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Simple Summary: To better prevent/combat recurrence and identify predictive/targetable markers 
upon diagnosis, we performed whole-exome sequencing (WES) of primary tumours and relapses 
of human papillomavirus positive (HPV+) tonsillar and base of tongue cancer (TSCC/BOTSCC) on 
patients treated with curative intent, with and without relapse. A specifc deletion in the CDC27 
gene was observed only in the primaries of 5/17 patients that recurred but in none of the 18 patients 
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without recurrence. Furthermore, three specifc variants and 26 mutated genes enriched in mucins 
Holzhauser, S.; Dalianis, T.; Näsman, were identifed in at least 30% of all primaries irrespective of recurrence. To conclude, a specifc
A.; Mints, M. Whole-Exome 

CDC27 deletion could be specifc for recurrent HPV+ TSCC/BOTSCC, while BCLAF1, AQP7 and 
Sequencing of HPV Positive Tonsillar 

other globally mutated genes could be of signifcance for further investigation. 
and Base of Tongue Squamous Cell 

Carcinomas Reveals a Global 
Abstract: To identify predictive/targetable markers in human papillomavirus positive (HPV+) ton-Mutational Pattern along with 
sillar and base of tongue cancer (TSCC/BOTSCC), whole-exome sequencing (WES) of tumours of Relapse-Specifc Somatic Variants. 
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1. IntroductionAttribution (CC BY) license (https:// 

creativecommons.org/licenses/by/ Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell 
4.0/). carcinoma (TSCC/BOTSCC) patients have a better prognosis compared to those with 
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HPV-negative (HPV−) TSCC/BOTSCC and other head and neck squamous cell carcinoma 
(HNSCC), but 15–20% still relapse [1–4]. Since the incidences of HPV+ TSCC and BOTSCC, 
the two oropharyngeal squamous cell carcinoma (OPSCC) subsites, where HPV is mainly 
found, are rising epidemically in many Western countries, improved therapeutic options 
are crucial for these patients [5–12]. Today, HPV+ TSCC/BOTSCC patients are often offered 
induction or concomitant chemoradiotherapy, but this has still not improved the survival 
of those with poor prognosis when compared to the previously given radiotherapy and 
surgery highlighting the need for new therapeutic options [13,14]. For the majority of 
HPV+ patients that have a good prognosis, the main clinical challenge is how to de-escalate 
treatment to decrease side effects while maintaining survival [14]. 

To improve patient stratifcation and individual tailoring of therapy, efforts have been 
made to uncover novel prognostic markers in HPV+ TSCC/BOTSCC/OPSCC [14–39]. 
Stage, age, HPV16 E2 mRNA expression, high CD8+ tumour infiltrating lymphocyte (TIL) 
counts, and many other molecular markers have been proposed as predictive of prognosis, 
and models combining multiple markers have been shown to identify 20–56% of all patients 
with a >95% probability of 3-year disease-free survival [15,17,19,20,22,26,28–39]. However, more 
biomarkers are required to improve these models and accurately identify a larger proportion of 
patients with a likely excellent prognosis so that these can receive de-escalated treatments. 

On the other side of the spectrum, there is a signifcant need for druggable markers that 
can be used in targeted therapy—as frst-line treatment for patients with poor prognosis 
and as salvage treatment for patients with recurrent disease [18]. In breast and urothelial 
cancers, the development of targeted therapy has been guided by identifying commonly 
mutated genes [40,41]. Targeting phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha (PIK3CA) in breast cancer and fbroblast growth factor 3 (FGFR3) in urothelial 
cancer was attempted in clinical trials, e.g., NCT04524000 and NCT03390504, and is now 
approved for metastatic disease in these cancer types. 

Similar approaches, including phosphoinositide 3-kinase (PI3K) inhibitors, have also been 
initiated in HNSCC patients, including OPSCC, with recurrent disease (e.g., NCT01602315 
and NCT02537223). Notably, in OPSCC, it is now well known that PIK3CA and FGFR3 are 
more frequently mutated in HPV+ tumours, while TP53 is more frequently mutated in 
HPV− tumours [18,37]. Moreover, the presence of mutated PIK3CA or FGFR3 has been 
shown to have prognostic signifcance in a subset of cases [15,18,39]. 

