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Abstract

This thesis covers the implementation of visual algorithms for a robot that is

to operate at a smelter furnace. The goal is for the robot to replace a human

in the opening, closing and flow regulation process as danger can arise when

1300°C slag flows out of the furnace. A thermal lance is used for opening the

furnace which means the robot also has to understand if the lance is burning

or not. A heat camera with temperature intervals 0-660°C and 300-2000°C
was used to record the furnace during these critical moments which has been

used to test different vision and tracking algorithms, such as mean shift and

continuously adaptive mean shift. The heat images were filtered to extract only

the relevant slag flow part, which then were used to track if slag was flowing,

and see how large the slag flow was. Opening of the furnace was possible to

identify for both temperature intervals. For the closing of the furnace both

intervals were also successful, but the lower interval used a different algorithm

for this case to be successful. A relative slag flow has been identified which

looks promising for further real life studies. The ignition of the lance result is

inconclusive as the data recorded was not fit for analysing this case, though a

few conclusions could be made indicating a thermal camera may be unfit to

track the thermal lance state.



Sammanfattning

Denna avhandling omfattar implementeringen av visuella algoritmer för en

robot som ska arbeta framför en smältugn. Målet är att roboten ska ersätta

en människa i öppnings-, stängnings- och flödesregleringsprocessen eftersom

det kan uppst̊a fara när slagg rinner ut ur ugnen. En termisk lans används

för att öppna ugnen, vilket innebär att roboten ocks̊a måste först̊a om lansen

brinner eller inte. En värmekamera med temperaturintervall 0-660 °C och 300-

2000 °C användes för att spela in ugnen under dessa kritiska ögonblick som

har använts för att testa olika syn-, och sp̊arningsalgoritmer, s̊asom ”mean

shift” och ”continuously adaptive mean shift”. Värmebilderna filtrerades för

att endast extrahera den relevanta slaggflödesdelen, som sedan användes för

att sp̊ara om slagg flödade och se hur stort slaggflödet var. Öppning av ugnen

kunde identifieras för de b̊ada olika temperaturintervallen. För stängningen

av ugnen lyckades b̊ada temperaturintervallen att identifiera ugnen korrekt,

men det lägre intervallet använde en annan algoritm för att lyckas med detta

fall. Ett relativt slaggflöde har identifierats som ser lovande ut för framtida

studier. Resultatet fr̊an den termiska lansen är ofullständigt eftersom de in-

spelade filmera inte var lämpliga för analys av detta fall, även om n̊agra slut-

satser kunde dras som indikerar att en värmekamera kan vara olämplig att

sp̊ara värmelansens tillst̊and med.
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1 Introduction
Industrial automation is a field of engineering that has greatly increased in

terms of popularity and importance during the last decades. What it means

is to use control systems such as computers and different robots to replace

manual labor that is carried out by a human being. It comes with many

prominent benefits, such as robots being more efficient and consistent in es-

pecially repeating labor that follows distinct patterns. This was the first idea

when implementation of industrial automation was done[1]. Though now as

technology has improved, and work safety is of higher importance, removing

humans from dangerous work using different control systems is of high priority.

This introduces so far unsolved problems when controlling the robot, and this

is where the focus of this project lies. With the help of a heat camera create

feedback for the robot to react to.

1.1 Background

Rönnskär smelter stationed in Skelleftehamn is owned by Boliden Mineral AB.

It was built in 1928 to be able to process the ores that were extracted from a

mine discovered in Boliden 1924[2]. There are many different processing plants

here whose main purpose is refining ores such as Zinc, copper, lead, silver and

gold[3] but also other high metallic objects that are to be recycled. One of the

plants at Rönnskär uses a fuming furnace to separate zinc from the melt. After

the fuming furnace has done its job separating the zinc the melt, the remaining

slag and metals are moved to the settling furnace. Then when removing the

slag from the settling furnace a hole is opened manually using a thermal lance.

The slag then runs down a drain where it is granulated to iron sand[4] and

sent underground towards the edge of Rönnskär where it is stored. It is in this

manual opening process that the unnecessary danger occurs. When the slag

starts flowing from the furnace there is a risk of it containing other metals than

iron as well. Liquid metal coming out is a problem for a few different reasons.

Firstly if too much comes out it can cut through the drain causing the metal

and slag to fall out on the surrounding floor. This can damage components and

other important parts in the process, but also poses a threat to the operator

working next to the furnace. Though the bigger problem that comes from this

is when the metal reaches the granulating water jets. When the water hits

the molten metal consisting of mostly copper, a water vapor explosion can be
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expected. Depending on how much metal that is pouring out of the furnace

the explosion can become comparable to several kilograms of TNT[5]. This

will not only damage the surrounding environment but is also a huge threat to

the people working there. As the opening and closing of the furnace is manual

it is much to expect from anyone to step into that environment and do an

emergency closing of the furnace during an accident of that scale. This is why

Boliden has decided to try and replace this part of the process with a robot

instead.

