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Abstract
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks
on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environ-
ments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have
been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions.
The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts
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to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the
crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-
harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective
conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of funda-
mental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline
some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can po-
tentially be exploited for the optimization of photosynthesis.

Introduction
Oxygenic photosynthesis is one of the most important bio-
synthetic pathways on Earth, sustained solely by solar en-
ergy. It is responsible for all oxygen production and for a
global net primary production of about 1.05 � 1017 grams
of fixed carbon per annum (Field et al., 1998). The primary
processes involve the harvesting of solar energy, its conver-
sion into chemical energy, and protection of the organism
against photodamage. These processes lead to the synthesis
of ATP and NADPH, which are used for assimilation of CO2.
The primary reactions take place in the thylakoid mem-
branes in cyanobacterial cells and the chloroplasts of eukary-
otic photosynthetic organisms like plants and algae. The
photosystems (PSs), responsible for photochemistry, are well
conserved between the different organisms, whereas many
different light-harvesting systems have evolved (Büchel,
2015; Croce et al., 2018). Membrane-extrinsic antennae like
the phycobilisomes (PBSs) of cyanobacteria and red algae
and the membrane-intrinsic proteins of the light-harvesting
complex (Lhc) family in plants serve the same purpose: to
efficiently harvest solar energy and transfer it to the PS reac-
tion centers (RCs), where charge separation occurs in the
specialized chlorophylls (Chls), fueling photosynthetic elec-
tron transport. To this end, the antenna proteins are ar-
ranged together with the PS cores in the so-called
supercomplexes, enabling a high efficiency of transfer, but
also its regulation.

The differences in antenna systems are accompanied by
diversity in thylakoid membrane structure, ranging from al-
most homogeneous, parallel membranes, as in cyanobacte-
ria, to the strong segregation into grana and stroma lamellae
visible in vascular plants. Green algae also possess grana, al-
though their grana stacks usually contain fewer membranes.
In both green algae and plants, grana and stroma differentia-
tion is accompanied by a segregation of the PSs (Anderson,
1986; Wietrzynski et al., 2020). PSII in a functional state is
found almost exclusively in the grana and PSI in the stroma
lamellae. Diatoms, as an example from the huge group of
stramenopile algae, have thylakoids associated into bands of
six membranes each. In this case, only enrichment of PSI in
the outer membranes and of PSII in the inner four mem-
branes of such a band could be demonstrated (Flori et al.,
2017), but not such complete segregation as in vascular
plants and green algae.

In order to optimize the use of the absorbed solar energy
and at the same time to prevent damage to the organism
under changing light conditions, all processes have to be
tightly regulated. On the level of the primary reactions, the
competition between light harvesting and photoprotection
is of major importance: while under low-light conditions,
plants and algae need to optimize energy harvesting, high-
light conditions demand the harmless dissipation of excess
energy. In vivo, changes in the incident light regime occur
rather fast and frequently, enhancing the need for fast regu-
lation. Eventually, the competition between light harvesting
and photoprotection limits the yield of assimilation and by
that the yield of products for human use.

Plants have been used by mankind mainly for nutrition,
but also for medical purposes, and breeding has led to plant
lines of considerable agronomical value. Lately, plants as well
as algae have also come into use for biofuel production
(Ruiz et al., 2016). For all purposes, high biomass or product
yields are mandatory. Since the interplay between light har-
vesting and photoprotection is one of the limiting factors
(Slattery et al., 2018), a thorough understanding of the regu-
lation of light reactions is crucial to improve the organism’s
ability to produce biomass for future biotechnological

Advances

• Major advances have been obtained in
identifying the site and mechanism of NPQ,
including disentangling the contribution of
minor and major antennae in plants, identifying
a Chl–carotenoid dissipative energy transfer
pathway, and describing the mechanism of
OCP-mediated quenching in cyanobacteria.

• The structural organization of PSs in plants and
algae has been resolved, enabling detailed
studies on light harvesting and photoprotection
in the supercomplexes.

• The mechanism of extreme light and
temperature tolerance in evergreen conifers has
been elucidated.

• Data have been obtained regarding the
organization of supercomplexes in the thylakoid
membranes and their biogenesis.
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approaches and sustainable agriculture. This review thus first
introduces the different photosynthetic systems of the di-
verse groups of organisms, including cyanobacteria, plants,
green algae, and diatoms. It then deals with recent advances
in understanding excitation energy transfer, photoprotec-
tion, and the plasticity of the thylakoid membrane.

Natural diversity of PS supercomplexes

PSII
PSs are multi-subunit assemblies of light-harvesting antenna
complexes and RC proteins. While the structure of reaction
centers is conserved in photosynthetic organisms (Umena
et al., 2011; Su et al., 2017; Pi et al., 2019; Sheng et al., 2019),
the structure of antennae, the identity of bound pigments
and, consequently their function in light-harvesting pro-
cesses vary drastically. In cyanobacteria and red algae, the
PBSs anchored to the cytoplasmic side of the thylakoid
membranes serve as the major Lhc. PBSs are composed of
water-soluble assemblies of open-chain tetrapyrrole
chromophore-bearing phycobiliproteins and linker proteins
that efficiently absorb light in a broad spectral range be-
tween 550 and 670 nm. Commonly, PBSs are hemidiscoidal
or hemiellipsoidal structures, which consist of two key struc-
tural components: (1) a core substructure, which can be
bicylindrical as in Synechococcus sp., but which is more typi-
cally tricylindrical as in Synechocystis sp. and (2) peripheral
rods, protruding out from the core (Glauser et al., 1992).

