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Abstract: The reinforcement learning control of an underground loader was investigated in a sim-
ulated environment by using a multi-agent deep neural network approach. At the start of each
loading cycle, one agent selects the dig position from a depth camera image of a pile of fragmented
rock. A second agent is responsible for continuous control of the vehicle, with the goal of filling the
bucket at the selected loading point while avoiding collisions, getting stuck, or losing ground traction.
This relies on motion and force sensors, as well as on a camera and lidar. Using a soft actor–critic
algorithm, the agents learn policies for efficient bucket filling over many subsequent loading cycles,
with a clear ability to adapt to the changing environment. The best results—on average, 75% of the
max capacity—were obtained when including a penalty for energy usage in the reward.

Keywords: autonomous excavation; bucket filling; deep reinforcement learning; mining robotics;
simulation; wheel loader

1. Introduction

Load–haul–dump (LHD) machines are used for loading blasted rock (muck) in under-
ground mines and hauling the material to trucks or shafts, where it is dumped. Despite
moving in a well-confined space with only a few degrees of freedom to control, LHDs have
proved difficult to automate. Autonomous hauling along pre-recorded paths and dumping
are commercially available, but the loading sequence still relies on manual control. It has
not yet been possible to reach the overall loading performance of experienced human
operators. The best results have been achieved with admittance control [1]—where the
forward throttle is coordinated with the bucket lift and curl—by using the measured dig
force in order to fill the bucket while avoiding the slipping of the wheel. The motion
and applied forces must be carefully adapted to the state of the muck pile, which may
vary significantly because of variations in the material and as a consequence of previous
loadings. Operators use visual cues to control the loading, in addition to auditory and
tactile cues, when available. Between operators, the performance varies a lot, indicating
the complexity of the bucket-filling task.

In this work, we explore the possibility of autonomous control of an LHD using
deep reinforcement learning (DRL), which has been proven to be useful for visuomotor
control tasks, such as grasping objects of different shapes. To test whether a DRL controller
can learn the task of efficient loading while adapting to muck piles of variable states, we
performed the following test. A simulated environment was created, which featured a
narrow mine drift, dynamic muck piles of different initial shapes, and an LHD equipped
with vision, motion, and force sensors like those available on real machines. A multi-
agent system was designed to control the LHD to approach a mucking position, load
the bucket, and break out from the pile. Reward functions were shaped for productivity
and energy efficiency, as well as the avoidance of wall collisions and the slipping of the
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wheels. The agent’s policy network was trained using the soft actor–critic algorithm with a
curriculum that was set up for the mucking agent. Finally, the controller was evaluated
over 953 loading cycles.

2. Related Work and Our Contribution

The key challenges in the automation of earthmoving machines were recently de-
scribed in [2]. An overview of the research from the late 1980s to 2009 can be found in [3].
Previous research has focused on computer vision in order to characterize piles [4–6], the
motion planning of bucket-filling trajectories [4,7–9], and loading control. The control
strategies can be divided into trajectory control [8,10] and force-feedback control [11,12].
The former aims to move the bucket along a pre-defined path, which is limited to homo-
geneous media, such as dry sand and gravel. The latter regulates the bucket’s motion
based on the feedback from the interactions of forces, thus making it possible to respond
to inhomogeneities in material and loss of ground traction. One example of this is the
admittance control scheme, which was proposed in [12] and refined and tested with good
results at full scale in [13]. However, the method requires careful tuning of the control
parameters, and it is difficult to automatically adjust the parameters to a new situation.
This is addressed in [1] by using iterative learning control [14]. The target throttle and
dump cylinder velocity are iteratively optimized to minimize the difference between the
tracked filling of the bucket and the filling of the target . The procedure converges over a
few loading cycles, and the loading performance is robust for homogeneous materials, but
fluctuates significantly for fragmented rock piles.

