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Abstract

We characterize lower growth estimates for subsolutions in halfspaces of fully nonlinear partial differen-
tial equations on the form

F(x,u,Du,D2u) = 0

in terms of solutions to ordinary differential equations built upon assumptions on F . Using this characteri-
zation we derive several sharp Phragmen–Lindelöf-type theorems for certain classes of well known PDEs. 
The equation need not be uniformly elliptic nor homogeneous and we obtain results both in case the sub-
solution is bounded or unbounded. Among our results we retrieve classical estimates in the halfspace for 
p-subharmonic functions and extend those to more general equations; we prove sharp growth estimates, in 
terms of k and the asymptotic behavior of 

∫ R
0 C(s)ds, for subsolutions of equations allowing for sublinear 

growth in the gradient of the form C(|x|)|Du|k with k ≥ 1; we establish a Phragmen–Lindelöf theorem for 
weak subsolutions of the variable exponent p-Laplace equation in halfspaces, 1 < p(x) < ∞, p(x) ∈ C1, 
of which we conclude sharpness by finding the “slowest growing” p(x)-harmonic function together with 
its corresponding family of p(x)-exponents. The paper ends with a discussion of our results from the point 
of view of a spatially dependent diffusion problem.
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1. Introduction

We consider fully nonlinear nonhomogeneous elliptic partial differential equations (PDE) in 
nondivergence form,

F(x,u,Du,D2u) = 0, (�)

in halfspaces of Rn for n ≥ 1. Here, Du is the gradient, D2u the Hessian, F : Rn × R × Rn ×
Sn → R in which Sn is the set of symmetric n × n matrices equipped with the positive semi-
definite ordering; for X, Y ∈ Sn, we write X ≤ Y if 〈(X − Y)ξ, ξ 〉 ≤ 0 for all ξ ∈ Rn. Without 
loss of generality we fix the halfspace to Rn+ := {x ∈Rn : xn > 0} and assume the following:

Degenerate ellipticity holds, i.e. F(x, u, p, X) ≥ F(x, v, p, Y) whenever u ≥ v, X ≤ Y , as 
well as the growth condition

−F(x,0,p,X) ≤ �(|x|, |p|) + �(xn)Tr(X+) − λ(xn)Tr(X−) (��)

whenever x, p ∈ Rn, X ∈ Sn, X = X+ − X−, X+ ≥ 0, X− ≥ 0 and X+X− = 0. Here, 
� : (0, ∞) × (0, ∞) → (−∞, ∞) is continuous, nonincreasing in its first argument and 
λ, � : (0, ∞) → (0, ∞) are functions such that λ is nonincreasing and � is nondecreasing.

Concerning � we will also need the following assumption:

Either � is nonnegative and it holds, for all ε, t > 0, that (interpreting 1/0 = ∞)

ε∫
0

ds

�(t, s)
= ∞, (� � �)

or � is nonpositive, −� satisfies (� � �) and (2.1) has a continuous solution in R+.

Under assumptions (��)–(� � �) we characterize the growth of viscosity subsolutions of (�) in 
halfspaces in terms of solutions to ordinary differential equations (ODE) (Theorem 2.1) which 
are built upon functions �, λ and � in (��). Using this characterization we are able to derive sharp 
growth estimates of Phragmen–Lindelöf-type once the solutions of the ODEs are sufficiently 
understood. Indeed, to apply Theorem 2.1 one needs to (1) find functions �, λ and � to ensure 
assumptions (��) and (� � �), (2) solve the corresponding ODEs given in (2.1) and (3) find the 
limit in Theorem 2.1. An estimate is obtained if this limit is positive. Theorem 2.1 applies both 
in case the subsolution is bounded or unbounded, and it can be used to find such border.

In Section 3 we apply Theorem 2.1 to derive sharp estimates for subsolutions of some well 
known PDEs of which the corresponding ODEs can be solved explicitly. For example, we re-
trieve the classical Phragmen–Lindelöf theorem in halfspaces for p-subharmonic functions by 
Lindqvist [30] and show in addition that it holds also for equations of p-Laplace type with lower 
order terms and vanishing ellipticity. We obtain sharp lower estimates of the growth, in terms 
of k ≥ 1 and the asymptotic behavior of 

∫ R

0 C(s)λ−1(s)ds, for subsolutions of equations with 
sublinear growth in the gradient such as
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−P −
λ,�(D2u) + C(|x|)|Du|k = 0

in which P −
λ,� is a Pucci operator (definition recalled below) and C(t) is a nonincreasing func-

tion. These results reveal e.g. the border determining if a subsolution must grow to infinity or not 
in terms of C(t) and k, see Corollary 3.1 and estimate (3.9). Moreover, Theorem 2.1 applies to 
nonhomogeneous PDEs including the variable exponent p-Laplace equation

∇ ·
(
|Du|p(x)−2Du

)
= 0

and we prove a sharp Phragmen–Lindelöf theorem for weak subsolutions of this equation when-
ever 1 < p(x) < ∞ is C1 regular (Theorem 3.3). It turns out that the growth estimate heavily 
depends on whether the subsolution ever exceeds xn (distance to boundary) or not. We conclude 
sharpness by finding the “slowest growing” p(x)-harmonic function in the halfspace, for a given 
ellipticity bound, together with its corresponding family of p(x) exponents (Remark 3.4). In the 
geometric setting of halfspaces, these results sharpen some results of Adamowicz [1].

The proof of Theorem 2.1 relies on comparison with certain classical supersolutions of (�)
which we construct in Lemma 2.2 using solutions of the aforementioned ODEs. We stress gen-
erality by pointing out that with the validity of Theorem 2.1 at hand, growth estimates for 
subsolutions to certain PDEs not considered in Section 3 can be proved mainly by estimating 
solutions of first order ODEs and limits.

We end the paper by discussing the problem under investigation from the point of view of a 
diffusion problem. Indeed, in Section 4 we briefly discuss, through the application of spatially 
dependent diffusion, why parts of the results presented in Theorem 3.3 should hold.

We remark that our main results allow for ellipticity to blow up at infinity as λ(xn) may vanish 
and �(xn) may explode at infinity. Moreover, the Osgood-type condition in (� � �) is necessary 
to ensure that subsolutions must continue to grow. Indeed, for the strong maximum principle, see 
Julin [23], Lundström–Olofsson–Toivanen [34] and the remarks below Theorem 2.1. Further-
more, assumption (��) can be written, with λ = λ(xn) and � = �(xn),

−F(x,0,p,X) ≤ �(|x|, |p|) −P−
λ,�(X) whenever x,p ∈Rn,X ∈ Sn,

where P−
λ,�(X) = −�Tr(X+) + λTr(X−) is the Pucci maximal operator, X = X+ − X− with 

X+ ≥ 0, X− ≥ 0 and X+X− = 0. In particular, if X ∈ Sn has eigenvalues e1, e2, . . . , en the Pucci 
extremal operators P+

λ,� and P−
λ,� with ellipticity 0 < λ ≤ � are defined by

P+
λ,�(X) := −λ

∑
ei≥0

ei − �
∑
ei<0

ei and P−
λ,�(X) := −�

∑
ei≥0

ei − λ
∑
ei<0

ei .

For properties of the Pucci operators see e.g. Caffarelli–Cabre [10] or Capuzzo-Dolcetta–Vitolo 
[11]. We remark also that the above assumption (��) is implied by the standard ellipticity as-
sumption

λTr(Y ) ≤ F(x,u,p,X) − F(x,u,p,X + Y) ≤ �Tr(Y ), (1.1)

whenever Y is positive semi-definite, together with
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−F(x,0,p,0) ≤ �(|x|, |p|) whenever x,p ∈ Rn. (1.2)

Observe also that (��) allows for nonlinear degenerate elliptic operators which do not satisfy 
(1.1). For example, operators of the form

F(X) = −�

(
n∑

i=1

�(μ+
i )

)
+ λ

(
n∑

i=1

	(μ−
i )

)

where μi, i = 1, . . . , n, are the eigenvalues of the matrix X ∈ Sn and �, 	 : [0, ∞) → [0, ∞)

are continuous and nondecreasing functions such that �(s) ≤ s ≤ 	(s), see Capuzzo-Dolcetta–
Vitolo [11].

