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A Data-Adaptive Loss Function for Incomplete
Data and Incremental Learning in

Semantic Image Segmentation
Minh H. Vu , Gabriella Norman, Tufve Nyholm , and Tommy Löfstedt

Abstract— In the last years, deep learning has dramat-
ically improved the performances in a variety of medical
image analysis applications. Among different types of deep
learning models, convolutional neural networks have been
among the most successful and they have been used in
many applications in medical imaging. Training deep con-
volutional neural networks often requires large amounts
of image data to generalize well to new unseen images.
It is often time-consuming and expensive to collect large
amounts of data in the medical image domain due to expen-
sive imaging systems, and the need for experts to manually
make ground truth annotations. A potential problem arises
if new structures are added when a decision support system
is already deployed and in use. Since the field of radiation
therapy is constantly developing, the new structures would
also have to be covered by the decision support system.
In the present work, we propose a novel loss function
to solve multiple problems: imbalanced datasets, partially-
labeled data, and incremental learning. The proposed loss
function adapts to the available data in order to utilize all
available data, even when some have missing annotations.
We demonstrate that the proposed loss function also works
well in an incremental learning setting, where an existing
model is easily adapted to semi-automatically incorporate
delineations of new organs when they appear. Experiments
on a large in-house dataset show that the proposed method
performs on par with baseline models, while greatly reduc-
ing the training time and eliminating the hassle of maintain-
ing multiple models in practice.

Index Terms— Medical imaging, CT, missing data,
incremental learning, and semantic image segmentation.
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I. INTRODUCTION

CANCER is the second leading cause of death glob-
ally and accounted for an estimated 10 million deaths

in 2020 [1]. In Sweden, more than 60 000 patients are diag-
nosed each year, and about half of them undergo radiation
therapy [2]. Before the radiation therapy can begin, an oncol-
ogist manually marks or delineates, the regions in the body
that should be treated (target volumes) and the regions that are
particularly important to avoid. The delineations are then used
to generate a dose plan that gives a sufficient dose of radiation
to the target areas, and a small dose (as small as possible)
to sensitive organs, called organs-at-risks (OARs). For that
goal to be achieved, the delineations must be correct. Hence,
delineation is an essential part of the treatment planning
process, but a time-consuming and monotonic manual task for
radiation oncologists. Therefore, decision support systems that
automate the delineation process would be beneficial in order
to reduce the amount of time spent on the challenging task
of manually delineating target volumes and organs [3], [4].
In addition, the automatic delineation would also make it
possible to delineate more organs at risk. This would in time
lead to a better understanding of the relation to dose to certain
volumes and side effects of the treatment.

Recently, deep learning (DL) methods, and in particular
deep Convolutional Neural Networks (CNNs) have led to
breakthroughs in multiple areas of medical imaging. A com-
mon application among those is automatic segmentation of
organs and structures [5], which—if used to automate all
or parts of the delineation stage—would reduce the time
spent by radiation oncologists manually delineating images.
However, deep neural networks, such as deep CNNs, require
large amounts of data; but data is usually challenging and
expensive to collect in the medical image domain due to
expensive imaging systems, and the requirement to have
experts manually annotate ground truth targets or labels [6].

Moreover, since the field of radiation therapy is improving
and developing, new organs are sometimes proposed to be
added as OARs [7], [8] and therefore new data would be
required in order to provide decision support for those newly
added OARs as well. Two examples of when the clinical prac-
tice can change are from e.g. Lee et al. [7] who proposed to
include the left anterior descending coronary artery region as
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an OAR when treating breast cancer and from Roach et al. [8]
who proposed to include the penile bulb for prostate cancer.

These circumstances can cause projects to spend exten-
sive resources on creating curated datasets, spend numerous
hours developing and training deep neural networks, or other
machine learning (ML) models, to provide decision support,
only to have to redo it when a new OAR has to be included.
To add a new OAR to a decision support system requires
adding new data or annotations to the dataset and then retrain-
ing the ML models from their initial configurations using
all the data. A desirable approach would instead be to use
the new data created during treatment planning and utilize
incremental learning [9], i.e. to modify an existing model
to semi-automatically incorporate delineations of new organs
when they appear.

Another problem related to newly added OARs is that
data created during clinical practice is likely incomplete,
e.g. different patients could have different OARs delineated,
and several delineations may therefore be missing for most,
if not all patients. As a result, a fully labeled dataset can not be
obtained. In other words, the dataset will be partially labeled.