The rods can be composed of various pigmented proteins:
C-phycocyanin (kmax = 620 nm), phycoerythrin (kmax =
565 nm), or phycoerythrocyanin (kmax = 575 nm). The cores
are instead built of a variable number of allophycocyanin
(APC, kmax = 650–670 nm) units (Figure 1). There are, how-
ever, large variations in the PBS organization and composi-
tion and deviations from this fundamental design
depending on the species and growth conditions (Adir,
2005). The pigment–protein complexes of PBSs are orga-
nized as an energetic funnel, transmitting the absorbed en-
ergy via the rods to the core and ultimately to the RC) of
the PSs with a very high quantum efficiency (Scott et al.,
2006; Adir et al., 2020). Great progress has been made in re-
cent years to solve the structure of PBSs at high resolution
and reveal their docking site to PSs as well as possible regu-
latory sites (Zhang et al., 2017; Ma et al., 2020; Liu et al.,
2021; Figure 1). Both cryo-electron microscopy (EM) struc-
tures from the Sui group, obtained from the red algae
Porphyridium purpureum and Griffithsia pacifica, revealed
the huge size of the PBSs and a convoluted rod architecture.
In P. purpureum, 41,500 chromophores are bound, of
which the majority are phycoerythrobilins (Ma et al., 2020).

Compartmental modeling analysis of picosecond time-
resolved fluorescence studies revealed that, in intact cyano-
bacterial cells, the excitation energy from PBS can be rapidly
distributed to the PSs (Tian et al., 2011; Acu~na et al., 2018).
The varying architecture and the composition of PBSs
among cyanobacterial species seem to hardly affect the

Figure 1 Organization of hemiellipsoidal PBS assemblies in the red alga P. purpureum (PDB entry: 6KGX). This is, at present, the highest resolution
structure of a PBS deposited. Lowercase characters (a–g, a0–g0) mark the 14 peripheral rods, formed variably of phycoerythrin and phycocyanin
complexes. Additional phycoerythrin hexamers are resolved, namely Ha0 , Hb0 , Hc, and Hd0 (their counterparts are not visible in this view). Minor
individual phycoerythrin monomers and b subunits are omitted for clarity. The inset shows the structure of the PBS core, formed of one top cylin-
der (B) composed of 2 APC trimers (B1 and B2) and two basal cylinders. Each basal cylinder contains three APC trimers, namely, discs A1–3 and
A01–3. PSII, Photosystem II.
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energy funneling from the PBSs to the PSs (Tian et al., 2011;
Acu~na et al., 2018; Akhtar et al., 2020; Biswas et al., 2020).

In contrast to the bulky structure of PBSs in cyanobacte-
ria, the Lhcs of plants and green algae binding Chla, Chlb,
and carotenoids are compact transmembrane proteins
almost completely embedded in the thylakoid membrane
(Figures 2 and 3). They are encoded by the multigenic Lhc
family and can either serve the PSII (Lhcb) or the PSI cores
(Lhca; Pan et al., 2020). In vascular plants, PSII binds the
monomeric antenna proteins Lhcb4 (CP29), Lhcb5 (CP26),
and Lhcb6 (CP24) and the trimeric LHCII complexes
(encoded by combinations of Lhcb1-3; Jansson et al., 1997;
Jansson, 1999). However, Lhcb6 is not present in green algae

and has been lost during evolution in some subgroups of
gymnosperms (Kou�ril et al., 2016; Figure 2). The monomeric
antenna proteins are essential for the proper energy transfer
from LHCII to the PSII core (Caffarri et al., 2011; Dall’Osto
et al., 2014). Especially, Lhcb4 (CP29) has been recently
shown to play a pivotal role as an energy “channel” by har-
boring two low energy Chla sites, one on the side of CP47
(Chlorophll Protein 47, a PSII core antenna, together with
CP43) and one on the side of LHCII (Dall’Osto et al., 2020;
Mascoli et al., 2020b). The trimeric antenna complexes of
PSII can associate with the core complex differently; S
trimers bind strongly, M trimers bind moderately and L
trimers are loosely bound to PSII (Dekker and Boekema,

Figure 2 Organization of PSII supercomplexes in vascular plants, green algae and diatoms. The scheme is based on current structural data available
(PDB entries: 5MDX, A. thaliana; 6KAF, C. reinhardtii; 6JLU, C. gracilis. The putative structure of P. abies PSII is shown as well [Kou�ril et al., 2016]).
PSII, photosystem II; Lhc, light harvesting complex; FCP, fucoxanthin chlorophyll protein.

Figure 3 Organization of the PSI antenna system in vascular plants, green algae, and diatoms. The scheme is based on current structural data
available (PDB entries: 5L8R, Pisum sativum; 6JO6, C. reinhardtii; 6L4U, C. gracilis). PSI, photosystem I; Lhc, light harvesting complex; Fcp, fucoxan-
thin chlorophyll protein; Psa, subunit of PSI.
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2005; Kou�ril et al., 2018). S trimers are formed by different
ratios of Lhcb1 and Lhcb2 proteins, and binding with the
PSII core complex is supported by Lhcb4 and Lhcb5 mono-
mers. M trimers contain a single copy of Lhcb3 and two
copies of Lhcb1/2, and associate with the PSII core via Lhcb6
and Lhcb4 proteins (De Bianchi et al., 2008; Caffarri et al.,
2004; Van Bezouwen et al., 2017; Su et al., 2017). In vascular
plants, a PSII C2S2M2 supercomplex is formed by a dimeric
core complex which binds two copies of S and M trimers
each (Su et al., 2017; Van Bezouwen et al., 2017). In green al-
gae, which lack the monomeric antenna protein Lhcb6, an
additional N (naked) trimer is bound directly to the core
complex without the involvement of this monomeric an-
tenna protein, forming a C2S2M2N2 supercomplex (Figure 2;
Drop et al., 2014; Shen et al., 2019; Sheng et al., 2019).