1.2 Purpose and goals

The robot that is to replace the operator is something ABB has already started

working on before the start of this work. The idea is for the robot to use the

same tools as the operator so if something would happen with it, a human

should easily be able to go in and do the work manually instead. The robot

must be able to see and understand what it is looking at, and draw correct

conclusions regarding the slag coming out out of the furnace. So the purpose

of this thesis is implementing vision algorithms with three main goals that are

as follows.

1. Decide if the furnace is open or closed.

2. Decide if the thermal lance is ignited or not.

3. Decide how much slag that is flowing momentaneously.

1.3 Formal problem formulation

1.3.1 Equipment

The main equipment needed for this project was a heat camera which was

provided by ABB. A specific camera is needed for the permanent solution that

is robust enough for the environment it is to be placed in, but it must also have

a high enough temperature range to distinguish the flowing slag from other

heat sources. ABB had a camera in mind for this project that unfortunately,

because of the Corona pandemic, was not available as it was not being produced

at the moment, and that is the PIR uc LWIR from InfraTec. As a heat camera

still was needed for this work a handheld FLIR T860 was rented for a week

from Beving to be able to collect data to analyze. Worth noting here is that

the intended camera was only required to have a temperature span ranging up
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towards 660°C which was the initial idea that it would be enough to distinguish

the 1300°C hot slag from other warm sources. The camera used has the settings

to either record in mp4-format or in FLIR’s own csq-format.

1.3.2 Thermal lance and opening/closing of furnace

A thermal lance is a long hollow iron rod that has oxygen flowing through

it, this allows its tip to be ignited and burn at a high temperature. When

opening the furnace with the thermal lance it has to first be ignited, which is

done by turning on the oxygen flow and holding the lance at an ignition spot

located between the two furnace openings. To avoid the robot pushing in a

lance that is not burning as intended the camera is going to be able to look

at it and give the necessary feedback to the robot. The main idea is that the

robot will first try to ignite the lance and then present it to the camera in a

predefined space. If the lance is not ignited the robot will retry until it presents

an ignited lance. Also if possible the program should be able to tell the robot

if the lance is extinguished during opening of the furnace. In that case the

robot should retract the lance and repeat the ignition iteration, or call for the

operator which then may have to manually open if the robot’s lance can not be

ignited. Worth noting here is that the thermal lance is getting consumed and

it is expected for 1-2 thermal lances to be used in order to open the furnace.

When the thermal lance has successfully opened a hole for the slag to flow out

from the furnace the algorithm should be able to determine that there is a flow

of slag or not. It is very important that this is robust as the robot should, as

soon as flow is detected, retract the lance and replace it with a tool that can

regulate or even forcefully stop the slag flow if there is too much slag flowing

or if metal comes out with the slag.

When closing the furnace a clay plug is inserted forcefully into the furnace

opening using an iron rod. The robot should then be able to understand if

it has been successful in doing so, and recognize if there is a leakage after

closing. If that is the case it should call for an operator that will manually

have to replace the clay plug.

1.3.3 Slag flow

When slag flow has been achieved the robot must be able to regulate how

large the flow is, this as the amount of slag in the furnace differs from time to

time which leads to different pressure pushing out the slag from the furnace.
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Also the initial hole opened by the lance can differ in size which leads to the

opening of the furnace being a bit unstable and uncertain. An algorithm had

to be implemented in python that can look at the slag flow and output the

size of the flow.

1.4 Limitations

As the robot is going to be used in a very demanding environment, a robust

solution is required. The camera has to be of a certain standard to withstand

the heat as it can get up to 60°C in the room in front of the furnace. Given

the risk of metal coming out with the slag which can create smaller explosions

the camera should be mounted in such a way that it is at as small of a risk as

possible to take damage from that. This can lead to a more awkward placement

of the camera than desired and this needs to be taken into consideration as well.

Keeping the camera lens clean is also of importance to avoid false feedback from

the camera to the robot.

1.5 Literature study

Before tackling the problems at hand a study was conducted to find algorithms

suited for the problems at hand. A few different algorithms were interesting but

the ones decided upon to evaluate more thoroughly were meanshift, camshift

and optical flow. The theory behind these algorithms will be described in

chapter 2 together with a more in depth description of the manual work the

process operators do today.

2 Theory
In this chapter the theory behind the algorithms used is described, as well as

a more in depth description of the process that the camera is going to look at.
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2.1 Settling furnace

Figure 1 – Explanatory image of the surrounding processes at the fuming

furnace.[6]

After zinc rich slag has been reduced to a zinc level low enough in the fuming

furnace the rest of the slag is then moved to what is called the settling furnace.

