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Abstract: The advancements in sensor and communication technologies drive the rapid develop-
ments in the applications of occupancy and indoor environmental monitoring in buildings. Currently,
the installation standards for sensors are scarce and the recommendations for sensor positionings
are very general. However, inadequate sensor positioning might diminish the reliability of sen-
sor data, which could have serious impacts on the intended applications such as the performance
of demand-controlled HVAC systems and their energy use. Thus, there is a need to understand
how sensor positioning may affect the sensor data, specifically when using multi-sensor devices in
which several sensors are being bundled together. This study is based on the data collected from
18 multi-sensor devices installed in three single-occupant offices (six sensors in each office). Each
multi-sensor device included sensors to measure passive infrared (PIR) radiation, temperature, CO2,
humidity, and illuminance. The results show that the positions of PIR and CO2 sensors significantly
affect the reliability of occupancy detection. The typical approach of positioning the sensors on the
ceiling, in the middle of offices, may lead to relatively unreliable data. In this case, the PIR sensor in
that position has only 60% accuracy of presence detection. Installing the sensors under office desks
could increase the accuracy of presence detection to 84%. These two sensor positions are highlighted
in sensor fusion analysis as they could reach the highest accuracy compared to other pairs of PIR
sensors. Moreover, sensor positioning can affect various indoor environmental parameters, especially
temperature and illuminance measurements.

Keywords: data reliability; sensor placement; IoT; sensor accuracy; PIR sensors; sensor fusion

1. Introduction

Development and improvement of sensor technologies and their wireless networking
have been the top priority of Internet of Things (IoT) for smart city infrastructure [1].
The advancements in the sensor and wireless communication technologies have elevated
the opportunities to benefit from occupancy and indoor environmental monitoring in
buildings [2]. Building performance monitoring allows optimizing the operation of existing
facilities and improving the future designs, in terms of energy efficiency and occupants’
comfort and well-being [3,4]. As the sensing technologies become more cost-effective and
adaptable, new applications in buildings continuously emerge. For example, occupancy
sensors may be used for space use management by providing information about space use
which allows to improve the efficiency of using energy and resources [5]. Occupancy and
indoor environmental sensors can be used together to enable solutions such as demand-
controlled energy systems [6], demand response [7], and behavior change campaigns [8].
Multiple applications using similar sensing and data infrastructure increase their chance of
being economical and facilitate the widespread adoption of sensors in buildings [6].

Legislative documents by European Union promote smart devices and encourage the
adoption of intelligent metering and active control systems in buildings to achieve energy
saving [9]. As the importance of occupancy and indoor environmental monitoring being
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recognized, building codes would likely consider occupant-related aspects enhancing the
adoption of sensing devices [10]. The trends suggest more stringent requirements in the
future towards mandatory adoption of sensing devices [11]. The technological advance-
ments and various economic, social, and sustainability motives are likely to increase the
deployment of sensors in buildings on a broader scale [2].

There are various types of sensors for occupancy monitoring such as passive infrared
(PIR) sensor, infrared array, and ultrasonic sensor [6,12]. Similarly, indoor environmental
parameters such as temperature, humidity, light, and CO2 concentration can be measured
by different sensor technologies. The positioning of sensors on where they are installed is
often flexible and can be adapted to standards such as ASHRAE standard 55 [13]. Sensor
developers provide some guidelines for sensor installation, which are mostly qualitative.
For example, PIR sensors, which are commonly used for occupancy monitoring, should
be installed on vibration-free surfaces so that they face the main areas of activity, or
temperature sensors should be installed distant from heat sources [14,15]. The sensor
developers might also provide quantitative recommendations by providing a number for
coverage area or distance from air vents. However, they rarely provide information about
the basis for those recommendations [15,16]. To compare such recommendations with
building codes, it is found that some recommendations in building codes and standards
are likely to be based on anecdotal evidence and experiences as they are often difficult to
be traced back to scientific reasoning [10]. This might also apply to the installation guides
from the sensor developers, indicating a knowledge gap on the factors influencing sensor
performance related to their installation and positioning.

Some occupancy sensors are integrated as built-in parts of other devices such as
thermostats and switches. The positioning of sensors in such cases may be restricted to
the designated position of the main device. For example, switches are typically installed
on 1 m height, even when they have built-in PIR sensors without an adequate field of
view (FOV) in that position [17]. A similar problem exists for environmental sensors. For
example, even with built-in temperature sensors, the thermostats’ typical location is at the
height of 1.5 m of the walls, which might contradict the recommendations for placement of
temperature sensors in specific spaces [13,18]. Numerous studies in the literature propose
various applications in buildings for using multiple sensors such as PIR, temperature, CO2,
light level, humidity, and acoustics [19–21]. Indoor environmental sensors might be used
to monitor their specific aspect of indoor environmental quality (IEQ) to improve building
services, or they can be fused for improved occupancy detection [20,21]. In the latter case,
multiple sensors can compensate for each other’s shortcomings and limitations to improve
the reliability of occupancy information without investing in complicated and costly sen-
sors [6]. Incorporating multiple sensors together within one device can significantly reduce
the sensor price, installation cost, size, and power use [22,23]. The trend of integrating
multiple sensors in a single device can be observed in the emerging applications of IoT in
various areas other than building monitoring, such as weather stations, parking monitoring,
and military applications [23]. As the applications for occupancy and indoor environmental
monitoring develop, it is becoming more common to use multi-sensor devices in recent
studies related to buildings [24,25].

Due to benefits such as reduced deployment cost, sensors are becoming battery op-
erated and wireless connected, leading to more flexibility on where and how they can be
positioned [11,26]. However, the optimum performance of many types of sensors requires
specific considerations on their positionings. Choosing an appropriate positioning for light
sensors is crucial as their measurements may lead to different implications for controlling
lighting systems if they are located too close or too far from sources of natural or artificial
light [27]. Positioning CO2 sensors away from the office door can significantly improve
their applicability for occupancy detection due to high air exchange when the door is
open [17]. Investigations on the performance of PIR sensors in laboratory settings to detect
human motion show that factors such as distance to detection target can influence their
accuracy [28,29]. However, studies on the factors related to the positioning of occupancy
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and environmental sensors in specific built environments are limited. The scarcity of
explicit information on the effect of installation practices on sensor performance contrasts
with fairly extensive research on sensor technologies and their various applications in
buildings. This gap is likely to cause numerous under-optimized and inadequate installa-
tion of sensors that may exacerbate the reliability of monitored data and diminishes the
effectiveness of their applications to improve building performance. The research gap in
sensor positioning is described by a review study on occupancy detection systems as “an
urgent and challenging task requiring further research” [30].