Fucoxanthin Chl-binding proteins (FCPs) are the antenna
complexes in diatoms. They belong to the same protein
family as LHCII and share several conserved structural and
functional traits with their plant relatives, although they
bind different chromophores (Premvardhan et al., 2010;
Röding et al., 2018; Croce and van Amerongen, 2020).
Recently, the structure of an FCP from Phaeodactylum tricor-
nutum was solved, showing a dimeric complex. FCP binds 7
Chla, 2 Chlc, 7 fucoxanthin, and 1 diadinoxanthin per
monomer, bringing the Car/Chl ratio close to one, much
higher than in green algae or plants (Wang et al., 2021).
Besides these dimers, also trimeric FCPs were found in P. tri-
cornutum (Gundermann et al., 2013; Lepetit et al., 2017). In
other species, Cyclotella meneghiniana and Thalassiosira
pseudonana, trimeric FCP complexes prevailed (Röding et al.,
2018; Arshad et al., 2021). Here, FCP complexes of higher
oligomeric state (Büchel, 2003), loosely bound to the PSs
but highly abundant in the thylakoid membrane, are pre-
sent as well (Calvaruso et al., 2020). The structure of the
PSII-FCP supercomplexes revealed a unique organization of
the Lhcs, with three monomeric FCPs in locations different
from the minor antenna of plants (Nagao et al., 2019; Pi
et al., 2019; Arshad et al., 2021), and, depending on the
species, tetrameric (Chaetoceros gracilis) or trimeric FCPs
(T. pseudonana).

PS I
The core of the PSI reaction center (Figure 3) is composed
of the subunits PsaA and PsaB that also act as inner an-
tenna similar to CP43 and CP47 in PSII (Jordan et al., 2001;
Cardona, 2017). A large contribution to light harvesting in
PSI comes directly from the pigments bound to the core, 96
Chls a and 22 carotenoids (Jordan et al., 2001). Nevertheless,
in plants, the core complex of PSI binds four additional mo-
nomeric antenna proteins referred to as LHCI (Lhca1-4),
which form a belt on one side of the PSI core (Ben-Shem
et al., 2003; Mazor et al., 2017). LHCI in plants bind in total
of 45 Chls a, 12 Chls b, and 13 carotenoids, increasing the
absorption cross-section of the PSI core by �60% (Qin et al.,
2015). Lhca3 and Lhca4 bind Chls that absorb at wave-
lengths 4700 nm, which is substantially lower in energy
than most Chls of the core (Croce and van Amerongen,

2020). This implies an uphill energy transfer between these
complexes and the core energy trap, which, for this reason,
is slower than for Lhca1 and Lhca2. Despite its large size and
the peculiar red Chls in LHCI, the PSI–LHCI complex is ex-
tremely fast and efficient, and performs photochemistry
with a quantum efficiency of almost 98%, making PSI the
most efficient photochemical energy converter (Nelson,
2009; Croce and van Amerongen, 2013; Le Quiniou et al.,
2015).

PSI in the green alga Chlamydomonas reinhardtii is larger
than that in plants and contains two additional Lhca subu-
nits on the PsaH/PsaG side and four Lhca subunits bind as
an additional moon-shaped arc on top of the inner belt
found in plants (Qin et al., 2019). The additional antenna
proteins bind in total over 65 extra Chls, increasing the ab-
sorption cross-section by 41% in comparison to that of
plants, without affecting the excitation energy transfer and
trapping time (Le Quiniou et al., 2015). This is possible be-
cause the Chl red forms in green algae have higher energy
levels in comparison with those in plants, leading to a simi-
lar average overall trapping time in both organisms (Le
Quiniou et al., 2015). Recently, it was shown that in a
colony-forming green alga, Botryococcus braunii, PSI can
bind Lhca subunits at all known binding positions as seen in
green algae and vascular plants, which in turn maximizes
the antenna size while maintaining a high energy transfer ef-
ficiency (van den Berg et al., 2020).

The PSI antenna of diatoms is even larger than that of
green algae, although the amount of antenna complexes
bound seems to be dependent on species and/or culture
conditions (Figure 3). Equivalent to plant LHCI, the FCPI
complexes connected to the PSI core are in monomeric
form. FCPI are arranged in several layers around PSI, with up
to 24 antenna subunits present (Nagao et al., 2020; Xu et al.,
2020; Arshad et al., 2021). In the PSI structure reported in
(Nagao et al., 2020), the number of Chls bound to the full
FCPI complement is 128, making its light-harvesting cross-
section effectively larger than the PSI core. In diatoms, a
large antenna system and binding of unique pigments are
necessary for efficient light harvesting and energy dissipation,
which ultimately assures the success of diatoms in the aque-
ous environment.