Artificial intelligence (AI)-based methods include fuzzy logic for wheel-loader action
selection [15] and digging control [16] by using feed-forward neural networks to model
digging resistance and machine dynamics. Automatic bucket filling by learning from
demonstration was recently demonstrated in [17–19] and extended in [20] with a reinforce-
ment learning algorithm for automatic adaptation of an already-trained model to a new
pile of different soil. The imitation model in [17] is a time-delayed neural network that
predicts the lift and tilt actions of joysticks during the filling of a bucket; it was trained
with 100 examples from an expert operator and used no information about the material or
the pile. With the adaptation algorithm in [20], the network adapts from loading medium-
coarse gravel to cobble gravel, with a five- to ten-percent increase in bucket filling after
40 loadings. The first use of reinforcement learning to control a scooping mechanism was
recently published [21]. Using the actor–critic algorithm and the deep deterministic policy
gradient algorithm, an agent was trained to control a three-degree-of-freedom mechanism
in order to fill a bucket. The authors of [21] did not consider the use of high-dimensional
observation data in order to adapt to variable pile shapes or to steer the vehicle. Rein-
forcement learning agents are often trained in simulated environments, as they are an
economical and safe way to produce large amounts of labeled data [22] before transferring
to real environments. In [23], this reduced the number of real-world data samples by 99%
in order to achieve the same accuracy in robotic grasping. This is especially important
when working with heavy equipment that must handle potentially hazardous corner cases.

Our article has several unique contributions to the research topic. The DRL controller
uses high-dimensional observation data (from a depth camera) with information about
the geometric shape of a pile, which is why a deep neural network is used. A multi-agent
system is trained in cooperation, where one agent selects a favorable dig position while
the other agent is responsible for steering the vehicle towards the selected position and for
controlling the filling of the bucket while avoiding slipping of the wheels and collisions
with the surroundings. The system is trained to become energy efficient and productive.
The agents are trained over a sequence of loadings and can thereby learn a behavior that
is optimal for repeated loading; e.g., they can avoid actions that will make the pile more
difficult to load from at a later time.
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3. Simulation Model

The simulated environment consisted of an LHD and a narrow underground drift
with a muck pile (see Figure 1 and the Supplementary Video Material). The environment
was created in Unity [24] by using a physics plugin, AGX Dynamics for Unity [25,26].
The vehicle model consisted of a multibody system with a drivetrain and compliant tires.
The model was created from CAD drawings and data sheets of the ScoopTram ST18 from
Epiroc [27]. It consisted of 21 rigid bodies and 27 joints, of which 8 were actuated. The mass
of each body was set to match the 50-tonne vehicle’s center of mass. Revolute joints were
used to model the waist articulation, wheel axles, and bucket and boom joints; prismatic
joints were used for the hydraulic cylinders with ranges that were set according to the
data sheets.

d

x

Figure 1. Image from a simulation of the LHD scooping muck from a pile. The right image shows a
top view in which the positions of the lidar (five rays) and camera are indicated.

The drivetrain consisted of a torque curve engine, followed by a torque converter and
a gearbox. The power was then distributed to the four wheels through a central-, front-,
and rear-differential system. The torque curve and gear ratios were set to match the data of
the real vehicle. The hoisting of the bucket was controlled by a pair of boom cylinders, and
the tilting was controlled by a tilt cylinder and Z-bar linkage. The hydraulic cylinders were
modeled as linear motor constraints, and the maximum force was limited by the engine’s
current speed. That is, a closed-loop hydraulic system was not modeled.

The drift was 9 m wide and 4.5 m tall with a rounded roof. The muck pile was modeled
using a multiscale real-time model [26] that combined continuum soil mechanics, discrete
elements, and rigid multibody dynamics for realistic dig force and soil displacement.

The sample piles observed by the cameras on the vehicle are shown in Figure 2. The
LHD was also equipped with 1D lidar, which measured the distance to the tunnel walls
and the pile in five directions, as shown in Figure 1.

The muck was modeled with a mass density of 2700 kg/m3, internal friction angle
of 50◦, and cohesion of 6 kPa. Natural variations were represented by adding a uniform
perturbation of ±200 kg/m3 to the mass density, with random penetration force scaling
ranges that were between 5 and 8 for each pile. Variations in the sample piles’ shapes
were ensured by saving the pile shape generations. After loading 10 times from an initial
pile, the new shape was saved into a pool of initial pile shapes and tagged as belonging to
generation 1. A state inheriting from generation 1 was tagged as generation 2, and so on.