In any sensor deployment, there would be tradeoffs between measurement accuracy
and other factors such as coverage, ease of deployment, potential risk of the sensor being
tempered, aesthetics, etc. Deployment of multi-sensor devices requires extra consider-
ations, as suitable positioning might be conflicting between different sensors. In other
words, optimal positioning for one sensor may be compromised to avoid unacceptable
inaccuracy for other sensors. The data from faulty, misplaced sensors might be improved
by data cleaning in a preprocessing stage. However, data reliability from sensors with
sub-optimal positioning would be generally diminished [29,30]. This implies the need for
more systematic exploratory studies of potential influencing factors on the performance of
sensing devices in different spaces in built environments.

The influence of occupants on energy use in office spaces is relatively strong, thus,
there is a high potential to avail from occupancy and environmental monitoring [31].
PIR sensors are among the most common sensor types used for occupancy detection in
buildings [32,33]. The objective of this study is to examine how sensor positioning affects
the performance of PIR sensors for occupancy detection in single-occupant offices. Further,
the effects of positioning of indoor environmental sensors on their measurements are also
investigated. The specific aims of this study are:

• Investigating the effects of positioning of PIR sensors on the accuracy of occupancy
detection by evaluating the factors such as distance from seated area and exposure
to windows.

• Investigating the effects of sensor positioning on the accuracy of occupancy detection
when fusing (combining) PIR sensor data.

• Investigating the effects of sensor positioning on the measurements of indoor environ-
mental parameters, including temperature, relative humidity (RH), CO2 concentration,
and illuminance.

This paper’s structure is as follows: Section 2 presents the literature review on occu-
pancy sensing technologies and the conceptual grounding to evaluate occupancy detection
and provides information on indoor environmental sensors and the applications of indoor
environmental monitoring. Section 3 presents the methods and approaches used for data
collection and data analysis. Section 4 presents and discusses the results of the analysis.
Section 5 provides conclusions, limitations of the study, and directions for future research.

2. Sensing Technologies for Occupancy and Environmental Monitoring
2.1. Occupancy Monitoring

The importance of occupant behavior for assessing IEQ and energy use has been
given increasing attention in recent years [3,34]. The increasing sensitivity of buildings’
energy performance to occupants’ behavior is probably due to more efficient building
materials and HVAC systems [10,35,36]. Occupants’ behavior, including their presence
and interactions with buildings’ energy systems, can significantly affect the energy per-
formance of buildings with similar features for energy conservation (building envelope
and mechanical systems) [31]. Occupant factor has become known as an important reason
causing the discrepancy between the predicted and real energy and comfort performance
of buildings [37,38].

The research publications on various occupancy monitoring technologies such as
visual cameras, ultrasound sensors, and PIR sensors have continuously increased in recent
years [2,33]. Besides the technologies primarily designed for occupancy detection, it is
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possible to use indoor environmental sensors such as CO2, temperature, and humidity
to detect occupants [39,40]. Every occupancy sensing technology has its advantages,
disadvantages, and limitations in different conditions [33].

PIR sensors have been preferred for occupancy detection in various applications due to
low cost, low power consumption, simplicity, and no need for maintenance [28,33]. These
sensors are stated to provide better information about occupancy than several other com-
mon sensors, including ultrasound and CO2 sensors [17]. The infrared radiation emitted
from the human body enables these sensors to detect occupants [41]. These radiations are
emitted from every object with a temperature above absolute zero, and the wavelength of
this radiation is proportional to the temperature of objects [42]. The pyroelectric materials
in PIR sensors react by being polarized when there is a spontaneous change in the receiving
radiation [29]. The temperature of a typical human body is about 37 ◦C, and the radiated
heat from a human body is within a specific range of wavelength, which can be set for PIR
sensors for occupancy detection [28]. PIR sensors sense the change in emitted heat (infrared
radiation) caused by occupants’ motion. Sudden temperature changes in the environment
caused by sun radiation, switching airflow from HVAC vents, etc., are likely to cause false
triggers. The performance of PIR sensors can be improved by using Fresnel lens made from
semi-opaque plastic that focuses the light beams to the sensing element [28]. The Fresnel
lens can adjust the FOV by making it longer and narrower, or shorter and wider based on
the requirement of the applications.

The functionality of PIR sensors depends on their direct line-of-sight, so it is important
to avoid placing them behind obstacles, in spaces that are cluttered with furniture, or
placing them facing irrelevant potential motions such as occupants passing a walkway
outside the area of interest. The coverage area of PIR sensors differs depending on the
design of a sensor and the Fresnel lens. Most sensor developers recommend a specific
range of coverage for their sensors, such as [15] with 5 m coverage. However, the decrease
in the accuracy of occupancy detection with higher distance is gradual as it depends on
the strength of radiation beams, which also decrease gradually with higher distance. The
position of PIR sensors changes their FOV and exposes them to a different range of motions
of occupants. PIR sensors can be designed to be ceiling- or wall-mounted or integrated
as part of other components such as wall switches [14]. Switch-integrated PIR sensors
might be more susceptible to vandalism and unintentional damage and might require
more durable material [14]. Moreover, occupants are likely to unintentionally obscure such
sensors with objects such as shelves or plants [43].

PIR sensors are used for a multitude of applications such as adjusting room tem-
perature setpoint [44], lighting control with occupancy [45], building utilization moni-
toring [43,46], and security systems that detect intruders [47]. The majority of research
on applications of PIR sensors take the occupancy detection in offices for granted with-
out investigating the uncertainties in sensor data, while the effectiveness of those solu-
tions is dependent on the reliability of occupancy detection [17]. According to a review
study, the energy efficiency potential of demand-controlled energy systems is estimated
between 15–50% [6]. However, without reliable occupancy sensing, not only would these
savings not be reached, but also the comfort of occupants would be impaired. The perfor-
mance of PIR sensors might be adversely affected when the occupants are overly static
or due to reasons such as distance, background temperature, and low sensitivity to fine
motions [33]. For example, a high distance of these sensors from the detection target can
lead to false absence detection [11]. The positioning of PIR sensors plays a significant role
in the reliability of their data [17].