Regulation of energy transfer and trapping in
the photosynthetic membrane

Adaptations to excessive sunlight
The adaptability of photosynthetic organisms to diverse and
changeable environmental conditions derives from intricate
molecular mechanisms to regulate photosynthesis. Often,
sunlight intensity exceeds the capacity of the photosynthetic
machinery and the unused, potentially harmful excitation
energy enhances the probability of the generation of reactive
oxygen species. Nonphotochemical quenching (NPQ)
ensures a fast control of the amount of light energy con-
veyed to reaction centers and catalyzes the dissipation of
the energy absorbed in excess (Demmig-Adams et al., 2014).
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NPQ is a process of dynamic adaptation to light intensity, in
most cases strongly reliant on feedback cues generated by
an overly active photosynthetic machinery. The major com-
ponent of NPQ in plants is indeed called energy-dependent
quenching (qE), since it depends on the increase of thyla-
koid transmembrane DpH, driven by photosynthetic elec-
tron transport (Ruban, 2016). It is the quickest, promptly
reversible component of NPQ and, in plants, it relies on the
activation of a small transmembrane protein called PSII sub-
unit S (PsbS), while being enhanced by the activity of the
xanthophyll cycle enzymes, which reversibly convert viola-
xanthin to zeaxanthin during high-light exposure. Ultimately,
these changes lead to the formation of dissipative interac-
tions within the pigment network, shortening the excitation
lifetime. This section aims at giving a brief overview of the
topic and its most recent developments, but is not exhaus-
tive. Readers are referred to the reviews of (Bennett et al.,
2019; Ruban and Wilson, 2020; Bassi and Dall’Osto, 2021) for
further information.

Many aspects of the molecular mechanism of NPQ remain
obscure, due to the experimental challenges posed by the
protein-congested, highly plastic thylakoid membrane. In
particular, the site and the mechanism of qE in plants have
been long-standing open questions.

A breakthrough in pinpointing the qE site was attained
with the creation of Arabidopsis (Arabidopsis thaliana)
mutants lacking either all minor antennae (“No minor”
mutants [NoMs]; Dall’Osto et al., 2014, 2017) or major LHCII
complexes (Nicol et al., 2019; Nicol and Croce, 2021). The
analysis of qE in these mutants unequivocally revealed the
importance of major LHCII in the process of energy dissipa-
tion: while the absence of minor antennae causes changes in
the kinetics of the qE onset (Dall’Osto et al., 2017), the
absence of LHCII causes a major decrease of the extent of
reversible quenching that reaches only up to 40% of the
wild-type value (Nicol et al., 2019). In NoM, the noticeable
transient NPQ relaxation occurring shortly after illumination
was attributed to the absence of minor antennae, since this
phenotype was also observed in koCP29 mutants (De
Bianchi et al., 2008; Dall’Osto et al., 2017), and wild-type
NPQ kinetics were re-established upon complementation
with the CP29 wild-type sequence (Guardini et al., 2020;
Bassi and Dall’Osto, 2021). By complementing koCP29 with
site-directed CP29 mutant sequences on Chl-binding sites,
the quenching ability was assigned to specific domains in
CP29 (Guardini et al., 2020). However, DpH and electron
transport reactions are impaired in the absence of minor an-
tennae (De Bianchi et al., 2008; Townsend et al., 2018). A
spectroscopic examination of the NoM mutant suggested
that a smaller DpH extent, and consequently an impaired
low-pH-dependent accumulation of zeaxanthin, rather than
the lack of specific quenching sites in minor antennae, are
the causes of the transient NPQ relaxation in the NoM mu-
tant (Townsend et al., 2018). Saccon et al. (2020c) treated
the NoM mutant with the chloroplast protein synthesis
inhibitor lincomycin, producing plants lacking all minor

antennae and most of the reaction center proteins.
Provided that zeaxanthin is present, qE in these plants was
shown to reach the same amplitudes as in wild-type. This
model offered insights into the zeaxanthin- and PsbS-
mediated regulation of the LHCII function, highlighting the
allosteric nature of these factors. Both components modu-
late qE sensitivity to DpH, shifting it to smaller values and
thereby offering plants a dynamic control of qE based on
metabolic and environmental cues. LHCII, PsbS, and DpH
are clearly the definers of qE in plants (Pawlak et al., 2020;
Saccon et al., 2020c; Nicol and Croce, 2021). How much the
minor antennae also contribute to quenching is still being
argued (Townsend et al., 2018; Guardini et al., 2020; Bassi
and Dall’Osto, 2021). So far, a mutant entirely lacking Lhcb1,
Lhcb2, and Lhcb3 polypeptides has not been reported
(Andersson et al., 2003; Nicol et al., 2019), which would help
to quantify their contribution during qE. Many aspects of
the role of PsbS during qE remain to be understood, despite
recent advances. In vitro and in silico works have shown
that specific luminal residues of the protein are involved in
sensing pH (Li et al., 2004; Liguori et al., 2019; Krishnan-
Schmieden et al., 2021). Since PsbS does not stably bind
pigments and is therefore unlikely to be a site of quenching
itself, its action could be to transduce lumen acidification to
the bulk of LHCII, either by direct binding (Wilk et al., 2013;
Correa-Galvis et al., 2016; Sacharz et al., 2017), or by
transiently modifying the lipid environment of LHCII
(Daskalakis et al., 2019).

The photoprotective role of Lhcs relies on their ability to
switch between a long-lived state functional for light-
harvesting and a short-lived (quenched) state that dissipates
the absorbed energy as heat (Moya et al., 2001). The molec-
ular mechanism of quenching and the nature of the photo-
protective switch, however, remain hard to disentangle, due
to the intrinsic nonfluorescent and short-lived character of
the quencher, as well as the occurrence of experimental arti-
facts (Van Oort et al., 2018). This challenge was faced by in-
vestigating the quenching mechanism in monomeric
detergent-solubilized CP29 (Mascoli et al., 2019). Taking ad-
vantage of a substantial subpopulation of strongly quenched
complexes and applying a target kinetic model of the tran-
sient absorption (TA) data, the spectroscopic signature asso-
ciated with the quenching mechanism was extracted and
assigned to excitation energy transfer from Chls to a dark
state of lutein 1, similarly to earlier results obtained on
aggregated LHCII trimers (Ruban et al., 2007).