The Phragmén–Lindelöf principle and results of Phragmén–Lindelöf type, which has connec-
tions to elasticity theory (Horgan [21], Quintanilla [40], Leseduarte–Carme–Quintanilla [29]), 
have been frequently studied during the last century. To mention some papers (without giving 
a complete summary), Ahlfors [2] extended results from Phragmén–Lindelöf [39] to the upper 
halfspace of Rn, Gilbarg [16], Serrin [41] and Herzog [19] considered more general elliptic 
equations of second order. Miller [37] considered uniformly elliptic operators in nondivergence 
form and unbounded domains contained in cones. Kurta [28] and Jin–Lancaster [22] estimated 
growth of bounded solutions of quasilinear equations, the later used solutions to boundary value 
problems, while Vitolo [42] considered elliptic equations in sectors. Capuzzo-Dolcetta–Vitolo 
[11] and Armstrong–Sirakov–Smart [3] considered fully nonlinear equations, the later in cer-
tain Lipschitz domains, and Koike–Nakagawa [27] established Phragmén-Lindelöf theorems for 
subsolutions of fully nonlinear elliptic PDEs with unbounded coefficients and inhomogeneous 
terms. Adamowicz [1] studied subsolutions of the variable exponent p-Laplace equation, while 
Bhattacharya [8] and Granlund–Marola [17] considered infinity-harmonic functions. Lindqvist 
[30] established Phragmén–Lindelöf’s theorem for n-subharmonic functions when the boundary 
is an m-dimensional hyperplane in Rn, 0 ≤ m ≤ n − 1, which was extended to p-subharmonic 
functions, n −m < p ≤ ∞, in Lundström [33]. We also mention that recently, Braga–Moreira [7]
showed that nonnegative solutions of a generalized p-Laplace equation in the upper halfplane, 
vanishing on {xn = 0}, is u(x) = xn (modulo normalization) and Lundström–Singh [35] proved 
a similar result for p-harmonic functions in planar sectors as well as a sharp Phragmen–Lindelöf 
theorem. Lundberg–Weitsman [31] studied the growth of solutions to the minimal surface equa-
tion over domains containing a halfplane. The spatial behavior of solutions of the Laplace equa-
tion on a semi-infinite cylinder with dynamical nonlinear boundary conditions was investigated in 
Leseduarte–Carme–Quintanilla [29]. Phragmén-Lindelöf theorems for plurisubharmonic func-
tions on cones was proved by Momm in [38] while Bhattacharya–Mohammed considered k-
Hessian equations with lower order terms [9]. Finally, we mention that recently, local estimates 
such as a sharp Harnack inequality (Julin [23]), boundary Harnack inequalities (Avelin–Julin [6]) 
as well as strong maximum and minimum principles (Lundström–Olofsson–Toivanen [34]) were 
established for fully nonlinear PDEs covered by the class of equations considered here.

1.1. Preliminaries

For a point x ∈Rn we use the notation x = (x1, x2, . . . xn−1, xn) = (x′, xn). By 
 we denote a 
domain, that is, an open connected set. For a set E ⊂ Rn we let E denote the closure and ∂E the 
boundary of E. By c we denote a positive constant not necessarily the same at each occurrence. 
We write A � B if there exists c such that A ≤ cB .
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A function u : 
 → R is a classical subsolution (supersolution) to (�) in 
 if it is twice 
differentiable in 
 and satisfies F(x, u, Du, D2u) ≤ 0 (F(x, u, Du, D2u) ≥ 0). If the inequality 
holds strict then u is a strict classical subsolution (supersolution), and if equality holds then it is 
a classical solution.

We choose to present our main results for viscosity subsolutions, of which we recall the defi-
nition below in case F :Rn ×R ×Rn ×Sn → R is a continuous function (which is not necessary 
for our results).

The following definition is from Crandall–Ishii–Lions [13]: An upper semicontinuous (USC) 
function u : 
 → R is a viscosity subsolution if for any ϕ ∈ C2(
) and any x0 ∈ 
 such that 
u − ϕ has a local maximum at x0 it holds that

F(x0, u(x0),Dϕ(x0),D
2ϕ(x0)) ≤ 0.

A lower semicontinuous (LSC) function u : 
 → R is a viscosity supersolution if for any ϕ ∈
C2(
) and any x0 ∈ 
 such that u − ϕ has a local minimum at x0 it holds that

F(x0, u(x0),Dϕ(x0),D
2ϕ(x0)) ≥ 0.

A continuous function is a viscosity solution if it is both a viscosity sub- and a viscosity super-
solution.

Let u be a subsolution and v a supersolution to (�) and let a and b be constants. As (�) is 
not necessarily homogeneous, a + bu and a + bv may fail as sub- and supersolutions. However, 
degenerate ellipticity guarantees that u −c is a subsolution, and u +c is a supersolution whenever 
c ≥ 0.

We will not discuss the validity of a general comparison principle for viscosity solutions of (�)
since we only need the possibility to compare viscosity subsolutions to classical supersolutions 
which is possible. Indeed, let 
 be a bounded domain, u a viscosity subsolution and v a classical 
strict supersolution in 
, u ≤ v on ∂
 and suppose that u ≥ v somewhere in 
. By USC the 
function u −v attains a maximum at some point x0 ∈ 
. Since v ∈ C2(
), u −v has a maximum 
at x0 and u is a viscosity subsolution it follows by definition of viscosity solutions that

F(x0, u(x0),Dv(x0),D
2v(x0)) ≤ 0. (1.3)

But since v is a classical strict supersolution we have F(x, v(x), Dv(x), D2v(x)) > 0 whenever 
x ∈ 
, and as u(x0) ≥ v(x0) it follows from degenerate ellipticity that F(x0, u(x0), Dv(x0),

D2v(x0)) ≥ F(x0, v(x0), Dv(x0), D2v(x0)) > 0. This contradicts (1.3) and hence we have 
proved the following lemma:

Lemma 1.1. Let 
 be a bounded domain, u ∈ USC(
) a viscosity subsolution and v ∈ LSC(
)

a viscosity supersolution of (�) in 
 satisfying u ≤ v on ∂
. Assume degenerate ellipticity. If 
either u is a strict classical subsolution, or v is a strict classical supersolution, then u < v in 
.

Neither the choice of viscosity solutions nor the assumption that F is continuous are neces-
sary for our results. Many other definitions of “weak solutions” can be considered, whenever 
more appropriate for the equation, as long as such weak subsolutions of (�) are USC and can be 
compared to classical strict supersolutions of (�). In particular, our proof relies on construction of 
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Fig. 1. Geometric definitions and constructions.

a classical strict supersolution to (�) and comparison with this barrier function. What is needed 
is the validity of the following simple comparison result:

Lemma 1.2. Let 
 be a bounded domain, u ∈ USC(
) a subsolution (in some weak sense) and 
v a classical strict supersolution to (�) in 
, continuous on 
. If u ≤ v on ∂
 then u ≤ v in 
.

2. Characterizing growth in terms of solutions to ordinary differential equations

We will estimate the growth of subsolutions to (�) in terms of solutions f : [0, ∞) → R to 
the following initial value problems, originating from assumption (��): If �(t, s) ≥ 0 for all 
t, s ∈R+ then we will make use of solutions to

df

dt
= −�(t, f (t))

λ(t)
− K(R)

�(t)

λ(t)
f (t), t > 0 with f (0) = ν (2.1)

in which ν > 0 and R > 0. Through the paper, we will by fν,R = fν,R(t) denote the solution of 
(2.1) with K(R) = n/γ (R), in which γ (R) appears in the domain defined in (2.2) below. Further, 
we denote by fν = fν(t) the solution of (2.1) with K(R) ≡ 0. If �(t, s) ≤ 0 for all t, s ∈ R+
then we use instead solutions of (2.1) but with λ(t) replaced by �(t) in the first term on the right 
hand side of (2.1). We allow ourselves to simplify notation according to λ = λ(·), � = �(·), K =
K(R) and γ = γ (R) whenever appropriate.

If � satisfies the Osgood-type condition (� � �) then �(t, s) → 0 as s → 0, and, for any ν > 0, 
the solutions fν,R and fν will be positive. This plays a role in our main results, as pointed out in 
the remarks made below Theorem 2.1. In Section 3 Figs. 2 and 3 several solutions of (2.1) are 
plotted for some choices of �.

To proceed we define, for a nondecreasing function γ = γ (R) > 0 and n ≥ 1, the domain

D(R) :=
{

x ∈ Rn+ :
n−1∑
i=1

x2
i + (xn + γ )2 < (R + γ )2

}
, (2.2)

see Fig. 1. Finally, for a subsolution u and for R > 0 we define
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M(R) = sup
∂D(R)

u

and

M ′(R) = lim inf
h→0+

M(R) − M(R − h)

h
.

The following theorem characterizes a sharp lower growth estimate of subsolutions to (�) in 
terms of solutions fν,R and fν of the ODE (2.1):

Theorem 2.1. Suppose that (��) and (� � �) hold and let u be a subsolution of (�) in Rn+ satisfying

lim sup
x→y

u(x) ≤ 0 for all y ∈ ∂Rn+.

Then either u ≤ 0 in Rn+ or M(R) is increasing and it holds that

lim inf
R→∞

M ′(R)

fν(R)
≥ lim inf

R→∞
fν,R(R)

fν(R)
,

where ν satisfies u(x̄) ≥ ∫ x̄n

0 fν(t) dt for some x̄ on the xn-axis.

Using Theorem 2.1 an “explicit” growth estimate can be found by estimating the limit 
fν,R(R)/fν(R) as R → ∞. In Section 3 we will consider certain PDEs for which we can solve 
the ODE (2.1) explicitly – estimate the limit – and thereby prove several Phragmen–Lindelöf-
type theorems. Let us note that if we can prove

lim inf
R→∞

M ′(R)

fν(R)
> 0

then M(R) − M(R0) ≥ c
∫ R

R0
fν(t)dt whenever R > R0 for some positive R0, c and thus

lim inf
R→∞

M(R)∫ R

0 fν(t)dt
> 0.

Hence, if the integral

∞∫
0

fν(t)dt

converges, then subsolutions may be bounded, but if the integral diverges, then subsolutions 
must grow to infinity and the conclusion of Theorem 2.1 takes the form of classical Phragmen–
Lindelöf theorems.