The simulations ran with a 0.02 s timestep and the default settings for the direct
iterative split solver in AGX Dynamics [25]. The grid size of the terrain was set to 0.32 m.
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Figure 2. Sample camera images of the initial piles, referred to as convex (upper left), concave
(upper right), and right-skewed (lower left); they are also shown in the depth camera view in the
(lower right) image.

4. DRL Controller

The task of performing several consecutive mucking trajectories requires long-term
planning of how the state of a muck pile develops. Training a single agent to handle
both high-level planning and continuous motion control was deemed to be too difficult.
Therefore, two cooperating agents were trained—a mucking position agent (MPA) and a
mucking agent (MA). The former chose the best mucking position—once for each loading
cycle—and the latter controlled the vehicle at 16 Hz to efficiently muck at the selected
position. To train the agents, we used the implementation of the soft actor–critic (SAC)
algorithm [28] in ML-Agents [29,30], which followed the implementation in Stable Base-
lines [31], and we used the Adam optimization algorithm. SAC is an off-policy DRL
algorithm that trains the policy, π, to maximize a trade-off between the expected return
and the policy entropy, as seen in the following augmented objective function:

J(π) = ∑
t
Eπ

[
r(ssst, aaat)− α log(π(aaat|ssst))

]
, (1)

where r is the reward for a given state–action pair, ssst and aaat, at a discrete timestep t. The
inclusion of the policy entropy in the objective function with weight factor α (a hyperparam-
eter) contributes to the exploration during training and results in more robust policies that
generalize better to unseen states. Combined with off-policy learning, this makes the SAC a
sample-efficient DRL algorithm, which will be important for the MPA, as explained below.

Figure 3 illustrates the relation between the two agents. The MPA’s observations are
from a depth camera at a fixed position in the tunnel with a resolution 84× 44. The action
is to decide on the lateral position in the tunnel at which to dig into the pile. This decision
is made once per loading.

The MA’s task is to complete a mucking cycle. This involves the following: approach-
ing the pile to reach the mucking position while the vehicle is straight for maximum force
and avoiding collision with the walls; filling the bucket by driving forward and gradually
raising and tilting the bucket while avoiding slipping of the wheels; deciding to finish
and break out by tilting the bucket to the maximum and holding it still. The MA observes
the pile by using depth cameras, which were simulated by using a rendered depth buffer,
and lidar data, which were simulated by using line-geometry intersection, in addition to a
set of scalar observations consisting of the positions, velocities, and forces of the actuated
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joints, the speed of the center shaft, and the lateral distance between the bucket’s tip and
the target mucking position. The scalar observations were stacked four times, meaning
that we repeated observations from previous timesteps, thus giving the agent a short-term
“memory” without using a recurrent neural network. The actions included the engine
throttle, and the target velocities of each hydraulic cylinder controlled the lift, tilt, and
the articulated steering of the vehicle. Note that the target velocity is not necessarily the
actual velocity achieved by the actuator due to limited power available and resistance from
the muck.

throttle

lift-cylinder

tilt-cylinder

steering

Mucking position agent (MPA)

Mucking agent (MA)

ActuatorsSensors

Reward

position

velocity

force

lidar

camera

16 Hz

16 Hz

3 hidden layers with 128 neurons, 
2 convolutional layers

once per loading

16 Hz

once per loading
4 hidden layers with 256 neurons, 
2 convolutional layers, 4-step stacking

camera

camera

lidar

proximity, loading rate
- energy efficiency, collision & spin

Figure 3. Illustration of the DRL controller and how the two agents—the MPA and MA—cooperate.

The MA’s neural network consisted of four hidden fully connected layers of 256 neu-
rons each. The depth camera data were first processed by two convolutional layers,
followed by four fully connected layers, where the final layer was concatenated together
with the final layer for the scalar observations. The MPA’s neural network differed only in
the fully connected layers, where we instead used three layers with 128 neurons each. Both
the MA and the MPA were trained with a batch size of 256, a constant learning rate of 10−5,
a discount factor of γ = 0.995, an update of the model at each step, and the initial value of
the entropy coefficient α in Equation (1) set to α = 0.2. The buffer size was reduced from
3× 105 for the MA and to 105 for the MPA. These network designs and hyper-parameters
were found by starting from the default values in the ML agents and testing for changes
that led to better training. There was probably room for further optimization.