These findings open up two further questions: is the
quenching mechanism identified in solubilized LHC also
functional in the thylakoid membrane? And if so, how are
the light-harvesting and quenched states regulated by
changes of the membrane environment? En route to an-
swering these questions, a recent study used TA measure-
ments to address the quenched conformation of LHCII
trimers immobilized in polyacrylamide gels to prevent clus-
tering (Saccon et al., 2020a, 2020b). Similar to what was
found in CP29 monomers, the signature of a carotenoid
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excited state, linked to the quenching of Chl singlet excited
states, was detected. Consistent with this, a study based on
time-resolved fluorescence experiments and advanced ki-
netic modeling led to the conclusion that the same quench-
ing mechanism observed in monomeric CP29 is also active
in CP29 oligomers in vitro (Mascoli et al., 2020a). Both stud-
ies also highlighted the importance of the membrane/pro-
tein environment in altering the equilibrium between
quenched and unquenched LHC conformations. In line with
this, a 2D spectroscopy approach on LHCII embedded in
nanodisks showed a specific fine-tuning of pigment interac-
tions in the membrane environment (Son et al., 2020a).

Finally, the role of zeaxanthin as an energy quencher dur-
ing NPQ is still unclear. Recent reports of TA performed on
thylakoid membranes suggest zeaxanthin may be involved
as an energy quencher and contribute to energy dissipation
with different mechanisms (Park et al., 2017, 2018; Bennett
et al., 2019). In particular, the signature of a zeaxanthin radi-
cal cation was related to the formation of NPQ in vivo and
consequently, a dissipative mechanism involving electron
transfer to zeaxanthin has been proposed, based on the ob-
servation that the amplitude of NPQ in the NoM npq1 mu-
tant, lacking zeaxanthin, is similar to NoM npq4, lacking
PsbS (Holt et al., 2005; Ahn et al., 2008; Dall’Osto et al.,
2017; Park et al., 2017). The importance of this mechanism
during NPQ is still under debate since some reports have
shown that quenching can occur to a large extent even in
the absence of the carotenoid (Li et al., 2009; Johnson et al.,
2012; Saccon et al., 2020a; Nicol and Croce, 2021). LHCII
function in vitro is hardly affected when zeaxanthin is
bound (Xu et al., 2015; Tutkus et al., 2019; Son et al., 2020b),
which may suggest a more indirect role for zeaxanthin in
the thylakoid membrane (Havaux, 1998; Ruban and Johnson,
2010).

NPQ strategies have been diversified during evolution of
photosynthetic lineages (Goss and Lepetit, 2015). While
cyanobacteria contain a different antenna system, the PBS,
photoprotection is also achieved by switching the antenna
from a light harvesting to a quenched state. However, the
underlying mechanism is remarkably different. The orange
carotenoid protein (OCP) is a carotenoid-binding protein
that can sense light intensity, thereby undergoing activation
through a conformational change that occurs more often
when blue illumination is increased in intensity (reviewed in
Kerfeld et al., 2017 and Muzzopappa and Kirilovsky, 2020).
In the activated form, the OCP binds to the PBS core,
between the APC trimers (Harris et al., 2016) inducing the
energy dissipation at the level of APC660 (Rakhimberdieva
et al., 2010; Tian et al., 2011). However, the exact mechanism
underlying this quenching and the role of the carotenoid of
the OCP are still open questions. Recent works have focused
on the diversity of OCP proteins. OCPs can be clustered in
three subfamilies with different regulation features. For
example, the canonical OCP1 is deactivated through interac-
tion with another protein, named Fluorescence Recovery
Protein (reviewed in Slonimskiy et al., 2020), while this

additional regulation is not required for the OCP2 and
OCPX (Bao et al., 2017; Muzzopappa et al., 2019). In addi-
tion, some cyanobacteria contain proteins coding for homo-
logs of the OCP domains, the C-terminal domain homolog
(CTDH), and the helical carotenoid protein (HCP; López-
Igual et al., 2016; Melnicki et al., 2016). Although the in vivo
role of these proteins is unknown, based on in vitro results
it has been suggested that both could quench single oxygen,
HCPs could also dissipate excess energy of PBS, and CTDH
could be carotenoid carriers that ensure the proper caroten-
oid loading into HCPs (López-Igual et al., 2016; Muzzopappa
et al., 2017; Harris et al., 2018).

Several proteins of the LHC superfamily acquired during
evolution an exclusive role in photoprotective processes
(Büchel, 2015; Giovagnetti and Ruban, 2018). Besides the al-
ready mentioned PsbS and OCP, present in vascular plants
and cyanobacteria respectively, LHC stress-related (LHCSR)
1 and LHCSR3 protein complexes possess a prominent role
during NPQ in the green algal lineage (Peers et al., 2009).
Similar to PsbS, LHCSR proteins are able to sense luminal
acidification and trigger the quenching response (Bonente
et al., 2011; Liguori et al., 2013; Dinc et al., 2016; Tian et al.,
2019). However, while PsbS is expressed constitutively in the
thylakoids, LHCSRs expression is initiated upon illumination
(Allorent et al., 2013; Polukhina et al., 2016). Moreover, while
PsbS is unlikely to stably bind pigments (Dominici et al.,
2002; Fan et al., 2015), several Chl and carotenoid molecules
bind to LHCSRs, which have been proposed to be the site of
NPQ (Bonente et al., 2011). Electron transfer between a ca-
rotenoid and a Chl within these complexes has been sug-
gested as the quenching mechanism (Pinnola et al., 2016).

