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1. Introduction

A large literature addresses the problem of estimating the elasticity of taxable
income with respect to the net-of-tax rate (ETI), which is a central parameter for
tax policy design. Given the importance of the ETI for tax policy, estimates of
its size vary to an astonishing degree, both within and between methodological
approaches (mainly the panel estimation approach and the bunching approach).
Improving current empirical approaches is therefore of utmost importance for both
academic research and political decision makers.

The early ETI literature focused on changes in income levels over time, eventu-
ally leading to instrumental variables (IV) regression approaches that essentially
regress changes in taxable income on changes in the net-of-tax rate (Feldstein,
1995; Gruber and Saez, 2002; Weber, 2014). Recently, bunching approaches to
measuring the ETI have evolved as an alternative to regression methods, following
the seminal paper of Saez (2010). Saez argues that if the taxable income responds
to marginal taxation, then the observed income distribution depends on the net-of-
tax rate. Therefore, the change in the net-of-tax rate at a kink point keeps some
individuals from earning income above that kink. These individuals will create
an excess mass (bunching) at the kink point, the size of which can identify the
ETI. The purpose of the present paper is to propose a maximum likelihood (ML)
method to improve the bunching approach of measuring the ETI.

The appeal of the bunching approach is that it circumvents endogeneity and
weak instrument problems that are typical for the IV regression methods.1 Instead,
data containing a single cross-section with at least one change in the marginal net-
of-tax rate is sufficient to identify the ETI in principle. Yet, the bunching approach
faces practical problems. In particular, individuals may not bunch exactly at the
kink, but in an interval around it, due to optimization frictions or income shocks
that are outside their control. In that case, in order to estimate the ETI, it is
necessary to compare the observed income distribution to a counter-factual distri-
bution that would have applied in the absence of the kink point. The literature
largely relies on non-parametric methods such as polynomial smoothing based on
histograms to calculate this counter-factual distribution (for example Chetty et al.
(2011) and Kleven and Waseem (2013)). These methods are typically not best in a
non-parametric sense, because (i) they rely on visual identification of the bunching
range, (ii) grouped data can lead to a biased estimate using such methods, and
(iii) the non-parametric estimate is based on the observed income density with
the exception of the bunching range, which makes that range an out-of-sample
prediction that is not necessarily fitted well.

We argue that parametric methods such as our suggested ML-estimator, the as-
sumptions of which are fully described, are preferable to non-parametric methods,

1Aronsson et al. (2017) address some of these problems based on Monte Carlo simu-
lations and show that IV regression methods to estimate the ETI can be heavily biased
and/or very imprecise.
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whose statistical consequences are opaque. The recent literature has been explor-
ing the distributional assumptions necessary to identify the ETI using the bunching
method. Blomquist et al. (2019) show that the amount of bunching at a kink point
cannot identify the ETI without any assumptions on the shape of the taxable in-
come distribution under a certain tax rate. The intuitive argument is that one
quantity, the number of individuals in a bunching interval around the kink point,
cannot identify two unknowns, the ETI and the (unrestricted) counter-factual dis-
tribution of taxable income. The paper closest in spirit to ours is Bertanha et al.
(2020), where the authors make the similar argument that non-parametric iden-
tification of both the counter-factual distribution and the ETI is impossible. In
other words, the polynomial approach does not provide an assumption-free iden-
tification. They show that upper and lower bounds of the ETI can be identified if
the steepness of the income density is bounded, and suggest two semi-parametric
approaches to improve the bunching estimator, a Tobit estimator and a censored
quantile regression estimator. Yet, none of these two estimators are designed
for data that includes optimization frictions (which are virtually always present).
Therefore, Bertanha et al. again use polynomial smoothing to try to remove the
optimization frictions from the data. This discussion suggests to us that there is
a trade-off between the lack of distributional assumptions and identification.

In this paper, we present a structural ML method of estimating the ETI based
on the bunching approach. We also document the benefits in terms of identification
that follow from the distributional assumptions. Specifically, we follow earlier
research in assuming that income formation is driven by the log-linear labor supply
model with log-normal unobserved components.2 This model is easy to apply to
data with perfect bunching and straightforward to extend to account for imperfect
bunching caused by optimization frictions, or to account for the possibilities of
notches, i.e., non-continuous jumps in the tax due.

The ML approach has at least five advantages over procedures based on polyno-
mial smoothing of the distribution around the kink. First, it is transparent in terms
of the underlying model of income formation, as well as in terms of functional form
and distributional assumptions. Second, measurement error/optimization frictions
can be modeled explicitly, which allows for the estimation of their size as opposed
to the visual determination of the bunching interval. As indicated above, this
aspect is potentially very important, since individuals do not bunch exactly at
the kink. Third, heterogeneity of the ETI can be modelled and estimated explic-
itly. The heterogeneity in tax responses is potentially substantial (see for example
Mortenson et al., 2019), and has important consequences for both the size and the
distribution of the tax burden. Fourth, the ML estimator can easily be extended
to include covariates and can thus control for specific characteristics of different
types of taxpayers, while still assuming a common distribution of the unobserved

2Saez (2010) and many subsequent studies rely on the same strict assumptions on
individuals’ preferences, as implied by the basic log-linear labor supply model, in order to
identify the ETI.
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income component and of the optimization frictions, respectively. Finally, the
flexibility of the approach goes beyond our particular applications, as the precise
model can be adjusted and the number of behavioral margins of the underlying
model can be increased. It is also applicable to non-convex budget sets, which can
be exemplified by the presence of notches (see, e.g., Pudney, 1989, chapter 5, and
Hausman, 1980. See also Kleven and Waseem, 2013 for a recent application).

We present four main results: (1) In the case of bunching at kink points, the
ML estimation fits the data of several published papers very well, if we model opti-
mization frictions explicitly. This suggests that the distributional assumptions do
not come at very high costs. The estimates differ, but are largely in a similar order
of magnitude. (2) In the presence of a notch, the estimated ETI can differ substan-
tially from those obtained using conventional approaches. (3) The optimization
frictions we estimate are small in all applications. (4) If there is heterogeneity in
the ETI-parameter, the average elasticity of the individuals who bunch exceeds
the average elasticity in the population. Yet, as many empirical estimates of the
ETI using the bunching approach are very small, the estimated heterogeneity of
the ETI is typically also small.

In the following, we first reformulate Saez’ basic intuition of the bunching esti-
mator of the ETI in distributional terms that can be used for structural estimation.
We also discuss how our parametric estimator can improve the measurement in
terms of efficiency (Section 2). Then, we define the parametric estimators for the
ETI that are adapted to the theoretical benchmark case of perfect bunching (Sec-
tion 3), and several alternative environments such as imperfect bunching (Section
4), bunching in the presence of a notch (Section 5), and bunching when the ETI
is heterogeneous (Section 6). For each environment, we apply the method to the
data of published studies in the field. Section 7 concludes.

2. The Bunching Estimator: Intuition and Challenges

In this section, we present the intuition behind the bunching estimator as well
as some of the associated methodological challenges. We reformulate the discussion
into a coherent formal framework that we use for the parametric approaches taken
in later sections.

The core intuition is simple: if the taxable income reacts to the net-of-tax rate
(i.e., if the elasticity is different from zero), then the observed income distribution is
a function of the net-of-tax rate. This is shown in the upper panel of figure 1, which
illustrates two realizations of the distribution of taxable income under two different
constant net-of-tax rates, τ c1 and τ c2 , where τ c1 exceeds τ c2 . Let z denote taxable
income, and let the corresponding distributions of taxable income be represented
by the density functions f̃(z; τ c1) and f̃(z; τ c2). We assume that taxable income
depends on both the net-of-tax rate and some heterogeneous individual component
ω, such that z(τ ;ω) identifies a certain income level, and the distribution of ω
determines the income distribution given the net-of-tax rate. If the net-of-tax rate
decreases given the distribution of ω, the income distribution shifts to the left. In
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the upper panel of the figure, and for a particular level of ω indicated by ω, the
income level shifts by the distance d. Now suppose the net-of-tax rate equals τ c1 up
to the taxable income level k, which is the kink point, and τ c2 for all income levels
exceeding k. The resulting distribution of observed income is shown in the lower
panel of figure 1. Up to the income level k, the observed income distribution equals
f̃(z; τ c1) (the red line in the upper panel), and for incomes exceeding k the observed

income distribution equals f̃(z; τ c2) (the blue line in the upper panel). The mass
of tax payers who would otherwise have realized incomes between k and k + d
under the net-of-tax rate τ c1 all realize the income level k, causing the observed
distribution to spike at the kink point k. In other words, there is a tendency to
bunch at the kink point, and the mass of people at k - which equals the probability
to realize the income level k - is the bunching mass, B. Saez (2010) shows that the
bunching mass and the observed income densities before and after the kink point
can identify the ETI, given some assumptions on individual preferences. As both
B and the two densities are observable, the only assumption that has to be made
are individual preferences if individuals can optimize without frictions. We will
assume frictions away for now and add them to the model later on in this section.

A distributional formulation. In order to estimate the ETI using the observed
distribution of taxable income, we need behavioral assumptions. We base our
estimator on the model structure used by Saez (2010) and much of the subsequent
literature, which allows us to directly compare our results to those found in earlier
studies. Note that the behavioral model structure is needed to identify the ETI
also in so-called non-parametric estimations. Even though we use a relatively
simple model here, our approach is flexible with respect to the model framework,
which is one of its advantages.