Quality of Occupancy Detection by PIR Sensors

A framework presented by [41] evaluates various aspects of occupancy sensing sys-
tems, including the aspects related to the outcome information: information type, spatial
granularity, and temporal granularity. These three aspects presented in another study as three
dimensions of resolution of occupancy detection, namely occupancy, spatial, and temporal
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dimensions of resolution [48]. As the resolution of occupancy detection increases, the occu-
pants are more clearly defined, space is monitored in more detail, and the information is
available quicker. These three resolution dimensions, along with the accuracy of occupancy
detection, are the primary measures of quality for evaluating occupancy information [6].

PIR sensors are adequate for applications that require low spatial resolution. These
sensors are specifically common in small spaces such as single-occupant offices due to their
short coverage distance [33]. Normally, the occupant resolution of information provided
by these sensors consists of only a Boolean function of presence or absence. Temporal
resolution for PIR sensors is the time interval set between two data sampling. The other
terminologies used for this concept include temporal granularity, timeout period, sampling
interval, measurement frequency, and time-delay. If a PIR sensor detects motion within a
time-delay, it interprets that the occupants are present in the space in that period. Otherwise,
if no motion is detected in that period, space is inferred to be unoccupied.

Accuracy of occupancy detection is the primary criterion for the evaluation of oc-
cupancy detection systems [41]. Accuracy can be calculated separately for presence and
absence periods [49]. The accuracy of presence detection is the ratio of correct presence
detections to all the presence detections, and the accuracy of absence detection is the
ratio of correct absence detections to the entire detections of absence. In this study, the
average accuracy of both presence and absence detections is referred to as overall accuracy.
When energy systems are controlled based on occupancy, incorrect presence detection or
false positive error increases energy use, as energy services are provided when they are
not required [17]. On the other hand, incorrect absence detection or false negative error
undermines occupants’ comfort when, e.g., lighting or ventilation are controlled based
on occupancy. The latter case may also eventually lead to a waste of energy when the
dissatisfied occupants sabotage the system. An example is observed in a case in which an
opaque material was placed on occupancy sensors to impede and overrun the automatic
lighting [18].

Accuracy of detection is often calculated by comparing the monitored data against
ground truth data, which is the data achieved by a more reliable method, in other words, the
data that is believed to be reliable. The concept of ground truth data is widely used in other
fields such as computer vision and biometrics [34]. Visual cameras often obtain ground
truth data for occupancy. One study tested different sensors for occupancy detection,
including CO2 and PIR, while using a video camera to achieve ground truth validation [50].
However, the privacy issues with using video surveillance limit the use of this method to
obtain ground truth data [33]. Manual survey data is another common method for ground
truth validation [34].

A review study reported that the typical range of accuracy of occupancy detection by
various sensing systems is between 75% and 98% [41]. A study on PIR sensors mentioned
an accuracy of 90% when the sensors detect human motion in less than 2 m distance [33].
Another study of PIR sensors installed on a PC monitor to detect the users during a few
hours mentioned an overall accuracy of 91% [49]. The majority of studies that report
accuracy or precision for PIR sensors’ performance are based on short trials without
specifications of sensor positions or activity type. Such accuracy results are case-dependent,
as they are specific to each sensor setup and cannot be generalized. A study on PIR sensors’
performance in laboratory settings shows that factors such as distance to detection target,
size of the body, and features of motion (velocity) can influence the accuracy of occupancy
detection by PIR sensors [29]. Generally, the variables that affect PIR sensor’s accuracy
are sensor characteristics, space characteristics, sensor positioning, time-delay, occupants’
features, and typical activities in a space [17,28,29].

To exemplify the variability of accuracy of PIR sensors in different cases, the effect
of changing time-delay (temporal resolution) on the accuracy of presence and absence
detection is shown in Figure 1 from a case study [17]. As the time-delay increases, the
accuracy of presence detections increases. In contrast, with an increasing time-delay, the
accuracy of absence detection decreases. The rates of change are different between the
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accuracy of presence and absence detection. The curves for accuracy of presence and
absence detection are specific to each case depending on factors such as the characteristics
of PIR sensors and sensor positionings. Because of the varying relation between time-delay
and presence and absence accuracy (e.g., in Figure 1), there could be an optimum time-
delay for the highest overall (average) accuracy for every case. Accuracy and resolution
can be quantitatively presented, and an adequate comparison of different sensing systems
should consider both these quality aspects together. The focus of the analysis here is on the
positioning of sensors, and the relation of accuracy with resolution (e.g., time-delay) is not
within this study’s scope. However, the explanations in this section facilitate and delimit
the interpretation of the results by providing a general understanding of the aspects of
quality of occupancy detection.
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Various applications may have different requirements on the resolution and accuracy
of occupancy information [51]. For example, one study suggests that 30 min of temporal
resolution is enough for space use monitoring of meeting rooms despite the data being
available every 5 min [24]. High resolution of occupancy detection may cause unnec-
essary complexities for data communication and data storage or may entail unjustified
investments [11].

2.2. Indoor Environmental Monitoring

Buildings are primarily meant to protect humans from outdoor conditions and provide
a suitable environment for their activities [52]. Thermal comfort and indoor air quality are
important aspects of IEQ in modern buildings, partly quantified by sensors measuring air
temperature, relative humidity (RH), and CO2 concentration [53]. Research shows that
homeowners’ adoption of energy efficiency measures is more likely to be motivated by
improvement of IEQ rather than saving energy [54]. A recent project by International
Energy Agency underlines the importance of recognizing the value of a healthy and
comfortable indoor environment and the new opportunities by the advancements in
sensing and communication technologies to improve IEQ [55].

CO2 sensors measure the concentration of CO2 gas in air as parts per million (ppm).
The CO2 concentration of outdoor air is generally in the range of 375–450 ppm [56]. The
normally accepted comfort range for indoor CO2 concentration is below 1000 ppm, while
exposure to high concentration levels might cause problems such as fatigue, dizziness,
and low work productivity [57]. A CO2 sensor installed indoors provides the dynamics
between CO2 generated in the space and the amount of fresh air (with a lower CO2
concentration) provided by ventilation from the outdoor air. Occupants are the sole source
of CO2 generation in most indoor spaces. This feature can be leveraged to estimate the
number of occupants [58]. These sensors are sometimes placed in return ventilation ducts
despite the fact that the air is usually the average of all spaces being ventilated and cannot
be representative of a specific space [56]. Thus, these sensors are preferred to be installed in
each zone where occupancy is expected to vary [56]. Similar to temperature sensors, CO2
sensors should be placed away from doors, open windows, air intakes, and air exhausts.
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Moreover, these sensors should not be installed where occupants directly breathe on them
to prevent overly high measurements [59]. CO2 sensor might be susceptible to error when
used for occupancy detection due to slow response time, fluctuations in ambient CO2
levels, ventilation rate, and door status (open or closed) [60]. These sensors are sometimes
used to complement motion sensors to enhance occupancy detection [2,61].