We propose a novel loss function that adapts to the available
data, allowing incomplete or missing sets of annotations or
labels, and allowing new annotations or labels to be added
without retraining, as a solution to the problem of missing
delineations. The task investigated in this work was thus
automatic segmentation of target volumes and OARs, from
now on collectively denoted as structures. The proposed loss
function then allows the delineations to be inconsistent over
the patients in the dataset, to clarify it allows: (i) some patients
to only provide information regarding some delineations,
(ii) information regarding each delineation to be provided by
all or by some patients. Since the proposed loss function allows
for incomplete data to begin with, the hypothesis was that
adding new OARs during or after having already trained a
model would be possible without losing the performance on
the already available OARs.

The proposed loss function is used in conjunction with deep
CNN models, and works as follows: Available delineations
are predicted by the model and contribute to the loss, while
unavailable delineations are still predicted by the network, but
are excluded from the loss since there are no ground truth
delineations to compare with. In the end, the network will be
able to predict all considered delineations. See Section II-A
for a detailed description of the proposed loss function.

A similar idea was proposed by Liu et al. [10], but for
predicting brain disease prognosis. Their model predicted
16 clinical scores for magnetic resonance imaging (MRI) data
but was trained on data where parts did not have ground truths
for all the 16 scores. A label was used to include or exclude
the scores from the loss function depending on if they existed
or not [10]. Liu et al. worked in the regression setting, while
this work was independently developed with the classification
task in mind (segmentation is classification of each individual
pixel); further, the possibility of adding new clinical scores was
never investigated by Liu et al., neither was a comparison to
semi-supervised learning (SSL) methods.

SSL is an approach to ML that utilizes both labeled
data (supervised) as well as unlabeled data (unsupervised)
during training. A common contemporary approach in multi-
organ segmentation when training on incomplete data is to use
SSL [6], [11]. For instance, Zhou et al. [11] used 210 labeled
cases and 100 unlabeled cases of computed tomography (CT)
scans to train and validate an SSL segmentation model. Their
model outperformed a fully supervised model by more than a
4 % percentage points increase in terms of the Sørensen-Dice
coefficient (DSC). Their SSL model had a pseudo-labelling
model that was trained on the labeled data and then used to
generate pseudo-labels for the unlabeled data. It then also had
a semi-supervised model that was trained on both the labeled
and the pseudo-labeled data.

A related SSL approach can be applied to the incomplete
data problem in our setting, where patients only have ground
truth delineations for some of the OARs. Specifically, one
pseudo-labeling model for each delineation would be needed
to fill the gaps in the data before training a semi-supervised
model to predict all delineations. However, this approach
does not allow adding new OARs after the semi-supervised
model has been trained. In the case when new OARs are
introduced, a pseudo-labeling model would have to be trained
for the new OARs to fill the gaps in the historical data, and
then the semi-supervised model would have to be retrained
from its initial configuration on the labeled and pseudo-
labeled data.

Another method, that can be applied in the incomplete
data problem, is the Prior-aware Neural Network (PaNN) pro-
posed by Zhou et al. [12]. They proposed a partial supervision
method with the following steps: First, train a network on a
fully-labeled dataset, where all structures have been annotated.
Second, estimate a prior label distribution for the masks, based
on the fully-labeled data. Third, estimate pseudo-labels for the
partially-labeled data. Fourth, update two dual variables that
are used to estimate the Kullback-Leibler divergence between
the prior label distributions and the predictions. Fifth, updated
the network using the fully-labeled data, existing partially-
labeled data and computed pseudo-masks. Repeat the third
through fifth steps until convergence. This approach aims
to (i) minimize the categorical cross-entropy on the fully-
labeled data and the partially-labeled data, and (ii) minimize
the Kullback-Leibler divergence between the network outputs
and the prior label distribution.

In the present work, our main contribution is to introduce
the proposed data-adaptive loss function. First, we explored
the properties of the data-adaptive loss function by comparing
it to individual (single) models for each structure, to the SSL
approach [11], and to the PaNN [12] in the segmentation task.
Second, we looked at how well a model trained using the data-
adaptive loss function can adapt to new OARs being intro-
duced by mimicking the circumstances in a clinical setting,
where new OARs are added to an already available decision
support system.

The paper is structured as follows. We introduce the meth-
ods in Section II, and describe the experiments in Section III.
We then present the experimental results and a discussion
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Fig. 1. Illustration of the proposed method including a two-dimensional CNN model together with the proposed data-adaptive loss function in the
segmentation task. The model is presented with ground truth delineations (dark green color) and placeholders (light blue color) during training. The
placeholders are used here to indicate an image where the ground truth delineations were missing, and hence had weight zero (i.e., had wi,j,k = 0).

of them in Section IV and Section V, respectively. Finally,
we conclude the paper in Section VI.