The preferences over consumption, c, and work hours, h, are represented by
the quasi-linear utility function

u(c, h) = c− η

1 + 1/α

(h
η

)1+ 1
α
, (1)

which yields the log linear labor supply function given the before-tax wage rate w,
and the marginal tax rate, τ ,

lnh∗(w, η) = α lnw(1− τ) + ln η. (2)

In Equation (2), α > 0 is the elasticity of the labor supply with respect to the
marginal net wage rate, w(1− τ), and (−η) < 0 is the disutility of work. Assum-
ing that we cannot observe the wage rate but only the taxable earnings, we are
interested in the optimal earnings function

lnwh∗ = α ln τ c + lnω ≡ ln z, (3)

where τ c ≡ (1 − τ) is the marginal net-of-tax rate. Given the preferences in
Equation (1), the unobserved heterogeneity in wages and disutility of work can be
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Figure 1. Basic Intuition

Note: In the upper panel, f̃(z; τ1) and f̃(z; τ2) describe the density functions of optimal
earnings under the respective marginal tax rate τi (i = 1, 2). k describes the income
level at which the marginal tax rate changes from the lower rate τ1 to the higher rate τ2.
d describes the difference in income levels of the marginal taxpayer under the marginal
tax rate τ1 and the marginal tax rate τ2. The lower panel depicts the observed income
distribution, which equals f̃(z; τ1) at income levels below k, f(z, τ2) at income levels above

k, and
∫ k+d
k

f̃(z; τ1)dz at k. f(ω) identifies the marginal taxpayer whose observed income
level does not exceed the income level k under τ2.

reduced to one parameter ω = w(α+1)η that describes an unobserved component of
the individual’s income. As the preferences are quasi-linear and the labor supply
is isoelastic, the behavioral response of earnings, z, to a marginal change in the
net-of-tax rate is then defined as: d ln z

d ln τc = α. Furthermore, as earnings are the only
source of income, α is the elasticity of taxable income (ETI) w.r.t. the net-of-tax
rate.
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Following Saez (2010), we can express the probability to be at the kink, B,
in precise distributional terms. As in figure 1, the optimal level of earnings z
is an increasing function of both the unobserved income component ω and the
net-of-tax rate τ c. Given the net-of-tax rate, ω is the only dimension of hetero-
geneity. In a tax environment with one kink at the earnings level k, where the
net-of-tax rate τ c2 to the right of k is less than the net-of-tax rate τ c1 to the left
of k, the earnings below and above the kink will follow different distributions:
f̃(z; τ c1) below the kink and f̃(z; τ c2) above the kink. For a particular value of the
unobserved income component ω̂, z(τ c1 ; ω̂) exceeds z(τ c2 ; ω̂), because the individual
would choose a higher income level if she can keep more at the margin. Analo-
gously, for a particular income level ẑ, there are two values of ω, ω1 and ω2, such
that ẑ = z(τ c1 ;ω1) = z(τ c2 ;ω2). Therefore, and for both income functions, there is
an exact correspondence between income, z, and ω. At the kink, a range of values
of the unobserved income component are possible: define ω such that z(τ c1 , ω) ≡ k
and ω̄ such that z(τ c2 , ω̄) ≡ k. If the density function of ω is smooth, then the ob-
served income distribution spikes at the kink income. The probability to be at the
kink, B, can thus be described as the portion of individuals with an unobserved
income component ω ∈ [ω, ω̄].

Let f(ω) denote the density function for the unobserved income component.
As the income level and the level of the unobserved component identify each other
uniquely given the marginal net-of-tax rate, B can then be expressed in terms of
either the income level or the unobserved component:3

B = P[z = k] = P[z(τ c1 , ω) ≤ k ≤ z(τ c2 , ω)]

= P[ω ≤ ω ≤ ω̄]

=

∫ ω̄

ω
f(ω)dω.

(4)

An observable formulation. The right-hand-side of equation (4) is not observ-
able because the distribution f(ω) is not observable. In order to estimate B, we

need to express B in terms of the observed income distributions f̃(z; τ c1)|(z < k)

and f̃(z; τ c2)|(z > k). To this aim, and with reference to Figure 1 above, it is
instructive to remember that in the absence of any kink (if the net-of-tax rate was
τ c1 for all levels of income), the tax payers who bunch would instead realize earn-
ings in the interval z ∈ [z(τ c1 ;ω), z(τ c1 ; ω̄)] ≡ [k, (k + d)] of length d. We can then
express B in terms of the density of the income distribution under the net-of-tax
rate τ c1 (i.e., the hypothetical income distribution in the absence of the kink):

B =

∫ k+d

k
f̃(z; τ c1)dz, (5)

3We can also express ω as the inverse function of the income level and the tax rate,
such that z(τ c; z−1(τ c; k)) = k.
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where (k+ d) = z(τ c1 , ω̄) is the optimal level of earnings which the individual with
the largest unobserved income component among those bunching at k would choose
under the uniform net-of-tax rate τ c1 .4 Saez’ approach approximates Equation (5)
(area B in Figure 1) using a trapezoidal approximation

B =

∫ k+d

k
f̃(z; τ c1)dz

≈ d
(
f̃(k; τ c1) + f̃(k + d; τ c1)

)1

2
.

(6)

In the approximation in Equation (6), f̃(k; τ c1) is in principle observable, while d

and f̃(k+d; τ c1) are not. To derive f̃(k+d; τ c1), note that f(ω) can be transformed

to the density function of the income distribution f̃(z) by using the inverse earnings
function ω(τ c, z) = z−1(τ c, z) such that

f̃(z; τ c) = f(ω)
dω(τ c, z)

dz
.

Therefore, the densities of the earnings distributions at a given level of the unob-
served income component are in a strict relation to each other:

f̃(z; τ c1) = f̃(z; τ c2)

dω(τc1 ,z)
dz

dω(τc2 ,z)
dz

≡ f̃(z; τ c2)γ(τ c1 , τ
c
2 , z).

The unobservable term f̃(k + d; τ c1) can thus be replaced by f̃(k; τ c2)γ(τ c1 , τ
c
2 , k):

Saez’ approximation can now be expressed in terms of the densities of the observed
income distributions before and after the kink:

B ≈ d
(
f̃(k; τ c2)γ(τ c1 , τ

c
2 , k) + f̃(k; τ c1)

)1

2
. (7)

The sizes of d and γ can be constructed from observables using the model
structure, in particular the optimal earnings level in Equation (3), which after
substitution in Equation (7) gives Saez’s Equation (5) exactly. Equation (7) defines
α implicitly via d and γ. The bunching estimator thus depends on the observed
bunching mass B, the observed densities of the income distributions before and
after the kink point, and the model structure.

Imperfect bunching. Saez bases his estimate of α on the approximation in Equa-
tion (7) and replaces the unknown components, such as the two densities, by em-
pirical analogs. Furthermore, the empirical results in Saez (2010) are based on the
assumption that bunching is imperfect, i.e., that it occurs in an interval around
the kink rather than precisely at the kink, as displayed in Figure 2. Imperfect
bunching complicates the estimation of B, because the bunching population is

4The individual would prefer that quantity to k. Under the piece-wise linear tax system,
this level of earnings is not available, however, at the tax rate before the kink.
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now spread out over an interval that contains also individuals that do not bunch.
The bunching probability B (the green striped area in Figure 2) then equals the
probability to be in the interval (both shaded areas), minus the probability to be
one of the individuals in the interval that did not intend to be at k (the yellow
shaded area). B is therefore referred to as excess bunching. This correction re-
quires an assumption about the counter-factual density in the interval around k in
the absence of a kink point. Saez (2010) assumes that the counter-factual density
on each side of the kink equals the density next to the bunching interval.

Figure 2. Excess Bunching

B

ln z

f̃(ln z)

ln k
Note: The graph shows the density of observed earnings in the case of
imperfect bunching. Shaded areas depict the bunching interval. The
green striped area depicts excess bunching B.

While the intuition of the bunching estimator is clear and provides a simple
and theory-based method to estimate the ETI, it is empirically challenging. If
bunching is imperfect (which virtually all studies in the literature assume), the
measurement of B requires both the identification of the bunching interval and
an assumption about the counter-factual density around the kink. The bunching
interval is typically determined visually, which is not necessarily the best approach.

Several authors have proposed further refinements of Saez’s first approach,
which are mostly concerned with the questions of estimating the counter-factual
earnings distribution if bunching is imperfect, and estimating the earnings density
on either side of the kink, i.e., f̃(k; τ c1) and f̃(k; τ c2). In particular, Chetty et al.
(2009, 2011), fit a higher-order polynomial through the observed income density
with exception of the bunching interval, which has been adopted in several other
studies (e.g., Bastani and Selin, 2014 and Kleven and Waseem, 2013). While this
approach is more complicated than Saez’ assumption of a constant density on
either side of the bunching interval, it is not obvious to us that it leads to more
reliable results.

In the the polynomial approach developed by Chetty et al. (2009, 2011), the
earnings data is first collected into relatively narrow bins to construct a histogram
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of the distribution of earnings before and after the kink. Then, a polynomial
is fitted through the observed income histogram excluding observations near the
kink on either side. The degree of the polynomial is determined usig a calibration
procedure (Chetty et al., 2009, 2011 use a polynomial of order 7). Finally, the
approach corrects the portion of the polynomial above the kink iteratively, such
that the integral under the estimated polynomial corresponds to the number of
total observations. The resulting polynomial serves as the counter-factual income
distribution for identifying the bunching mass.

This procedure is not based on any theoretical result, and the necessary tech-
nical conditions under which it would lead to a good approximation of the counter-
factual distribution are unclear. Yet, there are at least three reasons to doubt that
it is best in a non-parametric sense. One is that the initial binning of the data
may have a cost in terms of integrated squared error over the non-excluded range
of the earnings data, relative to a method based on a kernel density estimator with
a smoothing parameter.5 Another is that the data near the kink is ignored and
does not contribute to the construction of the counter-factual income distribution.
The in-sample fit of a polynomial does not at all guarantee that it gives a good
out-of-sample prediction, and the size of the error is unclear. Finally, a polynomial
fit does not provide reliable statistical inference. While the binning problem can
in principle be solved using better data, the problem of out-of-sample prediction
is inherent to the method of the polynomial fit. ML estimation based on clear
distributional assumptions can enhance the method, as the assumptions are then
clearly described and testable, and the estimation comes with statistical inference.

Notches. The bunching framework has also been adjusted to the case of notches,
which create non-convexities in the individual’s budget set. At a notch, the mar-
ginal tax rate exceeds 100%, such that there is a certain range of taxable income
above the notch in which net income is lower than net income at the notch. In
this range, both leisure and net income would be lower than at the notch point,
which is why it is typically assumed that no rational agent would choose to be
in that range. In the presence of a notch, the tax system thus creates incentives
for individuals to avoid an income range (k, e+). Because of the notch however,
the net-of-tax rate after the notch depends on the exact location of the earning
level that is considered. This means that we cannot use the analogy between the
statistical model and the economic model directly as we did in the case of a kink.

