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Reinforcement Learning Control of a Forestry Crane Manipulator

Jennifer Andersson1, Kenneth Bodin2, Daniel Lindmark2, Martin Servin1,2 and Erik Wallin1

Abstract— Forestry machines are heavy vehicles performing
complex manipulation tasks in unstructured production forest
environments. Together with the complex dynamics of the on-
board hydraulically actuated cranes, the rough forest terrains
have posed a particular challenge in forestry automation. In
this study, the feasibility of applying reinforcement learning
control to forestry crane manipulators is investigated in a
simulated environment. Our results show that it is possible
to learn successful actuator-space control policies for energy
efficient log grasping by invoking a simple curriculum in
a deep reinforcement learning setup. Given the pose of the
selected logs, our best control policy reaches a grasping suc-
cess rate of 97%. Including an energy-optimization goal in
the reward function, the energy consumption is significantly
reduced compared to control policies learned without incentive
for energy optimization, while the increase in cycle time is
marginal. The energy-optimization effects can be observed in
the overall smoother motion and acceleration profiles during
crane manipulation.

I. INTRODUCTION

Recent advances in machine learning (ML) in general,
and reinforcement learning (RL) in particular, have inspired
progress in the development of intelligent systems in the
context of robotic manipulation [1], [2]. These tasks often
require multiple-skill acquisition in high-dimensional and
dynamically complex settings. RL has the advantage of
not requiring large static datasets and direct supervision,
while enabling end-to-end learning through environmental
exploration and experience. Successful applications of RL to
robotic manipulation problems include robotic grasping [3].
Though many challenges remain, synergies between RL and
robotics have the potential to accelerate autonomous systems
development in the automotive and robotics industry. So far,
most RL research in this area has been limited to learning
individual skills or performing generic manipulation tasks.
However, the avenue for leveraging this technology is much
broader. The current work aims to extend the application
area of RL control to heavy equipment in unstructured
environments, using deep RL techniques to fully automate
the log-grasping motion of a forestry crane manipulator.

The forest environment is notably unstructured and dy-
namically complex, see Fig. 1 for an example. This has
contributed to the comparatively slow automation progress
in the forest industry over the past decades, but advances
in machine learning has rekindled ambitions for end-to-end

1Department of Physics, Umeå University, {jennifer.andersson, mar-
tin.servin, erik.wallin}@umu.se

2Algoryx Simulation AB, {daniel.lindmark, kenneth.bodin}@algoryx.se
This work has in part been supported by Mistra Digital Forest (Grant

DIA 2017/14 #6). Extractor AB has kindly provided 3D models for the
Xt28 forwarder.

Fig. 1: A forwarder grasping and loading logs in a forest using a crane
manipulator. Image courtesy of Holmen.

automation to play a significant role in the future of forestry.
Forestry machines permeate the entire logging process, from
the felling of trees to the cutting, sorting and transportation
of timber out of the forest harvesting site. The key equipment
carried by these machines is hydraulic, kinematically redun-
dant manipulators used for monotonous manipulation tasks.
The system is underactuated, which increases control com-
plexity compared to most small-scale manipulators. Despite
widespread automation in industry today, forestry machines
have remained primarily manually operated. For a human
operator, manual control of a forestry crane manipulator can
be a both mentally and physically exhausting task, requiring
counterintuitive coordination of several actuators for many
hours straight and exposing the operator to harmful whole-
body vibrations [4]. This can have severe long-term health
implications and the need for increased automation in the
forestry context is therefore substantial.

Semi-automation of forestry machines has been success-
fully explored before, increasing productivity and reducing
the immediate workload on the operator [6], [20]. In contrast
to methods previously adopted in forestry automation re-
search, the RL framework has shown potential for intelligent
and independent end-to-end learning of complex tasks in
simulated environments, completely removing the need for
analytic low-level controllers. If these techniques can be
used to achieve full automation of essential parts of the
boom cycle in simulation, this may serve as a stepping stone
towards full automation of physical forestry machines, or at
the very least accelerate semi-automation efforts.