Another member of the LHCSR family, LHCX1, is critical
for qE in diatoms, and quantitative variations in different
ecotypes were suggested to influence the adaptability of dia-
toms to different environments (Bailleul et al., 2010; Buck
et al., 2019). Structural data on LHCX1 are not available, and
LHCX proteins were not resolved in the latest structure
available for the PSII supercomplex (Nagao et al., 2019;
Pi et al., 2019). Similar to LHCII in plants, the FCPs have
been suggested to be the site where energy dissipation
occurs, potentially leaving a secondary role to the LHCX
proteins as transducers of the NPQ response (Elnour et al.,
2018; Wang et al., 2021). Recent time-resolved fluorescence
studies demonstrated that two quenching mechanisms are
active in low-light acclimated diatoms, one in the proximity
of the PSII core and one in the bulk FCP antenna
(Chukhutsina et al., 2014; Taddei et al., 2018). Based on an
analysis of an LHCX1 knockdown mutant, it was proposed
that the core complex-associated NPQ is more effective in
photoprotection. Acclimation to high light, on the contrary,
enhances the antenna-related quenching component, facili-
tated by the accumulation of additional LHCX isoforms.

Adaptations to different light spectra
A regulatory mechanism called state transitions functions to
distribute the harvested light energy to the PSs.
Overexcitation of PSI relative to PSII brings the organism to
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state I, in which the light harvested by PSII increases. On the
other hand, overexcitation of PSII relative to PSI brings the
organisms to state II, in which an increased amount of
absorbed energy is directed toward PSI again (Allen, 2017;
Johnson and Wientjes, 2019). In diatoms, no evidence of a
similar mechanism has been found (Owens, 1986) and the
physical process underlying state transitions appears to be
different in land plants, green algae and cyanobacteria.

In plants and green algae, a similar mechanism regulates
transition between states I and II based on the redox state
of the plastoquinone pool (Allen et al., 1981). Reduction of
the plastoquinone pool is sensed by the cytochrome b6f
(Wollman and Lemaire, 1988; Vener et al., 1995), leading to
the activation of the state transition kinase7 (Stn7). Upon
its activation, Stn7 phosphorylates LHCII, which in turn dis-
sociates from PSII and associates with PSI (state II) at the
PsaK/H subunits, forming a PSI–LHCI–LHCII supercomplex
(Bellafiore et al., 2005; Kou�ril et al., 2005; Wientjes et al.,
2013). In plants, the pool of LHCII involved in this transition
is �20% (Allen, 1992; Vener 2007), and it seems as if it is
LHCII heterotrimers containing two Lhcb1 and one Lhcb2
subunits are the important ones (Pietrzykowska et al., 2014)
and that phosphorylation of Lhcb2 is more rapid (Leoni
et al., 2013) than of Lhcb1. Recent results show that PSI an-
tenna size can be largely extended by the association of
multiple LHCII trimers. Benson et al. (2015) revealed that in
addition to the “classical” binding at PsaK site, LHCII can as-
sociate with PSI via the Lhca antenna. In line with these
results, Yadav et al. (2017) observed particles with more
than one LHCII trimer attached with PSI at Lhca2/Lhca4,
and Lhca2/Lhca3 sites. In contrast, in the green alga C. rein-
hardtii, a large portion of the LHCII is dissociated (Delosme
et al., 1996) but only a minor fraction attaches to PSI,
whereas the majority becomes quenched (Ünlü et al., 2014).
Also here, as well as in the moss Physcomitrium patens, the
Lhca antenna is involved in binding of LHCII trimers to PSI
core complexes (Pinnola et al., 2018; Steinbeck et al., 2018).
In A. thaliana, if the plastoquinone pool is oxidized the
Stn7-kinase is deactivated and thylakoid-associated phospha-
tase38 (also known as protein phosphatase 1 [PPH1]) will
dephosphorylate LHCII, which will then move to PSII (state
I) (Pribil et al., 2010; Shapiguzov et al., 2010). In C. reinhardtii,
two partially redundant phosphatases, CrPPH1 and PSII core
phosphatase (CrPBCP), are involved in the regulation of
state transitions (Cariti et al., 2020). However, there is always
some LHCII bound to PSI, even in state I conditions, indicat-
ing that LHCII functions as a highly efficient PSI-antenna
(Bos et al., 2019; Chukhutsina et al., 2020).

In cyanobacteria, as in plants, state transitions are trig-
gered by a change in the redox state of the plastoquinone
pool, but the molecular players that sense these changes are
unknown. While the cytochrome b6f complex had been pro-
posed as the redox sensor, a recent work had shown that it
is not involved in cyanobacterial state transition (Calzadi
et al., 2019). In the cyanobacterial species, Synechococcus

elongatus and Synechocystis sp PCC 6803, there is no redistri-
bution of PBS, nor is there any spillover from PSII to PSI
(Bhatti et al., 2020; Ranjbar Choubeh et al., 2020). However,
in order to balance the excitation pressure between PSII and
PSI, in state II, the PSII-core and not the PBS is quenched
(Bhatti et al., 2020; Ranjbar Choubeh et al., 2020).
Furthermore, in S. elongatus, two (sub) populations of PSII,
namely quenched and unquenched exist, in both states I
and II. The equilibrium between quenched and unquenched
PSII is changed upon state transitions (Bhatti et al., 2021). In
state I, a decoupling of PBS from PSI was observed, thereby
altering the absorption cross section of PSI in Synechocystis
sp PCC 6803 (Chukhutsina et al., 2015).

Plasticity of the light-harvesting membranes
Light-harvesting membranes are highly flexible and dynamic
systems that can exhibit extraordinary plasticity, particularly
under harsh and unfavorable environmental conditions. The
study of thylakoid membrane plasticity is therefore impor-
tant for understanding the adaptation of the membrane
and PSs to ever-changing natural conditions. Changes in the
membrane structure and protein composition are common
features during NPQ, state transitions, and acclimation
processes.