Specifcally, in HPV+ OPSCC, there are a number of global mutation studies trying 
to map the differences in mutational patterns between tumours of recurrent versus nonre-
current patients [22,32]. However, results differ between studies, suggesting that further 
investigations are needed in order to confdently say which mutations should be focused 
on for diagnostic and therapeutic purposes. 

To further contribute to the knowledge in the field and find potential predictive 
and targetable markers, we performed whole-exome sequencing (WES) of primary HPV+ 

TSCC/BOTSCC in patients without and with local or distant recurrence, all treated with 
curative intent. In addition, WES was performed on five local recurrences and five distant 
metastases from the above patients. We focused on identifying genes and variants that were 
uniquely mutated in each cohort, in addition to detecting genes commonly mutated in both 
groups, the latter being representative of a general HPV+ TSCC/BOTSCC mutational pattern. 

2. Materials and Methods 
2.1. Patients, Samples and Defnition of HPV-Positive Status 

Twenty HPV+ TSCC/BOTSCC (ICD-10 codes C09.0-9 and C01.9 resp.) patients with 
local or distant recurrent disease (patients with recurrence) and 20 stage and age-matched 
patients without recurrence, fully treated 2000–2014 at Karolinska University Hospital, 
with formalin-fxed paraffn-embedded (FFPE) samples from the patients’ primary tumours 
were initially included. In addition, FFPE material from 5 local recurrences and 5 distant 
metastases was available from the patients with recurrence. 
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Having an HPV+ TSCC/BOTSCC was defned as having a primary tumour that was 
both HPV DNA positive and overexpressed p16INK4A (p16) [42]. Data on the presence of 
HPV DNA and p16 overexpression in patient samples and treatment and clinical outcome 
of these patients were derived from previous studies [7,10,28,43]. In those studies, DNA 
was extracted, and HPV DNA status was assayed by PCR-based methodology as described 
before [3,7,10,28,43]. Briefy, all samples were assayed using a multiplex bead-based assay 
for 27 different HPV types [7]. These HPV types were: HPV 6, 11, 16, 18, 26, 30, 31, 33, 35, 
39, 42, 43, 44, 45,51, 52, 53, 56, 58, 59, 66, 67, 68, 69, 70, 73 and 82, and β-globin was included 
as a positive control for the presence of DNA, as described previously [7]. Only samples 
with a β-globin median fuorescent value (MFI) of ≥30 were considered to have suffcient 
DNA quality to be assessed for HPV status and were included in this study. As a positive 
control for HPV DNA, DNA from the HPV16 positive SiHa cell line was included in the 
PCR and MagPix analysis. 

In the same studies, p16 expression was examined using the monoclonal antibody 
(mAb) clone JC8 (Santa Cruz Biotech, Santa Cruz, CA, USA) and having >70% positivity 
was defned as having a p16 positive sample [7,10,28,43]. 

This study was conducted according to ethical permissions 99-237, 2005/431-31/4, 
2009/1278-31/2; 2017/1035-31/2 and 2018/870-32 from the Stockholm Regional Ethical 
Review Board. 

2.2. Laser Microdissection and DNA Extraction 

In order to enrich the tumour tissue and to also obtain normal tissue for more accurate 
mutation calling, FFPE samples from both the primary tumours and the available metas-
tases were laser micro-dissected using a Leica LMD 7000 microscope (Leica Microsystems, 
Wetzlar, Germany) and the Laser Microdissection System (version 7.6.5684) [44]. This 
way, we estimated having obtained >90% tumour tissue and virtually 100% normal tissue 
in the separate samples before DNA was extracted. DNA extraction was performed as 
described previously [8,10,28,43]. 