II. METHODS

A. Data-Adaptive Loss Function

The basis for the proposed loss function is a convex combi-
nation of the soft DSC loss and the binary cross-entropy (CE)
loss for a single structure. The combination of DSC and CE
have been successful when training segmentation networks,
especially if the structures are unbalanced in size, meaning
that there is a (large) disparity in the number of pixels between
different segmentation maps [13], [14]. The combined loss
function was thus

LCombined(Ik, Îk) = α · LDSC(Ik , Îk)

+ (1 − α) · LCE(Ik, Îk), (1)

where LDSC denotes the soft DSC loss [15], LCE denotes
the CE loss [16], and α ∈ [0, 1] is a parameter that deter-
mines the trade-off between the two losses. The value of
α was found as part of the hyper-parameter search (see
Section II-E).

We will denote the ground truth delineations (that are anno-
tated by a radiation oncologist) as delineations, the network
output predictions (by the single networks and the network
using the data-adaptive loss function) as masks, and the
predictions by the pseudo-labeling models in the SSL (see
Section II-C) as pseudo-masks.

The function LDSC in (1) denotes the soft DSC loss, which
is defined as [15], [17]–[20]

LDSC(I, Î ) = −2
∑

l Il Îl + ε
∑

l Il + ∑
l Îl + ε

, (2)

where the I is the ground truth delineation, the Î is a predicted
mask, the sum is over the pixels in the delineations and masks,
and ε = 1 · 10−5 is a small constant added to avoid division
by zero and to make correctly predicted empty masks have a
high DSC score.

Further, the function LCE in (1) denotes the CE loss, which
is defined as

LCE(I, Î ) = −
∑

l

Il · log( Îl ). (3)

Since the patients may have a different set of structures
delineated, a data-adaptive loss function has to be able to
adapt to the available masks. We propose to only incorporate
the masks for which the ground truth delineations exist and
normalize the loss appropriately in order to maintain the scale
of the loss across different available ground truths. The data-
adaptive loss function thus only accounts for the delineations
in a given slice that actually exists. Hence, the model would
only be updated with regards to the available delineations in
any given step.

Let wi, j,k ∈ {0, 1} denote whether or not structure k =
1, . . . , K , with K = 8 in this work, is the total number of
structures, exists for slice j in patient i = 1, . . . , n. This flag
is thus used to indicate whether or not the k-th mask was
included for a given patient slice, and the contribution of the
masks to the loss (using (1)) is an average over the available
masks. Similarly, the contribution to the loss of a mini-batch is
normalized by the number of a particular ground truth mask
that were available for each patient slice in the mini-batch
rather than the number of slices in the mini-batch. Hence,
only masks that are available will induce a loss for a given
patient slice. The proposed data-adaptive loss function for a
mini-batch of patient slices is thus,

L(I, Î ) =
∑

(i, j )∈I
∑K

k=1 wi, j,k · LCombined(Ii, j,k , Îi, j,k )
∑

(i, j )∈I
∑K

k=1 wi, j,k
,

(4)

where I is a set of patient and slice indices, (i, j), in a mini-
batch of delineations, I , and masks, Î , and where Ii, j contains
all delineations for the j -th slice of patient i , Îi, j contains
all masks for the j -th slice of patient i , and Ii, j,k and Îi, j,k

are the k-th delineations and masks for slice j of patient i ,
respectively. Fig. 1 illustrates a 2D convolutional network
together with the proposed loss function.

In order to tackle imbalanced datasets (see Section III-A),
we also introduce two weighted data-adaptive loss functions
that put appropriate emphasis on minority structures. First, the
voxel-based weighted loss is defined as,

Lμ(I, Î ) =
∑K

k=1 μk
∑

(i, j )∈I wi, j,k · LCombined(Ii, j,k , Îi, j,k)
∑K

k=1 μk
∑

(i, j )∈I wi, j,k
,

(5)
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Fig. 2. An illustration of the SSL proposed by Zhou et al. [11] that was used in this work (see Section II-C). The SSL model has a pseudo-labelling
model that is trained on the labeled data and then used to generate pseudo-masks for the unlabelled data. It then also has a semi-supervised model
that is trained on both the delineations and the pseudo-masks.

where the μk ∈ (0, 1] are weights for each structure, for
k = 1, . . . , K , computed as exponentially weighted averages
of the empirical frequencies of each structure. We used bias
correction after each update to the exponentially weighted
averages.

Second, the slice-based weighted loss is defined as,

Lγ (I, Î ) =
∑K

k=1 γk
∑

(i, j )∈I wi, j,k · LCombined(Ii, j,k , Îi, j,k )
∑K

k=1 γk
∑

(i, j )∈I wi, j,k
,

(6)

where γk ∈ (0, 1] are weights for each structure, for
k = 1, . . . , K , computed as exponentially weighted averages
of the positive slices for each structure. Similar to the μk ,
we also utilized bias correction after each update to the
exponentially weighted averages.