We remark that the assumption “x̄ lies on the xn-axis” is only for notational simplicity; we 
may translate coordinates otherwise. Note also that Theorem 2.1 holds whenever Rn+ is replaced 
(in the theorem and in (2.2)) with 
 ⊂Rn+, and that Theorem 2.1 gives a growth estimate for any 
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initial condition ν > 0 in (2.1) as long as u(x̄) ≥ ∫ x̄n

0 fν(t) dt for some x̄. The best estimate corre-
sponds to the largest ν. Moreover, it can be realized from the proof of Lemma 2.2 that the assump-
tion “λ nonincreasing and � nondecreasing” can be replaced by the slightly weaker assumption 
that λ/� is nonincreasing and λ is nonincreasing (� is nondecreasing) when � ≥ 0 (� ≤ 0). 
Finally, it will be clear from the proof that we also have M(R) − M(R − h) ≥ ∫ R+h

R
fν,R(t)dt

for R > x̄n and any h ∈ (0, R). We realize that M(R) must increase as long as fν,R > 0, which 
happens whenever � satisfies the Osgood-type condition (� � �). Otherwise, the strong maximum 
principle does not hold and a positive subsolution of (�) may stop growing and attain an interior 
maximum, see Julin [23] or Lundström–Olofsson–Toivanen [34, Remark 4.3] for a counterex-
ample.

Concerning sharpness of Theorem 2.1 we consider the function

u(x) =
xn∫

0

fν(t)dt, (2.3)

vanishing on ∂Rn+, depending only on xn with derivative uxn(x) = fν(xn). This function satisfies 
M ′(R) = fν(R). In case � ≥ 0 it holds that uxnxn(x) = f ′

ν(xn) = −λ−1(xn)�(xn, fν(xn)) and 
hence we obtain λ(x)u′′(x) +�(|x|, fν(x)) = 0 when n = 1. When n ≥ 2 we obtain, for example, 
that

−F(x,Du,D2u) = λ(xn)�u + �̄(fν(xn)) = 0 (2.4)

for some function �̄ = �̄(s). In case � ≤ 0 the same holds but with λ replaced by �. Thus, 
the function defined in (2.3) is a classical solution of an equation of type (�) satisfying (��) and 
(� � �) as well as the remaining assumptions in Theorem 2.1. In conclusion, when the limit in 
Theorem 2.1 is positive then the growth estimate cannot be improved (in case �(t, s) is indepen-
dent of t when n ≥ 2), ignoring the shape of D(R) and the value of the limit.

Concerning the shape of D(R) we note the following. If n = 1 then D(R) = (0, R) inde-
pendent of γ , but if n ≥ 2 then γ = cR implies that the spherical segment D(R) preserves its 
geometric proportions for all R > 0. If γ (R)/R is increasing then D(R) expands faster in the 
x′-direction, implying slightly weaker estimates since ∂D(R), on which supremum is taken, 
becomes larger. Observe that if the problem is considered in 
 ⊂ Rn+ this might be of minor 
importance, especially if e.g. 
 is bounded in x′-directions or contained in a cone with apex at 
the origin. There is not much of a gain to consider γ (R)/R decreasing since D(R) still expands 
at rate R in x′-directions.

The proof of Theorem 2.1 relies on comparison arguments and the following construction of 
a classical strict supersolution of (�).

Lemma 2.2. Suppose that (��) and (� � �) hold, let R > 0 and put

�R(x) =
√√√√n−1∑

i=1

x2
i + (xn + γ )2 − γ = |(x′, xn + γ )| − γ

in which γ = γ (R) is from (2.2). Then for any ν > 0 the function
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Vν,R(x) =
�R(x)∫

0

fν,R(t)dt

is a strict classical supersolution of (�) in D(R).

Proof of Lemma 2.2. For notational simplicity we set � = �R(x), V = Vν,R(x) and f (t) =
fν,R(t). Differentiating yields

∂V

∂xi

= xi

|(x′, xn + γ )|f (�) , 1 ≤ i ≤ n − 1,
∂V

∂xn

= xn + γ

|(x′, xn + γ )|f (�) .

It follows that

|DV | = f (�) . (2.5)

The second derivatives become

∂2V

∂x2
i

=
(

xi

|(x′, xn + γ )|
)2

f ′(�) +
(

1

|(x′, xn + γ )| − x2
i

|(x′, xn + γ )|3
)

f (�) ,

for 1 ≤ i ≤ n − 1, and

∂2V

∂x2
n

=
(

xn + γ

|(x′, xn + γ )|
)2

f ′(�) +
(

1

|(x′, xn + γ )| − (xn + γ )2

|(x′, xn + γ )|3
)

f (�) ,

giving

Tr(D2V ) = f ′(�) + n − 1

|(x′, xn + γ )|f (�) .

We assume from here on that � ≥ 0. By construction we then have from (2.1) that f ′(t) =
−�(t,f (t))

λ(t)
− K

�(t)
λ(t)

f (t) and hence

Tr(D2V ) = −�(�,f (�))

λ(�)
− K

�(�)

λ(�)
f (�) + n − 1

|(x′, xn + γ )|f (�) .

We decompose D2V = D2V + − D2V − so that

Tr(D2V +) = n − 1

|(x′, xn + γ )|f (�) and

Tr(D2V −) = �(�,f (�))

λ(�)
+ K

�(�)

λ(�)
f (�).

Utilizing the structure assumption (��), the fact that V ≥ 0 and using (2.5) give
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F(x,V,DV,D2V ) ≥F(x,0,DV,D2V )

≥ − �(|x|, f (�)) − �(xn)
n − 1

|(x′, xn + γ )|f (�)

+ λ(xn)�(�,f (�))

λ(�)
+ K

λ(xn)�(�)

λ(�)
f (�)

≥ − �(xn)
n − 1

|(x′, xn + γ )|f (�) + K
λ(xn)�(�)

λ(�)
f (�) (2.6)

since λ(�) ≤ λ(xn) and � (|x|, f (�)) ≤ � (�,f (�)) hold. This last statement follows since 
xn ≤ �R(x) ≤ |x| by geometry, see Fig. 1, and functions are nonincreasing by assumption.

To show that V is a strict classical supersolution we need F(x, V, DV, D2V ) > 0 and by (2.6)
and the fact that f (�) > 0 it suffices to ensure

n − 1

|(x′, xn + γ )| < K
λ(xn)�(�)

�(xn)λ(�)
.

Observing that λ(xn)
�(xn)

≥ λ(�)
�(�)

holds since λ/� is nonincreasing, it suffices to ensure

n − 1

|(x′, xn + γ )| < K.

We know that γ ≤ |(x′, xn + γ )| in Rn+ so it is enough to have

n − 1

γ (R)
< K

which holds since we have K = n/γ (R).
If � ≤ 0 then by construction f ′(t) = −�(t,f (t))

�(t)
− K

�(t)
λ(t)

f (t) and we obtain

Tr(D2V +) = −�(�,f (�))

�(�)
+ n − 1

|(x′, xn + γ )|f (�),

Tr(D2V −) = K
�(�)

λ(�)
f (�) (2.7)

and thus instead of (2.6) we end up with

F(x,V,DV,D2V ) ≥F(x,0,DV,D2V )

≥ − �(|x|, f (�)) + �(xn)

�(�)
�(�,f (�))

− �(xn)
n − 1

|(x′, xn + γ )|f (�) + λ(xn)K
�(�)

λ(�)
f (�)

≥ − �(xn)
n − 1

|(x′, xn + γ )|f (�) + λ(xn)K
�(�)

λ(�)
f (�). (2.8)
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Here, the last inequality holds since xn ≤ �R(x) ≤ |x|, � is nondecreasing and −� ≥ 0 is non-
decreasing in its first argument so that

−�(|x|, f (�)) ≥ �(xn)

�(�)
(−�(�,f (�))) .

To ensure that V is a strict supersolution we see from (2.8) that it remains to show that

n − 1

|(x′, xn + γ )| < K
λ(xn)

�(xn)

�(�)

λ(�)

and we are thus back in the same situation as in the case � ≥ 0. The proof of Lemma 2.2 is 
complete. �
Proof of Theorem 2.1. Let u be as in the statement of the theorem and denote with ν0 the initial 
condition in (2.1) for which we want to prove the growth estimate. Let R > 0, ν > 0 and put 
V := Vν,R(x), where Vν,R(x) is the strict supersolution in D(R) guaranteed by Lemma 2.2.

If V ≥ M(R) on ∂D(R) then, if � is nonnegative, it follows that fν ≤ ν and we obtain 
equality by decreasing ν. If � is nonpositive we note that f ′

ν,R(t) ≤ �̃(fν,R(t)) for some �̃(s) >
0 satisfying (� � �). Thus

fν,R(t)∫
ν

ds

�̃(s)
≤ t

which implies that fν,R(t) → 0 as ν → 0 for all t ∈ [0, R]. Therefore, we obtain equality by 
decreasing ν also in this case. If V < M(R) on ∂D(R) then we increase ν. If this does not help, 
(note that we may have V ≤ A on ∂D(R), for all ν, all R, and some A > 0), then we lift the 
supersolution by adding a nonnegative constant. Indeed, for C ≥ 0 it follows from degenerate 
ellipticity that also V + C is a strict supersolution. We conclude that

V + C ≥ C on {xn = 0} and V + C = M(R) on ∂D(R) ∩Rn+.