5See for example Bosq and Lecoutre, 1987, Theorem 3.2 and remark 3.3. Whether this
cost is large or not in practice is difficult to assess, but it can be sizable in conventional
cases and in large samples. The costs of estimation related to the construction of the
counter-factual distribution based on the smoothed histogram are beyond our discussion
here. However, the method clearly does embody a particular trade off between the bias
and the variance of the estimated earnings density, which in this instance may favor a
reduction of the variance (i.e., favor smoothness) at a cost in terms of bias.
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Kleven and Waseem (2013) develop this point nicely. They assume that the
tax schedule around the kink takes the following form of a pure proportional notch:

T (z) = τ1z + ∆τz1[z>k],

for ∆τ > 0. For increases in earnings beyond the kink k, the implied approximate
marginal tax rate varies as well:

τ2(∆z) ≡ T (k + ∆z)− T (k)

∆z
= τ1 + ∆τ + ∆τ

k

∆z
,

for ∆z > 0. For relatively small values of ∆z this rate can be significantly larger
than 1, which defines the dominated range. The approximate net-of-tax rate be-
yond the notch takes the form:

τ c2(∆z) ≡ 1− τ2(∆z) = τ c1 −∆τ −∆τ
k

∆z
, (8)

In the case of a notch, it is thus crucial to determine the distance ∆z empir-
ically. Kleven and Waseem (2013) determine ∆z by the point where the excess
mass before the notch equals the ”missing mass” after the notch (compared with a
counter-factual income that is determined using a polynomial as described above).
For notches, the derivation of the counter-factual income density is thus even more
crucial than in the case of a kink in a convex budget set.

Improving the method. Overall, there are few arguments why the non-parametric
methods that are typically used in the bunching literature should produce reliable
results. In particular, because they rely on a combination of visual determination
of the bunching interval and a potentially large bias in the measurement of the
counter-factual earnings density around the kink. We argue that a parametric es-
timation of the model outlined above is preferable to the non-parametric approach
for at least five reasons: (i) the underlying assumptions about both the earnings
process and the distribution of the unobserved income component are transparent;
(ii) optimization frictions can be modeled explicitly; (iii) heterogeneity in the ETI
can be modeled explicitly; (iv) it is easy to include covariates in the analysis; and
(v) the assumptions can be modified (in particular, the model can be extended to
allow for several margins of income generation),

We suggest a parametric estimator of the two densities and the bunching prob-
ability, which can be estimated by the ML method. We start by deriving the es-
timator for the case of perfect bunching, and then adapt the method to the case
of imperfect bunching and notches. We aim at keeping the baseline income gener-
ating process simple, in order to demonstrate the general methodology. Yet, the
approach is suitable to entail more complicated income generating processes.

3. A Statistical Model of Perfect Bunching at a Kink

Based on the intuition in part 2, we present a parametric model of the dis-
tribution of earnings in an interval that includes the kink, which allows for the
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estimation of the probability to be at the kink as well as for the estimation of the
densities around the kink. A second purpose is to analyze the effect of the preci-
sion of measurement of income on the bias of estimator. The reason is that earlier
studies often rely on binned data. We show that in the case of perfect bunching,
the Saez estimator is biased if the tax units at the kink are identified within an
interval rather than at a precise income level, and that the bias can be substan-
tial. We further show that using the suggested parametric model, it is possible
to correct for that bias. This enables the researcher to use the perfect bunching
formula even if only grouped data are available. We also show simulation results
that suggest that using the parametric model considerably reduces the variance of
the Saez estimator.

A log-normal specification of the model. We consider a model based on
the preferences in Equation (1), where the unobserved income component is log
normally distributed, such that lnω ∼ N (µ, σ2

ω).6 Using this distributional as-
sumption as well as the inverse earnings function ω = z−1(τ c, z), we can evaluate
expression (4) precisely:

B =P[ln z−1(τ c1 , k) < lnω < ln z−1(τ c2 , k)]

=

∫ (α ln τc2−ln k−µ)/σω

(α ln τc1−ln k−µ)/σω

φ(u)du,

=Φ[(α ln τ c2 − ln k − µ)/σω]− Φ[(α ln τ c1 − ln k − µ)/σω]

=Φ[(ln k − α ln τ c1 + µ)/σω]− Φ[(ln k − α ln τ c2 + µ)/σω],

(9)

where φ(ω) is the standard normal density function and Φ(ω) the standard normal
distribution function. The final expression on the right hand side follows from the
properties of the normal distribution. Consider first the approximation comparable
to (7), which now takes the simpler form (using the distribution of the logarithm
of earnings instead of earnings directly):

B ≈ α(ln τ c1 − ln τ c2)
(
φ(
α ln τ c1 − ln k − µ

σω
) + φ(

α ln τ c2 − ln k − µ
σω

)
) 1

2σω
.

Hence, provided we can measure the quantities B, φ(
α ln τc1−ln k−µ

σω
)/σω and

φ(
α ln τc2−ln k−µ

σω
)/σω, we obtain a direct estimate of α using Saez’s approach:

α̂saez = 2
1

ln τ c1 − ln τ c2

σωB

φ(
α ln τc1−ln k−µ

σω
) + φ(

α ln τc2−ln k−µ
σω

)
. (10)

To proceed towards ML estimation, note first that the estimation problem is
local in nature, i.e., it concerns only the observations near or at a particular kink.

6The method described below is, of course, applicable also for other functional form
assumptions.
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The parametric model we provide here captures this feature. The model is based
on the truncated normal distribution over a range of earnings [z, z̄] which includes
the kink k. Since bunching is perfect, it will take place at k exactly. However,
in practice, it may only be feasible to measure earnings to a relative precision
of δ, where δ is a small and positive number and is expressed as a share of the
income level.7 Although our model allows for δ to be zero, we assume here that
an observation is identified at the kink if it lies between ke−δ and k. Then, over
the range [z, z̄], log earnings are distributed as follows:8

if z ∈ [z, ke−δ), then f̃1(ln z) = sφ(s ln z − λ1)/P[z, z̄],

if z ∈ [ke−δ, k], then B(ln k) = (Φ(s ln k − λ2)− Φ(s(ln k − δ)− λ1))/P[z, z̄],

if z ∈ (k, z̄], then f̃2(ln z) = sφ(s ln z − λ2)/P[z, z̄],

(11)
where P[z, z̄] ≡ Φ(s ln z̄ − λ2)− Φ(s ln z − λ1) is the probability of being in the
earnings range [z, z̄], while s, λ1, and λ2 are parameters with s > 0. In the context
of a normal distribution s is one over the standard deviation of the unobserved
component σω, and the the parameters λi are the ratios of the mean to the standard
errors to the left and right of the kink. In the case of the isoelastic model of earnings
we have λi ≡ sα ln τ ci − sµ and s ≡ 1/σω.

If λ1 ≥ λ2, the model allows for bunching at k for any positive δ. This condition
must be true if taxable income responds negatively to taxation and if the net-of-
tax rate to the left of the kink exceeds the net-of-tax rate to the right of the kink.9

The parameters s, λ1, and λ2 can be estimated by maximum likelihood given a
sample in the interval [z, z̄].

For a sample of n individual observations, zi, in the interval [z, z̄] and for a
positive number δ given, the log-likelihood takes the form:

lnLB,n =
∑
i∈I−

(
ln s− 1

2
s2(s ln zi − λ1)2

)
+

∑
i∈I+

(
ln s− 1

2
s2(s ln zi − λ2)2

)
+

nk ln(Φ(s ln k − λ2)− Φ(s(ln k − δ)− λ1))−
n ln(Φ(s ln z̄ − λ2)− Φ(s ln z − λ1)),

(12)

7For example, Bastani and Selin (2014) and Kleven and Waseem (2013) base their
estimations on small earnings intervals with roughly δ = 0.005.

8In the case of a distribution like the log-normal distribution, the ratio of the distribution
of z and of the distribution of its logarithm, ln z, depends on z only and not on the
parameters of the distribution. To clarify the presentation we describe the distribution of
ln z only.

9If λ1 = λ2 the bunching is approximately equal to sφ(s ln k − λ2)/P[e, ē] whenever δ
is small enough. Finally if sδ + λ1 < λ2 (which requires that λ1 < λ2), the model above
does not describe a probability distribution over the interval, i.e. the expression of the
probability at the kink is negative.
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where I− and I+ collect the observations such that ln zi < ln k− δ and ln zi > ln k
respectively. nk denotes the number of observations such that earnings are between
ln k − δ and ln k.

The maximum likelihood estimates of the parameters, λ̂1, λ̂2, and ŝ, can be
obtained together with an estimate of their (asymptotic) precision. We can then
use the model structure10 and identify α directly from the parameter estimates by:

α̂norm =
λ̂1 − λ̂2

ln(τ c1)− ln(τ c2)

1

ŝ
(13)

Observe that this expression is simple: it suggests that we consider the difference
between the latent (latent because it is conditional on being below or above the
kink) mean log earning before the kink and the latent mean log earning after the
kink and divide by the difference in the log of net-of-tax rates.

We have shown in related work that the precision of the ML estimator exceeds
the precision of the original Saez estimator in a simulated environment (see our
related Monte Carlo study Aronsson et al., 2017 for details). Figure 3 illustrates
the increased precision that the ML estimator provides.

Figure 3. Saez and lognormal bunching estimators
small kink

(10 percentage points)
large kink

(20 percentage points)

Note: Saez and log-normal bunching estimators. 1,000 replications with 10,000 individual
observations over 12 years each, facing two tax environments: small kink: τ c1 = 0.65,
τ c2 = 0.55; large kink: τ c1 = 0.65, τ c2 = 0.45. See Aronsson et al. (2017) for details and
precise figures. Estimators: α̂Saez: Saez approximation (Equation 7);α̂norm: MLE based
ETI bunching estimator (Equation 13).

10That is, recognize that the isoelastic model of earnings implies λi = sα ln τ ci + sµ
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Does δ matter for the baseline Saez approximation? Instead of relying on
the model structure, we can reproduce the Saez approximation from the maximum
likelihood estimates by deducing estimates of the bunching probability B and the
two earnings densities, f̃1(ln k − δ) and f̃2(k). If δ is known, we can of course
correct for the imprecision caused by δ given the parameter estimates. Without
a parametric estimation, however, the researcher would not be able to correct for
the imprecision caused by δ. Thus, we ask what error we would expect from an
imprecise identification of B. In that case, the bunching probability is estimated
by

B̂ =
Φ(ŝ ln k − λ̂2)− Φ(ŝ(ln k − δ)− λ̂1)

Φ(ŝ ln z̄ − λ̂2)− Φ(ŝ ln z − λ̂1)
,

and of the densities at the edge of the bunching interval:

ˆ̃
f1(ln k − δ) = ŝ

φ(ŝ(ln k − δ)− λ̂1)

Φ(ŝ ln z̄ − λ̂2)− Φ(ŝ ln z − λ̂1)
,

ˆ̃
f2(k) = ŝ

φ(ŝ ln k − λ̂2)

Φ(ŝ ln z̄ − λ̂2)− Φ(ŝ ln z − λ̂1)
.