Here the idea is to remove the slag from the metal by segmentation. That is

after all slag has been moved to this furnace it will ”settle” there for 15 minutes

which makes the metal move to the bottom of the furnace with the slag laying

on top of it, since the slag is immiscible with metal. Then to remove the slag

from the furnace a hole above the metal level, closed by a clay plug, is burned

up with a thermal lance by the operator. After the furnace has been opened the

operator moves quickly out of the room and inspects the slag flow at a distance

to see if metal is flowing out with the slag. When it is deemed safe after roughly

20-30 seconds the operator moves into the room again to inspect the slag flow,

and if needed inserts iron skewers into the hole opened in the furnace to change

the speed of the flow. This is the way the slag flow is regulated today which

can be a bit uncertain. The slag then runs down a drain leading underground

where it gets granulated by water jets to iron sand. Lastly, the iron sand will

be pumped away underground towards the iron sand field where it is stored in

large piles waiting to be shipped away. The environment around the settling

5



furnace is quite rough which sets high expectations on external equipment

being introduced permanently. An explanatory image of the process can be

found in figure(1).

2.2 Algorithm description

2.2.1 Meanshift

Meanshift is an analysis technique used for finding the maxima of a density

function, or more formally it is known as a mode seeking algorithm[7], and it

is commonly used in computer vision to track moving objects[8]. It is usually

applied on discrete data points sampled from said density function. It is an

iterative method and hence expects an initial starting point for the center of

the search window Pinit = (xinit, yinit) ∈ R2. A kernel function is used to weight

the neighbouring points when estimating a new mean. Any kernel function can

be used when implementing meanshift, but the kernel functions used for this

project is either a flat square one that is defined as,

K1(P (x, y)) =

 1, if ‖x‖ ≤ λ & ‖y‖ ≤ λ

0, Otherwise
(1)

or a flat circular one defined as,

K2(P (x, y)) =

 1, if
√
x2 + y2 ≤ λ

0, Otherwise
(2)

with λ ∈ R+. These kernel functions were chosen as there is no reason to

weigh the pixels inside the image more than this flat case, that is if there is a

pixel of interest we keep it and if not it gets eliminated from the calculations.

Finally applying the said function K to get the weighted mean density of a

finite, 2-dimensional Euclidean data set S one gets

m(P ) =

∑
Pi∈N(P )K(Pi − P )Pi∑
Pi∈N(P )K(Pi − P )

(3)

with N(P ) being a set of points around P that has K(Pi) 6= 0. The difference

m(P ) − P is known as the meanshift. The mean m(P ) is used as the new P
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for the next iteration. This iteration can be set up to continue forever or until

convergence has been reached when m(P )− P = 0 or less than a threshold T

m(P )− P < T .

Figure 2 – Initial placement of

the meanshift window with the

green dot being its center.

Figure 3 – Red dot is the aver-

age position of the black pixels

inside the window.

Figure 4 – Mean shift window

position is updated to match

the mean pixel position.

Figure 5 – Continue to iter-

ate until convergence of the al-

gorithm or other setting.

As seen in figure(2) An initial window is first introduced in a pixel image

with the dots representing pixels of interest. First the mean inside the initial

window is calculated via equation(3) seen in figure(3) which is then set as
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the new center for the next window figure(4). The continuous iteration until

convergence can be observed in figure(5) where a maxima in the density can be

found. Though worth noting is that it only iterates until a maxima is found,

local or global. Hence if the global maxima is of interest the initial position of

the window is of high importance.

1. Decide upon the size of the initial window.

2. Place the initial window centered around a data point.

3. Compute the mean position inside the window.

4. Center the window around the calculated mean point.

5. Iterate step 3 and 4 until convergence is met which means a local maxima

has been found.

The reason for using this algorithm is to try to make the visual understanding

of the thermal lance as robust as possible. As the lance burns, and hence

becomes shorter, with each second introducing it in a predefined space as

suggested may be harder than one would think.

2.2.2 Camshift

The meanshift algorithm has great potential as a tracking algorithm, but lacks

in that it has no flexibility with resizing the window or changing its orientation

when tracking objects in an image. This becomes a problem when tracking

objects that are moving away or towards the camera and or are rotating over

time. Camshift (continuously adaptive meanshift) is the preferred solution

then as it uses the same algorithm with iterating and changing the position

of the search window by finding the center of mass for said window, but then

also resizes and orients the window to fit the object if it has tilted or changed

in size. First Equation(3) can be rewritten using the image moments that are

defined as
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M00 =
∑
x

∑
y

K(P (x, y))

M10 =
∑
x

∑
y

xK(P (x, y))

M01 =
∑
x

∑
y

yK(P (x, y))

M11 =
∑
x

∑
y

xyK(P (x, y))

M20 =
∑
x

∑
y

x2K(P (x, y))

M02 =
∑
x

∑
y

y2K(P (x, y))

(4)

Using the image moments defined above, the coordinates for the center of mass

(the new center for the new square) can be written as

xm =
M10

M00

ym =
M01

M00

(5)

Information about the orientation of the image can be extracted using the

image moments together with equation(5). Then the angle of the new image

can be calculated as

θ =
1

2
arctan

(
2(M11

M00
− xmym)

(M20

M00
− x2m)− (M02

M00
− y2m)

)
(6)

and by defining the intermediate variables a, b, and c as

a =
M20

M00

− x2

b = 2(
M11

M00

− xy)

c =
M02

M00

− y2

(7)
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we get that the length and width of the new square is calculated as[9]

l1 =

√
(a+ c) +

√
b2 + (a− c)2
2

l2 =

√
(a+ c)−

√
b2 + (a− c)2
2

.