To the best of our knowledge, RL control of forestry
crane manipulators is a topic previously not touched upon in
machine learning or robotics research. Our work constitutes
an initial attempt at investigating the feasibility of adopt-
ing this approach to learn successful actuator-space control
policies for single-log grasping using a 6 DoF, kinematically
redundant forestry crane manipulator. Given the Cartesian



position and orientation of the selected log, the learned con-
trol policies map task-space goals directly to actuator-space
commands. Training and testing is conducted in a simulated
environment, and curriculum learning is used to deal with
the longstanding challenge of sparse environmental feedback
characteristic of robotic grasping problems. This approach
removes the need for conventional trajectory planning and
extensive reward shaping. Secondly, we investigate the policy
response following inclusion of an energy-optimization goal
in the reward function. In addition to effects on performance,
we analyse differences in crane behavior and acceleration
profiles compared to unoptimized policies. Finally, to in-
vestigate simulation to reality transferability, we analyse
the sensitivity and robustness of successful control policies
exposed to environmental disturbances and uncertainties in
the observation and parameter space, respectively.

II. BACKGROUND

A. Robotic Control in Forestry

Most forestry operations involve maneuvering heavy ve-
hicles over rough terrain, and manipulating the unstructured
environment with the end-effector of a hydraulically actuated
crane, as elaborated on in [5]. In this study, we focus on
forwarding, but the automation challenges are similar for har-
vesting and thinning. Forwarding is the operation of loading
and transporting logs from a felling site to a nearby forest
road, where the logs are unloaded for further transportation
by road vehicles. The responsibility of the forwarder operator
includes both low-level control in terms of vehicle maneuver
and crane manipulation, and high-level navigation, planning,
task coordination and execution optimization. The loading
cycle consists of extracting and slewing the crane, guiding
an open grapple to a selected log from above. The log is
gripped and loaded by closing the grapple, slewing back
and retracting the crane to bring the log to the forwarder’s
load bunk, while avoiding collisions of any kind. This
requires object detection and pose estimation, as well as
strategic selection of logs and grasping configuration. In
addition, operation of the crane demands motion planning
and control answering to the physical limitations of the crane
depending on the vehicle position and inclination. A typical
crane reaches up to 10 metres, has four links and hydraulic
actuators delivering a lifting torque of 100 kNm. The grapple
and rotator add two degrees of freedom to actuate closing
and opening as well as the axial rotation for aligning the
grapple with a log or the load bunk.

The crane dynamics is prone to oscillations. This com-
plicates the grasping process, and causes excessive wear
and discomfort to the operator. Operators undergo extensive
training, learning to operate the forwarder as time- and
energy efficiently as possible. Still, more than 80% of the
operator’s active time is devoted to controlling the crane
[7]. Thus, crane manipulation is a natural starting point for
research motivated by forestry automation.

It is found that, on average, machine operators are capable
of using only 20% of the maximum velocity of the crane

during operation [4]. According to Morales et al. [9], time-
efficiency could increase by at least three-fold if done by
an autonomous control system. Crane-tip Cartesian control
and semi-autonomous functions improve the performance of
inexperienced operators and reduce the workload on expe-
rienced operators [5], [6], [20]. However, previous research
on motion planning and crane control [8] has disregarded
grapple control and the task of log grasping. Moreover, there
are only a few publications that deal with machine vision
for forestry robotics, e.g. detection and pose estimation of
logs [10] or tree stems [11]. This is recognized as a difficult
problem in the forestry environment, which is characterized
by high variability, object occlusion, and presence of mois-
ture and particles. On the other hand, production forests are
monitored using aerial lidar mapping with steadily increasing
resolution [12] and the GPS position of felled logs are
registered with a precision of a few meters [13]. Combining
these data with on-board sensors, it is conceivable that logs
can be located with a resolution comparable to the grapple.

B. RL Preliminaries

An RL problem can be formalized as a Markov decision
process; a mathematical framework for sequential decision
making in stochastic state-transition systems. At a given
discrete time step t, the system is in state st ∈ S and the
agent makes an observation ot ∈ O of the environment.
Performing an action at ∈ A according to the policy
distribution π(a|s), the agent receives an immediate scalar
reward rt(st, at) according to the specified reward function
R(s, a). The goal of RL algorithms is to find the optimal
policy π∗(a|s) such that the agent takes the optimal action
at any given state in order to maximize the expected return.

Here, the deep RL approach involves parameterizing the
policy π as a neural network πθ with parameters θ ∈ Θ. The
resulting policy approximator outputs a vector of actuator-
space motor control signals at each time step.