We clarify that if C > 0 then we have taken ν > ν0. It follows that

lim sup
x→z

u(x) ≤ V (z) + C for all z ∈ ∂D(R)

and the weak comparison principle in Lemma 1.1 implies that u ≤ V + C in D(R).
We next conclude that ν ≥ ν0. In particular, assume ν < ν0. By assumption and by the above 

we have V (x̄) ≥ u(x̄) ≥ ∫ x̄n

0 fν0(t) dt for some x̄ ∈ D(R) ∩ {x̄′ = 0}, but on the other hand

V (x̄) =
�R(x̄)∫

0

fν,R (t) dt =
x̄n∫

0

fν,R (t) dt <

x̄n∫
0

fν0,R (t) dt ≤
x̄n∫

0

fν0(t) dt,

where the last inequality follows since fν,R ≤ fν . Hence, we have a contradiction and we there-
fore conclude ν ≥ ν0.
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Now let R > x̄n, h ∈ (0, R) and note that by the comparison principle

M(R) − M(R − h) ≥ V (0, . . . ,0,R) − V (0, . . . ,0,R − h)

=
R∫

R−h

fν,R (t) dt ≥
R∫

R−h

fν0,R (t) dt > 0.

It follows that M(R) is increasing and by taking the limit we see that

M ′(R) = lim inf
h→0+

M(R) − M(R − h)

h
≥ lim inf

h→0+

∫ R

R−h
fν0,R (t) dt

h
= fν0,R(R).

Hence

lim inf
R→∞

M ′(R)

fν0 (R)
≥ lim inf

R→∞
fν0,R (R)

fν0 (R)

which completes the proof of the theorem. �
3. Applications to some well known equations

In this section we apply Theorem 2.1 to some PDEs for which we can find solutions of the 
ODE in (2.1), estimate the limit

lim inf
R→∞

fν,R(R)

fν(R)

and conclude explicit growth estimates. We begin with the simplest case � ≡ 0, including e.g. 
the famous p-Laplace equation, proceed with PDEs having sublinear growth in the gradient 
according to �(t, s) = C(t)sk for k ≥ 1 and end by the variable exponent p-Laplace equation, 
which satisfies assumption (��) with �(s) = C(t)s| log s|.

When stating corollaries for specific classes of PDEs we would sometimes prefer to infer 
other types of “weak” solutions than viscosity solutions whenever such are more suitable or 
more commonly used for such equations in the literature. As the equivalence of different kinds 
of “weak” solutions often is a nontrivial problem we will in some cases avoid going into these 
details, but this should not make things unclear. The reason is that we only use comparison 
between “weak” subsolutions and classical strict supersolutions – i.e. Lemma 1.2.

3.1. The case �(s) ≡ 0

In this simple case the ODE (2.1) reduces to

df

dt
= −K(R)

�(t)

λ(t)
f (t), t > 0 with f (0) = ν

and hence fν,R(t) = νe−K(R)
∫ t

0 �(s)λ−1(s)ds and fν(t) ≡ ν. We obtain the limit
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lim inf
R→∞

M ′(R)

fν(R)
≥ lim inf

R→∞
fν,R(R)

fν(R)
= lim

R→∞ e−K(R)
∫ R

0 �(s)λ−1(s)ds (3.1)

which is positive if K(R) 
∫ R

0 �(s)λ−1(s)ds � 1. Recall from the definitions in (2.1) that K(R) =
n/γ (R). This forces us to choose the function γ (R) in the definition of D(R), given by (2.2), so 
that

R∫
0

�(s)

λ(s)
ds � γ (R). (3.2)

Following the remark just below Theorem 2.1 we see that (3.1) then implies

lim inf
R→∞

M(R)

R
> 0 (3.3)

and we thus retrieve the classical form of the Phragmen–Lindelöf theorem. If the PDE is uni-
formly elliptic, i.e. �/λ = constant , then according to (3.2) we can pick γ (R) = R and thereby 
D(R) preserves its geometric proportions for all R > 0, which also agrees with the classical 
Phragmen–Lindelöf theorem. If ellipticity blows up at infinity, i.e. �(R)/λ(R) → ∞, then the 
loss in estimate (3.3) comes only in the shape of D(R) – it expands faster in x′-directions since 
we need to take a larger γ (R) according to (3.2).

Concerning sharpness of (3.3) we note that if � ≡ 0 then (2.3) yields

xn∫
0

fν(t) dt = ν xn

which clearly hits the bottom of (3.3).
Following (�) and (��) we see that (3.3) holds, e.g., for subsolutions of the quasilinear equa-

tions

−
n∑

i,j=1

Aij (x)
∂2u

∂xi∂xj

+ f (x,u,Du) = 0, (3.4)

corresponding to F(x, r, p, X) = −Tr (A(x)X) + f (x, u, Du), where A(x) ∈ Sn satisfies 
λ(xn)Tr (Y ) ≤ Tr (A(x)Y ) ≤ �(xn)Tr (Y ) for all Y ≥ 0, and

P −
λ,�(D2u) + f (x,u,Du) = 0, (3.5)

whenever f (x, u, Du) ≥ 0 is nondecreasing in u. One such PDE is the following p-Laplace 
equation, p ∈ (1, ∞), with lower order terms

−∇ ·
(
|Du|p−2Du

)
+ f (x,u,Du) = 0. (3.6)

Indeed, with
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−F(x,u,Du,D2u) = �u + (p − 2)�∞u − f (x,u,Du)

|Du|p−2 ,

where �∞u = 〈D2u Du
|Du| , 

Du
|Du| 〉 denotes the infinity Laplace operator, we see that F satisfies 

(1.2) with � ≡ 0 and

min {1,p − 1}Tr(Y ) ≤ F(x,u,Du,X) − F(x,u,Du,X + Y) ≤ max {1,p − 1}Tr(Y ),

whenever Y ≥ 0. Hence F satisfies (1.1) with λ = min {1,p − 1} and � = max {1,p − 1} and 
Theorem 2.1 applies.

Recalling that Lemma 1.2 holds for weak solutions (defined in the usual way) to p-Laplace 
type problems or that viscosity solutions and weak solutions are equivalent for some p-Laplace 
type equations, see e.g. Juutinen–Lindqvist–Manfredi [25], Julin–Juutinen [24] and Medina–
Ochoa [36], we retrieve and generalize the well known Phragmen–Lindelöf result in Lindqvist 
[30] in the setting of a halfspace Rn+.

3.2. The case �(t, s) = C(t)sk

We now consider equations satisfying (��) with �(t, s) = C(t)sk where k ∈ R is a constant 
such that k ≥ 1. Note that such � satisfies (� � �) and hence Theorem 2.1 implies that M(R) is 
increasing. To derive exact growth estimates we observe that the ODE in (2.1) yields

df

dt
= −C(t)f k

λ(t)
− K(R)

�(t)

λ(t)
f, t > 0 with f (0) = ν.

As C is nonincreasing (by assumptions on �) and � is nondecreasing we can replace the above 
equation with the separable ODE

df

dt
= −A(t)

(
f k + K̃f

)
,

where A(t) = C(t)/λ(t) and K̃ = K�(R)
C(R)

= n�(R)
C(R)γ (R)

. This is possible since solutions of this 
ODE will approach zero faster as t increases and hence it creates a lower bound on the limit in 
Theorem 2.1. To find the solution for k > 1 we observe that

1

K̃

f (t)∫
ν

(
1

y
− yk−2

yk−1 + K̃

)
dy = −

t∫
0

A(s)ds

and

1

k − 1

[
logyk−1 − log

(
yk−1 + K̃

)]f (t)

ν
= −K̃

t∫
0

A(s)ds.

Thus
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fν,R(t) =

⎧⎪⎨⎪⎩
νe−(

1+K̃
) ∫ t

0 A(s)ds if k = 1,

K̃
1

k−1

(
e(k−1)K̃

∫ t
0 A(s)ds

(
K̃

νk−1 + 1
)

− 1
) 1

1−k
if k > 1,

and by solving df
dt

= −C(t)f k

λ(t)
with f (0) = ν we also obtain

fν(t) =

⎧⎪⎨⎪⎩
νe− ∫ t

0 A(s)ds if k = 1,(
(k − 1)

∫ t

0 A(s)ds + ν1−k
) 1

1−k
if k > 1.

(3.7)

The limit in Theorem 2.1 becomes, for k = 1,

lim inf
R→∞

M ′(R)

fν(R)
≥ lim inf

R→∞
fν,R(R)

fν(R)
= lim

R→∞ e−K̃
∫ R

0 A(s)ds,

and for k > 1,

lim inf
R→∞

M ′(R)

fν(R)
≥ lim inf

R→∞
fν,R(R)

fν(R)
= lim

R→∞

⎛⎝ K̃(k − 1)
∫ R

0 A(s)ds + K̃ν1−k

eK̃(k−1)
∫ R

0 A(s)ds
(
K̃ν1−k + 1

) − 1

⎞⎠
1

k−1

.