Thermal comfort is a subjective matter which varies between individuals based on
their gender, age, body mass index (BMI), etc. [62]. Models such as predicted mean vote
(PMV) are developed to evaluate thermal comfort [63]. However, it is common to assess
thermal comfort by assuming an acceptable range for indoor air temperature [2]. Accord-
ingly, heating and cooling systems are often controlled using an accepted temperature
setpoint [2]. Inadequate indoor air temperature can cause problems such as discomfort
and health issues besides reducing the occupants’ productivity in work environments [52].
Various sensor technologies are used to measure temperature, such as thermocouples
and resistive temperature detectors [63]. It is generally recommended that temperature
sensors are not installed near doors and open windows on the exterior walls, near heating
and cooling systems [43,59]. RH is another parameter affecting the human perception of
environmental comfort, which is also included in the PMV model [63]. Humidity sensors
are often designed to operate based on the changes in the resistance of their build material
when being exposed to different RH levels [63]. For optimum positioning, these sensors
should be placed away from humidity sources such as a humidifier or kettle [43].

A light sensor (illuminance sensor) measures the flux of visible light energy to a
surface area in lux unit. The recommended minimum work plane illuminance for visual
comfort in offices is 500 lux, while natural light compared to artificial light can improve
occupants’ productivity [27]. The control and adjustment of an appropriate level of lighting
require an accurate measurement of the light level. The positioning of the illuminance
sensor influences the measurement accuracy [27]. Ceiling-mounted indoor illuminance
sensors are commonly used to measure visual comfort to control lighting [2].

3. Method
3.1. Data Collection

The data collection in three fairly similar single-occupant offices at Umeå University
was carried out using six multi-sensors devices deployed in different positions in each
office (Figure 2). The offices were used by researchers who were usually in the office
during working hours. Offices were located on the first floor; however, their windows were
approximately 3 m above the pedestrian passage outside the building. Each office was
equipped with a desk and a chair, determining the primary area of activity. A ventilation
inlet was located on the ceiling in the middle of each office, diffusing fresh air in all
directions. The ventilation outlet in each office was located above the office door. The
occupancy and environmental data were collected from the three offices during two weeks
in September–October 2019.

These multi-sensor devices may be referred to as “sensor” to simplify the terminology,
henceforth. The sensors shown in Figure 2 are named based on their positioning features in
the offices as: Desk sensor, Window-Backward-Near (WBN) sensor, Window-Faced-Near
(WFN) sensor, Window-Faced-Far (WFF) sensor, Ceiling Near (CN) sensor, and Ceiling Far
(CF) sensor. Overall, in the real-life (practical) cases of sensor deployment, the positioning
of sensors is partly determined by the architectural design and spatial positioning of
furniture and lighting fixtures. In this study, the positionings of the sensors were chosen
to cover various possibilities and include various distances to the seated area and levels
of exposure to windows. The positionings ensured that the FOV of PIR sensors allowed
capturing of the motions in the seated area of the offices where the occupants spent most
of their time in the office. The relative differences between the sensors on their distance
to the seated area and their direction of sight regarding the window and the occupant
can be used to identify the factors influencing the measured data. The sensors shown in
Figure 2 by square shapes were installed vertically (with vertical view) on the ceiling (CF),
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light fixture (CN), and under the desk (Desk). The sensors shown with narrow rectangular
shapes (WBN, WFN, and WFF) were positioned horizontally (with horizontal view).
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All multi-sensor devices, except Desk sensor, were identical and had PIR, temperature,
RH, CO2, and light sensors. The specifications of these sensors are presented in Appendix A
(Appendices A.1–A.5). Desk sensor had all the mentioned sensors except the CO2 sensor.
This multi-sensor device incorporated an additional IR camera, although its data are
not used in this analysis. As the sensors were battery operated and used wireless data
transmission, their installation was facilitated without wiring by simply using double-
sided adhesive tapes. The sensors used LoRa (Long Range) wireless network, which is
categorized as low-power wide-area network and has been widely utilized in devices for
IoT applications [64]. Reducing the frequency of data logging and transmission increases
the sensors’ battery life. The multi-sensor devices were set to transmit data in 10-min
intervals, which is common for building monitoring systems in various studies in the
literature [44,45,65]. The data are thus in the form of regular time series instead of being
event-based (such as data transmitted when a motion detected by PIR sensor), which
allows the measured data by different sensors to be time-aligned and comparable. The
data were collected in a middleware database platform, which allowed easy access to all
sensors via the internet.

The in-situ data collection approach used in this study is relatively cost-effective for
long-term data collection compared to laboratory studies since there is no need to recruit
participants. The research subjects continued their daily routines during the data collection
period, and the offices were performing similarly to living laboratories that are monitored to
understand how the occupants use them. The occupants were explained that the collected
data could not reveal any information about their activities other than their presence and
absence. This privacy assurance aimed to improve data collection reliability by preventing
the Hawthorne effect (where observation causes changes in occupants’ behavior) [34].
Further, the participants were assured that the data would be anonymized for the analysis
and reporting of the results.
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The occupants of the 3 offices were asked to manually annotate the time they enter and
leave the offices on tabulated paper sheets provided to them. This information was then
entered in timetables to be used as ground truth data to evaluate the reliability of occupancy
information obtained from the sensors. However, after the data collection, a few occupants
reported that they might have forgotten to input their occupancy information a few times
during the trial period. This is a common problem in long-term or large-scale experiments
as relying on the concentration of the person providing the occupancy information is
susceptible to faults [66]. Thereby, the ground truth information was improved using the
sensor data, which is further explained in the following section.

3.2. Data Pre-Processing

The data used for the analysis were collected from several sensors every 10 min
for two weeks. The data from different sensor devices with different configurations,
offsets, and sometimes different sampling frequencies were required to be aligned and
merged within a consistent format. Moreover, the missing data due to interruptions in
wireless communication were needed to be identified for each sensor. Thus, the initial data
cleansing was a necessary preprocessing stage for the data analysis to correct the errors in
the gathered data.

It was initially intended to use cameras to record the occupants during the data
collection period to have robust ground truth data. However, this plan was rejected due to
privacy concerns. The ground truth data reported by occupants is the main reference to
analyze the performance of different sensors. However, as the occupants sometimes forgot
to record their presence, the PIR dataset collected by all deployed sensors were used to
improve the ground truth data. A few occasions of the missing records of presence in the
ground truth data were recovered by using the following criteria:

• if at least half of the PIR sensors (i.e., three out of six sensors) have detected occupant’s
presence, and

• if one of these sensors is either the Desk or CF sensor.