(8)

Figure 6 – Initial window in

green and the red window is the

new position using meanshift.

Figure 7 – The new window is

resized to fit the pixel distribu-

tion as well as possible.

Figure 8 – Red window is ro-

tated to fit the pixel distribu-

tion as well as possible.

In the same way as the meanshift algorithm, camshift expects an initial window

placement. The mean inside the initial window is calculated via equation(3)
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that is set as the new center for the next window observed in figure(6). It will

continue to iterate until convergence just like the meanshift algorithm. Now

the window size will first be resized with equation(8) seen in figure(7), and

the new angle of the window is calculated via equation(6) seen in figure(8).

After the new window has been formed the meanshift algorithm will continue

to iterate once again until convergence which will prompt the window to resize

and orient itself again.

1. Decide upon the size of the initial window.

2. Place the initial window centered around a data point.

3. Compute the mean position inside the window.

4. Center the window around the calculated mean point.

5. Iterate step 3 and 4 until convergence is met.

6. Resize the window and update its orientation.

7. Iterate steps 3-6.

2.2.3 Optical flow

Optical flow[10] tracks points in consecutive frames where objects are moving.

The optical flow equation can be extracted if we express the image intensity I as

a function of (x, y) being spatial dimensions, and t being the time dimension.

Taking the first image as I(x, y, t) and subjecting it to a slight change in

positional value (dx, dy) over some time dt, the new image will be expressed

as I(x + dx, y + dy, t + dt). If one then assumes that the pixel intensity is

unchanged between frames, that is

I(x, y, t) = I(x+ dx, y + dy, t+ dt),

and then take the Taylor series approximation of I(x+ dx, y + dy, t+ dt) one

gets

I(x+ dx, y + dy, t+ dt) = I(x, y, z) +
∂I

∂x
∂x+

∂I

∂y
∂y +

∂I

∂t
∂t

=⇒ ∂I

∂x
∂x+

∂I

∂y
∂y +

∂I

∂t
∂t = 0

And lastly by dividing by dt one gets the optical flow equation
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∂I

∂x

∂x

∂t
+
∂I

∂y

∂y

∂t
+
∂I

∂t
= 0 (9)

So solving for ∂x
∂t

and ∂y
∂t

in equation(9) one can determine the movement of

the pixels over time. As there is only one equation for two unknowns some

other method needs to be implemented to help solve this equation as it is

not possible numerically. For this the Lucas-Kanade method was used which

implements a sparse optical flow[11]. The math behind this method will not

be visited in this paper as it is a bit outside of the scope. Optical flow expects

the problem to be well-posed, meaning that a small change in time should

move the tracked pixels a small distance. Also deciding upon which features

to track is often corners or other small points that stands out from the rest of

the image making them distinct enough when tracking.

2.3 Color spaces

As the heat camera was able to produce rgb-images a bit of color management

was visited when coding. Though the regular rgb-space was not used when

modifying the images but instead hsv-space (hue, saturation and value).

Hue is the variable that represents pure color and ranges in input usually from

0-360 degrees. It can be interpreted as a color wheel where both 0 and 360

represent the color red. All main colors (red, blue, yellow) and secondary

colors (orange, green, violet) can be represented here.

Saturation describes the intensity of a color ranging from 0-255. A higher value

meaning a more vivid pure color and a lower value making the color become

more gray-like.

Value lastly describes how light or dark the image is. It can be directly corre-

lated to the luminance of the color and is also ranging from 0-255.[12]
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Figure 9 – Hue, saturation and value represented in a 3D color space.[13]

hsv-space is often preferred in vision and tracking processing as it allows the

user to work with the color component separately from the intensity of it. This

allows for a certain robustness in environments where for example the lighting

in the room is inconsistent but the object that is to be tracked is unchanged.

And as the luminance in the room in front of the furnace differs from time

to time which can introduce multi-channel changes in rgb-space, hsv-space is

great to avoid this problem only limiting the luminance to one channel.

2.4 FLIR tools

FLIR has its own software for importing and viewing videos from its cameras.