B. Baseline Models

To evaluate the proposed data-adaptive loss functions,
we first trained eight baseline models, one for each of the
eight structures: left breast, right breast, left breast with
lymph nodes, right breast with lymph nodes, left lung, right
lung, heart, and spinal cord (see Section III-A). Each base-
line model had a modified U-Net architecture, based on
Ronneberger et al. [21], that was altered in the depth, number
of filters, and additionally had spatial dropout layers. We used
the combined loss function in (1). We further used Bayesian
optimization to determine the hyper-parameters for each model
(see Section II-E and Table I).

C. Semi-Supervised Model

The SSL approach used here was inspired by that of
Zhou et al. [11]. The approach works as follows: A set of
pseudo-labeling models, one for each structure, was trained on
the available delineations. In the present work, these pseudo-
labeling models were the same as the baseline models. The
pseudo-labeling models were then used to predict the missing
delineations, giving a full set of labels containing both the
available delineations and the predicted pseudo-masks in the
cases when the delineations were missing. Finally, a semi-
supervised model was trained on all the data, i.e. on both the
ground truth delineations and on the pseudo-masks. Fig. 2
illustrates the SSL approach that was used in this work.

D. Prior-Aware Neural Network

The PaNN was proposed by Zhou et al. [12] to optimize
a stochastic primal-dual gradient algorithm. In that work, the
PaNN final loss was defined as

Lprior(I ′, Î ′)=LF(IF, ÎF)+λ1LP(I ′, Î ′)+λ2LC(I ′, Î ′), (7)

where IF and ÎF are the ground truth delineation and predicted
mask on the fully-labeled data, respectively; while I ′ and Î ′
are these on the union of the fully-labeled data, the existing
partially-labeled data, and the computed pseudo-masks from
the partially-labeled data. The LP is the categorical cross-
entropy loss. Finally, LC is the prior-aware loss, the Kullback-
Leibler divergence between the network outputs and the prior
label distribution, estimated from the fully-labeled data.
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TABLE I
THE SEARCH SPACE FOR THE HYPER-PARAMETER SEARCH. SGD DENOTES MINI-BATCH STOCHASTIC GRADIENT DESCENT WITH MOMENTUM

AND RMS DENOTES THE RMSPROP OPTIMIZER. THIS TABLE ALSO CONTAINS THE FOUND VALUES FOR EVALUATED METHODS

Since the dataset here did not have any fully-labeled data,
we instead defined the PaNN final loss as

Lprior(I ′, Î ′) = αLP(I ′, Î ′) + (1 − α)LC(I ′, Î ′), (8)

where α ∈ [0, 1] again is a parameter that determines the
trade-off between two losses, the LP and LC in this case.

To address the absence of a fully-labeled subset of the
data, the empirical distributions were approximated from the
available, partially-labeled data.

The implementation details and training of PaNN is pre-
sented in Section 1 in the Supplementary Material.

E. Hyper-Parameter Search

A hyper-parameter is defined as a model parameter that
is not immediately updated by the optimization procedure.
In CNNs, these would be for instance parameters that deter-
mine the network architecture, such as, the number of layers
in the network, the number of filters in each layer, or the
optimization algorithm used to train the CNNs. Current deep
CNNs have a large number of hyper-parameters. There are
many procedures proposed to systematically find a good
set of hyper-parameters. A commonly employed approach is
Bayesian optimization, where expensive to compute black-box
functions can be estimated and optimized [22].

To find the hyper-parameters of the CNN models used in
the present work, we employed Bayesian optimization to deter-
mine the hyper-parameters of each of the previously described
models. In particular, we used the Tree-structured Parzen
Estimator Approach (TPE) proposed by Bergstra et al. [23]
through the hyperopt library [24] to find a good set of hyper-
parameters for each network. The network architecture used
in the present work was a modified U-Net model [21]. The
hyper-parameter space over which we searched included:

− Network depth: The depth of the modified U-Net.
− Base filters: The number of filters used in the first layer

in the modified U-Net.
− Spatial dropout rate: The fraction of the input filters to

drop in each step. To reduce overfitting, we added spatial
dropout [25] after each max-pooling or concatenation
layer.

− Optimizer: The minimization algorithm used.
− Loss trade-off factor, α: The parameter controlling the

contribution of the DSC and CE losses in the combined

loss (see (1)) or of the LP and LC losses in the prior-
aware loss (see (8)).

− Mini-batch size: The number of slices included in each
network update step.

− Learning rate: The (initial for Adam) step size used in
the gradient descent-based optimization algorithms.

− Number of epochs: The number of times the entire
training dataset was presented to the model.