Let’s observe that if K̃(R) 
∫ R

0 A(s)ds � 1, which is obtained by taking

�(R)

C(R)

R∫
0

A(s)ds � γ (R), (3.8)

then the limits are positive and we obtain

lim inf
R→∞

M ′(R)

fν(R)
> 0. (3.9)

Thus, we may derive several Phragmen–Lindelöf-type results using Theorem 2.1, whose form 
will depend on the exponent k and the functions C, λ and �. For example, using (3.7)-(3.9) we 
have proved:

Corollary 3.1. Suppose that (��) holds with �(t, s) = C(t)sk , k ≥ 1. Let u be a subsolution of 
(�) in Rn+ satisfying

lim sup
x→y

u(x) ≤ 0 for all y ∈ ∂Rn+.

Assume also that u(x̄) > 0 for some x̄ on the xn-axis. Then the following is true, with A(t) =
C(t)/λ(t):
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(i) If 
∫ R

0 A(s)ds � Rα(k−1) for α ≥ 0, k > 1 and �(R)
C(R)

Rα(k−1) � γ (R) then

lim inf
R→∞

M ′(R)

R−α
> 0 implying lim inf

R→∞
M(R)

R1−α
> 0.

(ii) If 
∫ R

0 A(s)ds � R and �(R)
C(R)

R � γ (R) then

lim inf
R→∞

M ′(R)

e−R
> 0 if k = 1, lim inf

R→∞
M ′(R)

R− 1
k−1

> 0 if k ∈ (1,2),

lim inf
R→∞

M(R)

log(R)
> 0 if k = 2 and lim inf

R→∞
M(R)

R
k−2
k−1

> 0 if 2 < k.

(iii) If 
∫ R

0 A(s)ds � log(R), �(R)
C(R)

log(R) � γ (R) and k = 1 then

lim inf
R→∞

M(R)

log(R)
> 0.

We remark that in Corollary 3.1 we only summarize some examples of growth estimates that 
take simple forms – the reader may return to conclusion (3.9) for the general case. Note also that 
all conclusions in Corollary 3.1 are independent of ν, meaning that we only have to use arbitrary 
small ν > 0 to prove them. Therefore, since fν and fν,R are nonincreasing functions in this case, 
we only need that the assumption �(t, s) = C(t)sk holds for arbitrary small s.

Conclusion (i) takes the form of the classical Phragmen–Lindelöf theorem and when α = 0 it 
applies e.g. when

�(|x|, s) = C(|x|)sk = c

(1 + |x|)a sk, (3.10)

k ≥ 1, a > 1, ellipticity λ = constant , � = constant and Ra � γ (R). Conclusion (ii) holds 
e.g. when A = constant , �/C = constant and γ (R) ≡ R. We observe that the exponent k in 
�(t, s) = C(t)sk has a borderline value at k = 2. Namely, if k ∈ [1, 2) then subsolutions may 
be bounded, but if k ∈ [2, ∞) then any subsolution must grow to infinity. As already mentioned 
in Section 2 such border is, beyond the assumptions in Corollary 3.1, characterized by conver-
gence/divergence of

∞∫
0

fν(t)dt.

Conclusion (iii) holds e.g. when a = 1 in (3.10), R log(R) � γ (R) and � = constant .
We further remark that upper bounds on 

∫ R

0 A(s)ds have played an important role for related 
results in the literature, see e.g. Gilbarg [16], Hopf [20] and Vitolo [42], and that Phragmen–
Lindelöf theorems for similar equations in more general domains but with k = 1 and k = 2 are 
proved by Capuzzo-Dolcetta–Vitolo [11] and Koike–Nakagawa [27].
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Fig. 2. The derivative fν in (3.7) (left panel) and the solution 
∫ x

0 fν(t)dt (right panel). Right panel: Dashed curve is 
bounded, thin solid curve approaches infinity at speed log(x) while dashed-dot curve approaches infinity at speed x8/9

(see (ii) in Corollary 3.1). Thick solid curve approaches infinity at speed x2/3 (see (i) in Corollary 3.1 with α = 1/3). 
In all simulations, ν = 5. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

As in the case � ≡ 0 the results in this subsection apply to PDEs of type (3.4) and (3.5)
but now with relaxed assumption on f , namely f (x, u, Du) ≥ −C(|x|)|Du|k . In case of the p-
Laplace type equation (3.6), 1 < p < ∞, the growth condition on the lower order terms becomes 
f (x, u, Du) ≥ −C(|x|)|Du|k+p−2.

When C(t) ≡ 1 then the function in (2.3), with fν from (3.7), is a classical solution of (2.4)
ensuring sharpness. If λ = constant we find explicitly that

u(x) =
xn∫

0

fν(t)dt = λ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ν

(
1 − e−λ−1xn

)
if k = 1,

log
(
λ−1xnν + 1

)
if k = 2,

ν2−k

2−k

(
1 − (

(k − 1)λ−1xnν
k−1 + 1

) 2−k
1−k

)
otherwise.

Fig. 2 shows the solution 
∫ xn

0 fν(t)dt for some values of k, ν and different functions λ(t).

3.3. The case �(t, s) = C(t)s| log s|: variable exponent p-Laplace equation

We set �(t, s) = C(t)s| log s| and obtain the ODE

df

dt
= −C(t)f | logf |

λ(t)
− K(R)

�(t)

λ(t)
f, t > 0 with f (0) = ν.

By the same argument as in the case � = C(t)sk we replace the above ODE with

df = −A(t)
(
f | logf | + K̃f

)

dt
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where A(t) = C(t)/λ(t) and K̃ = K�(R)
C(R)

= n�(R)
C(R)γ (R)

. This equation separates, when 0 < f ≤ 1, 
to

log
(
K̃ − logν

) − log
(
K̃ − logf

) = −
t∫

0

A(s)ds.

Thus

fν,R(t) = e
K̃

(
1−e

∫ t
0 A(s)ds

)
νe

∫ t
0 A(s)ds

and since f must be nonincreasing this holds for 0 < ν ≤ 1. If ν > 1 the solution takes a similar 
form, namely

fν,R(t) =

⎧⎪⎨⎪⎩ e
K̃

(
e
− ∫ t

0 A(s)ds−1

)
νe

− ∫ t
0 A(s)ds

if 0 ≤ t < t0,

e
K̃

(
1−e

∫ t
t0

A(s)ds
)

if t0 ≤ t,

(3.11)

where t0 is such that fν,R(t0) = 1. Moreover,

fν(t) =
⎧⎨⎩ νe

∫ t
0 A(s)ds

if 0 < ν ≤ 1,

νe
− ∫ t

0 A(s)ds

if 1 < ν.
(3.12)

The limit in Theorem 2.1 becomes, for 0 < ν ≤ 1,

lim inf
R→∞

M ′(R)

fν(R)
≥ lim inf

R→∞
fν,R(R)

fν(R)
= lim

R→∞ e
K̃

(
1−e

∫ R
0 A(s)ds

)
(3.13)

which is positive if K̃e
∫ R

0 A(s)ds � 1. Therefore, we have to pick �(R)
C(R)

e
∫ R

0 A(s)ds � γ (R) to 
achieve a growth estimate.

When ν > 1 we know that fν,R in (3.11) stays above 1 if(
K̃ + logν

)
e− ∫ t

0 A(s)ds > K̃

which needs at least �(R)
C(R)

e
∫ R

0 A(s)ds � γ (R). In such case

lim inf
R→∞

M ′(R)

fν(R)
≥ lim inf

R→∞
fν,R(R)

fν(R)
= lim

R→∞ e
K̃

(
e
− ∫ R

0 A(s)ds−1

)
≥ lim

R→∞ e−K̃ > 0

as �(R)
C(R)

� γ (R). If the solution fν,R decreases to 1 then the limit can be estimated as in (3.13)
since fν,R then follows the expression for ν ∈ (0, 1] with ν = 1.

In summary, since �(t, s) = C(t)s| log s| satisfies (� � �) we can conclude that for a subsolu-
tion u satisfying the assumptions in Theorem 2.1 with �(t, s) = C(t)s| log s|, the following is 

true when �(R)
e
∫ R

0 A(s)ds � γ (R), denoting ǔ(x) = ∫ xn fν(s)ds:

C(R) 0
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• If u ≥ ǔ somewhere on the xn-axis and ν ∈ (0, 1), then M(R) may be bounded but

lim inf
R→∞

M ′(R)

νe
∫ R
0 A(s)ds

> 0. (3.14)

• If u ≥ ǔ somewhere on the xn-axis and ν ≥ 1, then M(R) approaches infinity according to

lim inf
R→∞

M ′(R)

νe
− ∫ R

0 A(s)ds
> 0 implying lim inf

R→∞
M(R)

R
> 0. (3.15)

Thus we retrieve the classical form of a Phragmen–Lindelöf theorem if the subsolution exceeds 
ǔ with ν ≥ 1, but if the subsolution only exceeds ǔ with ν < 1, it may grow very slowly and 
need not approach infinity. The border at ν = 1 originates from the fact that �(t, 1) = 0 and 
thus f1 ≡ 1, while �(t, s) > 0 for all other positive s implying fν → 1 if ν > 1. Moreover, 
�(t, s) → 0 as s → 0 and thus fν → 0 if ν ∈ (0, 1).