The second criterion is based on the assumption that the occupant is either sitting
in front of the desk (which can be detected by Desk sensor) or moving around the office
wherein they could be detected by the CF sensor due to its wide FOV and coverage area.
This strict criterion improves the reliability of ground truth correction by decreasing the
probability of false negative errors despite the fact that its eventual effect on correcting
ground truth is found to be negligible. Without considering the second criterion, 10.8% of
the reported ground truth information is corrected compared to 10.1% when both criteria
are applied.

3.3. Data Analysis

The effects of positioning on the occupancy and environmental monitoring by multi-
sensor devices are analyzed. A large part of the analysis is related to evaluating occupancy
information by examining the accuracy of data from different sensor positionings. Presence,
absence, and overall accuracies are calculated by contrasting the sensor detections with
ground truth data. Detection accuracies of PIR sensors in different positions are compared
while the influence of factors such as the distance of sensors to occupants, exposure to
window, and other general installation considerations are investigated. PIR sensors are
normally not affected by light (radiation in the visible spectrum) from windows. However,
solar radiation comprises radiation in different spectrums, including infrared that might
affect the performance of PIR sensors. Infrared radiation can also be emitted from objects
inside the offices heated by sunlight transmitted through the windows.

Moreover, the potential accuracy improvement by sensor fusion is investigated. Two
common hard-decision data fusion rules based on logical operators of OR and AND are
tested for the analysis [67,68]. In a hard-decision fusion, the measured data is being pro-
cessed by each sensor locally to make an initial binary decision about the monitored target
(either being present or absent) individually. The local decisions are then reported to a
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fusion center (FC) to be fused by hard decision fusion rules such as OR, AND, or Majority,
which are all special cases of the k-out-of-N rule. On the other hand, in a soft decision fusion
scheme, the FC receives more information instead of binary decisions. Although a soft deci-
sion fusion scheme may provide more information with higher reliability to the FC results,
the hard-decision data fusion approach uses simpler algorithms. Accordingly, it avoids
communication overheads to the system, which are unnecessary in many applications. In
this analysis, OR and AND decision rules are applied to 30 pairs of datasets comprising
six sensors (positions) based on presence detection. Data fusion with OR infers presence
if at least one sensor detects presence, whereas the analysis with AND infers presence
when both sensors detect presence. This analysis is conducted only for pairwise fusion
(two sensors together), although theoretically even more sensors can be used together to
improve occupancy detection further. However, using more than two PIR sensors may not
be viable for single-occupant offices due to the high cost and complexity for, presumably, a
small improvement in occupancy detection.

The effect of sensor positioning on indoor environmental measurements, including
temperature, RH, and CO2 concentration are also investigated. Unlike the occupancy
information, it is not viable to calculate the accuracy for environmental parameters as
there is no ground truth information for them. Hence, in this analysis, the indoor environ-
mental parameters measured by six multi-sensor devices (except CO2 by Desk sensor) are
compared by depicting their average hourly time series. Among the indoor environmen-
tal parameters, CO2 sensors have a higher potential to be used for occupancy detection,
as the change in CO2 concentration is primarily related to the occupant’s presence and
activities [30]. Accordingly, the correlations between occupancy and CO2 concentration
measurements are analyzed to determine the suitable sensor positions if the CO2 sensor is
used for occupancy detection.

4. Results and Discussion
4.1. Effect of Positioning on the Accuracy of PIR Sensors

Figure 3 shows the average accuracy of PIR sensors in different positions. The data
related to sensors in six positions were collected from the sensors installed in three studied
offices. The calculation for overall accuracy includes the data related to both occupied and
unoccupied periods. The overall accuracy of sensors ranges from 87% to 95%, with WFN
and Desk sensors comprising the lowest and the highest accuracy. Detailed investigations of
occupied and unoccupied periods separately can be more informative on the performance
of sensors. Absence detection is significantly more accurate than presence detection for
all the sensors, with an average of 97% accuracy compared to 68% accuracy for average
presence detection. The WFF sensor with 51% has the lowest presence detection accuracy.
The Desk sensor provides the most accurate presence detection with 84% accuracy. The
sensors provide relatively similar accuracy for absence detection. Apart from the WFN
sensor, which has 90% accuracy of absence detection, the accuracy of the rest of the sensors
are fairly close to each other in a range between 96% and 99%. The relatively lower absence
detection accuracy by the WFN sensor could be due to two reasons. The proximity of this
sensor to the window and its orientation towards the window causes it to be more exposed
to solar radiation and solar-heated surfaces.

The results show that accurate presence detection is more challenging for PIR sensors
as compared to absence detection. The sensor performance on detecting presence is
dependent on the detection of occupants’ motions. Motion detection can be affected by
various factors related to positioning, including distance (to detection target) and ambient
infrared radiation from windows.
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Figure 3. Accuracy of occupancy detection by different PIR sensors in different positions.

Table 1 shows the distance of different sensors to the only chair in the office. Hence-
forth, the distance of sensors from the chair is briefly referred to as “distance of sensor”.
The occupants are researchers at university, and their main activities include working
with their computers while sitting on a chair. The results show the significant effect of
the sensor’s distance to the seated area on the accuracy of presence detection, indicating
that the occupants mostly spend their time sitting on the chair. Comparing sensors’ accu-
racy in different distances is more reasonable when the sensors face the occupants from a
similar direction to ensure they capture similar motions. Two pairs of sensors with fairly
similar directions to the occupants are CN-CF and WFN-WFF. Comparing their accuracy
of presence detection in relation to their distance to the seated area shows the accuracy
drops by 13% for every 1 m of more distance, although the sensor developer recommends
5 m range of detection. It is worth noting that CF and CN sensors have different angles
of view towards the seated area, which may affect their sensitivity on motion detection in
that area. However, based on the sensors’ specifications (Appendix A) and the installation
settings (sensor height and office dimensions), it is ensured that the detection sensitivity is
not significantly different between those two angles of views in the case study offices.

Table 1. Distance of sensors to the seated area and their presence detection accuracy.