The parameter ranges or values used in the hyper-parameter
search are listed in Table I. The hyper-parameter search was
performed in a fixed number of iterations, also called the
optimization budget, for each model, i.e. a fixed number of
successful trials for the hyper-parameter search were evaluated
(out-of-memory issues were not counted as a successful trial).
In the present work, we set the fixed number of iterations to 40.

F. Incremental Learning

As can be seen in (4) the loss for each structure is computed
individually and then summarized and normalized. Therefore,
other structures can be added after some partial or full training
of a model to accomplish incremental learning.

We conducted experiments on incremental learning by first
letting the proposed model learn on K − m structures, where
m ∈ {1, 2, 3} was the total number of incremented structures.
We then extended the existing model’s knowledge, i.e. further
trained the model on the left-out structures, in other words, the
incremented structures. The purpose of incremental learning
is to adapt a trained model to new data without forgetting its
existing knowledge, and hence does not retrain the model from
its initial configuration when new data arrives.

In this work, we performed incremental learning in two
modes: sequentially and concurrently incremental. In the
sequential incremental learning, the existing model was trained
by adding one structure after another, while in the concurrent
incremental learning, it was trained by adding all left-out struc-
tures at once. Fig. 3 illustrates two settings in the incremental
learning task.

Each m ∈ {2, 3} (multiple classes) was experimented in
both incremental learning modes. In the case m = 1 (single-
class), both modes are the same. The set of hyper-parameters
used in the incremental learning was the ones found in the
hyper-parameter search for the model trained on all structures
with the proposed loss function (see the “Proposed” column
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Fig. 3. Illustration of the proposed method in the incremental learning task (see Section II-F). The K = 8 and m = 1, 2, 3 denote the total number
of structures and total number of incremented structures, respectively.

TABLE II
INCREMENTAL LEARNING EXPERIMENT FOR m = 1,2,3 LEFT-OUT STRUCTURE(S). A CHECK MARK SIGN, ✓, INDICATES WHETHER A STRUCTURE

WAS INCLUDED IN THE EXPERIMENT. EXCEPT IN THE m = 1 CASE, THE EXPERIMENTS WERE CONDUCTED IN BOTH THE SEQUENTIAL

AND THE CONCURRENT MODE. THE STRUCTURES WERE RANDOMLY SELECTED IN THE m = 2,3 CASES

TABLE III
THE RESULTS OF THE NEMENYI POST-HOC TEST COMPARING ALL

EVALUATED METHODS. A MINUS (−) MEANS RANKED SIGNIFICANTLY

LOWER, A ZERO (0) MEANS NON-SIGNIFICANT DIFFERENCE, AND

A PLUS (+) MEANS RANKED SIGNIFICANTLY HIGHER, WHEN

COMPARING A METHOD IN THE ROWS TO A

METHOD IN THE COLUMNS

tabulated in Table I). Due to a great number of permutations of
two (56 permutations) and three (336 permutations) structures
from the eight-structures set, we randomly selected eight
permutations from all possible permutations. The selected ones
can be seen in Table II.

G. Statistical Tests

To formally analyze the model performances, we used the
Friedman test of equivalence between all evaluated methods
on the evaluated metrics using the predictions on the test
set. The Friedman test, when reporting significant differences,
can be followed by a Nemenyi post-hoc test of pair-wise
differences [26].

TABLE IV
THE ORGANS DELINEATED IN THE DATASET, AND THEIR PARTITION

INTO TRAINING, VALIDATION, AND TEST DATASETS. FOR THE SPINAL

CORD, THE FIRST ROW INDICATES HOW MANY SLICES WERE

DELINEATED, AND THE SECOND ROW (MARKED WITH AN

ASTERISK, ∗) DENOTES THE TOTAL NUMBER OF SLICES.
IT MEANS THAT IF ALL SLICES HAVE DELINEATIONS,

THE NUMBERS IN THESE TWO ROWS WOULD

THUS BE THE SAME

III. EXPERIMENTS

A. Dataset
The data used in this study were collected from 1 614 breast

cancer patients at the University Hospital of Umeå,
Umeå, Sweden. The data were collected between 2011 and
the beginning of 2020 and contained CT images and corre-
sponding delineations of up to eight structures. The number
of patient images for each target volume and structure can be
found in Table IV. Table IV also contains information about
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the number of patients in the training, validation, and test
datasets.

During imaging, a wire was sometimes placed around the
patient’s breast to guide the manual segmentation. This wire
was removed during pre-processing by thresholding delin-
eations and selecting the largest structure. The pixel values in
the structure were replaced by the mean of the neighborhood
pixel values.

The CT slices were down-sampled from 512 × 512 pixels
to 256 × 256 pixels. Pixel values below −1 000 Hounsfield
units were set to −1 000. The images were then rescaled by
adding 1 000, and dividing by 3 000; i.e., the voxel values
were (approximately) in the zero-one range.