The MA reward function depends on how well the selected mucking position was
achieved, the rate of bucket filling, and the work exerted by the vehicle. The complete
reward function is

rMA
t = w1CWrp

t rl
t − w2 pw

t , (2)

where rp
t = 1−min (∆x/4m, 1)0.4 decays with the lateral deviation of ∆x from the target

mucking position, and rl
t = lt − lt−1 is the increment in the bucket’s filling fraction l

over the last timestep. If the vehicle came into contact with the wall or if a wheel was
spinning, this was registered with two indicators that were set to C = 0 and W = 0,
respectively. Otherwise, these had a value of 1. The work p done by the engine and the
hydraulic cylinders for tilting, lifting, and steering since the previous action was summed
to pw

t = (ptilt + plift + psteer + pengine/5). The weight factors w1 = 100 and w2 = 10−6 J−1

were set to make the two terms in Equation (2) dimensionless and similar in size. The
reward favored mucking at the target position and the increase in the volume of material in
the bucket compared to the previous step while heavily penalizing collision with walls and
spinning of the wheels. Finally, subtracting the current energy consumption encouraged
energy-saving strategies and mitigated unnecessary movements that did not increase the
possibility of current or future material in the bucket.
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Additionally, a bonus reward was given if the agent reached the end state. The bonus
reward was the final position reward multiplied by the final bucket filling fraction:

rT = 10rp
T lT . (3)

This encouraged the agent to finish the episode when it was not possible to fill the
bucket any further, except by reversing and re-entering the pile.

The MPA received a reward for each loading completed by the MA. The reward was
the final filling fraction achieved by the mucking agent multiplied by a term that promoted
keeping a planar pile surface, st = e−d2/d2

0 , where d is the longitudinal distance between
the innermost and outermost points on the edge of the pile, as shown in Figure 1, and
d0 =

√
2 m. The reward became

rMPA
t = ltst. (4)

Due to the comparatively slow data collection, it is important to use a sample-efficient
DRL algorithm. The two agents were trained in two steps—first separately and then
together. The mucking agent was trained with a curriculum setup, using three different
lessons. Each lesson increased the number of consecutive loading trajectories by five—from
10 to 20—and the number of pile shape generations by 1—from 0 to 2. During pre-training,
each trajectory targeted a random mucking position on the pile. The MPA was first trained
with the pre-trained MA without updating the MA model. When the MPA showed some
performance, we started updating the MA model together with the MPA model. The model
update rate for both models was then limited by the MPA model.

With the SAC, the model was updated at each loading action (16 Hz). The computa-
tional time for doing this was similar to that of running the simulation, which was roughly
in real time. Hence, training over 30 million steps corresponded to roughly 500 CPU hours.
We did not explore the possibility of speeding up the training process by running multiple
environments in parallel.

5. Results

We measured the performance of the DRL controller in three different configurations,
which are denoted as A, B, and C. Controller A combined the MPA and MA with the
reward functions (2) and (4), while controllers B and C mucked at random positions instead
of using the MPA. For comparison, controller C did not include the penalty for energy
usage in Equation (2). The training progress is summarized in Figure 4. Controllers B and
C were trained for the same number of steps and using the same hyper-parameters, while
A continued to train from the state at which B ended.

For each controller, we collected data from 953 individual loadings. Each sample was
one out of twenty consecutive loadings starting from one of the four initial piles. The pile
was reset after twenty loadings. During testing, the muck pile parameters are set to the
default values, except for the mass density, which was set to the upper limit so that one
full bucket was about 17.5 t. The loaded mass was determined from the material inside
the convex hull of the bucket. This ensured that we did not overestimate the mass in the
bucket by including material that might fall off when backing away from the pile.