We can use these estimates to replace the theoretical expressions in Equation (10)
to obtain an estimate of α based on the methodology Saez proposes

α̂SaezN =
2

ŝ

1

ln τ c1 − ln τ c2

Φ(ŝ ln k − λ̂2)− Φ(ŝ(ln k − δ)− λ̂1)

φ(ŝ(ln k − δ)− λ̂1) + φ(ŝ ln k − λ̂2)
(14)

The difference between the structural estimator α̂norm and the (uncorrected)

Saez approximation α̂SaezN can be deduced if (λ̂1 + ŝδ − λ̂2) is small:

Φ(ŝ ln k − λ̂2)− Φ(ŝ(ln k − δ)− λ̂1) ≈

(λ̂1 + ŝδ − λ̂2)
1

2

(
φ(ŝ(ln k − δ)− λ̂1) + φ(ŝ ln k − λ̂2)

)
.

Then we have

α̂SaezN ≈ α̂norm +
δ

ln(τ c1)− ln(τ c2)
, (15)

which suggests that the two estimators differ little if δ is small and the difference
in the tax rates is large. Yet, if the kink is small, such that τ c1 and τ c2 are close
in size, small imprecisions can lead to large differences in the estimate of α. For
instance, if the tax rate at the kink increases from 20% to 22%, a small imprecision
such as 0.5% of the kink income leads to an increase of roughly 0.2 in the estimate
of α. While the bias can be substantial, the second term in the expression above
does not depend on any unknown parameter. Hence it is possible to deduce the
value of the structural estimator α̂norm from the α̂SaezN . In the case of perfect
bunching, a researcher using the Saez approximation can thus correct for the bias
created by binned data even without the use of ML estimation.
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Figure 4. Perfect Bunching at a Kink, Application 1
data: Bastani and Selin (2014)

K = 325kSEK (≈ 35k e), α̂ = 0.012(0.0001)

Note: The figure shows the observed data displayed in Bastani and Selin (2014), figure 6a
(blue dots) and the prediction of the distribution of earnings in the interval given the ML
parameters (red dots) based on the likelihood given in Equation (12). The dashed line
draws the theoretical density at the MLE. The population are all self-employed tax payers
in Sweden between 2000 and 2008, whose taxable income is in a range of 75k SEK around
the first government tax kink point (at 325kSEK on average), at which the marginal tax
rate increases by 20 percentage points. The data is grouped in income intervals of 1kSEK.
The elasticity estimate in Bastani and Selin (2014) is 0.024.

Application. As an illustration, we estimate the model of perfect bunching using
the observed earnings distributions presented in two papers that originally used
the polynomial method: Chetty et al. (2009, 2011) and Bastani and Selin (2014);
see Figures 4 and 5. In both cases, the data displays diffused bunching (as virtually
any taxable income data), which is why we expect our estimator assuming perfect
bunching to underestimate the ETI. We compare the results from the model with
perfect bunching to the results from a model of imperfect bunching in Section 4.11

As expected, the ML estimates assuming perfect bunching are quite small in
both applications. Based on the data of Bastani and Selin (2014), the ML point

11We obtain the binned data for both applications directly from the histograms in the
respective publication. For Bastani and Selin (2014), that is Figure 6(a), for Chetty et al.
(2009, 2011), that is Figure 3 in Chetty et al. (2009). In both cases, we use the precise
graphics data embedded in the PDF files. We rescale the data to be densities instead of
the number of tax payers, and can then fit the theoretical density described earlier to the
observed one.
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Figure 5. Perfect Bunching at a Kink Application 2
data: Chetty et al. (2009, 2011)

K = 267.6kDKK (≈ 36ke), α̂ = 0.002(0.00005)
Note: The figure shows the observed data displayed in Chetty (2009), (blue dots) and the
prediction of the distribution of earnings in the interval given the best fit parameters (red
dots) based on the ML estimator in Equation (27). The dashed line draws the theoretical
density based on the maximum likelihood estimation. The population are all wage earners
in Denmark between 1994 and 2001, whose taxable income is in a range of 50k SEK
around the largest tax kink point (at 267.6kDKK on average), at which the marginal tax
rate increases by roughly 13 percentage points. The data is grouped in income intervals
of 1k DKK. The elasticity estimate in Chetty et al. (2009, 2011) is 0.01.

estimate of the ETI is α̂ = 0.012(0.0001), which amounts to half the original
estimate of 0.024. Similarly, based on the data used by Chetty et al. (2009, 2011),
the ML estimate is α̂ = 0.002(0.00005), which only amounts to one fifth of the
original estimate of 0.01.

Turning to the impact of the binning of the data, we can verify the accuracy
of the approximation given by Equation (15) for our two applications. For the
data we selected from Bastani and Selin (2014), the correction δ/(ln τ c1 − ln τ c2)
is equal to 0.0096 and after direct calculation we find that α̂SaezN = 0.0215,
which is nearly equal to α̂norm + 0.0096 = 0.0216. The corresponding calculations
in the context of the data selected from Chetty et al. (2009, 2011) yield that
δ/(ln τ c1 − ln τ c1) is equal to 0.0125 and α̂SaezN = 0.0143 which is close to the
approximation α̂norm + 0.0125 = 0.0145. This suggests that the binsize in both
applications is sufficiently small to not cause a substantial bias when using the
original Saez estimator.

Regarding the fit of our model, we see that both applications fail to account
for diffused bunching, which causes a hump around the kink point. These results
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suggest that accounting for the diffused nature of bunching is likely to matter for
the quality of the estimate of the ETI. One of our main contributions, presented
in Section 4 below, is to develop a method that integrates optimization frictions
directly in the likelihood function. As such, our approach stands in sharp con-
trast to Bertanha et al. (2020), who also suggest alternatives to the polynomial
approximation, since they develop their methods for the case of perfect bunching.

4. Imperfect Bunching and Optimization Frictions

As discussed in Section 2, the literature typically assumes that bunching is
imperfect. Individuals may not be able to aim perfectly at the kink and their
earnings may vary in ways that they do not control. Yet, optimization errors
are typically not explicitly modeled in the literature. Instead, it is assumed that
bunching occurs in an interval around the kink. As discussed above, the methods
used in the literature are problematic both because the bunching interval has to
be determined visually, and because the methods of determining a counter-factual
density of earnings in the absence of a kink are not best in a non-parametric sense.

We therefore suggest a modification of the ML estimator of the ETI that di-
rectly models optimization frictions, such that observed earnings are a mixture of
planned earnings and some noise. This allows us to estimate both the size and
variance of the shock, and the size of the bunching interval.12

We start again from the model based on the preferences in Equation (1), which
determines the optimal level of earnings as well as the relevant net-of-tax rate. In
the single-kink case we have:

if α ln τ c1 + lnω < ln k : ln z = α ln τ c1 + lnω,

if α ln τ c2 + lnω > ln k : ln z = α ln τ c2 + lnω,

if α ln τ c1 + lnω > ln k and α ln τ c2 + lnω < ln k : ln z = ln k.

(16)

The observed zo earnings that the individual experiences in the end is determined
by the planned earnings z and a shock ε such that

ln zo = ln z + ln ε. (17)

We assume that lnω and ln ε are independently normally distributed. As before,
lnω has mean µ and variance σ2

ω. ε is a multiplicative shock to the planned
earnings z, and is log normally distributed with mean 1, which implies that the

logarithm of ε is distributed normally with ln ε ∼ N (−σ2
ε
2 , σ

2
ε ). We denote ς ≡ 1/σε

12In addition to imperfect bunching, the literature has modeled optimization frictions by
assuming that a certain fraction of taxpayers (so-called non-responders) has a (short-term)
elasticity of zero (Aronsson et al., 2017; Kleven and Waseem, 2013). This is particularly
common in the case of notches, as a notch always creates an income range that a rational
agent who values both consumption and spare time would not choose. This range can be
used to identify the non-responders.
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and ν ≡ −σε/2 = −1/(2ς).

In order to obtain maximum likelihood estimates for this modified model, we
need to derive the density function of observed earnings. To that aim, we first
derive the distribution function. We describe the distribution of observed earnings
ln zo given our assumptions concerning the distribution of planned earnings ln z
(which depend on the unobserved component ω, the elasticity of taxable income
α, and the net-of-tax rate τ c) and the distribution of ln ε.

The distribution function of observed earnings at some level t equals the proba-
bility that observed earnings zo = zε are less than t, or, equivalently, that planned
earnings z are less than t

ε :
13

H(t) ≡ P[zε < t] = E
ε
[P[zε < t|ε]] = E

ε
[P[z <

t

ε
|ε]]

Given the distribution of the unobserved component of planned earnings ω, the
distribution of planned earnings z depends on the net-of-tax rate, and is therefore
different to the left and to the right of the kink. For ε larger than t

k , the distribution

function of t
ε corresponds to the distribution function of planned earnings given

the net-of-tax rate to the left of the kink. For ε smaller than t
k , the distribution

function of t
ε corresponds to the distribution function of planned earnings given

the net-of-tax rate to the right of the kink.

H(t) =

∫ t
k

0
P[z <

t

ε
]g(ε)dε+

∫ +∞

t
k

P[z <
t

ε
]g(ε)dε =

∫ t
k

0
F̃2(

t

ε
)g(ε)dε︸ ︷︷ ︸

t
ε

above kink

+

∫ +∞

t
k

F̃1(
t

ε
)g(ε)dε︸ ︷︷ ︸

t
ε

below kink

,
(18)

where g(ε) represents the probability density function of the shock ε, F̃1(x) =
P[z < x] is the distribution function of planned earnings under the net-of-tax rate

τ c1 , and F̃2(x) = P[z < x] is the distribution function of planned earnings under

the net-of-tax rate τ c2 . We can decompose F̃2(x) using F̃1(x), the probability that
planned earnings are at the kink B(k) = P[z = k], and the distribution function

of planned earnings above the kink F̃2(x)|z>k = P[k < z < x]. This is done in
Equation (19). Figure 6 depicts that decomposition.