Sensor Position Desk CN CF WFN WFF WBN

Distance (cm) 50 80 170 110 300 90

Accuracy of Presence Detection 84% 74% 61% 77% 51% 59%

The only outlier result is related to WBN, which has an accuracy of only 59%, although,
considering the distance from the seated area, it was expected to have an accuracy close to
WFN, which has a higher accuracy of 77%. One reason for the difference can be the effect
of sunlight (which includes radiation in the infrared spectrum) and absorbed heat (thereby
emitting infrared radiation) by the surfaces in its FOV, causing difficulty in distinguishing
the occupant’s motion. This may increase the possibility of false negative error in WBN.
Another reason can be the orientation of this sensor towards the occupants’ shoulder side,
limiting its view to some parts of his/her body. This problem may be exacerbated by the
proximity of the sensor to the occupants. WBN is positioned very close to the occupant,
where it may not have an appropriate view of the parts of the occupant’s body such as the
head and legs of the occupants, which have a high potential of motions.

In addition to distance and exposure to windows, the orientation of a PIR sensor with
respect to the occupant affects the possibility of detecting different occupants’ motions.
This geometrical complexity is mainly related to the angle of view to the occupant, which
can improve the sensor exposure to specific motions. For example, a PIR sensor positioned
on the ceiling has the view of occupants from a completely different angle compared to a
wall-mounted sensor. The FOV of the Desk sensor allows only the detecting of the motions
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from the lower parts of the occupants’ body, which are mostly concealed by the desk for
all of the other sensors. Another example of the orientation effect is when a sensor is
positioned on the backside of an occupant while the seatback might obscure most of the
motions of a seated occupant.

4.2. Fusion of PIR Sensors in Various Positions

As discussed in the previous section, the Desk sensor offers the most accurate oc-
cupancy detection. However, this result may vary in offices with additional furniture
or when the occupants do not spend their time in the office seated in front of their desk.
Accordingly, the Desk sensor may be sensitive to the alternative work styles and seating
positions. Based on our observations, the following limitations may hinder the application
of the Desk sensor for occupancy detection in offices:

• The FOV is limited to the area in front of the desk.
• The FOV can be easily blocked with the chair when the occupants are not seated.
• It is positioned under the desk, which makes it susceptible to displacement by unin-

tentional physical contact.

Nevertheless, avoiding the Desk position due to the above limitations may be an
oversight as the analysis shows the sensor in this position has a relatively high detection
accuracy when the occupants work in front of their desk. Moreover, other sensor positions
also have limitations that can negatively affect detection accuracy in specific contexts. One
way to take advantage of the relatively accurate sensors despite their occasional inaccuracy
is to fuse (combine) the data from different sensors to enhance occupancy detection. In this
approach, multiple PIR sensors are used simultaneously to compensate for the limitations
of an individual sensor. Sensor fusion is investigated by analyzing the datasets of various
pairs of PIR sensors to find out the potential improvements in detection accuracy.

Figures 4–6 present the calculated overall accuracy of occupancy detection, presence
detection, and absence detection, respectively, by various pairs of sensors. The choice
between OR and AND fusion rules depends on improving overall accuracy and whether
absence or presence detection is more important for the intended application. Figure 4
shows that the overall accuracy for all possible pairs of sensors that are fused with the
logical operator OR have higher accuracy than when fused with AND. Similarly, comparing
the results of sensor-fused presence detection between the two fusion rules in Figure 5
shows OR rule leads to a significantly higher presence detection accuracy compared to
AND. For example, the fusion of Desk and CF sensors with AND rule results in 53%
accuracy, while with OR rule, they can detect occupants with 91% accuracy. On the other
hand, absence detection with AND rule provides higher accuracy as compared to OR when
fusing the sensor pairs (Figure 6). For example, using AND rule to fuse Desk and CF
sensors leads to 99.96% accuracy, while OR rule slightly decreases the accuracy to 98.32%.

It is important to consider the tradeoffs between presence and absence detection by
any detection system in different applications. For example, in demand-controlled HVAC
systems, the AND rule may result in higher energy saving while OR rule provides better
occupant comfort. However, the results show the differences in the resulted accuracies
between the two fusion approaches are significantly lower for absence detection than for
presence detection. However, the accuracy of absence detection is already in a relatively
high range even by a single PIR (i.e., higher than 90%). The fusion of PIR sensor data for
occupancy detection seems to be more appropriate when using OR instead of AND rule
because of its positive effect on presence detection. Hence, the results and the following
discussions on sensor fusion are focused on those related to OR rule. The strategy of
using OR instead of AND imposes the priority to improve presence detection instead of
absence detection. The slight decrease in accuracy of absence detection compared to the
significant increase in accuracy of presence detection eventually results in an increase in
overall accuracy.
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The most accurate occupancy detection is performed by the fusion of Desk and CF
sensors with an overall accuracy of 96.4% (Figure 4). The detection accuracy by their
fusion is higher than both Desk and CF sensors, which have overall accuracy of 94.6%
and 88.9%, respectively (Figure 3). The improvements are more significant for presence
detection compared to absence detection. Presence detection by fusion of Desk and CF
sensors is 91.2% accurate (Figure 5), which is significantly higher than the accuracy of
individual Desk and CF sensors with 83% and 60%, respectively (Figure 3). The same
combination of sensors results in the most accurate absence detection with 98.3% accuracy
(Figure 6), which is slightly lower than the accuracy of single Desk and CF sensors with
98.7% and 99.5%, respectively (Figure 3). These two sensors can complement each other
by compensating for their limitations on detecting some of the motions. The Desk sensor
is better to detect the motions of a seated occupant’s lower body, while the CF sensor has
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a wider FOV to detect when the occupant is not seated or even the motions of a seated
occupants’ upper body.
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The lowest overall accuracy is achieved by the fusion of WFN and WBN with
87.9 % (Figure 4). Such a result was expected as both of these sensors were positioned
close to the window, which makes the sensors susceptible to false positive errors lowering
the accuracy of absence detection to 87.4% (Figure 6) as compared to 90.3% and 95.8% for
individual WFN and WBN sensors, respectively (Figure 3). Generally, the improvement in
presence detection by sensor fusion is more significant compared to absence detection. WFF
and CF sensors with individual presence detection accuracies of 51% and 61% (Figure 3)
have the lowest sensor-fused presence detection accuracies compared to other pairs with
only 70.6% accuracy (Figure 5). One reason could be that these two sensors are positioned
farthest from the seated area and probably have similar limitations on detecting some of
the occupants’ motions. This indicates the importance of positioning sensors at different
distances from the detection targets when fusing data from multiple PIR sensors.