The mucking agents learned the following behavior, which is also illustrated in the
Supplementary Video Material. The mucking agent started by lining up the vehicle towards
the target mucking position, with the bucket slightly raised from the ground and tilted
upwards. When the vehicle approached the mucking pile, the bucket was brought flat
to the ground and driven into the pile at a speed of approximately 1.6 m/s. Soon after
entering the pile, the MA started lifting and tilting the bucket. This increased the normal
force, which provided traction in order to continue deeper into the pile without the wheels
slipping. After some time, the vehicle started breaking out of the pile with the bucket
fully tilted.
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Figure 4. The cumulative reward for the different agents during training. The left panel shows the
reward when the MA and MPA were trained separately. In the right panel, the training is continuous
with the agents trained together. Three variants (A, B, and C) of the MA were tested, and their
differences are explained in Section 5.

The mass loaded into the bucket at the end of each episode is plotted in Figure 5 with
the corresponding episode duration and energy use. The majority of the trajectories are
clustered in the upper-left corner of high productivity (t/s). Each of the three controllers
had some outliers, loadings with low mass, and/or long loading times. If the mucking
agent did not reach the final state of breaking out with the bucket fully tilted within 48 s,
the loading was classified as failed. The common reason for timing out was the vehicle
being stuck in the pile with a load that was too large to break out. Controller C, which
was not rewarded for being energy efficient, had a longer loading duration and was more
prone to getting stuck.
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Figure 5. The performance of the three tested controllers over 953 loading cycles.

The mean productivity and energy usage for controllers A, B, and C are presented
in Table 1. For reference, we have also added the performance of an experienced driver
manually operating an ST14 loader [13], with the loaded mass re-scaled to the relative
bucket volume of the ST18 loader, VST18/VST14 = 1.23, while keeping the loading time
and energy per unit mass the same. The failure ratio and mucking position error are
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also included. Comparing controllers B and C, we observe that the energy penalty in the
reward functions leads to 21% lower energy consumption, a 7% increase in productivity,
and a reduction of the failure ratio from 7% to 1%. We conclude that controllers A and
B learned a mucking strategy that actively avoided entering states that would lead to
high energy consumption and delayed breaking out. On average, the loaded mass was
between 75 and 80% of the vehicle’s capacity of 17.5 t. The energy usage was 1.4–1.9 times
larger than the energy required for raising the mass by 4 m. This is reasonable considering
the soil’s internal friction and cohesion and that the internal losses in the LHD were not
accounted for.

Controller A had 9% higher productivity than controller B, which mucked at random
positions, and used 4% less energy. This suggests that the mucking position agent learned
to recognize favorable mucking positions from the depth images. Confirming this, Figure 6
shows the distribution of the mucking positions for the four different initial piles that
were shown in Figure 2. For the left-skewed pile, the MPA chose to muck more times
on the left side of the tunnel, presumably because that action allowed the filling of the
bucket with a smaller digging resistance, and it left the pile in a more even shape. The
same pattern was true for the pile that was skewed to the right. For the concave pile,
the majority of the targets were at the left or right edge, effectively working away the
concave shape. For the convex shape, the mucking positions were more evenly distributed.
Figure 7 shows the evolution of the loaded mass when using controller A over a sequence
of 20 repeated muckings from the initial piles. There was no trend of degradation of
the mucking performance. This shows that the MPA acted to preserve or improve the
state of the pile and that the DRL controller was generalized to the spaces of different
mucking piles.

The target mucking position chosen by the MPA was not guaranteed to be the position
at which the LHD actually mucked, as we expected an error in MA’s precision, and it was
able to weigh the importance of mucking at the target position against the importance
of filling the bucket with a low energy cost. The mean difference between the target and
actual mucking positions for controller A was 0.014± (0.15) m, which was 0.4% of the
bucket’s width.