Toward high-resolution microscopy techniques to
study photosynthetic adaptations
Current near-atomic resolution EM and high-resolution fluo-
rescence imaging techniques complement each other for
the studies of light-harvesting membrane plasticity.
Photosynthetic membranes and their constituent subunits
were investigated by EM for decades starting with purple
bacteria (Tauschel and Drews, 1967). The evolution of EM
techniques toward the atomic resolution of cryo-EM led to
substantial discoveries of structural differences of photosyn-
thetic complexes among organisms determined by their ad-
aptation processes (Croce and van Amerongen, 2020). The
potential of EM is further extended by cryo-electron tomog-
raphy, which can provide structural information under the
physiologically relevant conditions (Turk and Baumeister,
2020). Furthermore, cryo-electron tomography in combina-
tion with subvolume averaging has been used for visualiza-
tion of PSs embedded in the isolated thylakoid membranes
(Daum et al., 2010; Kou�ril et al., 2011; Levitan et al., 2019;
Arshad et al., 2021). The lack of visualization of dynamics
within the sample, on the other hand, has accelerated the
recent emergence of high-resolution fluorescence imaging
techniques, which offer live-cell imaging possibilities.
Considering the plant thylakoid membranes, structured-
illumination microscopy and its derivatives have been
recently shown to enable the observation of the nanometer-
sized changes of the grana diameter and stacking induced
by the adaptation of the organism to the varying light con-
ditions (Wood et al., 2018, 2019). The 3D high-resolution im-
aging of the membrane structures is considered to bring
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even deeper insights into the dynamics of the photosyn-
thetic apparatus. However, only a few attempts were
reported up to now for 3D imaging of the membranes
within the chloroplasts (Rumak et al., 2012). Recently, a
promising high-resolution technique, pixel-reconstruction
nanoscopy (PRN), was developed for live-cell imaging under
nondamaging light intensities and minimal sample prepara-
tion. Figure 4 shows an example of PRN applications for the
photosynthetic membranes—the 3D image of the thylakoid
structure of an intact plant chloroplast. Green color in the
image corresponds to the autofluorescence that originates
mainly from the Chl molecules located in PSII (the darker
the color, the higher the emission intensity) as emission
from the PSI Chls is negligible at room temperature. This, by
far the most accurate 3D image of native chloroplast, gives a
hint that with current imaging tools it is possible to follow
membrane adaptations in a whole plastid at physiological
conditions at high precision. Moreover, in PRN, the ability
to measure simultaneously various fluorescence emission
channels uncovers an approach to study changes occurring
at different sites of the membrane under altering environ-
ment of the organism. Additional techniques are emerging/
consolidating that combine the use of microscopy with
spectroscopy methods. One of these, fluorescence lifetime
imaging, exploits the different Chl excited-state lifetime of
PSII, PSI, and LHCs to visualize, among others, the

distribution of PSs and the functional state of the antenna
(e.g. during NPQ; Pascal et al., 2005; Iermak et al., 2016;
Wientjes et al., 2017).

Taking plasticity to the extreme: sustained NPQ in
evergreens and the requirement for
posttranslational modifications
The dynamics and flexibility of thylakoid membranes have
been studied extensively in the membranes of angiosperms
(Pribil et al., 2014; Lambrev and Akhtar, 2019). Recently,
advances have been made in broadening the knowledge of
photosynthetic complexes in gymnosperms. In particular, ev-
ergreen conifer species exhibit an extraordinary acclimation
capacity to harsh boreal winters and are able to develop a
so-called sustained form of protective NPQ (Öquist and
Huner, 2003; Verhoeven, 2014). Several recent studies in
members of Pinaceae, Picea abies, and Pinus sylvestris
revealed a unique LHC composition (Kou�ril et al., 2016;
Grebe et al., 2019) and organization of PSII-LHCII supercom-
plexes and mega complexes (Kou�ril et al., 2020). Although
the physiological relevance of these complexes during winter
acclimation is still under investigation, it has been suggested
that specific posttranslational modifications, phosphorylation
of Lhcb1 and PsbS proteins, are important prerequisites for
the sustained NPQ (Grebe et al., 2020). Regarding the physi-
ological relevance of grana destacking during winter and
early spring, a recent study proposes its advantages in the
molecular mechanism of the sustained NPQ process (Bag
et al., 2020). Loss of appressed grana membranes increases
the chances of close proximal contact between PSI and PSII,
shown to result in direct energy transfer from PSII to PSI.
Direct energy transfer from PSII to PSI is conferred to
harmlessly dissipate the excess light energy in sub-zero
temperatures and protect the photosynthetic machinery
when linear electron flow is severely restricted, and the
chances of photo-oxidative damage are high.

The major sites of biogenesis of photosynthetic
protein complexes
Besides the structural adaptability of photosynthetic protein
complexes, their assembly and the subcellular location are
part of the membrane’s plasticity. In chloroplasts, thylakoid
biogenesis needs the import of the major photosynthetic
proteins from the cytosol. Early work by cryo-electron to-
mography revealed thylakoid tip convergence zones in the
green alga C. reinhardtii and the unicellular cyanobacterium
Synechocystis sp. PCC6803, close to the envelope which
might be the site of thylakoid biogenesis (Nickelsen and
Zerges, 2013; Engel et al., 2015; Rast et al., 2019). Nothing is
known so far from diatoms. Cyanobacteria have been con-
sidered good candidates to study the photosynthetic protein
assembly sites, as they have less complicated thylakoid
membrane arrangement compared to chloroplasts
(Mullineaux and Sarcina, 2002; Mullineaux, 2014).