C. Curriculum Learning in RL

The concept of transfer learning (TL) [14] has shown po-
tential to solve high sample complexity issues symptomatic
of many RL applications. In TL, the agent learns to master
a simpler source task and uses the acquired knowledge to
bias learning on the original target task. Ideally, the TL
approach augments and speeds up learning on the target
task, and is especially beneficial in context where learning is
inherently slow, often occurring in settings exhibiting sparse
rewards and feedback delay. In the context of log grasping,
the adverse effect of sparse rewards on the learning process
is imminent. Such reward signals only require a definition
of success in relation to the goal, allowing the agent to find
the optimal solution given the environmental constraints. The
drawback is that a significant part of training is devoted to
endless exploration with rare to no feedback from which the
agent can learn. This motivates us to deploy a curriculum
learning-based [15] solution, in which a sequence of source
tasks is carefully combined to form a curriculum of lessons,
easing learning of the target task by repeated use of TL.
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Fig. 2: The forwarder and the selected log-position areas. At initial lessons,
the log is placed close to the initial position of the grapple (red). As the agent
progresses through the curriculum, the log-position area changes (blue),
incrementally increasing the difficulty of the task as the artificial plane
approaches the ground plane.

III. SYSTEM OVERVIEW

A. Delimitations

The grasping subtask of the forwarder operator is very
complex in the real forest environment. To this end, our
initial work is limited to RL control of the single-log grasping
motion of a forestry crane manipulator mounted on a static
machine fixed on a horizontal surface. The task of returning
logs to the load bunk is omitted in the present study.
Moreover, the existence of an external perception system is
assumed, and the agent observes the Cartesian position and
orientation of the selected log directly.

B. Virtual Forwarder

Our agent controls a 3D simulation model of a six-
wheel forwarder equipped with a kinematically redundant
hydraulic manipulator controlled by 6 actuated DoF. The
model, depicted in Fig. 2, is a slightly modified version of the
Xt28 concept forwarder [18], consisting of 52 rigid bodies
and 60 constraints. It has a total mass of 16.800 kg, whereof
the crane stands for 16 bodies, 20 constraints, and 2.000 kg.
The smallest component weighs 6 kg, yielding a mass ratio
above 1000 to the vehicle. The crane reach is 7 m.

The position of the boom tip at the end of the telescope,
where a rotator grapple is attached, depends on the rotational
angles of three revolute joints and one linear displacement
position. A revolute joint, q1, controls the slewing motion of
the crane pillar. The inner and outer booms are controlled
by two actuated prismatic joints, q2 and q3, representing
one hydraulic cylinder each. A motorized prismatic joint,
q4, controls translation of the telescope along its axis. The
orientation of the grapple along the rotator axis is controlled
by the actuated revolute joint q5, and a final prismatic joint,
q6, controls the opening-closing motion of the grapple. This
leaves the rotator grapple with two degrees of freedom that
are not actuated. This is important for focusing the stress in
the direction of lifting, consequently allowing the grapple to
swing freely and denying direct control of the grapple claws.

On conventionally operated forestry cranes, joystick sig-
nals control the hydraulic flow rates of the cylinders and
rotator. A diesel engine powers a hydraulic pump applying

fluid pressure within the system. In our case, the diesel en-
gine is not modelled, and each actuated joint is equipped with
a linear or rotational motor internally controlled to reach and
hold a given target velocity, while obeying current dynamics
and constraints, such as maximum motor force, torque or
speed. Each joint may also have secondary constraints in
terms of range limits or a lock, enforcing a fixed joint
position. Physical parameters of the virtual forwarder are
estimated to emulate the force and speed limitations of a real
crane, but have not been validated by domain experts. This
does not reduce the generality of the problem. The initial
crane configuration centres the grapple above the load bunk
and the initial angle of each actuator are slightly perturbed to
prevent overfitting. Logs are modelled as uniform cylinders
of length 3 m (1.5 m during training, to encourage grasping
near the log C.o.M), radius 0.08 m and mass 50 kg. The
initial C.o.M position is drawn from a uniform probability
distribution within the selected area depicted on the nearside
of the vehicle in Fig. 2. The orientation in the horizontal
plane is drawn from a similar distribution.

