fig. 5b. Most often, the decision is only late by one day and with a finer 
time discretization these differences would most likely disappear, or at least the dis-
crepancy would be much smaller. We also see that by introducing forecasts, we are 
able to remove this gap entirely in many cases, see Figs. 4 and 6.

Our (artificial) forecast includes uncertainty from the first forecasted day and 
reduction in this uncertainty, which is reasonable (and possible by, e.g., upstream 
measurements), would also help remove delays in the decision making. Indeed, in 
our SDE model, we assumed the uncertainty to be the same regardless of whether a 
forecast was introduced or not. If the uncertainty of the forecast is known, one could 
introduce a new parameter �f

k
 in a similar fashion as for bf

k
 and let the forecast influ-

ence also the stochastic volatility of the flow, having lower volatility close to the 
current time tk and increasing volatility further in the future. We have chosen not to 
alter the volatility � during the forecast period, partly to keep our model as simple 
as possible, and partly to avoid the need to construct forecasts (which is outside the 
scope of the current paper).

Already without forecast, our PDE-based strategy outperforms the naïve strategy 
in most cases, even for small values of C/D, and in many cases also finds the truly 
optimal strategy or something very close to optimal. In the rare event that the naïve 
strategy performs as good or better than the PDE-based strategy, it is because the 
naïve strategy happens to be optimal. In these cases, the difference between the opti-
mal and the PDE-based strategies is small.

Our results show, as should be expected, that longer forecasts give better results. 
However, on a few occasions, this is not the case, see, e.g., Fig.  4c, where, for 

Table 2  Relative switching 
costs. C is a fixed constant 
determined in Sect. 6

cij j = 0 j = 1 j = 2

i = 0 0 C 1.5C
i = 1 C 0 C
i = 2 1.5C C 0
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C∕D ≥ 0.016 , we perform worse with a 10 day forecast than with a 5 day forecast. 
The reason for this is large fluctuations in the flow in just a few days time; the longer 
forecast then captures both directions of the movement whereas the shorter may only 
capture one direction. In the latter case, a decision to switch production mode is then 
made if the flow is close to a level at which different payoff functions intersect. With 
longer forecast, the uncertainty introduced by forecasting also a rapid downward 
movement delays the decision slightly when the cost of switching is high. When run 
repeatedly over a large number of years, the decision made with the longer forecast 
performs better on average, but it may come up short in a single year. Luckily, as 
in the comparison with optimal naïve strategies, the deviation in the final payoff is 
small on these occasions.

Our model is calibrated to a constant electricity spot price P0 only for conveni-
ence when interpreting results and we repeat that a time-varying deterministic elec-
tricity price causes no problems other than parsing and analysing the results. How-
ever, our model could also be calibrated to a random price process Pt as well. There 
is no (theoretical) restriction in the number of underlying Markovian Itô processes 

Fig. 3  The impact of forecasts in relation to the long-term expected value r(t). Note that a stochastic term 
is also present in the flow model (3.3) and hence the plotted figure above only corresponds to an estimate 
of the expected value of the future flow
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our model can handle, so that allowing for such calibration is merely a question of 
computational power. In fact, not even the Markov property is a restriction as any 
discretized random process can be made Markovian at the cost of increasing its 
dimension. However, the cost of increasing the number of random sources is that the 
underlying optimization problem, which here is solved by PDE-methods, increases 
in dimensionality at the same rate. In practice, as long as the random sources are 
few, say 2 or 3, our approach based on numerical solutions of PDE can be used to 
find a solution. When the dimensionality increases even further, the PDE-methods 
become computationally heavy and other ways of attacking the resulting optimal 
switching problem may be preferable, e.g.  Monte Carlo-methods as in Aïd et  al. 
(2014), Barkhudaryan et al. (2020). In the current setting, the algorithm for obtain-
ing our strategy is run in only a few minutes on a standard laptop computer and is 
thus more than sufficiently quick for the purpose of the current paper.

7.1  Concluding remarks and future research

In this paper we have, to the authors knowledge for the first time, used the math-
ematical optimal switching theory to create hydropower production plans which can 
incorporate random water flow and non-negligible costs of switching between differ-
ent operational modes. Although our setup is somewhat simplified to keep the analy-
sis of the results tractable, the results are satisfying, showing that automatic optimal 
switching schemes can perform close to the theoretical maximum already with small 
computational effort. Moreover, in our study the difference between our model and a 
naïve approach increased with the number of available production modes, indicating 

Table 3  Strategies for plant I 
during 2015 with C∕D = 0.01

Strategy (Day of action, Move to state)

Optimal (102,1) (225,0)
PDE, l = 0 (103,1) (226,0)
PDE, l = 5 (103,1) (225,0)
PDE, l = 10 (103,1) (225,0)
Naïve (102,1) (225,0) (262,1) (265,0) (324,1) (327,0)

Table 4  Strategies for plant II during 2015 with C∕D = 0.01

Strategy (Day of action, Move to state)

Optimal (102,1) (111,2) (159,1) (225,0)
PDE, l = 0 (103,1) (112,2) (162,1) (226,0)
PDE, l = 5 (103,1) (112,2) (162,1) (225,0)
PDE, l = 10 (103,1) (112,2) (162,1) (225,0)
Naïve (102,1) (111,2) (159,1) (225,0) (262,1) (265,0) (324,1) (327,0)
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Fig. 4  Relative payoff for plant I during 2015 − 2018 as a function of C/D 

Fig. 5  Strategies for plant I (a) and II (b) during 2015 with C∕D = 0.01 and l = 10 . The black curve 
represents water flow and the red, yellow and green curves represent running payoff for states 0, 1 and 2, 
respectively. Red, yellow and green circles (asterisks) represent the action of moving to 0, 1 or 2, respec-
tively, under the PDE strategy (optimal strategy)
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that the decision support provided by optimal switching theory becomes increas-
ingly valuable as the complexity of the underlying problem increases.

Fig. 6  Relative payoff for plant II during 2015 − 2018 as a function of C/D 

Fig. 7  The PDE strategy consistently gives payoff close to the optimal. Here, C∕D = 0.01 and l = 10 . 
The average quotient � for plant I (II) over the years 1980 − 2014 is 0.2674, 0.2628, and 0.2466 (0.1708, 
0.1624, and 0.1244) for the optimal strategy, the PDE strategy and the naïve strategy, respectively
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An interesting theoretical continuation of the work initiated in this paper would 
be to study hydropower plants with a dam or hydropower plants of pumped-storage 
type. At the practitioners’ level, a natural next step would be to adapt the current 
scheme to a real hydropower plant and to benchmark its performance to the produc-
tion strategy currently in use.
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