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Chapter 1
Impact of Genome Reduction
in Microsporidia

Nathan Jespersen, Leonardo Monrroy, and Jonas Barandun

Abstract Microsporidia represent an evolutionary outlier in the tree of life and
occupy the extreme edge of the eukaryotic domain with some of their biological
features. Many of these unicellular fungi-like organisms have reduced their genomic
content to potentially the lowest limit. With some of the most compacted eukaryotic
genomes, microsporidia are excellent model organisms to study reductive evolution
and its functional consequences. While the growing number of sequenced
microsporidian genomes have elucidated genome composition and organization, a
recent increase in complementary post-genomic studies has started to shed light on
the impacts of genome reduction in these unique pathogens. This chapter will
discuss the biological framework enabling genome minimization and will use one
of the most ancient and essential macromolecular complexes, the ribosome, to
illustrate the effects of extreme genome reduction on a structural, molecular, and
cellular level. We outline how reductive evolution in microsporidia has shaped DNA
organization, the composition and function of the ribosome, and the complexity of
the ribosome biogenesis process. Studying compacted mechanisms, processes, or
macromolecular machines in microsporidia illuminates their unique lifestyle and
provides valuable insights for comparative eukaryotic structural biology.
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1.1 Causes and Effects of Reductive Evolution

There is a common bias to describe evolution as a march toward decreased entropy
and increased complexity. After all, the regular ordering of atoms to create larger and
more complex systems is an intrinsic feature of life on earth. While this suggests that
a gradual increase in organism complexity is inevitable, complexity is balanced in
many environmental niches by selective pressures that favor rapid and efficient
reproduction, leading to the elimination of superfluous traits. This process of abla-
tion is known as “reductive evolution” and can result in simpler organisms deriving
from more complex ancestors.

Reductive evolution typically results from efficient nutrient usage. Macroscopic
examples of this include the loss or atrophy of eyes in a wide variety of cave fish or
the somewhat ironic loss of a digestive tract in tapeworms (Castro 1996; Morris et al.
2012). At the microscopic level, reductive evolution usually involves eliminating
extraneous metabolic processes. Many freshwater chrysophytes, for example, have
switched from autotrophy/mixotrophy to heterotrophy in order to combat limited
carbon availability and have lost photosynthetic pathways and large swaths of their
genomes along the way (Olefeld et al. 2018; Majda et al. 2021).

Gene loss is the most common example of reductive evolution and is often made
feasible by co-occurring organisms. One interesting case of this is the loss of the
catalase-peroxidase protein, KatG, in the marine cyanobacteria Prochlorococcus
spp. (Scanlan et al. 2009). KatG serves an important role in protecting many
cyanobacteria from hydrogen peroxide (Perelman et al. 2003), which builds up in
oceans due to photooxidation of dissolved organic carbon (Cooper et al. 1988). In a
few hours of direct sunlight, enough hydrogen peroxide can be produced to kill off
Prochlorococcus cultures (Morris et al. 2011), indicating that they have a very high
sensitivity for the molecule. It is surprising then that Prochlorococcus spp. would
have lost katG. Instead, co-occurring cyanobacteria have retained katG and scavenge
surrounding hydrogen peroxide from marine environments (Petasne and Zika 1997).
The loss of katG is therefore only possible because organisms in the natural
community provide a protective function.