4.3. Occupancy Detection by CO2 Sensors in Various Positions

The analysis presented in this section compares the correlations between occupancy
and CO2 concentration measurements in different sensor positionings. The results cannot
be directly used to infer occupancy but indicate which sensor positionings are more appro-
priate to be used for occupancy detection. As displayed in Figure 7, CO2 measurements by
CN sensor have the highest correlation with occupancy since the changes in the measured
values have higher correspondence with occupancy changes. This sensor provides the best
representation of the occupants’ presence considering its high correlation with occupancy
(r = 0.61) compared to other sensor positions. This sensor is located just above the seated
area, and thus is more influenced by CO2 emitted from the occupants.

The proximity of the location of CN sensor to the seated occupant is probably an
important factor for the high correlation with occupancy. However, WBN and WFN
sensors have a significantly lower correlation with occupancy despite their close distance
to the seated occupant. The reason could be that these two sensors are positioned at a lower
height compared to the CN sensor, which might decrease their exposure to the CO2 emitted
by the occupant. On the other hand, the CF sensor has a lower correlation than CN sensor
despite being located at a higher height, which is probably due to its higher distance to the
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seated occupant. The results show the two factors of distance and height from the occupant
can affect the correlation of CO2 concentration measurements with occupancy. However,
due to the potential delays in sensor reaction to the changes of the CO2 level [30], a control
system of HVAC system solely based on this sensor may have negative impacts on energy
and comfort performance. Accordingly, CO2 sensors, even when being positioned in the
CN position, might be a better fit for fusion with a PIR sensor than being individually used
for occupancy detection.
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4.4. Effect of Sensor Positioning on Indoor Environmental Monitoring

Multi-sensor devices used in buildings often measure the parameters related to the
indoor environment besides providing information about occupancy. This section presents
the average hourly time series of environmental parameters measured in different positions
and provides an overview of the effect of sensors’ positions on measuring various indoor
environmental parameters. The analysis can provide recommendations on the choice of the
positioning of these sensors by highlighting the tradeoffs between the reliability of various
measurements when installing a multi-sensor device. On the other hand, the difference
in the environmental measurements between some sensor positions may be insignificant,
showing the flexibility of sensor positioning. Unlike the analysis of PIR data, which uses
ground truth as a reference, the data related to indoor environmental measurements in this
study do not have any ground truth data to compare the positioning of various sensors.
Thus, the analyses corresponding to indoor environmental measurements are presented by
average hourly time series.

4.4.1. Temperature

The temperature distribution in the indoor spaces may be uneven due to a variety
of heat sources and heat sinks. Thus, the position of the sensor can affect temperature
measurements with implications for the temperature setpoint to maintain the occupants’
thermal comfort. Figure 8 presents the average hourly temperature measured by six
sensors installed in the various positions in the three offices. For example, the average of
temperature measurements between 23:00 and 24:00 during the two weeks of measurement
is about 20 ◦C (the last point of the purple time series in Figure 8). WBN is the sensor
positioned nearest to the window, and thus is exposed to lower temperatures in heating
seasons due to higher heat transfer through the window. The average temperature can drop
as low as 19.5 ◦C. CN and WFN sensors were also positioned near the window; however,
they are installed at different heights, which might be the reason for recording different
temperatures. Temperature distribution inside the room is affected by the buoyancy effect,
and thus the sensors installed in lower heights are likely to measure lower temperatures.
However, there could be an aberration in this when the temperature sensors are affected
by the heat sources and heat sinks such as a radiator and window. This effect can be
observed for the Desk sensor, of which, despite being installed at a relatively lower height,
its exposure to the nearby radiator increases the measured temperature. As the heating
system was active during the measurement period, the temperature increase is specifically
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significant during working hours such that the radiator has a higher heat supply to adjust
to temperature setpoint.
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The ventilation in offices is supplied by the demand-controlled units based on the
sensors (different from sensors in our study) installed on the ceiling in the middle of the
office, where the CF sensor is positioned. This choice of position allows the sensors to
be a built-in part of the ventilation duct and reduce costs. However, WFN and WBN
sensors positioned relatively near the seated area are more likely to represent the occupants’
thermal comfort experience. There is a considerable difference in the temperature measured
by these two sensors and that of the CF sensor. As shown in Figure 8, the temperature
measured by the CF sensor is higher than that measured by the other two sensors. The
difference in the average temperatures between CF and the other two sensors can reach
2 ◦C and between 1 ◦C and 1.6 ◦C during non-working and working hours, respectively.
WBN might be affected by the outside cold temperature since it is quite close to the window.
The result suggests that a sensor installed at the CF position cannot measure a temperature
that adequately reflects the occupant’s experience, while WFN may be a better choice due
to its proximity to the seated area, lower height, and higher distance from the radiator
and window.

4.4.2. Relative Humidity (RH)

The average hourly RH measured by sensors positioned in different locations in the
offices are presented in Figure 9. The highest difference in the values reaches 4.5% between
WBN and Desk at 16:00. However, comparing Figures 8 and 9 reveals the differences
in RH measured by sensors in different positions originate from an uneven temperature
distribution in the offices. RH is partly related to temperature as higher temperature reduces
RH despite absolute humidity being constant. In other words, the absolute humidity is
rather homogenously distributed while RH varies due to temperature variations in different
locations of the offices. This effect explains the differences in RH measurements by different
sensors along with the variations of RH measured by each sensor. As thermal comfort
is not as sensitive to small variations in RH, the slight differences between the sensors’
measurements are unlikely to have implications for thermal comfort in the offices. Thus, the
position of the humidity sensor might be relatively unimportant in an office unless it is near
a humidity source such as a humidifier. For example, the changes in RH measurements
by the CN sensor placed near the occupant are similar to the other sensors, which have a
higher distance to the occupant. Thus, the occupants probably have a negligible effect on
changing RH.
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4.4.3. Illuminance

The average hourly illuminance (light level) measured by sensors in different positions
in the offices are presented in Figure 10. In this case study, the sensors face different
directions and none of them are positioned to present the work plane illuminance. Thus, it
is not possible to evaluate the visual comfort in the offices. The aim of the analysis is to
realize how significant is the data variation measured by illuminance sensors to suggest
the adequate position of a multi-sensor device. The intensity of illuminance depends on
the location of an observer (or sensor) into space and the relative position with respect to
both natural (e.g., windows) and artificial (luminaires) light sources [3]. The light sensors
cannot distinguish between different light sources.
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As shown in Figure 10, the average illuminance measured by WFN sensor, which
faces a window from a close distance, is significantly higher than the other sensors. It
may be due to the direct sunlight during days and street light during nights. On the other
hand, the Desk sensor that faces downwards under the desk is exposed to lower levels of
light compared to the rest of sensors. Moreover, the illuminance measured by this sensor
is highly affected by the occupants’ presence due the occupants’ shadow. Even without
considering these two outlier sensors, the results show significant differences between
the data measured by various sensors. For example, the average illuminance between
11:00 and 12:00 is 115 lux for the CF sensor while the measurements are 65% higher for the
WBN sensor with 190 lux. Accordingly, measuring illuminance is very sensitive to sensor
positioning, and small changes may cause significant variations in the measured data. This
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suggests that the light sensor may not be a good match to be integrated in a multi-sensor
device if the purpose is to evaluate the visual comfort of the occupants.