C. Learning Environment

The Unity 3D simulation platform is used as a training
environment, interfaced with the ML-Agents Toolkit [16]
and the physics engine AGX Dynamics [17]. Owing to its
block-sparse direct-iterative solver and symmetry-preserving
variational stepper, AGX Dynamics supports nonsmooth
multibody dynamics with frictional contacts and large mass-
ratio mechanisms with high numerical precision and speed.
This is demanded by the current application. We use a fixed
simulation time step of 20 ms and each training session is
run for at least 35 million time steps (∼ 200k episodes) using
eight parallel environments. The observation space consists
of the Cartesian log position and orientation, as well as the
current state of each actuator in terms of angle, speed and
applied motor torque. Each observation is normalized based
on the running mean and standard deviation of previous
observations, and eight stacked observations are processed
at each time step. The agent is controlled by action signals
corresponding to the target speed of each motor, respecting
its specific velocity range. The instantaneous change in target
speed per time step is limited to 1/30 of the maximum speed
of the motor.

Our policies are parametrized by a feedforward neural
network and optimized using the state-of-the-art on-policy
algorithm Proximal Policy Optimization (PPO) [19]. We use
a network with three fully-connected hidden layers each
comprised of 256 neurons, and a linearly decaying learning
rate of α = 0.001. The maximum episode length is 2000
time steps, and the agent makes a decision every other time
step. For PPO, we use the clipping parameter ε = 0.3,
the entropy regularization coefficient β = 0.01, the GAE
parameter λ = 0.95 and the discount factor γ = 0.995.

D. Reward Structure & Curriculum

Succeeding to secure the selected log in its grapple, the
agent receives a high sparse reward and the episode is termi-



nated. For our purposes, a successful grasp occurs when the
log is lifted from the ground, enclosed by both grapple claws
in a closed position. Incentive for energy optimization is
included by scaling the reward inversely with the total energy
consumed by the actuators q1 to q4, excluding the energy
consumed by the grapple actuators. The energy consumption
is defined as the work exerted by the actuators up until the
point of grasping initiation, assuming no energy recuperation.
This reward structure enables optimal policy search, but
does nothing to prohibit unwanted behavior allowed for by
the model. Thus, episodes terminate with a zero-return if
maximum motor torque is applied at the range limit of q1, q2
or q3, or if any part of the crane collides with the load
bunk. This increases learning speed and avoids contact-heavy
computations.

An additional reward signal, increasing exponentially with
decreasing distance between the boom tip and the log, is
provided. This guides the agent at the start of the learning
process, but is negligible once any grasping behavior has
been learned. This reward signal increases with decreasing
q4 speed in close proximity to the log, and vanishes if q4 hits
its range limits or if there is significant deviation between the
orientation of the grapple and the orientation of the log. This
is effective when the goal is to navigate the boom tip to, and
remain at, a predefined grasping position. Extending the goal
to include grasping, however, the exploration space becomes
too large for this reward signal to suffice. When the agent
finally learns to navigate the grapple to the log, it has learnt to
discard the opening-closing motion of the grapple. Alleviat-
ing this challenge, we deploy a straightforward curriculum in
which the distance between the log and the grapple increases
incrementally. This is accomplished by adjusting the height
of an artificial ground plane carrying the selected log. This
avoids the introduction of bias induced from guiding the
crane using analytic motion control. Throughout the first
four lessons, the artificial plane is placed directly beneath
the initial grapple position, with the selected log-position
area expanding according to Fig. 2. Between succeeding
lessons, the artificial plane is lowered in intervals of 0.1
m. The grapple reach varies with the target height, and
the log-position area is adjusted accordingly throughout the
curriculum. At the final lesson, the artificial plane merges
with the true ground plane and the agent continues training
on the target task.

A grasping success rate of 30% over the preceding 20
episodes is required to proceed to the next lesson, preventing
overfitting early in the curriculum. Our goal is to quickly
reach ground level to train on the target task, motivating
us to decrease the problem complexity of early lessons
by disabling collisions between the artificial plane and the
grapple claws.

IV. RESULTS & ANALYSIS
A. Performance Evaluation

For each control policy, the grasping success rate over
1000 consecutive episodes is recorded. The best policy
optimized without incentive for energy optimization reaches

TABLE I:
Comparison of performance between Policy A-D in terms of success rate,
average cycle time, relative energy consumption and training time. Policy
B, C and D are energy optimized.