Compared to the manual reference included in Table 1, the DRL controllers reached a
similar or slightly larger average loading mass, but with higher consistency (less variation)
and shorter loading times. The productivity of controller A was 70% higher than that of the
manual reference, with an energy consumption that was three times smaller. On the other
hand, the DRL controller underperformed relative to the automatic loading control (ALC)
in ST14 field tests [13]. The ALC reached its maximal loading mass with a productivity that
was roughly two times greater than that of the DRL controller, but with four times larger
energy consumption per loaded tonne. There are several uncertainties in these comparisons,
however. The performance of the DRL controller was measured over a sequence of twenty
consecutive loadings from the same pile in a narrow drift, thus capturing the effect of
a potentially deteriorating pile state. It is not clear whether the ALC field test in [13]
was conducted in a similar way, or if the loadings were conducted on piles prepared in a
particular state. There are also uncertainties regarding the precise definition of the loading
time and whether the assumed scaling from ST14 to ST18 holds. In future field tests, the
amount of spillage on the ground and the slipping of the wheels should also be measured
and taken into account when comparing the overall performance. Comparison with [21]
and [18] is interesting but difficult because of the large differences in the vehicles’ size
and strength and the materials’ properties. The reinforcement learning controller in [21]
achieved a fill factor of 65%, and the energy consumption was not measured. The neural
network controller in [18], which was trained by learning from demonstration, reached
81% of the filling of the bucket relative to manual loading, but neither loading time nor
work was reported.
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Table 1. Mean performance for the three DRL controllers and manual loading performance [13] (re-scaled from ST14 to
ST18 for reference).

Controller Mass [t] Productivity [t/s] Energy Usage [MJ] Position Error [m] Failure

all loadings 13.2 (±1.8) 0.87 (±0.15) 1.10 (±0.5) 0.01 (±0.15) 1%A completed loadings 13.2 (±1.8) 0.88 (±0.14) 1.08 (±0.39) 0.01 (±0.15)

all loadings 13.1 (±2.3) 0.80 (±0.16) 1.12 (±0.26) 0.11 (±0.20) 1%B completed loadings 13.1 (±2.2) 0.81 (±0.14) 1.12 (±0.24) 0.11 (±0.20)

all loadings 14.0 (±2.0) 0.73 (±0.20) 1.55 (±0.75) 0.08 (±0.23) 7%C completed loadings 14.0 (±1.9) 0.76 (±0.16) 1.42 (±0.53) 0.08 (±0.23)

Manual reference 13.0 (±5.9) 0.52 (±0.30) 3.3 (±1.5)
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6. Discussion

The method explored here has several limitations. The episodes ended when the
bucket broke out of the pile. Consequently, the mucking agent was not given the opportu-
nity to learn the technique of reversing and re-entering the pile if the bucket is under-filled.
This is often practiced by operators. The soil’s strength and mass density were homoge-
neous in the environment, but real muck may be inhomogeneous. Finally, it is not possible
to predict how the controller will react to situations that significantly deviate from those
included in the training—e.g., with piles of very different sizes or shapes, the presence of
boulders, or obstacles of various kinds.

7. Conclusions

We found that it is possible to train a DRL controller to use high-dimensional sensor
data from different domains without any pre-processing as input for neural network poli-
cies in order to solve the complex control task of repeated mucking with high performance.
Even though the bucket is seldom filled to the maximum, it is consistently filled with a
good amount. It is common for human operators to use more than one attempt to fill the
bucket when the pile’s shape is not optimal, which is a tactic that was not considered here.

The inclusion of an energy consumption penalty in the reward function can distinctly
reduce the agent’s overall energy usage. This agent learns to avoid certain states that
inevitably lead to high energy consumption and the risk of failing to complete the task.
The two objectives of loading more material and using less energy were competing, as seen
in Table 1 with controller C’s higher mass and controller A’s lower energy usage. This is
essentially a multi-objective optimization problem that will have a Pareto front of possible
solutions with different prioritizations between the objectives. In this work, we prioritized
by choosing the coefficients w1 = 100 and w2 = 10−6 in Equation (2), but future work
could analyze this trade-off in more detail.

A low-resolution depth camera observation of a pile’s surface is enough to train
the MPA to recognize good 1D positions for the MA to target. By choosing the target
position, the overall production increases and the energy consumption decreases compared
to when random positions are targeted. Continuing to clear an entire pile by using this
method—essentially cleaning up and reaching a flat floor—could be an interesting task for
future work.
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