H(t) =

∫ t
k

0

(
F̃1(k) +B(k) + F̃2|z>k(

t

ε
)
)
g(ε)dε︸ ︷︷ ︸

t
ε

above kink

+

∫ +∞

t
k

F̃1(
t

ε
)g(ε)dε︸ ︷︷ ︸

t
ε

below kink

(19)

13Note that any positive level of observed earnings is consistent with any positive level
of planned earnings, as the absolute value of ε is unbounded.
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Figure 6. Distribution Function of Observed Earnings

(+∞ > ε > t
k ) −→ ( tε < k)

F̃1( tε)
ln z

f̃(ln z)

ln kln tε

(0 < ε < t
k ) −→ ( tε > k)

F̃1(k)

F̃2|z>k( tε)
B(k)

ln z

f̃(ln z)

ln k ln tε
Note: The graphs show the densities of planned earnings z. Shaded areas depict the
probability that observed earnings are below a certain level t, given the size of the shock
ε and the distribution of planned earnings z.

The density of observed earnings h(t) is such that h(t) ≡ dH(t)

dt
. Some algebra

yields:

h(t) =
1

k
B(k) g(

t

k
) +

∫ t
k

0
f̃2(

t

ε
)g(ε)

dε

ε
+

∫ +∞

t
k

f̃1(
t

ε
)g(ε)

dε

ε
, (20)

where f̃1 and f̃2 describe the density functions of planned earnings given the net-
of-tax rates τ c1 and τ c2 . Given the normality assumptions we have made, the density
of observed earnings with imperfect bunching takes the form:14

h(t) =
ς

t
φ(ς ln t− ς ln k − ν)B(k)+

sς

St
φ(

1

S
(ςs ln t− (λ2ς + νs)))Φ[

1

S
(ς2 ln t− S2 ln k + ςν − λ2s)]+

sς

St
φ(

1

S
(ςs ln t− (λ1ς + νs)))Φ[

1

S
(S2 ln k − ς2 ln t+ λ1s− ςν)],

(21)

where S2 = s2 + ς2, and B(k) = Φ[s ln k − λ2] − Φ[s ln k − λ1] so that we require
λ1 − λ2 > 0 to insure some bunching.

Figure 7 illustrates the effect of imperfect bunching on the distribution of
earnings in a simple case where the variance of the shock to planned earnings is
substantial.

We can now evaluate the amount of bunching around the kink following Saez’s
intuition. The imperfect nature of the bunching means that the earnings of individ-
uals who aimed for the kink are now distributed around the kink, as shown in Fig-
ure 8. This is captured by the first term in Equation (21): ς

tφ(ς ln t−ς ln k−ν)F (k).

14We derive the density in Appendix A



MAXIMUM LIKELIHOOD BUNCHING ESTIMATORS OF THE ETI 21

Figure 7. Perfect vs Imperfect Bunching

Note: The figure presents the observed density of taxable income in the case
of perfect bunching (the continuous line) and imperfect bunching (the dotted
line) for an example distribution of ω and a tax system with one kink.

Hence, the log normal model of the bunching error suggests that we consider an
interval of earnings values which covers a large percentage of the realizations of
the bunching error around the kink.

For the first term in Equation (21), we may require that−3 < ς ln z−ς ln k−ν <
3 to ensure that 99% of the bunching errors have been observed.15 We should
therefore consider all observed earnings in the range zk ≡ exp(−3−ν

ς )k < z <

exp(3+ν
ς )k ≡ zk. Whatever the precise interval, as long as it contains approxi-

mately all tax payers who aimed at the kink, i.e.,
∫ zk/k
zk/k

g(u)du ≈ 1 we find:

P[zk < z < zk] =

∫ zk

zk

h(t)dt

≈ F̃ (k) +

∫ zk

zk

∫ t
k

0
f̃2(

t

u
)g(u)

du

u
dt+

∫ zk

zk

∫ +∞

t
k

f̃1(
t

u
)g(u)

du

u
dt

= F̃ (k) + I2 + I1,

(22)

15This requires that the analyst has some ideas about the likely size of the variance of
the shocks σε, since it determines both ς and ν.



22 THOMAS.ARONSSON, KATHARINA.JENDERNY, AND GAUTHIER.LANOT

Figure 8. Decomposing the observed density h(t)

Note: The dotted line shows the observed density h(t) for the same example
as in Figure (7). The continuous lines describe the three components of h(t)
given in Equation (21).

where I2 and I1 are shorthand for the last two terms in the second row. We
can understand I2 as the proportion of observations such that desired earnings
are beyond the kink and such that the bunching error is consistent with observed
earnings in the observation range around the kink. A similar interpretation can
be given for I1.

We can then understand Saez’s expression for excess bunching since approxi-
mately:

F̃ (k) ≈ P[zk < z < zk]− I2 − I1, (23)

where the RHS measures the amount of ”net bunching”. The approximation we
used in Equation (4) can be used here too to approximate B(k):

B(k) ≈
(
z(τ c1 , z

−1(τ c2 , k))− k
)(
f̃(k; τ c2)γ(τ c1 , τ

c
2 , k) + f̃(k; τ c1)

)1

2
(24)

which provides a link back to Saez’s suggested measurement procedure where an
estimate of α is obtained by solving:

α
(
z(τ c1 , z

−1(τ c2 , k))− k
)(
f̃(k; τ c2)γ(τ c1 , τ

c
2 , k) + f̃(k; τ c1)

)1

2
=

P[zk < z < zk]− I2 − I1.
(25)
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Saez proposes to estimate I2 and I1 from their empirical analog above or below the
kink. Yet, this is difficult to rationalize in the context of imperfect bunching, since
the extent of the bunching error will be difficult to assess ex-ante. The estimation
of the values of the density functions that appear on the LHS of Equation (25)
seem even less obvious. In principle, the density of the bunching shock will make
the estimation of the density of desired earnings next to the kink difficult, as this
is the place where the density of ”observed” earnings is the least likely to approach
the density of ”desired” earnings. It follows that the typically applied method of
determining the bunching interval visually is not likely to be efficient.

Estimation of the model with imperfect bunching. With imperfect bunch-
ing, all earnings values have a positive density, and the likelihood can be expressed
in terms of h(t) only. The probability of observing a given earnings value in the
range around the kink, i.e., in some interval [z, z̄] such that z < k < z̄, takes the
form:

P[z < z < z̄] =

∫ z̄

z
h(t)dt.

In general, the log-likelihood for a sample of n observations of individual earnings,
zoi (in the interval [z, z̄] ) is then simply:

lnLIB,n =

n∑
i=1

lnh(zoi )− n lnP[z < zo < z̄]. (26)

The maximization of the likelihood above relative to its parameters λ1, λ2, s
and ς will provide the ML estimates λ̂1, λ̂2, and ŝ.16 Using the link between the
statistical model and the economic structure, the estimator for the ETI will again
take the form:

α̂IB,norm =
λ̂1 − λ̂2

ln(τ c1)− ln(τ c2)

1

ŝ
. (27)

In this case, we can estimate all the parameters of the model, in particular that of
the variance of the shock to optimal earnings, and fully control for the effects of
the shock ε when estimating the ETI. The ML estimation method is in principle
extendable to settings with more kinks, which would allow the researcher to com-
bine information of the whole observed income distribution and the tax system to
improve the estimate of α.

As in Section 3, we illustrate the method by applying the model of imperfect
bunching to the published binned data of Bastani and Selin (2014), displayed in
Figure 9, and Chetty et al. (2009, 2011), displayed in Figure 10. In both cases, we
reproduce the estimate of α̂, using the same estimation interval [z, z̄] around the
kink as the authors, and apply the ML estimator with imperfect bunching defined

16In addition to increased model complexity, Equation (26) necessitates the estimation
of an additional parameter, σε. The latter necessitates, in turn, some density in an interval
around the kink.
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Figure 9. Imperfect Bunching at a Kink, Application 1
data: Bastani and Selin (2014)

K = 325kSEK (≈ 35k e), α̂ = 0.028(0.0003), σε = 0.005(0.00007)

Note: The figure shows the observed data displayed in Bastani and Selin (2014), figure
6a (blue dots) and the prediction of the distribution of earnings in the interval given the
best fit parameters (red dots) based on the ML estimator in Equation (27). The dashed
line draws the theoretical density based on the ML estimation. The population are all
self-employed tax payers in Sweden between 2000 and 2008, whose taxable income is in a
range of 75k SEK around the first government tax kink point (at 325kSEK on average),
at which the marginal tax rate increases by 20 percentage points. The data is grouped in
income intervals of 1k. The elasticity estimate in Bastani and Selin (2014) is 0.024.

in Equation (27) instead of the authors’ original method based on visual detection
of the bunching interval and polynomial smoothing.

Again, we can compare the results of our bunching estimator to the original
estimates, now accounting for the diffused bunching the data displays. The ML
estimates are in both cases in the same order of magnitude, but slightly higher than
the original estimate. Based on the data used by Bastani and Selin (2014), the ML
estimate is α̂ = 0.028(0.0003), which exceeds their estimate of 0.024 by 16%. In the
case of the Chetty et al. (2009, 2011) data, the ML estimate is α̂ = 0.012(0.0002),
which exceeds the original estimate of 0.01 by 20%. As we model the optimization
frictions as an earnings shock, we are able to estimate their size. Our estimates
based on the Bastani and Selin (2014) data imply a standard deviation of the
earnings shock of σε = 0.005, which corresponds to 0.5% of the income level (at
the tax threshold, that is about 1.6kSEK). For the data used by Chetty et al.
(2009, 2011) the standard deviation of the shock is σε = 0.014, which corresponds
to 1.4% of the income level (about 3.7kDKK at the kink). While the estimate of
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Figure 10. Imperfect Bunching at a Kink, Application 2
data: Chetty et al. (2009, 2011)

K = 267.6kDKK (≈ 36ke), α̂ = 0.012(0.0003), σε = 0.014(0.0004) .

Note: The figure shows the observed data displayed in Chetty (2009), (blue dots) and the
prediction of the distribution of earnings in the interval given the best fit parameters (red
dots) based on the ML estimator in Equation (27). The dashed line draws the theoretical
density based on the ML estimation. The population are all wage earners in Denmark
between 1994 and 2001, whose taxable income is in a range of 50k SEK around the largest
tax kink point (at 267.6kDKK on average), at which the marginal tax rate increases by
roughly 13 percentage points. The data is grouped in income intervals of 1k DKK. The
elasticity estimate in Chetty et al. (2009, 2011) is 0.01.