2.3. Library Preparation and Whole-Exome Sequencing 

From the DNA extracted above, an amount of 40–250 ng DNA from each sample was 
used for the library preparation with KAPA HyperPlus (Roche, Pleasanton, CA, USA) ac-
cording to the instructions of the manufacturer with some modifcations. More specifcally, 
fragmentation was performed with 12.5 min incubation, and xGen Duplex Seq adapters 
(3–4 nt) unique molecular identifers (UMI) at 0.6 mM (Integrated DNA Technologies, 
Coralville, IA, USA) were used for the ligation, and xGen Indexing primers (2 mM) with 
unique dual indices (Integrated DNA Technologies, Coralville, IA, USA) were used for 
PCR amplifcation (5–13 cycles depending on input amount of DNA). Target enrichment 
was performed in a multiplex fashion with a library amount of 375 ng (4-plex). The 
libraries were hybridised to the capture probe Comprehensive Exome Panel, with the 
addition of Twist Universal Blockers and blocking solution for 16 h (all, Twist Bioscience, 
South San Francisco, CA, USA). The post-capture PCR was performed with xGen Li-
brary Amp Primer (0.5 mM, Integrated DNA Technologies, Coralville, IA, USA) for 10 cy-
cles. Quality control was performed with the Quant-iT dsDNA HS assay (Invitrogen, 
Waltham, MA, USA) and TapeStation HS D1000 assay (Agilent, Santa Clara, CA, USA). Se-
quencing was performed on NovaSeq 6000 (Illumina, San Diego, CA, USA) using a paired-
end 150 nt readout, aiming at 60 M read pairs per sample. Demultiplexing was done using 
Illumina bcl2fastq v2.20. 

2.4. Alignment, Variant Calling and Filtering 

BALSAMIC v6.0.1 [45] was used to analyse each of the FASTQ fles derived from 
sequencing. In summary, we frst quality controlled FASTQ fles using FastQC v0.11.5 [46]. 
Adapter sequences and low-quality bases were trimmed using fastp v0.20.0 [47]. Trimmed 
reads were mapped to the reference genome hg19 using BWA-MEM v0.7.15 [48]. The 
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resulting SAM fles were converted to BAM fles and sorted using samtools v1.6 [49,50]. Du-
plicated reads were marked using Picard tools MarkDuplicates v2.17.0 [51] and promptly 
quality controlled using CollectHsMetrics, CollectInsertSizeMetrics and CollectAlignt-
mentSummaryMetrics functionalities. Results of the quality-controlled steps were sum-
marised by MultiQC v1.7 [52]. For each sample, small somatic mutations were called using 
VarDict v2019.06.04 [53], and structural variants were called using Manta v1.3.0 [54]. All 
variants were fnally annotated using Ensembl VEP v100 [55] and vcfanno v0.3.2 [56]. 

For variant fltering, the following criteria was applied: read depth (DP) > 50, alterna-
tive allele depth (AD) > 10, AF > 0.1 (10%) and GNOMAD AF_popmax [57] < 0.005. 

In samples with paired normal material, only variants tagged as somatic, likely somatic 
and strongly somatic by VarDict were kept for downstream analysis. In samples without 
paired normal material, all variants were considered potentially somatic and thus kept 
for analysis. For exact parameters used for each of the software, please refer to https: 
//github.com/Clinical-Genomics/BALSAMIC accessed on 20 December 2021 [45]. 

Further fltering was applied to only studying protein-altering variants. Variants 
were restricted to transcripts in protein-coding genes, intronic variants and synonymous 
mutations were fltered out, as were variants with a LOW or MODIFIER (suggesting 
mutation in the non-coding region) variant impact. 

2.5. Statistics and Data Analysis 

All analyses and plotting were performed in R v 4.1.1. For comparing categorical 
variables, Fisher’s exact test was used. For comparing continuous variables, a two-tailed 
t-test was used. p-values < 0.05 were considered signifcant. 

Enrichment analysis was performed using clusterProfler [58], with the C2 (curated 
pathways) collection from MsigDB [59] used as the list of pathways. 

3. Results 
3.1. Dataset Summary 

After excluding samples of poor quality, primary tumours from 17 patients with 
recurrence (14 TSCC and 3 BOTSCC), 10 recurrences (i.e., 5 local recurrences and 5 distant 
metastases) and primary tumours from 18 patients (16 TSCC and 2 BOTSCC) without 
recurrence remained for further analysis. Adjacent normal material, used to aid somatic 
variant calling, was available from 13 patients with recurrence and 12 patients without 
recurrence. For the characteristics of the included patients, please see Table 1. 