B. Implementation Details and Training

The models, the proposed loss, and the experiments overall
were implemented using Keras 2.2.41 with TensorFlow 1.12.02

as the backend. The models were trained on NVIDIA Tesla
K80 and GeForce RTX 2080 Ti graphics processing units
(GPUs). The training time for one hyper-parameter search was
between 1–3 weeks.

The U-Net architecture has been a very successful architec-
ture for medical imaging applications, and in particular, for
semantic image segmentation [3], [4], [27], and we, therefore,
used a modified version of the U-Net in this project. Batch
normalization was applied after every convolutional layer.

To speed up the hyper-parameter search, we introduced
asynchronous updates (parallel search), allowing multiple tri-
als to be evaluated in parallel. For a fair comparison, the
same four GPUs were simultaneously employed in all hyper-
parameter search experiments. The objective functions used in
the hyper-parameter search were different among the models:
the DSC was used for the eight baseline models, while the
mean of the DSC of the eight structures was used for the rest.

In the experiment with incremental learning, we used the
models trained on K − m structures as starting points for
both the sequential and concurrent modes. In the concurrent
incremental learning, we then added m output structures and
corresponding sets of filters but kept the filters for the other
K − m structures that were already trained in the existing
model. After that, we updated the existing model with a new
set of output(s) by reusing the weights of all layers except
for the last layer of the existing model with the purpose
of continual learning. The weights for the new structures in
the last layer were randomly initialized. For the sequential
incremental learning, m models were trained one by one; thus,
the last layers of these m models had K −m+1, . . . , K nodes,
respectively, corresponding to K − m + 1, . . . , K structures.
In the last step of both concurrent and sequential incremental
learning, we trained the model, that had been updated, on data
for all relevant structures.

In the segmentation task, the dimension of the final output
of the baseline models was b × 256 × 256 × 1, where b is
the mini-batch size; while the other methods (SSL, PaNN and
proposed method) had a dimension of b×256×256×K . In the

1https://keras.io
2https://tensorflow.org

incremental learning experiment, the dimensions of the final
output of the initial models were b×256×256×(K −m), while
the final model’s output dimensions were b × 256 × 256 × K .

C. Evaluation

This section describes the evaluation metrics that were used
in this study to evaluate the segmentation performance. One
of these metrics was the DSC, which is defined as

D(I, Î ) = −LDSC(I, Î ), (9)

with a very small value of ε (e.g., the machine epsilon).
The segmentation performance was also evaluated using the

95th percentile of the Hausdorff distance (HD95), a common
metric for evaluating segmentation performances. The Haus-
dorff distance (HD) is defined as

H (I, Î ) = max
{
d(I, Î ), d( Î , I )

}
, (10)

where

d(I, Î ) = max
Il ∈I

min
Îm∈ Î

‖Il − Îm‖2, (11)

in which ‖Il − Îm‖2 is the spatial Euclidean distance between
pixels Il and Îm on the boundaries of the delineation I and
mask Î .

We also used the relative absolute volume difference
(RAVD) between the binary objects in the delineation and the
mask. The RAVD is computed as the total volume difference
of the delineation to the mask followed by the division by the
total volume of the mask. The RAVD is defined as

R(I, Î ) = 100 ·
∑

x∈I δx,1 − ∑
x∈ Î δx,1∑

x∈ Î δx,1
(12)

where δx,1 denotes the Kronecker delta function, which takes
the value 1 if x = 1, and 0 otherwise.

The signed RAVD numbers are reported in Table V.
A negative value is interpreted as under-segmentation and a
positive value as over-segmentation. To obtain a single score
value, the absolute value is used. Note that a perfect value
of zero can also be obtained for a non-perfect segmentation,
as long as the volume of that segmentation is equal to the
volume of the ground truth.

Finally, we computed the average symmetric surface dis-
tance (ASSD). This metric is closely related to the HD95,
but instead of the 95th percentile, it computes the average
symmetric surface distance (ASD) between the binary objects
in the segmentation and the ground truth.

IV. RESULTS

Table I contains the eight hyper-parameters chosen for each
model by the hyper-parameter search for the eight baseline
models, SSL, PaNN and the model with the proposed data-
adaptive loss function. We see in Table I that each model
ended up having a different set of hyper-parameters. Interest-
ingly, RMSprop tended to be the most favored optimization
algorithm.