Interactions between Prochlorococcus spp. and other marine cyanobacteria
inspired the “Black Queen Hypothesis,” which posits that natural selection for
genomic streamlining breeds dependencies on co-occurring organisms (Morris
et al. 2012). This contrasts with the “Red Queen Hypothesis,” inspired by Lewis
Carroll’s Through the Looking-Glass, which postulates that competition breeds
coevolution (Van Valen 1973). As a corollary to the Black Queen Hypothesis, the
more dependent an organism is on other organisms, the more thoroughly a genome
will be streamlined. We might therefore hypothesize that genome reduction scales
with metabolic dependence on other organisms, i.e., the average genome size of
evolutionarily related phototrophs > heterotrophs, and facultative parasites > obli-
gate parasites, which seems to be the case (de Castro et al. 2009; Merhej et al. 2009;
Clark et al. 2010; Majda et al. 2021) (Fig. 1.1).
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Fig. 1.1 Microsporidia have the smallest known eukaryotic genomes. Logarithmic plot of the
number of annotated protein coding genes as a function of the respective organism’s genome size.
All entries present in NCBI (https://www.ncbi.nlm.nih.gov/) were included, but the data were
broadly filtered to remove untenable outliers, partial sequences, and nucleomorphs. Because of
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Parasites are some of the greatest beneficiaries of reductive evolution, and
nowhere is this more conspicuous than in microsporidia. As obligate intracellular
parasites, microsporidia have dramatically reduced many elements of their genomes.
In the sections below, we describe the various factors facilitating genome reduction
and outline elements of the genome that are absent in microsporidia. We then delve
more deeply into the effects of genome ablation at the protein and RNA level by
comparing aspects of ribosome structure, function, and maturation in microsporidia
to other eukaryotes.

1.2 The Price of a Large Genome

The cost of genome replication is threefold and requires payment in time, nutrients,
and space. All three costs increase with genome size, although there is some
variation between prokaryotes and eukaryotes. In this section, we discuss the impact
of each of these factors on genome replication and describe how they contribute to
reduction in microsporidian genome sizes.

1.2.1 Time

Time is required both to collect materials for DNA synthesis and to physically
duplicate the genome. The amount of time required for genome replication depends
largely on the catalytic rate of the DNA polymerase. In E. coli, DNA polymerase III
copies around 1000 nucleotides/second (Kelman and O’Donnell 1995; Naufer et al.
2017). On the other hand, the equivalent yeast polymerase, Pol E, has a maximal
catalytic rate of only 350 nt/s (Ganai et al. 2015). Yeast replication is further
decreased to 50 nt/s by proofreading, lagging strand synthesis, etc. Fortunately,
eukaryotes are able to offset slower catalytic rates and considerably larger genomes
by segregating genetic material into different chromosomes and amplifying from
multiple origins of replication. Consequently, yeast and E. coli grown in ideal
conditions have replication times commensurate to their genome sizes:
90–120 min for 12 Mbp in yeast (Salari and Salari 2017), versus 40 min for
4.6 Mbp in E. coli (Fossum et al. 2007). Interestingly, replication rates for many
cancerous human cells are on the order of only 20 h (Pereira et al. 2017), despite
having genomes 250 times larger than yeast. This shows that various factors
contribute to dramatically decrease the necessary time for eukaryotic replication,

Fig. 1.1 (continued) the broad filtering, some partially sequenced or annotated entries are still
present. The plot was generated using source code from https://github.com/smsaladi/genome_size_
vs_protein_count. Eukaryotes are colored in different shades of red, with microsporidia in black.
Prokaryotes and viruses are represented in shades of green
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but that total replication time typically increases with increasing genome sizes. Thus,
it is beneficial for intracellular parasites like microsporidia to reduce their genome
size in order to decrease doubling times. Unfortunately, very little is currently known
about microsporidian polymerases, or even whether their chromosomes harbor
multiple origins of replication. One study on the microsporidia Nematocida parisii
determined that their population doubles in around 140 min (Balla et al. 2016).
Although there are a variety of confounding factors, such as growth occurring in
infected nematodes rather than in an optimized broth, the replication rate of the
4.3 Mbp N. parisii genome is considerably slower than in yeast (about 1/4 the rate).
This suggests that the catalytic rate of the polymerase is slower and/or that N. parisii
has fewer chromosomes and origins of replication per Mbp than yeast.

1.2.2 Nutrients

Nitrogen and phosphorous are key elements in DNA and are considered the limiting
nutrients for growth in most ecosystems (Ågren et al. 2012; Elser 2012). The
biosynthesis of DNA is thus an extremely resource-intensive investment. In fact,
comprehensive estimates for the ATP requirements for DNA replication suggest that
it costs as much as 500 high-energy bonds/bp in diploid eukaryotes (Lynch and
Marinov 2015). While this estimate includes indirect costs such as the production of
nucleosomes to stabilize the DNA, most expenses scale linearly with genome size.
The larger the genome, the more NTPs are required, and the less high-energy bonds
are available for alternative functions like protein production or cell defense. Many
organisms therefore pass through a cell-cycle checkpoint, called START, which acts
as a nutrient-sensing step to assess available resources prior to replication (Foster
et al. 2010). Cells lacking requisite nutrients enter a quiescent state until conditions
are more favorable for DNA biosynthesis.