It is mainly used to edit and analyze images for inspection reports of rooms

where the camera has been used. It has mostly been used as it converts csq-files

directly to mp4 in program, which makes it easy to do a visual inspection of

the videos before extracting raw data from the files for analysis in an external

program.
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3 Methodology
This section is used to give the reader a better understanding of the work

process, how the data was collected, and implementation of the algorithms

presented in the theory section. It should also give the reader a clear under-

standing of the workflow and as to why certain decisions were made during

this process.

3.1 Data collection and management

A heat camera was borrowed for one week of data collection at Rönnskärsverken.

As the camera used was of higher temperature resolution than the one that is

intended for permanent use some heat videos were recorded using the intended

range of 0-660°C, and some videos were recorded using the 300-2000°C range.

As the camera was able to record mp4 or csq files both were tested, but the

csq format was used more since its temperature resolution is higher than the

8-bit color scale that the mp4 file was able to produce.

Code was written that could handle the mp4-file for the analysis of the data,

but the csq-file was a bit harder to efficiently analyse. This as it is FLIR’s own

datatype and had no known way to be read directly into python without being

processed first. To be able to read the data FLIR tools were used to export

the csq-file to a comma-separated value (csv) file.
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Figure 10 – Right clicking a csq file in FLIR tools.

Figure 11 – Export options in FLIR tools.

To extract data one only has to right click the csq-file of interest and choose

export file. After that Export to CSV options can be seen as in figure(11)
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where one can choose to include object parameters if that would be necessary.

After choosing export again a csv-file will be created where each image is

stacked on top of the one before. Hence as the camera is of resolution 640x480

pixels and has a frame rate of 30 images/second, the file will be of size 640

columns and 480 · 30 · Y rows with Y being the length of the video in seconds.

A problem with extracting the raw data as a csv-file is that the size of the

file becomes large fast, with a clip of only 90 seconds being as large as 5GB.

This introduced a problem as some csq-files resulted in csv-files larger than

16GB which is how much RAM the computer at hand has. For this the free,

lightweight program called split was used to separate the file into parts that

were of a size that the program could handle.

While several videos were recorded in csq format, fewer were recorded in mp4

format. The reason for this is that converting the temperature scale to 8-bit

color scale introduces a loss of accuracy, which is completely unnecessary if

one can simply use the raw data from the temperature image instead. Though

it is easy to use in a live scenario as the image doesn’t need to be processed in

any way before analysis.

It is still undecided where the camera should be mounted for the permanent

solution, so the camera was rigged at different spots when recording to see if

it is possible to mount it somewhere safe and still have good enough visual

understanding of the process.

3.2 Program language and library choice

The mp4-files and raw data extracted from the csq-files was decided to be

analyzed in the programming language of python. As the problem at hand

was not expected to be reliant on the speed of the program but only fast

enough to handle a video-stream of 30Hz, python with its large library of

functions seemed like a good choice. Also as only the output from the program

was to be integrated with ABBs own 800xa system this allowed for a black

box solution independent of programming language. OpenCV (Open source

computer vision library) is a library containing functions mainly aimed at real-

time computer vision management[14]. Under this library all the algorithms

that were implemented can be found.
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3.3 Slag identification

3.3.1 HSV filtering

The slag flowing down the drain is of a bright yellow color that is distinguish-

able from the surrounding environment in the image. Code was written that

gives the option to set intervals for the three different color channels hue, sat-

uration and value. Two video streams can be observed with one showing the

unchanged color video, and the other displaying the hsv-filtered image. The

filter is each pixel being tested against the three different intervals defined, if

the pixel fits each interval the pixel is classified as a slag point giving it the

maximum gray-scale value of 255. But if the pixel misses one or more intervals

it is not deemed a slag point and is assigned the value 0.

Changing the intervals manually, upper and lower thresholds could be found

that remove almost all pixels except the slag flowing in the image. The thresh-

old bar can be observed in figure(12), and the decided upon thresholds were

found as

• Hue interval: 0-82.

• Saturation interval: 3-164.

• Value interval: 219-255.

Figure 12 – What the threshold bar setup in python looks like.

Applying the intervals on the video stream the result can be observed in fig-

ure(13).
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Figure 13 – Left: Color image of slag flowing out of the furnace. Right:

Gray-scale image of slag flowing out of the furnace with white pixels identified

as slag.

3.3.2 Temperature filtering

Just looking at the pixel temperature instead of converting it to a color image is

the preferred final live solution. The program written to identify slag this way

expects a csv-file which means that a recorded csq-file of interest first has to be

processed in FLIR tools to extract the raw data as a csv-file. After that all that

has to be done is set a temperature threshold with pixels having a temperature

above it being defined as a slag point. Pixels with temperature below this are

then defined as points of no interest and are set as zero. Taking a recording of

max value 660°C and setting the upper limit to 660 only the absolutely hottest

points can be detected and gives something similar to figure(13).
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Figure 14 – Left: Gray-scale image of slag flowing out of the furnace. Right:

Gray-scale image of slag flowing out of the furnace with white pixels identified

as slag.