The Friedman test reported a significant difference between
the methods. The results from the Nemenyi post-hoc test are
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TABLE V
MEAN DSC (HIGHER IS BETTER), HD95 (LOWER IS BETTER), RAVD
(CLOSE TO ZERO IS BETTER), AND ASSD (LOWER IS BETTER) AND

THEIR STANDARD ERRORS (SES) (IN PARENTHESES) COMPUTED ON

THE TEST SET FROM EIGHT SINGLE MODELS, SSL MODEL, PANN
METHOD, AND THE FULL MODELS USING THE PROPOSED LOSS

FUNCTIONS. [BLACK TEXT] HIGHLIGHTS THE TOP-PERFORMING

METHODS, WHILE [GRAY TEXT] DENOTES THE UNDER-PERFORMING

METHODS. NOTE THAT TOP-PERFORMING METHODS ARE ONLY

HIGHLIGHTED BASED ON THEIR MEAN VALUES

tabulated in Table III. The test gives no significant differences
between any methods, except for the SSL and PaNN which
performed significantly worse than the other methods. Among
these worst methods, the PaNN performed better than the SSL.

Except for in Table V, we only report the results on
the proposed model without weights (i.e., using (4)), since

the differences were non-significant, per the Nemenyi test,
between the method without weights and the voxel-based and
slice-based methods (i.e., (5) and (6), respectively).

Table V provides the mean DSC, HD95, RAVD, and ASSD
and their SEs (in parentheses) computed on the test set. The
metrics were computed on (i) the eight single models, that
were trained on the eight different structures independently,
(ii) the SSL, and (iii) the model using the proposed loss
function.

Tabel I in the Supplementary Material shows the mean DSC,
HD95, RAVD and ASSD and their SEs (in parentheses) of
K − 1 structures (before) and K structures (after) using incre-
mental learning computed on the test set of eight evaluated
structures.

Fig. 4 and Fig. 1 in the Supplementary Material present
the learning curves, showing how the DSC changes as a
function of the epoch number on the validation set during
training. Illustrated in Fig. 4 are the learning curves in the
first four, while Fig. 1 in the Supplementary Material are these
in the last four sequential and concurrent incremental learning
experiments (see Table II). The sequential incremental learning
experiments show the DSC vs. epoch for K − m structures
which were trained from the beginning. Then m additional
structures were sequentially added after every 50 epochs
starting from epoch 96. The concurrent incremental learning
experiments, otherwise, present the learning curves for K −m
structures from the beginning of training, and the m structures
added at epoch 96 and their development until the end of the
training. In both figures, the initial structures are illustrated
in black color, while the added structures are illustrated with
thicker red/purple/blue lines.

Fig. 5 illustrates the qualitative results of the baseline
model, the SSL model, PaNN, and the proposed model on
eight structures. Note that the image samples in Fig. 5 were
randomly selected, and are mainly for illustrative purposes.
However, there are still a few observations that can be made,
that are related to the quantitative results in Table V, and are
further discussed in Section V.

V. DISCUSSION

In this section, we compare the proposed model to other
recent approaches using all metrics introduced in Section III-C.
We then discuss the performance of the task of incremental
learning when employing the proposed data-adaptive loss
function. Finally, we discuss the qualitative results of the
baseline models, the SSL model, and the proposed approach
on the segmentation task.

A. Quantitative Analysis

The Nemenyi post-hoc test (Table III) reveals that the pro-
posed methods performed on par with the baseline models and
that the SSL and PaNN methods performed significantly worse
than the other methods. Among the worst-performing methods,
the PaNN was better than the SSL. From Table V we see that:
(i) the performance of the full model with the data-adaptive
loss function is comparable to the eight single models in all
evaluated metrics while reducing the training time by a factor
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Fig. 4. Illustration of the learning curves showing DSC vs. epoch in the first four sequential and concurrent incremental learning (see Table II in the
main document). The embedded subplots show a zoomed-in version of that plot of the last ten epochs. In this experiment, K − m structures were
trained from the beginning. The m additional structure was added starting at epoch 96 (dashed vertical line) in the concurrent learning experiment,
while they were sequentially added starting at epoch 96/146/196 in the sequential learning experiment. The initial structures are shown in black
color, while the added structures are displayed with thick red/purple/blue line(s). The light-blue X marks show the DSC of the eight single baselines
on the validation set.

of four, (ii) the models with the two proposed voxel-based and
slice-based data-adaptive loss functions did not outperform
the baseline models, nor the model with the data-adaptive
loss function without weights, (iii) PaNN performs better than
the top-performing models only in 2/32 categories (see the

bold text), and (iv) the proposed method outperformed the
SSL and PaNN models by large margins in all the evaluated
metrics, with a much shorter training time.

A possible explanation as to why the SSL model under-
performs compared to the other methods is that we used the
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Fig. 5. Qualitative results of the proposed method on eight structures: left breast, right breast, left breast with lymph nodes, right breast with lymph
nodes, left lung, right lung, heart, and spinal cord. From left to right: delineation (GT), baseline model (BL), SSL model (Semi), PaNN method (PaNN),
and the proposed method (Prop.).

full set of labels containing both the available delineations
and the predicted pseudo-masks in the SSL. It thus raised a
problem that the pseudo-masks, that were generated by the
pseudo-labelling models, might be wrong, making the semi-
supervised model solve the wrong problem.