Concerning sharpness we observe that ǔ(x) = ∫ xn

0 fν(s)ds, in which fν is from (3.12) with 
A(s) = λ−1(s), solves the PDE (2.4) with �(t, s) = s| log s|, i.e.

λ(xn)�u + |Du|| log |Du|| = 0. (3.16)

When λ = constant we find the explicit expression

ǔ(x) =
xn∫

0

fν(s)ds = λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Ei (logν) + Ei

(
eλ−1t logν

)
if 0 < ν < 1,

xn if ν = 1,

Ei (logν) − Ei

(
e−λ−1t logν

)
if 1 < ν

(3.17)

where Ei is the Exponential integral. See Fig. 3 (upper row) for some illustrations of the functions 
fν in (3.12) and ǔ in (3.17).

3.3.1. Variable exponent p-Laplace equation
The p(x)-Laplace equation in a domain 
 ⊂Rn, which often serves as a model example for 

PDEs with nonstandard growth, yields

∇ ·
(
|Du|p(x)−2Du

)
= 0. (3.18)

The function p : 
 → (1, ∞) is usually called a variable exponent. If p = constant , then this 
equation is the classical p-Laplace equation and if p = 2 it’s the famous Laplace equation. 
Apart from interesting theoretical considerations such equations arise in the applied sciences, for 
instance in fluid dynamics, see e.g. Diening–Růžička [14], in image processing, see e.g. Chen–
Levine–Rao [12] and in electro-rheological fluids, see e.g. Harjulehto–Hästö–Lê–Nuortio [18]
to which we also refer the reader for a recent survey and further references.

We recall the following standard definition of weak solutions of (3.18): A function u ∈
W

1,p(x)
(
) is a weak (sub)solution of (3.18) if
loc
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Fig. 3. Functions fν in (3.12) and ǔ in (3.17) (upper row), fν in (3.26) and ǔ in (3.27) (lower row). In all simulations, 
λ = � = 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

∫



|Du|p(x)−2〈Du,Dψ〉dx(≤) = 0

for all (nonnegative) ψ ∈ C∞
0 (
). Similarly, u is a weak supersolution if −u is a weak subso-

lution. A function which is both a weak subsolution and a weak supersolution is called a weak 
solution. An (USC/LSC) weak (sub/super)solution is called a p(x)-(sub/super)harmonic func-
tion. We also note that u ∈ W

1,1
loc (
) is p(x)-harmonic in 
 if it is a local minimizer of the 

energy

∫



1

p(x)
|Du|p(x)dx,

where 1 < p(x) < ∞.
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To proceed we define the operator

�p(x)u := �u + (p(x) − 2)�∞u + log |Du|〈Dp,Du〉,

where �∞u = 〈D2u Du
|Du| , 

Du
|Du| 〉 denotes the infinity Laplace operator. We note that �p(x)u ≥ 0

implies

−F̂ (x,Du,D2u) := �(x)Tr(D2u+) − λ(x)Tr(D2u−) + |Dp||Du|| log |Du|| ≥ 0 (3.19)

with λ(x) = min{1, p(x) − 1} and �(x) = max{1, p(x) − 1}. This suggests that p(x)-
subharmonic functions should be viscosity subsolutions of F̂ = 0, which is the case. Indeed, 
following the proof in Julin [23], which expands on Juutinen–Lukkari–Parviainen [26], we can 
conclude the following slightly generalized version of [23, Lemma 5.2]:

Lemma 3.2. Suppose that p(x) is C1(R+), 1 < p(x) < ∞, λ(x) = min{1, p(x) −1} and �(x) =
max{1, p(x) −1}. If u is p(x)-subharmonic in a domain 
 ∈Rn, ϕ ∈ C2(
) is such that ϕ(x0) =
u(x0) at x0 ∈ 
 and ϕ ≥ u then

F̂ (x0,Dϕ(x0),D
2(ϕ(x0))) ≤ −�p(x)ϕ(x0) ≤ 0.

To obtain a PDE satisfying the required assumptions we redefine F̂ by replacing ellipticity 
with λ(xn) ≤ min{1, p(x) − 1} nonincreasing, �(xn) ≥ max{1, p(x) − 1} nondecreasing and 
also by replacing the nonhomogeneous term with �(|x|, s) ≥ |Dp|s| log s|, where �(|x|, s) is 
nonincreasing in |x|. In particular, we can take

λ(t) =pλ(t) := inf
y:yn≤t

min{1,p(y) − 1}, �(t) = p�(t) := sup
y:yn≤t

max{1,p(y) − 1} and

�(t, s) = ||Dp||∞,t s| log s| where ||f ||∞,t = sup
y:|y|≥t

|f (y)|. (3.20)

By the above reasoning we can conclude that a weak USC subsolution (a p(x)-subharmonic 
function) to the variable exponent p-Laplace equation is a viscosity subsolution of a PDE of 
type (�) satisfying (��) and (� � �). We can therefore conclude that deductions (3.14) and (3.15)
hold for p(x)-subharmonic functions whenever p(x) is C1(R+) and 1 < p(x) < ∞.

We summarize our findings in the following theorem yielding Phragmen–Lindelöf-type re-
sults, of which some are sharp, for weak solutions of the variable exponent p-Laplace equation:

Theorem 3.3. Suppose that p(x) is C1(Rn+), 1 < p(x) < ∞, and let u be p(x)-subharmonic in 
Rn+ satisfying

lim sup
x→y

u(x) ≤ 0 for all y ∈ ∂Rn+.

Then u is a viscosity subsolution of an equation of type (�) satisfying (��) and (� � �) with �, λ =
pλ and � = p� as in (3.20). Moreover, if p�(R)

||Dp||∞,R
exp

(∫ R

0
||Dp||∞,s

pλ(s)
ds

)
� γ (R) and ǔ(x) =∫ xn fν(s)ds with fν from (3.12) then the following is true:
0
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• If u ≥ ǔ somewhere on the xn-axis for ν ∈ (0, 1) then

lim inf
R→∞

M ′(R)

ν
exp

(∫ R
0

||Dp||∞,s
pλ(s)

ds
) > 0.

• If u ≥ ǔ somewhere on the xn-axis for ν ≥ 1 then

lim inf
R→∞

M(R)

R
> 0.

We thus retrieve the classical form of a Phragmen–Lindelöf theorem if the subsolution exceeds 
ǔ with ν ≥ 1, in particular if it exceeds xn. On the other hand, if the subsolution only exceeds ǔ
with ν < 1, then Theorem 3.3 states that it may grow very slowly and be bounded. The sharpness 
in the case ν ≥ 1 follows by observing, e.g., that

u(x) = c xn is p(x)-harmonic with p(x) = M0 +
n−1∑
i=1

Mix
2
i , (3.21)

whenever c ≥ 1, M0 > 1 and Mi , for i ∈ [1, n − 1], are constants. It is worth observing that the 
conclusion

lim inf
R→∞

M(R)

R
> 0

follows also in the case ν ∈ (0, 1) if 
∫ R

0
||Dp||∞,s

pλ(s)
ds � 1 since then lim infR→∞ M ′(R) > 0. This 

holds e.g. if the exponent satisfies p− < p(x) and ||Dp||∞,s � s−k for some constants p−, k > 1; 
a natural conclusion since these assumptions force the equation toward the constant exponent p-
Laplace equation far away from the origin.

Versions of Theorem 3.3 are possible to derive from (3.14) and (3.15); e.g., it may be use-
ful to replace the norm in (3.20) by ||Dp||∞,xn where ||f ||∞,t = supy:yn=t |f (y)|. Then, if 
||Dp||∞,xn �= 0 for all xn > 0 we may divide (3.19) by ||Dp||∞,xn and conclude, for λ(xn) ≤
min{1,p(x)−1}

||Dp||∞,xn
nonincreasing and �(xn) ≥ max{1,p(x)−1}

||Dp||∞,xn
nondecreasing, that Theorem 3.3 holds 

with p�(R)
||Dp||∞,R

replaced by �(R) and ||Dp||∞,s

pλ(s)
replaced by λ−1(s). In particular, in the case 

ν ∈ (0, 1] the conclusion then reads

lim inf
R→∞

M ′(R)

νe
∫ R
0 λ−1(s)ds

> 0. (3.22)

We build sharpness of this result in Remark 3.4 below in which we find a family of exponents 

for which the solution in (3.17), which satisfies M ′(R) = νe
∫ R
0 λ−1(s)ds

, is p(x)-harmonic.
We further remark that Theorem 3.3 sharpens some results of Adamowicz [1] in the geometric 

setting of halfspaces, and the C1-assumption on p(x) should be replaceable with locally Lips-
chitz continuity by approximation arguments. Furthermore, the reader may recall the remarks 
made below deductions (3.14) and (3.15) and also note that contrary to the results in the former 
subsection, for �(t, s) = C(t)sk , the growth estimates here depend on ν. Finally, the main results 
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in this section should hold also when the equation involves a “sink” term – in particular, for PDEs 
of the type −∇ · (|Du|p(x)−2Du

) + f (x, u, Du) = 0 when f (x, u, Du) ≥ 0 is nondecreasing in 
u.