Nutrient limitations are even more restrictive for obligate intracellular parasites.
Indeed, microsporidia are almost completely reliant on their hosts and are metabol-
ically inactive in nutrient-poor, extracellular environments (Weiss and Becnel 2014).
The hijacking of host systems allows them to bypass much of the innate cost of DNA
replication, and simply importing nucleotides instead of synthesizing their own
reduces the ATP requirements per base pair by nearly 50% (Lynch and Marinov
2015). Intriguingly, microsporidia have opted to eliminate the majority of enzymes
required for nucleotide biosynthesis (Dean et al. 2016) and have instead expanded
families dedicated to nucleotide import (Cuomo et al. 2012). This indicates that
microsporidia have increased import proteins but greatly decreased biosynthetic
pathways, facilitating a net decrease in overall genome size (Dean et al. 2016).
Similar trends are identifiable in microsporidia for many other central eukaryotic
pathways, such as glycolysis or fatty acid metabolism (Wiredu Boakye et al. 2017).
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1.2.3 Space

Although space is perhaps the least conspicuous cost for DNA, many studies have
noted and discussed the intricate relationship between genome size and cell size in
eukaryotes (Gregory 2001; Cavalier-Smith 2005). The crux of this argument lies in
the relatively invariant karyoplasmic ratio, i.e., the ratio of the nuclear volume to
cytoplasm is important for cell function, and is generally conserved (Huxley 1925;
Trombetta 1942; Cavalier-Smith 2005). The nuclear size is in turn proportional to
the total volume of the chromatin (Cavalier-Smith 2005). Although the underlying
causes of this effect are still being determined (Cantwell and Nurse 2019; Blommaert
2020), a decrease in genome size will generally lead to a decreased nuclear size,
catalyzing a decrease in cell size. The reverse also holds true, where a decrease in cell
size will herald a decrease in genome size. This relationship was cleanly demon-
strated in a eukaryotic phytoplankton by Malerba et al. (2020). In this study,
72 different Dunaliella tertiolecta lineages with cell volumes spanning two orders
of magnitude were placed under selective pressures favoring smaller cells. After
100 generations, lineages that were initially much larger displayed an up to 11%
decrease in genome size, while smaller lineages were unaffected. This suggests that
(1) selective pressures favoring smaller cells indirectly select for smaller genomes
and (2) lineages with larger genomes contain a set of superfluous genes that can be
lost, while smaller lineages are already operating at closer to the minimal genome
(Malerba et al. 2020).

For intracellular parasites like microsporidia, the space available within their
hosts directly restricts the number of spores produced. Cells infected with
microsporidia are often saturated with spores (Weiss and Becnel 2014; Grigsby
et al. 2020), suggesting the host cell walls limit the number of spores created per
infection. In fact, the spatial costs of DNA are twofold, as not only does DNA
indirectly determine the size of the spores or meronts, but it also takes up valuable
real estate within the cell. It is therefore extremely beneficial for microsporidia to
minimize genome size, and it is unsurprising that they are some of the physically
smallest eukaryotes. As a consequence of cell-wall limitations to genome size,
microsporidian species that exit via exocytosis may have less stringent spatial
costs than lytic species. Mature spores are constantly being shed in exocytosed
species, increasing the effective available space compared to lytic species. Currently,
only one pair of species can be used as an example: Nematocida displodere is
primarily released via cell lysis, while N. parisii can be exocytosed in vesicles
(Luallen et al. 2016). Although the genome of N. displodere is, in fact, smaller
than the genome of N. parisii (Luallen et al. 2016), more data are required to
determine whether the “spore release method” contributes to genome size variation
between related microsporidians.
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1.3 Paths of Reductive Evolution in Microsporidia