Policy Success Rate Time (s) Energy Training Steps
A 0.97 3.6 1 35e6
B 0.81 4.6 0.39 80e6
C 0.84 4.9 0.22 80e6
D 0.93 4.0 0.32 80e6

a near perfect evaluation success rate of 97%. This policy is
referred to as Policy A. Fig. 6 shows a grasping sequence
in the simulation environment using this policy. Three inde-
pendent policies (B, C and D) are learned using the reward
function including an energy-optimization goal. Table I com-
pares the performance of these policies, and the generated
grasping behaviors are demonstrated in the supplementary
videos. In the given training time, our best energy-optimized
policy reaches a success rate of 93%. The energy reduction
including incentive for energy optimization is substantial
compared to Policy A, with the total energy consumption
on average reducing by 61% (Policy B), 78% (Policy C)
and 68% (Policy D). Fig. 3 compares distributions of the
total energy consumed during successful boom cycles using
each policy. The most prominent energy reduction effect can
be observed in the smoother trajectory profiles produced by
the energy-optimized policies. This is illustrated in Fig. 4a,
showing the boom tip speed profiles over five boom cycles
for Policy A and B. The boom tip acceleration profile during
one of these cycles is illustrated in Fig. 4b. We observe
a generally lower boom tip speed and a significant jerk
reduction using the energy-optimized policies. As a result
of these effects, the grapple oscillations are significantly
reduced and the average cycle time increases by 11%-36%
compared to Policy A, as seen in Table I. These cycle times
are comparable to those obtained by manual operators.

Overall, the training process is stable using our approach.
The energy-optimized policies require longer training time to
reach comparable success rates, and may converge to higher
success rates if allowed more time to train. Fig. 5a shows
learning curves for policies optimized without incentive for
energy optimization. The mean success rate of these models
is 90%. Fig. 5b shows the training process in terms of
evolution through the curriculum. The deviation in training
time before the initiation of learning on the target task can
amount to several million training steps. This may or may
not impact the success rate to which the policy converges in
a given number of training steps. In our case, the superior
policy in terms of success rate (Policy A) reaches the final
lesson significantly faster than all other policies.

Due to the redundant crane kinematics, successful grasp-
ing poses can be reached from an infinite number of crane
configurations. Analysing the end-position of all actuators
upon grasping, two primary solutions can be observed among
our models. These can be distinguished by the respective use
of q4, where one primary solution involves using the crane
telescope to maximum or close to maximum capacity, prac-
tically removing one of the redundant degrees of freedom
and adjusting q2 and q3 to reach the grasping pose. The
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Fig. 3: Total energy consumed by q1 to q4 up until the point of grasping.
Energy distributions over 1000 episodes are shown for Policy A-D.
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Fig. 4: Boom tip trajectory profiles produced by Policy A and B over a) five
boom cycles for logs selected in different parts of the grasping area and b)
a randomly selected boom cycle.

energy-optimized policies exhibit similar primary solutions
in terms of crane behavior, and displays a distinct second
solution positioning q2 with low variance across different
boom cycles, adjusting q3 and q4 to reach the grasping pose.
The latter is true for Policy B and C, whereas Policy D uses
q4 heavily. In this context, using q2 can allow most of the
crane mass to fall with gravity to reduce energy consumption.
Operators are instructed to use the maximum capacity of q4,
similar to one of the approaches favored by our policies. This
is considered optimal maneuver over the course of an entire
loading cycle, but is not necessarily the optimal behavior
under our delimitation. A particularly interesting indication
is that our policies are able to take advantage of grapple
oscillations to perform grasping, and use the grapple claws
to nudge the log to align better with the grapple orientation.
This is typical of experienced operators.

No strong correlation between failed grasping attempts and
the log position can be observed. Instead, failed attempts
occur due to occasional miscoordination between actuators,
and depends on the link activation profile favored by the
policy. For example, for policies not grasping from above,
i.e. favoring grasping under non-symmetric motion of the
grapple claws relative to the log, small deviations in link
activation may lead to the grapple pushing the log out of
reach. Another example is found in Policy B, which relies
on extensive use of q2 and runs a greater risk of failing due
to collisions between the grapple and the load bunk.

It is worth noting that the redundant kinematics and the
complexity of the problem makes it difficult to produce
theoretically optimized policies, and all energy-optimized
policies show significant differences in link activation. Policy
B achieves significant energy reduction compared to Policy
A, despite often exhibiting a slight back-and-forth motion of
q4 during the course of an episode. Policy C manages the
same while generating a behavior in which the crane lowers
the outer boom upon grasping initiation, effectively moving
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Fig. 5: Learning curves averaged over five random seeds in terms of a) mean
episodic return corresponding to the grasping success rates during training
and b) evolution through the curriculum during training as a function of
artificial plane height. Training is initialized from a policy trained on the first
four lessons, and training starts at the final lesson with the initial artificial
ground plane height.

the log towards the load bunk. This exemplifies non-optimal
behavior generated by the energy-optimized policies using
the current sparse reward setup.