Our estimates may not be optimal when log |Du|〈Dp, Du〉 is negative since then we lose 
information by our choice of �. We can improve by taking φ(s) ≡ 0, but we still lose information 
when subsolutions gradients are not “close to perpendicular” to Dp. This motivates us to derive 
better estimates under assumptions excluding e.g. the solution in (3.21). We do so by studying a 
nonpositive �; the case �(s) = −s| log s|, in the next section.

We proceed by proving the following result, in which we find the “slowest growing” p(x)-
harmonic function, for a given ellipticity bound, and the corresponding family of exponents.

Remark 3.4. The function ǔ(x) = ∫ xn

0 fν(s)ds, in which fν is from (3.12) with A(s) = λ−1(s), 
is p(x)-harmonic with exponent

p̌(x) = 1 + Me− ∫ xn
0 λ−1(s)ds if ν ∈ (0,1] and p̌(x) = 1 + Me

∫ xn
0 λ−1(s)ds if ν > 1,

whenever M ∈ R+ is a constant.
The function ǔ(x) is the slowest growing p(x)-harmonic function in the sense of version 

(3.22) of Theorem 3.3. In particular, any p(x)-subharmonic function with exponent p(x) ∈
C1(Rn+), 1 < p(x) < ∞, λ(xn) ≤ min{1,p(x)−1}

||Dp||∞,x
and max{1,p(x)−1}

||Dp||∞,x
≤ �(xn), satisfying

lim sup
x→y

u(x) ≤ 0 for all y ∈ ∂Rn+

that exceeds ǔ somewhere on the xn-axis satisfies

lim inf
R→∞

M ′(R)

ǔ(Ren)
= lim inf

R→∞
M ′(R)

νe
∫ R
0 λ−1(s)ds

> 0.

Finally, if λ is constant then

ǔ(x) = λ

{
−Ei (logν) + Ei

(
eλ−1xn logν

)
if 0 < ν < 1,

xn if ν = 1

where Ei is the Exponential integral.

Proof. Since ǔ depends only on xn and solves (3.16) the first statement follows if we prove that 
the variable exponent p(x)-Laplace equation, with exponent p̌(x) = 1 + Me∓ ∫ xn

0 A(s)ds , reduces 
to the PDE (3.16) in one dimension. Without derivatives in x′-directions we have

�p(x)u(x) = (p(x) − 1)u′′
xnxn

(x) + log |u′
xn

(x)|p′
xn

(x)u′
xn

(x) = 0. (3.23)

Observe that the exponent p̌(x) is the unique family of C1(Rn+) solutions to the ODE

p′
x (x) = ∓(p(x) − 1)λ−1(xn)
n
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and substituting this equality into (3.23) yields u′′
xnxn

(x) ∓λ−1(xn) log |u′
xn

(x)|u′
xn

(x) = 0 where 
the “−” sign is for ν ∈ (0, 1] when log |ǔ′

xn
(x)| < 0. Thus

λ(xn)u
′′
xnxn

(x) + | log |u′
xn

(x)||u′
xn

(x) = 0

which is (3.16) in one dimension.
To prove the second statement we need to ensure that a weak subsolution of the variable 

exponent p̌-Laplace equation, p̌(x) = 1 +Me− ∫ xn
0 λ(s)−1ds for some M , of which ǔ is a solution, 

is a viscosity subsolution of (�) where (��) holds with the same �(s) and λ(t) as in version (3.22)
of Theorem 3.3. To do so we observe that, recalling Lemma 3.2, any p(x)-subharmonic function 
is viscosity solution of

�p(x)u = �u + (p(x) − 2)�∞u + log |Du|〈Dp,Du〉 ≥ 0,

and hence of

|Dp||Du|| log |Du|| + max{1,p(x) − 1}Tr(D2u+) − min{1,p(x) − 1}Tr(D2u−) ≥ 0.

Inserting p̌(x) = 1 +Me− ∫ xn
0 λ(s)−1ds , |Dp̌| = (p̌(x) −1)λ−1(xn) and assuming that 1 < p̌(x) ≤

2, which we may by taking M ∈ (0, 1], we see that

|Du|| log |Du|| + λ(xn)

Me− ∫ xn
0 λ−1(s)ds

Tr(D2u+) − λ(xn)Tr(D2u−) ≥ 0.

This is a PDE satisfying (��) with �(s) = s| log s| and λ(t) as in version (3.22) of Theorem 3.3.
It remains to show that p̌ satisfies

λ(xn) ≤ min{1, p̌(x) − 1}
||Dp̌||∞,x

.

This holds with equality since

p̌(x) − 1 = Me− ∫ xn
0 λ−1(s)ds, ||Dp̌||∞,x = |p̌′(x)| = −λ(xn)

−1Me− ∫ xn
0 λ−1(s)ds

and we have assumed M ∈ (0, 1]. The proof is complete. �
3.4. The case �(s) = −s| log s|

In this case the ODE (2.1) becomes (we skip t-dependence in � for simplicity)

df

dt
= f | logf |

�(t)
− K(R)

�(t)

λ(t)
f, t > 0 with f (0) = ν.

By the same argument as in the former cases we replace this ODE by

df

dt
= �−1(t)

(
f | logf | − K̂f

)
, (3.24)
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which separates. As in the case �(t, s) = C(t)s| log s| we obtain, with K̂ = K
�2(R)
λ(R)

= n�2(R)
λ(R)γ (R)

,

fν,R(t) = e
−K̂

(
1−e

− ∫ t
0 �−1(s)ds

)
νe

− ∫ t
0 �−1(s)ds

when 0 < ν ≤ 1. If ν > 1 then

fν,R(t) =

⎧⎪⎪⎨⎪⎪⎩
e
−K̂

(
e

∫ t
0 �−1(s)ds−1

)
νe

∫ t
0 �−1(s)ds

if 0 ≤ t < t0,

e
−K̂

(
1−e

− ∫ t
t0

�−1(s)ds
)

if t0 ≤ t,

(3.25)

where t0 is such that fν,R(t0) = 1. Moreover,

fν(t) =
⎧⎨⎩ νe

− ∫ t
0 �−1(s)ds

if 0 < ν ≤ 1,

νe

∫ t
0 �−1(s)ds

if 1 < ν.

(3.26)

The limits become, for 0 < ν ≤ 1,

lim inf
R→∞

M ′(R)

fν(R)
≥ lim inf

R→∞
fν,R(R)

fν(R)
≥ lim

R→∞ e−K̂

and we only need K̂ � 1. When ν > 1 we know that fν,R in (3.25) stays above 1 if(
logν − K̂

)
e
∫ t

0 �−1(s)ds > −K̂

which forces us to take K̂ < logν. Then

lim inf
R→∞

M ′(R)

fν(R)
≥ lim inf

R→∞
fν,R(R)

fν(R)
= lim

R→∞ e
−K̂

(
e
∫ R
0 �−1(s)ds−1

)

and we need also K̂e
∫ R

0 �−1(s)ds � 1 to achieve a growth estimate.

We have defined K̂(R) = n�(R)2

λ(R)γ (R)
in this case. However, from (3.24) we realize that fν,R is 

nondecreasing if K̂ ≤ | logν|. This means that

df

dt
= �−1(t)

(
f | logf | − K̂f

) ≥ 0, t > 0.

Now, we let fν,R solve this ODE in place of (2.1) and in the proof of Lemma 2.2 we replace (2.7)
with

Tr(D2V +) = −�(�)−1�(�,f (�)) − �(�)−1K̂f (�) + n − 1

|(x′, xn + γ )|f (�),

Tr(D2V −) = 0.
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By tracing the remaining part of the proof of Lemma 2.2 we realize that it is enough to pick 
K̂(R) = n�(R)

γ (R)
.

As in the former situation the solution of (2.4) with �(s) = −s| log s| can be calculated ana-
lytically when � = constant :

ǔ(x) =
xn∫

0

fν(s)ds = �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ei (logν) − Ei

(
e−�−1t logν

)
if 0 < ν < 1,

xn if ν = 1,

−Ei (logν) + Ei

(
e�−1t logν

)
if 1 < ν.

(3.27)

See Fig. 3 (lower row) for functions fν in (3.26) and ǔ in (3.27).
Now, using the calculations above (3.19) we see that �p(x)u ≥ 0 implies

max{1,p(x) − 1}Tr(D2u+) − min{1,p(x) − 1}Tr(D2u−) + |Dp||Du| cos θ log |Du| ≥ 0

where θ = θ(x) is the angle between Du and Dp. Assume |Dp|| cos θ | > 0 and divide the PDE 
with this factor to obtain

�(xn)Tr(D2u+) − λ(xn)Tr(D2u−) + cos θ

| cos θ | |Du| log |Du| ≥ 0

where λ(xn) ≤ min{1,p(x)−1}
|Dp|| cos θ | and �(xn) ≥ max{1,p(x)−1}

|Dp|| cos θ | for some nonincreasing function λ and 
nondecreasing function �. Assuming cosθ log |Du| ≤ 0 leads to

�(xn)Tr(D2u+) − λ(xn)Tr(D2u−) − |Du|| log |Du|| ≥ 0

and we can apply the results from this section, in particular (3.26)-(3.27) and Lemma 3.2, to 
obtain:

Corollary 3.5. Suppose that p(x) and u are as in Theorem 3.3. Let θ = θ(x) be the angel between 
Dp and Du and assume that

|Dp|| cos θ | > 0 and cos θ log |Du| ≤ 0

hold in Rn+ (in a suitable weak sense if u is not C1 with |Du| �= 0). Then u is a subsolution of an 
equation of type (�) satisfying (��) with �(s) = −s| log s|, λ(xn) ≤ min{1,p(x)−1}

|Dp|| cos θ | and �(xn) ≥
max{1,p(x)−1}

|Dp|| cos θ | for some nonincreasing function λ and nondecreasing function �. If n�(R)
| log ν| < γ (R)

and ǔ(x) = ∫ xn

0 fν(s)ds with fν from (3.26) then the following is true:

• If u ≥ ǔ somewhere on the xn-axis, ν ∈ (0, 1] then

lim inf
M(R)

> 0.