σε for the Bastani and Selin (2014) data is only a third of the estimate based on
the data of Chetty et al. (2009, 2011), both estimates of optimization frictions are
small in absolute terms. They are consistent with Chetty (2012), who estimate
that a minimum level of optimization frictions of 0.33% to 0.5% of net income
is necessary in order to reconcile different elasticity estimates of hours, taxable
income, and macro-level income across a variety of studies.

In both cases, our estimates take into account the noise of the data outside the
kink area, reducing the importance of observations close to the kink in determining
the bunching interval. In the data used by Bastani and Selin (2014), the bunching
interval is clearly defined, leading to ML estimates of the interval that are relatively
close to the eyeballing/polynomial results. In the case of Chetty et al. (2009, 2011),
the choice of interval is less obvious, leading to larger differences between the two
estimators. Overall, however, the lognormal model fits the observed data well. We
take from this that our distributional assumptions do not come at a high cost,
while they offer several benefits, notably transparency of the method and a direct
estimator of the size of optimization frictions.
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5. A statistical model of Bunching in the Presence of a Notch

The presence of a notch, i.e., a discontinuity of the budget constraint such that
the tax due changes suddenly, inducing a spike in the marginal net-of-tax rate that
exceeds 100%, gives an additional feature to bunching: it may create a ”hole” in
the density of observed earnings. A simple example of a notch is the existence of a
fixed cost of work associated with the decision to participate in the labor market.
Under such a condition, no individual would be willing to start working if her
earnings were less than the fixed costs associated with working. In fact, because
individuals in general dislike work, we expect that the level of earnings required
to start working is larger than the amount exactly equal to the fixed cost. This
suggests that if all individuals face the same fixed costs, then the lower bound of
support of the earnings distribution is larger than the fixed costs. Below the value
of the fixed cost, the earnings density is equal to 0. The tax and benefit system
potentially creates similar features of the budget constraint although for larger
levels of earnings.

Perfect Bunching in the Presence of a Notch. The statistical model of
bunching we present now can be understood as an extension of the model of perfect
bunching we presented in Equation (11). We rely again on a parametric model
(based on the normal distribution) to describe the distribution of earnings in an
interval of the range of observed earnings [z, z̄]. We assume that both the kink
k and the region from k to some value e+ with zero earnings density belong to
this interval as well. Furthermore, the level e+ becomes a parameter of the model
which needs to be estimated. Hence we have: z < k ≤ e+ < z̄.

if z ∈ [z, ke−δ), then f1(ln z) = sφ(s ln z − λ1)/P[z, z̄],

if z ∈ [ke−δ, k], then F (ln k) = (Φ(s ln e+ − λ2)− Φ(s(ln k − δ)− λ1))/P[z, z̄],

if z ∈ (k, e+], then f0(ln z) = 0,

if z ∈ (e+, z̄], then f2(ln z) = sφ(s ln z − λ2)/P[z, z̄].

(28)
It is easy to verify that the model defined this way is coherent (the probabilities are
positive and sum to 1 over the range) as long as λ1−λ2 > s(ln k−δ−e+). If τ c1 ≥ τ c2
then e+ can take any values greater than k (but less than z̄); if instead τ c1 < τ c2
(i.e., the net-of-tax rate to the right of the kink is larger than the rate to the left of
the kink), the coherency condition requires that ln k− δ−α ln(τ c1/τ

c
2) < ln e+ < z̄.

We can interpret ln e+ − ln k + δ as the the ”width of the hole” to the right of
the kink and, when τ c1 < τ c2 , the condition above requires it to be larger than
−α ln(τ c1/τ

c
2) > 0.

This model yields a likelihood which shares a similar structure to Equation
(12). The parameters of the model, and the ETI in particular, can be estimated
using ML, following the same procedure as before.

In practice, the parameters may be difficult to identify, since we do not typically
observe a range with zero density. If the data is such that the smallest earnings
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observed above the kink is near the kink, then the maximum likelihood estimator
of e+ will be that value (or one slightly smaller), and the fitted model will be
nearly identical to the model of perfect bunching in the absence of a notch.

Imperfect Bunching in the Presence of a Notch. Following the same ap-
proach as we used to analyze imperfect bunching around a kink in Section 4, we
can analytically derive the density of observed earnings in the presence of a notch
assuming that the optimization friction takes the log normal form. We proceed
as in the previous section and derive the density of observed earnings from first
principles. Here the definition of the quantities changes to accommodate the hole
in the desired distribution of earnings between k and e+. Define F1(t) = P[z < t]
if t < k; B(k) = P[z = k] and F2(t) = P[e+ < z < t] if t > e+ and let F2(e+) = 0.
Finally note that k < e+ ⇔ t

k >
t
e+

.

The probability that observed earnings zε are less than some level, say t, takes
the form:

H(t) ≡P[zε < t] = E
ε
[P[zε < t|ε]] = E

ε
[P[z <

t

ε
|ε]] =∫ t

e+

0

(
F̃1(k) +B(k) + F̃2(

t

u
)
)
g(u)du+∫ t

k

t
e+

(
F̃1(k) +B(k)

)
g(u)du+

∫ +∞

t
k

F̃1(
t

u
)g(u)du.

(29)

Equation (29) relies on the fact that there are no observations between k and e+

under perfect bunching, and therefore F̃2(e+) = 0. We then deduce the density of
observed earnings in this case:17

h(t) =
1

k
B(k)g(

t

k
) +

∫ t
e+

0
f̃2(

t

u
)g(u)

du

u
+

∫ +∞

t
k

f̃1(
t

u
)g(u)

du

u
. (30)

Our earlier analysis of the imperfect bunching case with log-normal distributions
carries over to this context with a notch, and yields :

h(t) =
ς

t
φ(ς ln t− ς ln k − ν)B(k)+

sς

St
φ(

1

S
(ςs ln t− (λ2ς + νs)))Φ[

1

S
(ς2 ln t− S2 ln e+ + ςν − λ2s)]+

sσ

St
φ(

1

S
(ςs ln t− (λ1ς + νs)))Φ[

1

S
(S2 ln k − ς2 ln t+ λ1s− ςν)],

(31)

where B(k) = Φ[s ln e+ − λ2]−Φ[s ln k− λ1] and we now require s ln k− s ln e+ <
λ1 − λ2 so that bunching arises with positive probability. Figure 11 illustrates
the difference the notch would create relative to the earnings distribution in the
absence of a notch (all else constant).
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Figure 11. Imperfect Bunching Density with or without a Notch

Note: The figure shows in the dotted line the theoretical density h(t) in
the absence of a notch but with imperfect bunching. The continuous line
corresponds to the same density with a notch which creates a ”hole” in the
density without optimization friction between k and 1.5k. The vertical line
indicates the position of the kink (or the discontinuity) at k. The variance of
the optimization friction is the same for both densities.The log normal model
of optimization friction means that the bunching reaches a local mode to the
left of the position of the kink.

As in Sections 3 and 4, we apply our model and method to the data of a
published bunching study that is based on the polynomial approach. Here, we
use the data of self-employed individuals in Pakistan that Kleven and Waseem
(2013) have analyzed,18 accounting for both imperfect bunching and the notch,
and thus producing comparable estimates to theirs. In doing so, we focus on on

17Note that the existence of a ”hole” in the support of the density translates into distinct
bounds of integration

18As in Sections 3 and 4, we obtain the binned data directly from the published his-
togram, which in this case is Figure A.5 in Kleven and Waseem (2013). As the PDF file
of this publication does not contain exact graphics information and the authors were not
able to provide the data points, we measure the data points’ distances from the horizontal
axis and the vertical axis manually. Again, we re-scale the data to be densities instead
of the number of tax payers, and can then fit the theoretical density to the observed one.
The data in Figure 12 is grouped in small bins of width 2.5kPR. We refer to their paper
for further detail on the particularities of the income tax schedule in Pakistan.
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Figure 12. Imperfect Bunching at a Notch Application 1
data: Kleven and Waseem (2013)

K = 400kPR, α̂ = 0.41(0.03), σ̂ε = 0.007(0.0003), ê+ = 406(0.022)

Note: Application of ML bunching estimator at a notch with imperfect bunching. Our
result compares to the authors’ authors’ upper bound estimate of 0.194 and dominated
range bound estimate of 410kPR. The figure shows the observed data (blue dots) and the
prediction of the distribution of earnings in the interval given the best fit parameters (red
dots). The dashed line draws the theoretical density at the MLE.

the kink at 400k Pakistani Rupees (PR). Figure 12 illustrates the fit of our model
in the earnings range around the 400kPR kink. The ML estimate of the ETI is
0.41(0.03), which is more than twice as large as the authors’ upper bound estimate
of 0.194.19 Our estimate of optimization frictions, the standard deviation of the
earnings shock σε, is 0.0007, which corresponds to 0.7% of the respective income
level. Like the estimates in Section 4, these frictions are small. Our estimate of
the first level of earnings which is chosen after the notch is 406kPR. Kleven and
Waseem (2013) calculate the dominated range of earnings to extend up to 411kPR.
In our estimation, while we do not impose that restriction, the model discovers a
minimum level of desired earnings which would be consistent with it. Note that the
distribution of the shock, and in particular its variance σ2

ε , plays a substantial role
also in the determination of e+. The frictions explain both the imperfect bunching
around 400kPR and the reduced density after the kink and around e+ (the trough
of the density to the right of 400kPR). The size of the estimated variance of the
earnings shock σε depends on the width of the bunching interval (which is narrow

19See Figure VI and Table II in Kleven and Waseem (2013).
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in this case). The model predicts that some density of the population would be
observed directly after the kink. The observed density directly after the kink is
interpreted as tax payers who planned to be at the kink, thereby increasing our
elasticity estimate as compared to Kleven and Waseem (2013). Even though the
observed density is more variable than the data in the previous applications, our
parametric model reproduces the main features of the data.

6. Heterogeneity in the ETI

Saez (2010) argues that the bunching approach applies even when the popula-
tion is characterized by heterogeneity both in terms of the disutility of work and
in terms of the ETI. In this case the bunching estimator measures the average ETI
among those who are bunching. The log-normal model can be extended to provide
a specific example of this case.20

In addition to the heterogeneity in terms of lnω, we now assume that the
parameter α, the ETI, is independently (from lnω) and identically normally dis-
tributed in the population, i.e., α ∼ N (ᾱ, σ2

α), for σ2
α ”small” enough. That is

we are assuming that α is distributed among individuals around a mean value
ᾱ but we are requiring that P[α < 0] is close to zero. In what follows we will
set α = ᾱ + α̃, with α̃ ∼ N (0, σ2

α). Intuitively, since the response to taxation
is heterogeneous, more responsive individuals, i.e., individuals with values of α
larger than the average, are likely to be located below the kink, while individuals
with values of α less than the average are likely to be located above the kink.21

The selection/sorting is not exact since the disutility of work and the individual
wages introduce additional sources of randomness that compete to determine the
observed level of earnings.