Cyanobacterial biogenic sites have been extensively ex-
plored by many research groups (Zak et al., 2001; Pisareva

Figure 4 PRN image of the 3D A. thaliana thylakoid structure (turned
by 45� anticlockwise around the y-axis with respect to data acquisi-
tion). Chloroplast was scanned by 70-nm x and y steps, and 300-nm z
steps, collecting emission in 660–700 nm range. Sample was excited at
488 nm. 3D reconstruction was obtained from seven planes. Scale bar
corresponds to 1,000 nm.
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et al., 2011; Nickelsen and Rengstl, 2013; Weis et al., 2013;
Selo et al., 2016; Rast et al., 2019). For the model cyanobac-
terium, Synechocystis sp. PCC 6803, the most commonly
proposed sites of PS assembly are the thylakoid centers
(Nickelsen and Zerges, 2013; Weis et al., 2013), that is, the
regions where thylakoid membranes converge near the
plasma membrane (Van De Meene et al., 2006). In a recent
work, biogenic sites were investigated based on the localiza-
tion of membrane-bound ribosomes in Synechocystis cells
using cryo-electron tomography (Rast et al., 2019). Here,
ribosomes were used as a marker of active protein transla-
tion. Only a small fraction of ribosomes was found near the
thylakoid centers, while the majority was located at the thy-
lakoid surfaces adjacent to the central cytoplasm. This sug-
gests that the translation of photosynthetic protein subunits
is not concentrated at the thylakoid centers. Furthermore,
location of ribosomes can only provide a general idea re-
garding the overall protein synthesis. To specifically identify
the start site of photosynthetic protein assembly, very re-
cently a different approach was used, where mRNAs encod-
ing the core subunits of PSI and II are probed in vivo in two
model cyanobacteria (Mahbub et al., 2020). In this study, a
single-molecule RNA Fluorescence in situ Hybridization
(FISH) technique was used to visualize the target mRNAs in
the cell. Results show that photosynthetic mRNAs mainly
cluster as tight foci near the thylakoid surfaces adjacent to
the central cytoplasm (Mahbub et al., 2020). In contrast,
mRNAs encoding nonmembrane integral proteins locate fur-
ther away from the thylakoid membrane. Treatments with
protein translation inhibitors (puromycin and lincomycin)
indicate that ribosome association with the mRNAs influen-
ces the distribution of mRNAs at the thylakoid surface.
Therefore, these mRNA clusters adjacent to the cytosol-
facing surface of the thylakoid membranes represent the
major sites of translation of the core components of the PS
(Mahbub et al., 2020).

The distribution pattern of PSII mRNA varies in different
light conditions. Due to its extreme sensitivity to light, the
D1 core protein of PSII undergoes a continuous damage and
repair cycle (Nixon et al., 2010). In short-term high-light
stress, D1 repair dominates over the de novo synthesis. In
response to the stress, FISH signals distribute diffusely along
the cytosol-facing surfaces of the thylakoid membranes,
whereas in standard growth light conditions, the signal is
more punctate (Mahbub et al., 2020). Therefore, mRNA-
FISH probing can also detect the variable distribution of PSII
synthesis, and thereby membrane plasticity in response to
different environmental cues.

Conclusions and future prospects
This review provides an update on the current understand-
ing of photosynthetic light-harvesting and regulatory pro-
cesses in vascular plants, algae, and cyanobacteria, whereby
some questions still acquire more attention (see
“Outstanding Questions”). The astonishing diversity in differ-
ent evolutionary clades results in a kaleidoscope of solutions

for light harvesting and photoprotection, in which the plas-
ticity of the thylakoid membranes plays a crucial role. The
recent development of accurate, high-resolution techniques
to study the molecular processes during light harvesting, as
well as the creation of informative mutants, has allowed
fresh insights into this area.

For the most part, crop science has focused on agronomic
approaches and breeding to improve plant architecture and
light capture. However, annual increases in yields of the ma-
jor crops in many parts of the world have plateaued, and
new technological solutions must be explored (Blankenship
et al., 2011; Ort et al., 2015). Improving photosynthesis
through genetic engineering of light-harvesting processes is a
possible solution to the development of new crop varieties
with a higher yield potential (Kromdijk et al., 2016;
Głowacka et al., 2018; Hubbart et al., 2018; Kirst et al., 2018;
Simkin et al., 2019; Chen et al., 2020). Traits such as the pro-
tein PsbS and the carotenoid zeaxanthin have become prime
examples of this. A strict control of energy dissipation within
PSII in tobacco (Nicotiana tabacum) plants resulted in an in-
crease of up to 15% in biomass in field conditions (Kromdijk
et al., 2016), a finding that has more recently been translated
to rice (Oryza sativa; Hubbart et al., 2018). PS antenna cross-
section has also been revealed to be an important target for
biotechnological improvement. A smaller size of the whole
antenna complement has been often reported to positively
affect biomass accumulation in plants and algae (Cazzaniga
et al., 2014; Kirst et al., 2018). A precise understanding of an-
tenna diversity and light-harvesting strategies is therefore
pivotal for the identification of new targets for crop
improvement.
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OUTSTANDING QUESTIONS

• What is the precise role of PsbS and zeaxanthin
in regulating energy fluxes within PSII during
NPQ?

• Is energy dissipation in the PBS the result of
energy transfer to the carotenoid of the OCP?
What are the roles of the OCP homologs
CTDH and HCP?

• Which FCP proteins are involved in NPQ in
diatoms?

• Which additional traits besides zeaxanthin
accumulation and PsbS can be used to increase
crop yield, also in view of increasing
temperatures and more frequent droughts?

• How does antenna composition and size
impact the productivity of major crop species?
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