3.4 Opening and closing of furnace

It is very important to get a robust solution for detection of the furnace open-

ing and closing. One big question for ABB is whether a camera with the

temperature span only reaching 660°C would be enough for the robot to un-

derstand the status of the furnace. Having that in mind the approach decided

upon was to look at a small portion in the image where slag is flowing down

the drain when opening the furnace. To achieve this a mask was applied over

the regular image reducing the image to only the relevant part. After that

applying either temperature or hsv filtering was the initial idea to find out if

slag is flowing.

For the 660°C setting, detection of the closing of the furnace was not easy as

the drain, even after the slag had stopped flowing, showed temperatures over

the upper limit making it hard to distinguish it from slag. Here the camshift

algorithm came in handy. Letting it track over the image and calculating the

area of the window became a great indicator to look at after the slag had

stopped flowing. As the density of pixels indicating a hot spot falls over time

one can set a lower area limit as to when the closing of the furnace is identified

as successful. Also just taking the total value of identified slag pixels in the

masked image can be a great indication of slag flow.
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Lastly another idea to identify closing of the furnace is by looking at how

the camshift window behaves. That is as slag is flowing in the image the

algorithm continuously resizes and shifts in its orientation to fit the window

to the new image. The idea in mind was to find a way to indicate how the

window ”vibrates” over time. The rotated rectangle in python has 5 different

values to describe its orientation, coordinates for the mass center (x,y), width,

height and the angle it is tilted. Multiplying all these values with each other

creates a variable that oscillates significantly when the rectangle changes in its

orientation and becomes less noisy when it is stationary. After each frame is

taken the variance of the last 120 values calculated this way finally becomes

the value of interest. When the variance drops below a certain threshold for

a long enough period the camshift window has been stationary meaning the

flow has stopped.

3.5 Thermal lance ignition

As the recordings are regular openings done by operators working there the

thermal lance was never really presented in an obvious way to the heat camera.

This made it hard to use the videos to identify when the lance became ignited.

No dedicated code for this detection is written, though looking at the recorded

data in FLIR tools after the lance has been ignited it is easily distinguishable

from the surrounding environment as the tip of the lance burns at a very high

temperature. This allows for the initial idea to create a virtual box where to

present the thermal lance of a reasonable size as the lance, when not being

used to open the furnace, gets reduced at a speed of 5× 10−3m s−1.

To understand if the lance is burning during opening is possible by looking at

the area around the furnace opening. When the lance is burning molten iron

from the lance flies in all directions indicating it being reduced. Tracking this

over time becomes a great indicator for if the lance is burning.

3.6 Slag flow

When a successful opening of the furnace has been detected the program moves

on to tracking how much slag that is flowing out of the furnace. A few different

ideas were tested here with the initial idea being the use of optical flow. As

optical flow expects corners or other smaller trackable objects to pop in the

image, which may be hard to get if the temperature is uniformly distributed,
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other options were also visited.

By the same static virtual window that is created for identification of furnace

open/closed state one can look at the amount of pixels over time and hence

get a relative flow indication. That is mapping the sum of pixels to flow size

by hard coded values obtained by observing the process manually.

Using the camshift algorithm looking at either the width of the flow or the

area of the camshift window to see if it was a good relative indicator of how

much slag that is flowing.

4 Result

4.1 Opening and closing of furnace

Detection of opening of the furnace is as expected not a problem. Looking at

the predefined space going from no flow to successfully opening is detected in

seconds.

Figure 15 – Sum of pixels inside a predefined window plotted over time using

the preceding 120 values (4 seconds) to calculate an average at each point.

660°C setting. Opening of furnace at about 58 seconds.
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Figure 16 – Area of the camshift window plotted over time using the preceding

120 values (4 seconds) to calculate an average at each point. 660°C setting.

Opening of furnace at about 58 seconds.

In figure(15-16) an example of an opening of the furnace with temperature

range of 660°C is displayed. At 46 seconds both y-axis start to increase very

rapidly, this as burnt clay from the plug is running down the drain which by

the algorithm is recognised as slag flowing. Though a very small amount that

starts to level out at 50 seconds. Finally at 53.5 seconds the furnace is opened

and a huge spike can be observed when the slag starts flowing. With the

furnace state threshold defined it takes until about 56 seconds to classify the

furnace as open which means it takes 2.5seconds from opening of the furnace

until correct detection of it. The bump in figure(16) at 10 seconds is because

of the thermal lance moving through the image, and the sudden fall at the end

of the data in both images is because of the operator stepping in starting to

regulate the flow partially blocking the view of the slag.
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Figure 17 – Sum of pixels inside a predefined window plotted over time using

the preceding 120 values (4 seconds) to calculate an average at each point.

660°C setting.