After variant fltering (see Material and Methods), there were in total 6147 unique 
variants (SNVs and structural variants) affecting 4184 genes in our dataset. An average 
of 236 variants affecting 201 genes were identifed per sample. The relapses had the 
highest number of unique variants on average (308 variants in 266 genes), followed by the 
nonrecurrent primaries (246 variants in 207 genes) and recurrent primaries (183 variants 
in 156 genes). None of the groups differed signifcantly from the others in the number of 
identifed variants (Figure 1). 

3.2. Per-Variant Analyses 

We frst analysed which specifc variants were differentially present between primary 
tumours from patients with and without recurrences, restricting the analysis to variants 
present in at least four patients (>20%) of either group while being absent in the other 
group. The fve variants fulflling these criteria are found in Supplementary Table S1. The 
only variant enriched (p < 0.05) in recurrent samples was a high-impact deletion in the 
CDC27 gene, being found in 5/17 primary tumours of patients with recurrence, as well as 
in one local relapse while being absent from all nonrecurrent patient samples. 

Conversely, a substitution in KCNJ12 was signifcantly enriched (p < 0.05) in the 
primary tumour samples from patients without recurrence, being present in 5/18 samples. 
Three more variants in KRTAP4-11, NBPF20 and LILRB3 were found in four primary tumour 
samples, each from patients without recurrence, while being absent in all primary tumours 
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of patients with recurrences and the local/distant relapses. However, these did not reach 
the signifcance threshold (p = 0.1 for all variants). 

Table 1. Patient and primary tumour characteristics. 

Patient Cohort Patients with 
Recurrence (%) 1 

Patients without 
Recurrence (%) 1 Total (%) p-Values 

Number of patients 17 18 35 p-values 

Age 63 63 63 p = 0.66 

Sex 
Male 

Female 
14 (82%) 
3 (18%) 

13 (72%) 
5 (28%) 

27 (77%) 
8 (23%) 

p = 0.7 

Site Tonsil 
Base of tongue 

14 (82%) 
3 (18%) 

16 (89%) 
2 (11%) 

30 (86%) 
5 (14%) p = 0.66 

T T1 1 (6%) 3 (17%) 4 (11%) T1 + T2 vs. 
T2 7 (41%) 9 (50%) 16 (46%) T3 + T4 
T3 4 (24%) 5 (27%) 9 (26%) p = 0.3 
T4 5 (29%) 1 (6%) 6 (17%) 

N N0 1 (6%) 3 (17%) 4 (11%) N0 + N1 vs. 
N1 1 (6%) 3 (17%) 4 (11%) N2 
N2 15 (88%) 12 (67%) 27 (77%) p = 0.23 

M M0 17 (100%) 18 (100%) 35 (100%) p = 1 
M1 0 (0%) 0 (0%) 0 (0%) 

TNM Stage I 0 (3%) 0 (6%) 0 (4%) TNMI + II vs. 

(AJCC 7th Edition) II 
III 

0 (7%) 
2 (25%) 

2 (6%) 
3 (16%) 

2 (8%) 
5 (24%) 

TNMIII + IV 
p = 0.49 

IV 15 (59%) 13 (65%) 28 (58%) 
I 7 (41%) 12 (67%) 19 (54%) TNMI + II vs. 

TNM Stage II 5 (29%) 5 (28%) 10 (29%) TNMIII + IV 
(AJCC 8th Edition) III 5 (29%) 1 (6%) 6 (17%) p = 0.08 

IV 0 (0%) 0 (0%) 0 (0%) 

1 With approximation to full numbers. 

Focusing on common variants, 98 variants affecting 80 unique genes (Supplementary Table S2) 
were present in >25% of all samples independent of outcome (nine or more samples). The 
most common variants were deletions in BCLAF1 and OVCH2, both present in 12 samples 
each, followed by a substitution of OR2T35 found in 11 primary tumour samples. 

In 10/17 patients (cases) that had a relapse, samples from either the local or distant 
relapse were available. These 10 cases of matched local/distant relapses were studied on 
a per-sample basis in order to fnd variants that were either: (a) unique to the relapses, 
suggesting a mutation conferring invasiveness/treatment resistance, (b) unique to pri-
maries, suggesting that these mutations were lost upon clonal expansion after treatment, 
or (c) occurring in matched primaries and relapses, suggesting mutations in the primary 
that could predict future relapse. 