The variability of α modifies the components of the model, and in particular
the expression of the probability to observe a tax payer at the kink, which becomes:

B = P[z = k] = P[z(τ c2 , ω) < k ≤ z(τ c1 , ω)]

= P[u1 ≥ ln k − ᾱ ln τ c1 − µ, u2 < ln k − ᾱ ln τ c2 − µ],

where u1 ≡ α̃ ln τ c1 − lnω − µ and u2 ≡ α̃ ln τ c2 − lnω − µ.
Allowing for some heterogeneity in the parameter α has several consequences:

it generates heteroscedasticity since the variance of the log-earnings vary depending
on whether the observation is to the left or the right of the kink. To the left of
the kink, the variance of the log-earnings is equal to σ2

α(ln τ c1)2 + σ2 while it is
σ2
α(ln τ c2)2 + σ2 to the right of the kink. Furthermore, for a given individual, the

20Blomquist and Newey, 2017 show that if α is heterogeneous, the bunching estimator
may not be well-defined if the density of the distribution of unobserved characteristics
f(ω) is not smooth. By assuming a log-normal distribution, we assume away that case
here.

21For this intuition to be correct it must be the case that there are individuals on either
side of the kink.
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covariance between (latent log-)earnings to the right and to the left of the kink is
σ2
αln τ c1 ln τ c2 +σ2, which implies that the correlation between log-earnings on either

side of the kink is different from one.
The probability to be at the kink can be expressed in terms of the bivariate

normal distribution.

P[u1 ≥ ln k − ᾱ ln τ c1 − µ, u2 < ln k − ᾱ ln τ c2 − µ] =

Φ[
ln k − ᾱ ln τ c2 − µ√
σ2
α(ln τ c2)2 + σ2

]− Φ2[
ln k − ᾱ ln τ c1 − µ√
σ2
α(ln τ c1)2 + σ2

,
ln k − ᾱ ln τ c2 − µ√
σ2
α(ln τ c2)2 + σ2

, ρ],
(32)

where Φ2 is the distribution function of the bivariate normal distribution, and

ρ ≡ σ2
αln τ c1 ln τ c2 + σ2√

σ2
α(ln τ c1)2 + σ2

√
σ2
α(ln τ c2)2 + σ2

. (33)

ρ is positive for all values of the parameters if ln τ c1 and ln τ c2 share the same sign.
Finally observe that the probability given in Equation (32) is always positive.

Thanks to the normality assumptions, much of the analysis we provide earlier
on applies equally to this heteroscedastic model. The model with nearly perfect
bunching developed in Section 3 is easily derived in this heteroscedastic case,
allowing for variances of the unobserved components which vary on either side
of the kink, such that the probability to be at the kink is given exactly by the
expression in Equation (32). Furthermore, the derivation of the density of earnings
in the imperfect bunching case applies directly as it is presented in Appendix A.
The term F (k), which appears in Equation (A.1), is equal to the expression given
in (32).

Let us define the parameters λ1, λ2, s1 and s2 are such that:

1

s1
≡
√
σ2
α(ln τ c1)2 + σ2,

1

s2
≡
√
σ2
α(ln τ c2)2 + σ2,

λ1 ≡ s1ᾱ ln τ c1 + s1µ,

λ2 ≡ s2ᾱ ln τ c2 + s2µ.

(34)

Based on the model assumptions, we deduce that s1 > s2 and s2
s1
≤ ρ < s1

s2
.

Therefore, given a set of parameter estimates for ᾱ, µ, σ2
α and σ2, we can derive an

estimate of the expected ETI for the individuals attempting to locate exactly at the
kink. As such, we wish to evaluate E[α|u1 ≥ ln k−ᾱ ln τ c1−µ, u2 < ln k−ᾱ ln τ c2−µ].
Let

a ≡ ln k − ᾱ ln τ c1 − µ
b ≡ ln k − ᾱ ln τ c2 − µ
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In the Appendix C, we show that individuals who wish to locate at the kink are
likely to exhibit a larger response than the average in the population, i.e., the
mean ETI among those at the kink, E[α|u1 ≥ a, u2 < b], satisfies the following
weak inequality:

E[α|u1 ≥ a, u2 < b] ≥ ᾱ. (35)

This is an intuitive result: those who react more to marginal taxation are more
likely to be restricted by the kink point than those who exhibit a smaller behavioral
response, ceteris paribus. It is in this sense that the bunching estimator is local in
nature. In the limit, if σ2

α is equal to 0, then ρ = 1 and E[α|u1 ≥ a, u2 < b] = ᾱ,
which conforms with the homogeneous case .

The two applications that we used to illustrate the analysis, see Figures 9 and
10, do not leave much space for any sizeable variability of α in the population.
Under the normal model we have developed, for α to take positive value with a
large probability, we must limit α’s standard deviation so that σα is significantly
smaller than ᾱ, for example if σα ≤ ᾱ/2.5 and ᾱ > 0 more than 99% of the values
of α are positive.

As a further illustration, we estimate the model with heterogeneity using data
from Bastani and Selin (2014). Starting from the maximum likelihood param-
eters estimated for the homogenous model with imperfect bunching the likeli-
hood increases until ·σα = 0.0076 leaving the maximum likelihood estimates of
all other parameters essentially unchanged from their estimated value under the
assumption of homogeneity. Using these parameters values we can then calcu-
late the expected ETI at the kink, as described in equation (C.2). We esti-
mate ᾱ at 0.028 and we calculate that the average of the ETI at the kink is
E[α|u1 ≥ ln k − ᾱ ln τ c1 − µ, u2 < ln k − ᾱ ln τ c2 − µ] = 0.03. Accounting for hetero-
geneity in this particular instance does not produce significant differences between
the mean ETI and the mean ETI at the kink. Our findings suggest therefore that
there is little evidence supporting substantial ETI heterogeneity in this case.

7. Summary and Discussion

In this paper, we have presented a structural alternative to the bunching ap-
proach of measuring the ETI. Although the bunching approach is convenient (as it
avoids several difficult problems characterizing the IV-regression approach to the
ETI), the literature to date relies on more or less ad-hoc procedures of measur-
ing the bunching range and the counter-factual density. The statistical properties
of the prevailing non-parametric methods of identifying the bunching interval are
not fully described, and there is no clear distinction between unobserved behav-
ioral components and measurement/optimization errors. The latter is particularly
problematic since individuals bunch in a neighborhood around the kink (and not
exactly at the kink), and this excess mass around the kink is used for purposes
of identification. Our parametric alternative is related to the economic model
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used by Saez (2010) in his seminal contribution to the bunching estimator (and
subsequently used by other researchers). We use this model to characterize the
preferences as well as the nonlinear budget constraint underlying the formation
of income, and show how the model can accommodate measurement/optimization
errors as well as non-convexities in the budget set (such as those created by notches
in the tax system). The parameters of the model (including the fixed preference pa-
rameters as well as the parameters of the assumed distributions of the unobserved
components) can be estimated simultaneously by using the maximum likelihood
method.

Our approach has several advantages compared to the prevailing methodology
of identifying the ETI based on bunching. One is the clear relationship between
the underlying theory of income formation and the statistical problem to be solved.
As such, the behavioral assumptions, functional form assumptions, and distribu-
tional assumptions are clearly stated, and their contributions to the statistical
problem are easy to describe and understand. This means, among other things,
that we can explicitly account for the presence and estimate the size of measure-
ment/optimization errors when estimating the size of the bunching interval. Since
people seem to bunch in an interval around the tax threshold, it is key to distin-
guish between measurement/optimization errors and random components of the
utility function. Furthermore, our parametric approach is flexible and can eas-
ily be extended to include unobserved heterogeneity in the ETI as well as more
comprehensive models of income formation with several behavioral margins. It is
also straightforward to extend the analysis by adding covariates to the underlying
economic model.

The take-home message of the paper is that the parametric approach provides
a transparent alternative to the existing non-parametric methods, since the statis-
tical model is derived from the underlying model of income formation. As such,
the methodological changes proposed here are reminiscent of those in the labor
supply literature in the late 1970s and, of course, motivated by the same desire
to understand the various mechanisms behind income formation. Without such
information, which requires a well-specified parametric model, very little can be
said about the consequences of taxation for income formation and welfare. The
role of the present paper is to provide a methodological route through which this
is made possible.

We would like to emphasize four results here. First, based on data from two
published papers where the excess mass at a kink point is used for purposes of
identification, our parametric estimates of the ETI are higher than the estimates
presented in these studies when we account for the diffused nature of bunching,
but remain in the same order of magnitude. If we do not allow for imperfect
bunching, the estimates are much smaller as some of the bunching mass is not
accounted for. This result suggests that our distributional assumptions do not
come at a high cost, while instead offering several benefits, and underlines the
importance of accounting for frictions in a structural way. Second, under a notch,
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the structural estimate of the ETI can differ substantially from those obtained
using conventional approaches. Third, the estimated optimization frictions are
small. Their standard deviation ranges between 0.5% and 1.4% of taxable income
in our applications. Fourth, by allowing for (unobserved) heterogeneity in the ETI,
we find that individuals whose desired taxable income equals the income at the
tax kink have a higher ETI than average.

Future research may take several directions, and we will briefly discuss two of
them here. First, as mentioned above, it is interesting – and arguably relevant –
to use the methodology proposed here to estimate more realistic models of income
formation with several behavioral margins. This can be exemplified by a frame-
work where the labor income and capital income are determined simultaneously
through labor supply and savings behavior. Note that this issue is relevant regard-
less of whether labor income and capital income are taxed jointly or separately.
Second, the methodological framework developed here is suitable for analyzing the
consequences of complex tax reforms on income formation (as well as from the
perspective of economic efficiency). In our view, this is one of the major advan-
tages of a structural approach to income formation since a single measure of the
ETI may not be a sufficient statistic for tax policy design.
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Appendix A. Earnings Density with Imperfect Bunching

We develop here the general heteroscedastic distribution of the model with
imperfect bunching. This means that the variance of (log-) earnings to the left of
the kink is different from the variance to the right of the kink.