Figure 18 – Area of the camshift window plotted over time using the preceding

120 values (4 seconds) to calculate an average at each point. 660°C setting.
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The closing of the furnace is harder to correctly classify. When the slag stops

flowing the drain is still well above the 660°C upper limit making it hard to

distinguish from slag flowing down the drain. The pixel density after closing

does fall of linearly over time which with the threshold setup for the static

window case observed in figure(18) takes more than 60 seconds to correctly

classify the furnace as closed. The area of the camshift window does also fall

off linearly as it looks like in figure(17), but much slower taking several minutes

before classifying the furnace as closed.

Figure 19 – The 5 variables describing the rotated rectangle that is used in

the camshift tracking algorithm.

Lastly looking at the variables describing the camshift window was visited. As

can be seen in figure(19) all the variables oscillated in value noticeably more

before than after the furnace was closed at 75 seconds. Note that the sudden

peaks popping in the data are due to operators walking in front of the camera

during recording.
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Figure 20 – Red lines are the 5 variables described in figure(19), and the blue

line is the product between them. (Notice different axis)

By multiplying all the variables with each other a new variable is created which

gains the oscillating properties from each of them which can be observed in

figure(20).

Figure 21 – Variance of oscillating variable using preceding 120 values and

removing 20 max and 20 min values to avoid outliers. Applied golay filter of

window size 21, and polynomial degree 2.
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The variance calculated from the oscillating variable can be observed in fig-

ure(21) which was used to classify if the slag had stopped flowing. Due to

the data being affected by operators moving in front of the camera each vari-

ance calculated used the preceding 120 values but removed the 20 highest and

lowest values to flatten the data.

Figure 22 – Variance of oscillating variable using preceding 120 values and

removing 20 max and 20 min values to avoid outliers. Applied golay filter of

window size 21, and polynomial degree 2.

Zooming in one can see in figure(22) how the variance during flow is constantly

above the threshold, and after closing falls quickly below the set threshold

correctly classifying the furnace as closed in a matter of seconds.

With the change in range to an upper limit of 2000 degrees, looking at the

pixel density approach, the following results were achieved
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Figure 23 – Upper images: Grayscale images with slag flowing in the left one

and no slag flowing in the right. Lower images: Filtered images only contain-

ing pixels inside virtual box within 200 degrees of the maximum temperature

measured in the image which is around 1300°C.

In figure(23) the slag flow immediately before and after closing is observed.

The slag is clearly identified in the lower left image, and the lack of slag is

obvious in the lower right. Looking at the pixel density over time to identify

slag flow one gets
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Figure 24 – Sum of pixels inside a predefined window plotted over time using

the preceding 120 values (4 seconds) to calculate an average at each point.

2000°C setting.

Comparing figure(24) and figure(18) the 2000°C setting is superior in quickly

detecting the change in slag flow. From the furnace closing at 32 seconds it

takes until 35 seconds to detect closing of the furnace, and one more second for

it to flatten out finding no pixels to classify as slag at all. This 4 second delay

is due to the 4 second preceding average done which means this algorithm is

actually instantaneous if no smoothing of the data is done.
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4.2 Thermal lance

Figure 25 – Illustrative image of a thermal lance.

Looking at a successfully ignited lance in FLIR tools the tip from the slight

backward angle shows temperatures of 400 to 600°C. As the lance is being

reduced molten iron falls from it which is also trackable and a clear indication

of the lance burning. At the moment of impact between the lance and clay

plug immediately a mixture of clay and metal flies in all directions which also

is a great indication of the lance being ignited. Looking around the furnace

opening tracking how the molten iron from the lance is flying around gives
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Figure 26 – Sum of pixels around the furnace opening plotted over time using

the preceding 120 values (4 seconds) to calculate an average at each point.

In figure(26) the furnace is opened at about 55 seconds which can be seen in

the image. The image does not fall down to zero after furnace opening as one

would expect, this as slag running down the drain can be partially seen in the

image.

4.3 Slag flow

Applying optical flow to the slag stream a gray scale image is used for finding

the corners. Setting up with HSV set to

• Hue interval: 29-102.

• Saturation interval: 0-140.

• Value interval: 204-255.

The following image was created for tracking
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Figure 27 – Gray scale image with slag identified as white pixels.

When the slag is flowing edges do seem to be trackable sparsely. Though, as

the edge of the slag morphs and curves very randomly, tracking of an edge all

the way from identification to it moving out of the image is not possible. Also

as the heat is uniformly distributed in the slag no edges or other objects to

track pops in the slag, independent of which temperature setting that is used

while recording.

Instead looking at the sum of pixels in a static window and the area of the

camshift window over time more relevant results are produced,.
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Figure 28 – Sum of pixels inside a predefined window plotted over time using

the preceding 120 values (4 seconds) to calculate an average at each point.

660°C setting.