For (a) and (c), an additional condition was that variants should not be found in any 
nonrecurrent primary samples either. After limiting the analysis to only variants that were 
either found in the primary but not in the relapse or in the relapse but not the primary or 
in nonrecurrent samples; or both in the relapse and the primary but not in nonrecurrent 
samples in at least 3/10 of these cases, two variants remained (Supplementary Table S3). 

A deletion in CGREF1 was only found in relapses (and in a primary from a recurrent 
sample without matched relapses), suggesting that this mutation is relapse-specifc and 
may confer invasiveness, and substitution in C17orf80 was not found in any samples from 
nonrecurrent patients, suggesting that this specifc mutation could be related to relapses, 
while the other variants are more generally found across many samples regardless of 
recurrence. The most relevant variants described above are summarised in Figure 2. 
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Figure 1. Numbers of identified variants (A) and genes impacted (B) per sample and cohort. “Nonre-
current Primary” refers to primary tumours from patients without a local/distant tumour relapse after 
treatment. “Recurrent Primary” refers to primary tumours from patients with a local/distant relapse 
after treatment, and “Relapse” refers to corresponding local or distant tumour relapse in these patients. 
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Figure 2. Heatmap of the most commonly occurring variants, variants specifc to either primary 
of patients with local/distant recurrence (denoted as cases) or primaries of nonrecurrent patients 
(denoted as controls) and variants unique to relapses (denoted metastasis, if distant metastasis, 
or relapse, if local recurrence). Variants are on the y-axis, samples are on the x-axis. Colour indicates 
sample category. Samples where none of the variants were present were excluded from the plot. 

3.3. Per-Gene Analysis 

Subsequently, the same analyses as described above were performed on the gene level. 
All unique variants per gene were collated, and if any one of these variants was present 
in a sample, the gene was considered mutated in that sample. No genes were uniquely 
mutated in any of the tumours of patients with a relapse, while only one gene, HERC2, 
was uniquely mutated in the primaries of 4/18 nonrecurrent patients and in none of the 
primaries or recurrences of patients with relapses (p = 0.1). 

A group of 26 genes were mutated in >30% of all primary tumour samples independent 
of outcome (Figure 3, Supplementary Table S4). The most commonly mutated gene was 
AQP7, while BCLAF1, OVCH2 and OR2T35, which had the most common unique variants, 
were also found among the genes mutated in the largest number of samples. 
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x-axis shows the percentage of all primary tumours where a gene is mutated. Colour indicates 
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Interestingly, CDC27, where a unique variant was found that was specifc for tumours 
from patients with a recurrence, was also among the most commonly mutated genes. It was 
mutated in primary tumours of 8/17 patients with recurrence, and in 7/18 primaries of 
patients without recurrence, as well as in three relapses, with a total of 17 unique variants 
affecting this gene. Several patients had multiple CDC27 variants simultaneously, with one 
of the primary tumours of patients without relapse having 14 unique CDC27 mutations. 

Among these 26 genes, there were three keratin-related genes, KRT4, KRTAP5-5 and 
KRTAP5-7, and fve different mucins. Upon enrichment analysis, pathways related to the ex-
tracellular matrix and carbohydrates were signifcantly enriched among these 26 commonly 
mutated genes. The mucins were represented in all these enriched pathways (Figure 4, 
Supplementary Table S5). 
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Analysing the relapses as described above, three genes—CGREF1, DCHS2 and KRT8—were 
mutated in three relapses, but no matched primaries. CGREF1 and DCHS2 were, however, 
each additionally mutated in one recurrent primary without matched relapsed samples. 
SPATA31D1 and C17orf80 were mutated in paired primary and relapse from three patients 
each. C17orf80 was also mutated in an additional relapse while not being found mutated in 
the matched primary (Supplementary Table S6). 