There are several possible explanations for that PaNN
performed worse than the baseline models and the pro-
posed methods. First, there is no fully-labeled data in the
evaluated dataset; hence, the segmentation model might be
improperly initialized, thus making the training procedure
unstable, as mentioned in [12]. Second, the evaluated dataset
is remarkably imbalanced, which might affect the perfor-
mance of PaNN. Last, similar to the possible reason for
SSL to under-perform, the quality of predicted pseudo-masks
might not be good enough, making the segmentation model
suffer.

As can be seen in Table V, the DSC and HD95 scores of the
spinal cord on all top-performing models tend to be the worst
(0.75–0.76) and the best (1.05–1.06), respectively, compared
to the other organs. These findings could be explained by
the fact that compared to the other structures, the spinal cord
occupies a much smaller area. This explanation is supported
when comparing the last row of Fig. 5 (small regions) to
other rows (large regions). The proposed weighted models
were intended to resolve this problem, but it turned out that
the performance was unchanged whether or not we used
either weighting scheme. This implies that the model with
the proposed data-adaptive loss function is not particularly
sensitive to the amount of data available for each structure,
nor to the size of the structures.

From Table V, we also see that when comparing the
performance of the baseline models and the proposed model
on the RAVD numbers, the baseline models seem to make
over-segmentation on all structures (seven are positive and
one is negative), while the proposed method appears to be

more balanced (five are negative and three are positive).
Another three advantages of the proposed method over the
baseline models are that: (i) the proposed method works with
incomplete data (ii) in practice, it is much easier to maintain
a single model instead of maintaining multiple models, and
(iii) the training time for the optimal proposed method was
about 3 days, while it took four times longer or about twelve
days to train all the baseline models (see Table I).

It can be seen from Tabel I in the Supplementary Material
that the evaluated metrics are similar for the K − 1 initial
structures before and after performing incremental learning
using the proposed method with the data-adaptive loss func-
tion. This means that the knowledge on existing models was
retained, and further transferred to the new structure when new
training data became available. In addition to that, comparing
Tabel I in the Supplementary Material and Table V, we see
that the updated models trained on K structures facilitating
incremental learning perform on par with the baseline models
for the added structures, implying that the models with the
data-adaptive loss functions work well in the incremental
learning setting.

By looking at Fig. 4 and Fig. 1 in the Supplementary
Material, it is interesting to note that in all single-class
incremental learning experiments the DSC of the additional
structures converged very quickly (after being added in epoch
96), while it took longer when two or three structures were
incremented at once. There are two possible explanations
for that behavior. First, the existing/initial models of single-
class incremental learning experiments had more knowledge
(trained on more structures at the initial stage) than these
of multi-classes incremental learning. Second, training on a
single structure converged faster than multi-classes on the
same dataset.

For the sequential incremental learning on multi-classes in
Fig. 4 and Fig. 1 in the Supplementary Material, we can see
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that the later structures seemed to converge more quickly than
the former ones. It is desirable as the later models are “more
knowledgeable” than the former ones; thus, it took less time
to extend knowledge on new structures. It is important to
emphasize that the DSC scores of the existing organs remained
unchanged after the additional structures were added in both
settings of the incremental learning experiment.

B. Qualitative Analysis

Predictions in Fig. 5 might not be an accurate representation
of the performance of the models since the slices are randomly
selected. The baseline models and the proposed method are
in many of the examples more similar to the delineations
compared to the PaNN model, especially SSL model. One
example can be found in the first row where the predictions
of the SSL model are empty for both the left breast and the
left breast with lymph nodes. Other examples are predictions
of the right breast with lymph nodes in the second row as
well as in the left breast with lymph nodes in the third row.
In the randomly selected single slices in Fig. 5, the SSL model
under-predicted more often than the baseline models and the
proposed method.

These observations align with the quantitative analysis and
the results in Tabel I in the Supplementary Material, where
the SSL and PaNN models under-performs compared to the
baseline models and the proposed method.

VI. CONCLUSION

We have presented a novel data-adaptive loss function for
semantic image segmentation. The proposed method has not
only been shown to work well when training on incomplete
data but also when compared to state-of-the-art SSL and PaNN
methods. Furthermore, the proposed method works well in
the incremental learning setting, where it is able to learn
new structures without forgetting the ones that were already
learned. Interesting venues for future work might include, for
instance, to determine how rapidly a new structure is learned,
or how much data is required to learn a new structure.
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