Figure 29 – Area of the camshift window plotted over time using the preceding

120 values (4 seconds) to calculate an average at each point. 660°C setting.

32



Both figure(28) and figure(29) seem to track how the flow acts with the ups and

downs seemingly acting like expected from observing the recording manually.

At about 45 seconds the operator steps in front of the camera resulting in the

sudden dip.

5 Discussion

5.1 Opening and closing of furnace

Detecting the opening of the furnace was as expected not a major problem.

As soon as slag starts to flow out of the furnace it is easily detected and within

seconds the algorithm classifies the furnace as open. This is independent of

the camera heat interval setting. But when closing the furnace having the

intended temperature interval of 660°C becomes a challenge for the program,

to in a timely manner, detect and correctly classify the furnace state. Though

the idea of describing the change in the image as a variable, and using its

variance as an indication of slag flowing or not seems to work quite well. It

takes barely a second for the variance to fall below a defined threshold, and

depending on how robust solution one wants, a few seconds below the threshold

should be enough for the algorithm to classify the furnace as closed. It is very

hard to only from the recorded videos decide if this solution is robust enough,

or if certain flow cases can make this approach fall apart. For example is

it possible that the flow can be modified by the drain in such a way that it

becomes more or less laminar in how it acts hence making the video more

stationary during slag flow? If the drain has built a slag coating this does

seem quite possible, so a further live evaluation over multiple closings of the

furnace is needed.

For the 2000°C case the closing of the furnace is easy to correctly identify as

the slag only reaches 1200-1300°C. It also has the advantage of easily detecting

if there is a leakage after closing with only a small amount of slag flowing. The

lower temperature interval will have a hard time to identify this directly after

closing and will probably have to wait 2-3 minutes before being able to detect

that small of a slag flow.

One could expect a regular camera to work using the algorithms applied to the

heat images, but if too much slag is flowing smoke will develop limiting the

visual range needed for a regular RGB-camera[15]. Maybe a regular camera

could in some way be mounted above the furnace opening looking down on the
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slag flow making it close enough to avoid the potential smoke. But considering

how much molten material that flies around when the thermal lance burns, and

slag that splashes at the moment of opening and closing, it may be impossible

to get a robust enough setup this way.

5.2 Size of slag flow

Using the sum of slag pixels in a masked video only containing the relevant

part of the image, and calculating the area of the camshift window do both

seem to be good indicators of the size of the flow. Though it is hard to draw

any more conclusions from this as it must be tested over a longer flow time

than now. As it has been up to the operator to classify what is too much

and too little flow some hard coded values defining that has to be introduced,

obtained by visual inspection of the flow during a live trial. Worth noting is

that it is the volume flow that is calculated and not the mass flow.

As can be seen in figure(28) and figure(29) the 120 preceding values are used

to average each point as to avoid sudden extreme values when the slag has a

turbulent face. As this introduces a latency into the system it is important

to optimize how many preceding values that are needed to get a signal that

gives relevant feedback about the size of the slag flow. Too many values will

make the system too slow to recognize how the slag should be regulated which

can result in too much iron sand being granulated damaging machinery, or too

little flow making the process inefficient.

Though the operators do seem to have an indication of slag flow size by looking

at how much water from the water jets that doesn’t get vaporized which seems

to be quite instantaneous. It can be a good idea to implement that signal

into the control of the robot when regulating the slag flow with the camera as

backup if that signal fails in any way.

5.3 Thermal lance detection potential

As the videos recorded were of regular openings with operators not clearly

presenting the lance for the camera after ignition, it is hard to draw any con-

clusions from the video. Looking at a csq-file in FLIR tools when moving the

lance from the ignition point to the furnace, it is possible to see that the lance

tip has a much higher temperature than its surrounding, though the temper-

ature does differ a lot which has to do with the camera resolution and the
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awkward angle of the camera viewing the lance from behind.

Tracking the state of the lance during opening do seem more promising. In

figure(26) it is clear that some sort of indication of the lance burning is possible

to be distinguished. As of now it can be a bit hard to see if the lance stop

burning fast enough, so redefining which area to look at when tracking the

thermal lance or what temperature interval to look at is future work for this

problem.

5.4 Future work

Variance of box-noise using moving 120-preceding average algorithm is some-

thing that has to be more accurately verified. The algorithm, as of now, has a

skewed dependence as if only one of the variables used for some reason becomes

constant the entire algorithm falls apart. Maybe instead of multiplying each

variables with each other one can take the variance individually then add them

together. That way the total box-noise variance will not fall down to 0 just

because one variable becomes constant over a short interval. Normalization or

setting up weight-parameters for each variable may be necessary as to avoid

one variable having to much impact on the algorithm.

During opening of the furnace more testing of what temperature-interval and

where in the image to look reduced thermal lance is needed. In figure(26) the

successful opening of the furnace is obvious, but there is potential to get an

even more clear detection of the opening event.
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