4.4.4. CO2 Concentration

This analysis investigates the implication of sensor positioning on the measurement
of CO2 concentration in a single-occupant office. Figure 11 depicts the average hourly CO2
concentration measured by various multi-sensor devices except for the Desk position since
it did not have a CO2 sensor. All the sensors show similar variations for CO2 concentration
in the offices. CO2 concentration starts to rise around 07:30 when the occupants arrive at
the offices and gradually decreases after 18:00 when they leave their offices. The WBN
sensor shows slightly higher variations during working hours as the sensor is positioned
near the occupant. On the other hand, the WFN sensor shows relatively smaller changes
in working hours, despite being near the occupant, indicating its location might receive a
higher ventilation rate or air infiltration from the window that compensates the occupant’s
respiration. The CN sensor is positioned right above the occupants and can be potentially
affected by the occupants’ respiration. However, unlike the initial expectation, this sensor
shows an almost similar measurement pattern to other sensors. Overall, the differences
among measurements of CO2 concentration in different positions seem to be negligible;
thus, positioning does not have a significant implication for monitoring the indoor air quality
unless being directly exposed to the airflow of the ventilation system (e.g., WFN position).
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5. Conclusions

This study provides qualitative and quantitative descriptions of the effect of sensor
positioning on occupancy and environmental monitoring by multi-sensor devices. The
results enable practitioners to evaluate the possible positionings of multi-sensor devices
and allow researchers to overview the performance of such devices when being used in
various building applications. Further, this study provides a method to obtain information
on the accuracy and reliability of sensing systems, which enables conducting sensitivity
analysis of the results of the studies investigating the applications of sensor data. The study
design allows understanding of the tradeoffs between various positions of multi-sensor
devices used for occupancy and environmental monitoring. Many studies have previously
investigated the suitability of different sensor technologies for occupancy detection and
indoor environmental monitoring in buildings. This study presents a new outlook for
studies on sensors by demonstrating that, apart from sensor technologies, the way the
sensors are used, such as their positioning, can significantly affect their applicability
and effectivity.

The results show the significant effect of the position of PIR and CO2 sensors on their
occupancy detection performance. Sensor positioning can also affect indoor environmental
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monitoring, especially when measuring temperature and illuminance. The results suggest
describing the performance of PIR sensors by only a number as coverage distance is
deficient. Sensor developers should test their sensors under standardized conditions to
provide comparable information on their sensors’ accuracy in different distances. It is
more challenging for PIR sensors to detect presence as compared to absence. Absence
detection can be mainly impaired by sunlight when the sensor faces the windows from a
short distance. The distance of PIR sensors to occupants affects presence detection besides
PIR sensor’s sensitivity to other factors such as exposure to windows. In our case study,
the accuracy of presence detection dropped by 13% for every 1 m of further distance. The
fusion of multiple PIR sensors is shown to improve the accuracy of occupancy detection.
However, achieving a significant improvement by sensor fusion requires careful sensor
positioning by considering the positions with diverse distances and orientations to the
detection target.

The choice of the positioning of PIR sensors should be made to expose them to the
highest levels of occupants’ motions by considering the potential occupants’ activities.
For example, as in a typical office, the occupants are likely to perform their tasks seated.
Positioning PIR sensors under the desk results in the most accurate occupancy information.
The fusion of a PIR sensor positioned under the desk with another sensor that has a
wide FOV on the entire space can lead to a significantly enhanced occupancy detection.
However, that position may not be appropriate for other environmental sensors in a
multi-sensor device such as temperature. In this case, using multi-sensor devices may
prevent the optimum choice of positioning. However, by knowing the potential adversity
of measurements for some sensors, it is still acceptable to position multi-sensor devices
availing from the positions best suited for measuring the main intended parameter.

The study design allows the relative comparison of sensor positionings; however, the
results of the individual sensors have limited generalizability. For example, the values of
accuracy of PIR sensors in our case study cannot be generalized to other PIR sensors even
with similar positionings. Besides sensor positioning, accuracy of occupancy detection
depends on sensor’s build quality and setups, and occupant’s activity in different spaces.
Thus, PIR sensors’ low accuracy in some positionings in our study does not undermine
the results of other studies that used occupancy information from PIR sensors. The results
related to the positioning of indoor environmental sensors should be used cautiously
regarding the office equipment and amenities especially when measuring temperature due
to its high sensitivity.

Future studies should provide multi-dimensional optimization models taking various
factors associated with the geospatial positioning of sensors into account. The results of
indoor environmental measurements are related to the average data collected during a
two-week-period, which may not be representative of the monitoring downfalls in specific
conditions. Further investigations may consider the effect of certain events on sensor
measurements, such as when there are visitors in the offices. The investigations could
be further expanded by considering other types of spaces such as open-plan offices or
classrooms where occupants might conduct different types of activities. Moreover, the
sensors for occupancy and indoor environmental monitoring are not limited to those
investigated in this study and various sensor technologies need to be assessed with regard
to their positionings.
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Appendix A.1. PIR Sensor
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Appendix A.2. CO2 Sensor

CO2 range 0–2000 ppm (Extended: 0–10,000 ppm).
CO2 noise 14 ppm at 400 ppm 25 ppm at 1000 ppm CO2.
Accuracy ±50 ppm/±3% of reading.
Accuracy extended: ±10% of reading.

Appendix A.3. Temperature Sensor

Temperature range 0–40 ◦C.
Temperature resolution 0.1 ◦C.
Temperature accuracy ±0.2 ◦C.

Appendix A.4. Humidity Sensor

Humidity range 0–100%.
Humidity resolution 0.1% RH.
Humidity accuracy ±2% RH.

Appendix A.5. Light Sensor

Light range 4–2000 Lux.
Light resolution 1 Lux.
Light accuracy ±10 Lux.
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