R→∞ R
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• If u ≥ ǔ somewhere on the xn-axis, ν > 1 and �(R)e
∫ R

0 �−1(s)ds � γ (R), then

lim inf
R→∞

M ′(R)

νe
∫ R
0 �−1(s)ds

> 0 implying lim inf
R→∞

M(R)∫ R

0 νe

∫ t
0 �−1(s)ds

dt

> 0

which yields, if � = constant and Ei is the Exponential integral,

lim inf
R→∞

M(R)

Ei

(
e�−1R logν

) − Ei (logν)
> 0.

In the one dimensional case Corollary 3.5 shows that if we know that the exponent p(x) is 
increasing, p′ > 0, and that the subsolution satisfies 0 < u′ < 1, then lim infR→∞ u(R)/R > 0. 

Similarly, if we know that p′ < 0 and 1 < u′ then lim infR→∞ u(R)/νe
∫ R
0 �−1(s)ds

> 0. These 
estimates are much stronger than the growth estimates that can be derived from Theorem 3.3
in this situation. The improvements can be visualized by comparing the right panels in Fig. 3; 
the upper right panel corresponds to Theorem 3.3 while the lower right panel corresponds to the 
results in Corollary 3.5.

4. Connections with nonlinear diffusion problems

We follow the presentation in Lundström [32] and let u denote the density of some quantity 
in equilibrium, 
 be a domain and E ⊂ 
 a C1-domain so that the divergence theorem can be 
applied. Due to the equilibrium, the net flux of u through ∂E is zero, that is∮

∂E

〈F ,n〉ds = 0,

where F denotes the flux density, n the normal to ∂E and ds is the surface measure. The diver-
gence theorem gives ∫

E

∇ · F dx =
∮
∂E

〈F ,n〉ds = 0.

Since E was arbitrary, we conclude

∇ · F = 0 in 
. (4.1)

In many situations it is physically reasonable to assume that the flux vector F and the gradient 
∇u are related by a power-law of the form

F = −c |Du|q Du, (4.2)

for some factor c and exponent q , which may depend on space as well. One reason is that flow 
is usually from regions of higher concentration to regions of lower concentration. From this 
assumption, with q = p − 2, and from (4.1), we obtain the p-Laplace equation
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∇ ·
(
|Du|p−2Du

)
= 0 in 
.

The linear case p = 2 in (4.2) arises as a physical law in the following: If u denotes a chemical 
concentration, then it is the well known Fick’s law of diffusion, if u denotes a temperature, then 
it is Fourier’s law of heat conduction, if u denotes electrostatic potential, it is Ohm’s law of 
electrical conduction, and if u denotes pressure, then it is Darcy’s law of fluid flow through a 
porous media. A problem involving the nonlinear case p �= 2 is fast/slow diffusion of sandpiles, 
see Aronsson–Evans–Wu [4]. In that case p is very large and u models the height of a sandpile. If 
|Du| > 1 + δ for some δ > 0, then |Du|p−2 is very large, and hence the transport of sand is also 
large, and if |Du| < 1 − δ, then |Du|p−2 is very small. Therefore, when adding sand particles 
to a sandpile, they accumulate as long as the slope of the pile does not exceed one. If the slope 
exceeds one, then the sand becomes unstable and instantly slides. Other application in which 
(4.2) arises with p �= 2 is Hele-Shaw flow of power-law fluids (Aronsson–Janfalk [5], Fabricius–
Manjate–Wall [15]) and electro-rheological fluids (Harjulehto–Hästö–Lê–Nuortio [18]). When 
properties of the quantity under investigation depend on space we may model it by a variable 
exponent p = p(x) in (4.2) and thus enter equations of type (3.18) studied in Section 3.

We will now discuss the problem under investigation from the point of a diffusion problem. 
Indeed, we will briefly explain, through spatially dependent diffusion, why parts of our results 
presented in Section 3 for the variable exponent p-Laplace equation hold true. Suppose that u
denotes the density of some quantity at equilibrium in the n-dimensional halfspace {xn > 0} and 
that (4.2) holds with a variable exponent p(xn), 1 < p(xn) < ∞. Assume also that u = 0 on the 
boundary xn = 0, and at some xn = a > 0 we assume that u(x) > 0. We conclude that then u
satisfies the p(x)-Laplace equation (3.18) in the halfspace and that our results apply. We simplify 
by further assuming that concentration u(x) is independent of x′-directions. Since |Du| must be 
positive there is a flux of u, independent of x′, flowing perpendicular through the plane at xn = a

toward the boundary xn = 0. Due to the equilibrium, the flux must be independent also of xn and 
is therefore constant through the halfspace. Since the problem is herefrom independent of x′, we 
drop the index and write in the following x = xn.

Suppose that p(x) is decreasing. As the flux of u, given by assumption (4.2), is constant, the 
concentration u must be convex (upwards) if |Du| = u′ > 1. Indeed, if u′ > 1 near the boundary 
we locally have that (4.2) yields flux F = −c (u′)p(x)−1 and since p(x) − 1 > 0 is decreasing 
it follows that u′ must be increasing. A similar reasoning explains that if u′ = 1 somewhere 
then the flux F = c implying u(x) = x, and if u′ < 1 then u must be concave. Fig. 4 (left) 
shows examples of how the concentration u(x) may depend on x for two different decreasing 
exponents. We remark that if p(x) becomes very large near the boundary then u′ must be very 
close 1 there, otherwise the flux becomes zero or infinity – that is fast/slow diffusion (red solid 
curve). Similarly, if p(x) comes close to 1 as we move into the domain then u′ must grow fast if 
u′ ever was larger than 1 along the curve in order to keep the flux constant (green dashed curve). 
Finally, we realize that if p(x) becomes constant then u′ becomes constant (recall that u(x) = cx

is p-harmonic when p = constant).
Suppose now instead that p(x) is decreasing. Reasoning as in the former case we realize 

that we may switch our conclusions made near the boundary in the former case with those made 
further away into the domain. Thus fast/slow diffusion may occur away from the boundary and 
in such a case the slope of u(x) must approach 1. If p(x) approaches 1 near the boundary then 
u′ must explode there, see Fig. 4 (right).

The above reasoning agrees with our mathematical results. Indeed, the border at u = x cor-
responds to the two cases ν ∈ (0, 1) and ν ≥ 1 in Theorem 3.3. When ν ∈ (0, 1) we are below 
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Fig. 4. Examples of how the concentration u may depend on x for decreasing exponents (left) and increasing exponent 
(right). The slope explodes or vanish as p(x) → 1: The green dashed curves correspond to an exponent p(x) that ap-
proaches 1 as x increases (left) and as x → 0 (right). The slope approaches 1 as p(x) → ∞, i.e. fast/slow diffusion: The 
red solid curves correspond to an exponent p(x) that becomes very large as x → 0 (left) and as x increases (right). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

u = x and subsolutions of the variable p(x)-Laplacian may grow very slowly according to the 
Theorem. If ν ≥ 1 on the other hand, then Theorem 3.3 implies the stronger growth

lim inf
R→∞

M(R)

R
> 0.

A similar comment holds for Corollary 3.5. Moreover, returning to (3.23) and Remark 3.4 we 
find that the one-dimensional p(x)-Laplace equation yields

�p(x)u(x) = (p(x) − 1)u′′(x) + log |u′(x)|p′(x)u′(x) = 0.

Recalling (3.17) and (3.27) we also realize that with the decreasing exponent

p(x) = 1 + Me−Ax,

where M > 0, A > 0 are constants, the solution yields

u(x) = 1

A

{
−Ei (logν) + Ei

(
eAx logν

)
if ν �= 1,

x if ν = 1.
(4.3)

Similarly, with the increasing exponent

p(x) = 1 + MeAx

the solution yields
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u(x) = 1

A

{
Ei (logν) − Ei

(
e−Ax logν

)
if ν �= 1,

x if ν = 1.
(4.4)

With A = λ = � = 1, solution curves for decreasing exponent in (4.3) are plotted in Fig. 3
(upper right) (below line u = x) and (lower right) (above line u = x), and solution curves for 
increasing exponent in (4.4) are plotted in Fig. 3 (upper right) (above line u = x) and (lower 
right) (below line u = x). Compare the structure of these curves to those in Fig. 4 with properties 
of the exponent p(x) in mind.
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