3.4. Mutations in Hotspot Genes 

Since genes known to be commonly mutated in HNSCC did not come up among the 
top genes in our analysis, we specifcally analysed two genes known for hotspot 
mutations in HPV+ TSCC/BOTSCC/OPSCC—FGFR3 and PIK3CA. Additionally, 
we checked for mutations in the TP53 gene to see whether TP53 mutations are enriched 
among relapses. FGFR3 was mutated in 2/17 primary tumours of patients with recurrence, 
and 3/18 patients without recurrence, with one mutation (Ser249Cys) accounting for 4/5 of 
the mutations and the remaining mutation being adjacent (Arg248Cys). PIK3CA was mu-
tated in the primaries of one patient with recurrences and 4/18 patients without recurrence, 
and additionally in one distant relapse (unmatched to the mutated case). One variant 
(Glu545Lys) accounted for 4/6 of the mutations. TP53 was, expectedly in this HPV+ cohort, 
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rather rarely mutated. Mutations were only found in two primary tumours of patients with 
recurrence (Supplementary Table S7). 

4. Discussion 

In this study, WES was performed in laser micro-dissected primary tumours of 
18 HPV+ TSCC/BOTSCC patients without and 17 patients with recurrence, as well as 
in 10 corresponding local/distant relapses. A high-impact deletion in the CDC27 gene was 
detected only in tumours from patients with a relapse but in none of the tumours from 
patients without a relapse. 

In the entire cohort of primary tumours, we disclosed three variants—deletions in 
BCLAF1 and OVCH2 and substitution in OR2T35—and 26 mutated genes that were mutated 
in >30% of all cases, being part of a global mutational signature of HPV+ TSCC/BOTSCC. 

The most commonly mutated gene was AQP7, mutated in >45% of all primary tumours. 
Among the most commonly mutated genes were also numerous keratin-associated genes 
and mucins, and the set of commonly mutated genes was enriched for pathways related to 
extracellular matrix and carbohydrates. 

Moreover, hotspot mutations in PIK3CA and FGFR3 were present in the cohort but 
were not among the most prominent ones, while mutations in TP53 tended to be relatively 
rare, only found in two recurrent patients. 

The fact that a deletion in CDC27 was common (5/17, 29%) in and specifc to the 
primary tumours of patients that relapsed is a novel fnding of great interest. With experi-
mental validation, this variant could potentially be used for predicting prognosis and even 
as a treatment target. 

CDC27 is one of the main components of the anaphase-promoting complex/cyclosome 
and overexpression and variations in CDC27 expression may affect the cell cycle, mitosis, 
cancer pathogenesis and prognosis [60,61]. Thus far, there is no specific targeted therapy for 
CDC27. However, curcumin and miR27a have been suggested to affect CDC27 function [62,63]. 
In addition, there are antibodies against CDC27, which could be of potential interest to explore 
in a diagnostic rather than therapeutic setting, as the protein is localised to the nucleus. 

Keratin-associated proteins and mucins were enriched among the most commonly 
mutated genes in our primary cohort, suggesting that these are part of a global HPV+ 

OPSCC mutational signature. KRTAP5-5 has been linked to motility and invasion [64], 
while mutations in KRTAP5-7 have been associated with liver metastases in cancers of 
unknown primary [65]. 

Mucins, of which we found fve different genes mutated in >30% of primary tumours, 
have long been associated with cancer, are known to often be overexpressed or structurally 
altered, interact with the tumour microenvironment and contribute to motility and inva-
sion [66]. Of particular interest for treatment personalisation is the fact that NSCLC with 
MUC19 mutations responds very well to anti-PD1 inhibitors [67], making this particular 
gene interesting to study in the context of checkpoint inhibitor therapy for HPV+ OPSCC. 

Among the genes affected by the most common unique variants, BCLAF1 is the 
best-studied in the cancer setting as an associated transcription factor for Bcl2 [68]. In 
an experimental system, it has been shown to induce resistance to cisplatin treatment of 
NSCLC [69], and this variant is also of interest for diagnostic and targeting purposes. 

Being the single most commonly mutated gene in our cohort, AQP7 is also of interest. 
It encodes a membrane channel with known metabolic roles that is not well studied in the 
HNSCC setting but has been proposed as a target for breast cancer and is overexpressed in 
thyroid cancer [70–72]. 