B. Sensitivity Analysis

Our policies are exclusively trained to grasp logs from a
static vehicle. To analyse the robustness in a more realistic
setting, we record the decrease in success rate performing
the identical log-grasping task from a dynamic vehicle. The
added flexibility, for example between the tires and terrain,
induces additional crane oscillations unforeseen by the agent.
The sensitivity is highly dependent on the specific link
activation profiles. The highest success rate is recorded for
Policy A, which maintains 83% of its original success rate.
The energy-optimized models are less robust, maintaining
33% (Policy B), 53% (Policy C) and 42% (Policy D). Failed
grasping attempts following Policy B is a consequence of
lowering q2 at an early stage of the boom cycle, which fre-
quently results in collisions between the grapple and the load
bunk when the crane is exposed to increased oscillations.
The reduced success rates of Policy C and D are often tied
to early closing of the grapple claws. It should be noted that
this robustness can likely be increased if vehicle dynamics
is included in the training process.

Moreover, we analyse the policy robustness to inclined
terrains by recording success rates with the forwarder and
log placed on an uphill 17.6% slope. Policy A is the most
robust, maintaining 51% of the original success rate. The
energy-optimized models, which rely more on gravity during
operation, maintain between 25% and 45% of the original
success rates. This suggests some generalizability, but clearly
demonstrate the need for training in more unstructured
environments prior to deployment in real production forests.

No strong correlation between the grapple orientation and
the orientation of the log can be observed in the resulting
behavior of our policies. This is reasonable, as the grapple
can be used to adjust the log orientation, and the grasping
range of the grapple is large compared to the size of the
log. High robustness to small observational uncertainties is
therefore expected, and is important for prospects of future
policy transfer between simulation and reality with feasible
sensor accuracy. To investigate this, we analyse sensitivity
to observational uncertainty in the Cartesian position of the
log. Confining the observed position to the surface of a



Fig. 6: Grasping sequence using Policy A showing snapshots taken 0, 1, 1.5, 2, 2.5, 3 and 4 s into the boom cycle.

sphere of one log-radius around the true position, Policy
A-D stays within 98% of the original success rates. For
policy A and B, the success rates do not decrease. Doubling
the radius, at least 90% of the original success rates are
maintained for the energy-optimized policies, with Policy
A remaining robust to 97% of the original success rate.
Uncertainty in log orientation yields similar robustness for
Policy A, C and D, with the maximum decrease in success
rate amounting to 3 percentage points (Policy D) when the
observation deviates from the true log orientation by ±10
degrees in the horizontal plane. Policy B is slightly less
robust, maintaining only 85% of its original success rate.
These results are encouraging, however, as robustness to this
level of uncertainty is expected to exceed that demanded
by the accuracy of available sensor technology. Similar
robustness to mass uncertainty is observed, with all policies
maintaining at least 96% of the original success rates under a
5% increase in mass of each crane body. This shows potential
for model deployment to physical machines with realistic
uncertainty in crane mass estimation, inferring a possibility
to transfer identical policies to multiple physical machines.

V. CONCLUSIONS

Using curriculum learning to solve the sparse reward log-
grasping problem, we show that RL control can generate
high success rates for single-log grasping using a forestry
crane manipulator. The best control policy reaches a grasping
success rate of 97%. Simply scaling the reward signal, it is
possible to achieve significant reduction in the total energy
consumed during crane manipulation, while maintaining a
high success rate. This leads to smoother trajectory profiles
compared to control policies learned without incentive for
energy optimization. These results are important, as jerkiness
poses a particular challenge to robotic control and efficient
automation. The best energy-optimized policy reaches a
grasping success rate of 93%. Our policies are largely robust
to observational uncertainties, and the robustness to envi-
ronmental disturbances is encouraging for future research
focusing on RL control of forestry crane manipulators in
more unstructured environments.

VI. SUPPLEMENTARY MATERIAL

Supplementary material, including videos, can be found at
http://umit.cs.umu.se/rlc_forestry_crane/.
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