Starting point is the density of observed earnings h(t):

h(t) =
1

k
F (k)g(

t

k
) +

∫ t
k

0
f2(

t

u
)g(u)

du

u
+

∫ +∞

t
k

f1(
t

u
)g(u)

du

u
.

The first term corresponds to the distribution of observed earnings t given that
desired earnings are located at the kink precisely. The other two terms correspond
to observations such that desired earnings, i.e. t/u, are below or above the kink,
but the shock is such that observed earnings are t exactly.

The last two terms take the general form:∫ b

a
f(
t

u
)g(u)

du

u
=

∫ t/a

t/b
f(v)g(

t

v
)
dv

v

Given the normality assumptions, f(v) = s
vφ(s ln v− λ) and g(u) = ς

uφ(ς lnu− ν)
where φ() is the standard normal density function. In this case the integrand
becomes:

f(v)g(
t

v
)
1

v
=
sς

S

S

vt
φ(S ln v − m

S
))φ(

1

S
(sς ln t− (λς + νs))),

where S2 = s2 + ς2, m = ς2 ln t + λs − νς. Hence m depends on ln t. Finally we
can integrate:∫ t/a

t/b
f(v)g(

t

v
)
dv

v
=

sς

St
φ(

1

S
(ςs ln t− (λς + νs)))

[
Φ[S ln

t

a
− m

S
]− Φ[S ln

t

b
− m

S
]
]
.

In terms of the standard normal p.d.f. and c.d.f., the second and third components
in the earlier expression become:∫ t

k

0
f2(

t

u
)g(u)

du

u
=

∫ +∞

k
f2(v)g(

t

v
)
dv

v
=

s2ς

S2t
φ(

1

S2
(ςs2 ln t− (λ2ς + νs2)))

[
1− Φ[S2 ln k − m2

S2
]
]
,

and ∫ +∞

t
k

f1(
t

u
)g(u)

du

u
=

∫ k

0
f1(v)g(

t

v
)
dv

v
=

s1ς

S1t
φ(

1

S1
(ςs1 ln t− (λ1ς + νs1)))Φ[S ln k − m1

S1
],
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where S2
k = s2

k + ς2, and mk = ς2 ln t + λksk − νς for k = 1, 2. This provides us
with an analytical expression for the observed density of earnings given our model
of imperfect bunching:

h(t) =
1

k
F (k)g(

t

k
) +

∫ t
k

0
f2(

t

u
)g(u)

du

u
+

∫ +∞

t
k

f1(
t

u
)g(u)

du

u

=
ς

t
φ(ς ln t− ς ln k − ν)F (k)+

s2ς

S2t
φ(

1

S2
(ςs2 ln t− (λ2ς + νs2)))Φ[

1

S2
(ς2 ln t− S2

2 ln k + ςν − λ2s2)]+

s1ς

S1t
φ(

1

S1
(ςs1 ln t− (λ1ς + νs1)))Φ[

1

S1
(S2

1 ln k − ς2 ln t+ λ1s1 − ςν)].

(A.1)

Appendix B. The Conditional Expectation of a Truncated Normal
Distribution

This is a technical result that can be found elsewhere in the literature. We
describe it here for completeness sake.

Assume that the component of the vector u = (u1, u2) are distributed according
to a bivariate normal distribution with zero means, unit variances and correlation
ρ. Σ is the matrix which collects all the variance and covariance terms. We wish
to find the expression for the moments:

E[u1|{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}],
E[u2|{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}].

Denote Ψu(t) the characteristic function of the conditional distribution of u
given {a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2} evaluated at t = (t1, t2). The definition of
Ψu(t) yields:

P[{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}]Ψu(t) =

exp(t′Σt)

∫ b1

a1

∫ b2

a2

exp(−1

2
(u− iΣt)′Σ−1(u− iΣt))du2du1.

A change in variable such that v(u, t) ≡ u− iΣt, yields a relatively simple expres-
sion in terms of the bivariate normal distribution Φ2(w, z, ρ):

Ψu(t) ∝ exp(t′Σt)
{

Φ2(v1(b1, t), v2(b2, t), ρ)− Φ2(v1(a1, t), v2(b2, t), ρ)−
Φ2(v1(b1, t), v2(a2, t), ρ) + Φ2(v1(a1, t), v2(a2, t), ρ)

}
.

The derivatives of the characteristic function determine the moments of the
distribution since:

∂Ψu(0)

∂t
= iE[u].
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Applying this property to the expression for Ψu, we find that:

P[{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}]E[u1|{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}] =

− φ[b1]
{

Φ[
b2 − ρb1√

1− ρ2
]− Φ[

a2 − ρb1√
1− ρ2

]
}

+ φ[a1]
{

Φ[
b2 − ρa1√

1− ρ2
]− Φ[

a2 − ρa1√
1− ρ2

]
}

− ρφ[b2]
{

Φ[
b1 − ρb2√

1− ρ2
]− Φ[

a1 − ρb2√
1− ρ2

]
}

+ ρφ[a2]
{

Φ[
b1 − ρa2√

1− ρ2
]− Φ[

a1 − ρa2√
1− ρ2

]
}
.

(B.1)

The expression can then be specialised to satisfy the bounds on the truncation
intervals given in the text.

Appendix C. Conditional Expectation of the ETI in the
Heteroscedastic Case

In this appendix, we give some details about the calculation of the expected
value of the random parameter α as it is given in Equation (C.2).

We need to describe the the conditional expectation of α̃ given u1 and u2,
where u1 ≡ α̃ ln τ c1 + lnω − µ and u2 ≡ α̃ ln τ c2 + lnω − µ. We set the variance of
lnω − µ to σ2.

Since α̃, u1 and u2 are jointly normally distributed with zero means, the con-
ditional mean of α̃ given u1 and u2 takes the form:

α̃ = δ1u1 + δ2u2,

where the parameters δ1 and δ2 are deduced from the variance covariance matrix
of α̃, u1 and u2.

Given our model assumptions, the latter takes the form:

σ2
α

 1 ln τ c1 ln τ c2
ln τ c1 (ln τ c1)2 + σ2

σ2
α

ln τ c1 ln τ c2 + σ2

σ2
α

ln τ c2 ln τ c2 + σ2

σ2
α

(ln τ c2)2 + σ2

σ2
α

 .
δ1 and δ2 are then such that 22:

[
δ1

δ2

]
=

[
(ln τ c1)2 + σ2

σ2
α

ln τ c1 ln τ c2 + σ2

σ2
α

ln τ c2 + σ2

σ2
α

(ln τ c2)2 + σ2

σ2
α

]−1 [
ln τ c1
ln τ c2

]
,

which yields: [
δ1

δ2

]
=

1

ln τ c1 − ln τ c2

[
θ
−θ

]
.

22see for example Property B.43 in Gouriéroux et al. (1995).
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The result in section (B) of the appendix, allows us to determine that:

E[s1u1|u1 ≥ a, u2 < b]P[u1 ≥ a, u2 < b] =

φ[s1a]Φ[
s2b− ρs1a√

1− ρ2
]− ρφ[s2b]Φ̄[

s1a− ρs2b√
1− ρ2

],

and

E[s2u2|u1 ≥ a, u2 < b]P[u1 ≥ a, u2 < b] =

− φ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
] + ρφ[s1a]Φ[

s2b− ρs1a√
1− ρ2

],

where in our context a ≡ ln k − ᾱ ln τ c1 − µ, b ≡ ln k − ᾱ ln τ c2 − µ, with b > a, and
Φ̄[x] ≡ 1− Φ[x]. These two results together lead to

P[u1 ≥ a, u2 < b]E[α|u1 ≥ a, u2 < b] = P[u1 ≥ a, u2 < b] ᾱ+

1

ln τ c1/τ
c
2

θ

s1

(
φ[s1a]Φ[

s2b− ρs1a√
1− ρ2

]− ρφ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
]
)
−

1

ln τ c1/τ
c
2

θ

s2

(
ρφ[s1a]Φ[

s2b− ρs1a√
1− ρ2

]− φ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
]
)
,

(C.1)

with θ ≡ 1 + σ2
α
σ2
ε

ln τ c1 ln τ c2 . This expression then simplifies to :

P[u1 ≥ a, u2 < b]
{
E[α|u1 ≥ a, u2 < b]− ᾱ

}
=

θ

ln τ c1/τ
c
2

{
(

1

s1
− ρ

s2
)φ[s1a]Φ[

s2b− ρs1a√
1− ρ2

] + (
1

s2
− ρ

s1
)φ[s2b]Φ̄[

s1a− ρs2b√
1− ρ2

]
}
.

(C.2)

Finally we determine the sign of the correction for the selection among indi-
viduals at the kink. From equation (C.2) it is clear that the following expression
determines the sign of this selection:

C ≡ (
1

s2
1

− ρ

s2s1
)s1φ[s1a]Φ[

s2b− ρs1a√
1− ρ2

] + (
1

s2
2

− ρ

s1s2
)s2φ[s2b]Φ̄[

s1a− ρs2b√
1− ρ2

].

By construction, we know that A ≡ 1
s22
− ρ

s1s2
and B ≡ 1

s21
− ρ

s2s1
are such that:

A > 0 > B and A+B ≥ 0 and therefore A > |B|. Denote κ1 ≡ s1φ[s1a]Φ[ s2b−ρs1a√
1−ρ2

]

and κ2 ≡ s2φ[s2b]Φ̄[ s1a−ρs2b√
1−ρ2

] and both quantities are non negative. Hence we can

rewrite C = Bκ1 +Aκ2.
Observe furthermore that:

dFk
d ln k

= κ2 − κ1,

which describe how the proportion of individuals at the kink varies with the posi-
tion of the (log) kink, ln k.
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If κ2 > κ1, i.e. dFk
d ln k > 0 , then C is positive.

If instead κ2 ≤ κ1 and this is equivalent to:

s2

s1
>
φ[s1a]Φ[ s2b−ρs1a√

1−ρ2
]

φ[s2b]Φ̄[ s1a−ρs2b√
1−ρ2

]
,

and this allows us to find a lower bound for C. Indeed we can express C as:

C = φ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
]
(
Bs1

φ[s1a]Φ[ s2b−ρs1a√
1−ρ2

]

φ[s2b]Φ̄[ s1a−ρs2b√
1−ρ2

]
+As2

)
≥ φ[s2b]Φ̄[

s1a− ρs2b√
1− ρ2

]
(
Bs1

s2

s1
+As2

)
= κ2(A+B) ≥ 0.