In a study similar to ours, where WES was performed in primary tumours of 51 HPV+ 

OPSCC, of which 35 did not recur, and 16 recurred, and in 33 primaries of HPV− oral cavity 
cancers and OPSCC, KMT2D was found to be the most commonly mutated gene in both 
primary (14%) and recurrent (42%) HPV+ OPSCC [22]. We did detect KMT2D mutations 
in 3/35 (9%) primaries in our cohort, but not at all in the recurrent samples. However, 
removing our fltering for protein-altering variants, we detected KMT2D mutations in 14% 
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of primaries and 20% of relapses, suggesting that differences could be due to more stringent 
variant fltering in our study. In another similar study, targeted next-generation sequencing 
using a customised gene panel was performed in 28 HPV+ OPSCC and 28 matched HPV− 

OPSCC [32]. In that study, in the 14 patients with HPV+ OPSCC with recurrence, HRAS, 
PIK3R1, STK11 and TP63 were more frequently mutated in patients with recurrence as 
compared to those without recurrence [32]. These genes were not very commonly affected in 
our study, but again highlighting the importance of variant fltering, variants downstream 
of the HRAS gene were seen in 6/35 (17%) of primaries in our cohort but fltered out due to 
likely not having any consequences at the protein level. 

Lastly, an advantage with the present study is that we performed laser micro-dissection 
of all the tumour material (primary tumours as well as local/distant relapses), ensuring 
a high tumour yield per sample (>90%). TSCC and BOTSCC are namely characterised by 
infltrative growth of tumour nests within a lymphoid stroma and with varying tumour 
infltration of lymphoid cells. Therefore, a tumour section or a core biopsy from the tumour 
tissue block will, even though the tumour area is estimated as above 70%, in most cases 
give a much lower tumour cell concentration; in many times below 20%, by our experience. 
By laser microdissection, we were here able to exclude the lymphoid-surrounding tissue, 
but not tumour infltrating lymphocytes. 

There are obvious limitations in our study, similar to the latter two studies above [22,32], 
of which one major one is the limited number of patients. The main reason for this is that 
relapse is uncommon in HPV+ OPSCC, which has limited our investigation. 

Additional limitations are the use of FFPE samples and the fact that normal tissue 
was not available in almost one-third of the cases. As all variants called in these cases 
were counted as somatic, provided they passed fltering for quality and allele frequency, 
this clearly introduces a risk of false-positive calls. However, our main fndings (CDC27 
deletion, commonly affected genes, such as BCLAF1) were found both in samples with and 
without paired normal material. In this case, these samples increase the power of our study 
while allowing us to confrm the specifcity of the fndings through their presence in the 
set of samples with paired normal material. Furthermore, in the cases where normal FFPE 
tissue was available, one could argue that an optimal approach would be to use peripheral 
blood as a control in variant calling. However, an advantage of our approach is that normal 
tissue was, when available, defned by a pathologist and laser micro-dissected from the 
same tissue block as the tumour. Thus, any paraffn-related artefacts are present in both the 
control and tumour tissue, avoiding false calling of somatic variants. 

5. Conclusions 

In conclusion, we found a specifc CDC27 variant unique for tumours of HPV+ OPSCC 
patients with relapse, as well a common mutational signature for HPV+ OPSCC patients 
independent of the outcome, comprising keratin-associated proteins and mucins, but also 
specifc variants, such as a BCLAF1 variant. 

These fndings may be of potential interest both for predicting prognosis and potential 
future targeted therapy but do need experimental validation. The possibility to perform 
WES at reasonable costs suggests targeted sequencing of the genes identifed in this study 
in future studies of HPV+ TSCC/BOTSCC in order to evaluate their impact on treatment 
in a prospective manner, which could ultimately provide additional markers for targeted 
therapy and treatment planning. 

Supplementary Materials: The following supporting information can be downloaded at: https:// 
www.mdpi.com/article/10.3390/cancers14010077/s1: Table S1. Variants differing between primaries 
of recurrent and nonrecurrent patients; Table S2. Variants occurring in >25% of primary tumours; 
Table S3. Variants associated with relapse; Table S4. Genes mutated in >30% of primary tumours; 
Table S5. Signifcantly enriched pathways among commonly mutated genes; Table S6. Genes 
associated with relapse; Table S7. Hotspot mutations. 
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