Microsporidia are characterized by many unique and interesting features, such as a
lack of innate mobility (Weiss and Becnel 2014) and a fishing-line like infection
apparatus (Han et al. 2017). Despite their innovations, microsporidia are perhaps
most frequently referenced for their exquisitely small genomes (Keeling and
Slamovits 2004; Corradi et al. 2010; Corradi and Slamovits 2011) and minimized
macromolecular complexes (Melnikov et al. 2018a; Barandun et al. 2019;
Ehrenbolger et al. 2020). Microsporidian genomes are indeed very small and have
the honors of claiming both the smallest known eukaryotic genome (Corradi et al.
2010) and one of the highest known eukaryotic gene densities (Fig. 1.2) (Keeling
and Slamovits 2004; Keeling 2007). The genome of Encephalitozoon intestinalis,
for example, is only 2.3 Mbp (Corradi et al. 2010). That is only half the size of the
E. coli genome (4.6 Mbp) and 1/65,000 the size of Paris japonica (150 Gbp), a
flowering perennial with the largest confirmed eukaryotic genome (Pellicer et al.
2010).

Early studies on microsporidia noted the absence or modification of several
cellular structures characteristic of eukaryotes. For example, microsporidia lack
peroxisomes, have unstacked Golgi bodies, and have highly reduced mitochondria
called mitosomes (Corradi and Keeling 2009; Vávra and Ronny Larsson 2014).
These observations led to speculation that microsporidia represent an ancient and

Fig. 1.2 Microsporidia have one of the most gene-dense eukaryotic genomes. Gene density across
different kingdoms was calculated by dividing the number of annotated protein coding genes by the
genome size of the respective organism in kilobase pairs. All entries present in NCBI (https://www.
ncbi.nlm.nih.gov/) were included, but the data were broadly filtered to remove untenable outliers,
partial sequences, and nucleomorphs. Because of the broad filtering, some partially sequenced or
annotated entries are still present. Eukaryotes are colored in different shades of red, with
microsporidia in black. Prokaryotes and viruses are represented in shades of green

1 Impact of Genome Reduction in Microsporidia 7

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


unsophisticated eukaryotic lineage. They were therefore classified as Archezoa, with
the prevailing hypothesis stating that they diverged prior to endosymbiosis of the
mitochondrial ancestor (Cavalier-Smith 1983). This theory was disproven when
further genetic analyses demonstrated that a subset of genes found in eukaryotic
mitochondria have been transferred to microsporidian chromosomes (Germot et al.
1996; Katinka et al. 2001), indicating that microsporidia diverged after endosymbi-
osis and are therefore simplified organisms derived from more complex ancestors.
Likewise, the small genomes of microsporidia are not a representation of a primitive
ancestral state but are instead the result of minimization of multifarious genomic
features. In this section, we describe several features affecting genome size, such as
gene loss, intron minimization/removal, reductions in gene length, deletions of
redundant genes, and the shortening of intergenic regions (IGRs) (Fig. 1.3a).

1.3.1 Non-coding Regions

Microsporidian genomes are similar to those of other eukaryotes in structure and
organization. Multiple linear chromosomes can be segregated into telomeres,
subtelomeres containing ribosomal DNA (rDNA) and repetitive elements, and
gene-rich cores (Dia et al. 2016). Variation is more localized to individual elements
of the genome, like coding sequences and intergenic regions. The regions between
genes are essential for efficient transcription and contain binding sites for various
promoters and enhancers, which are often thousands of nucleotides away from the
gene they enhance. It is intriguing then that many microsporidia have tiny IGRs,
with E. intestinalis averaging only 115 bp between genes (Corradi et al. 2010). The

Fig. 1.3 Mechanisms of genome compaction in microsporidia. (a) Schematic representation of a
relatively expanded (top) and compacted genome (bottom). Different genomic elements are col-
ored, and the processes leading to their compaction (lower panel) are labeled on top. (b) The size of
intergenic sequence (IGS) regions correlates with the directionality of adjacent genes, likely due to
the presence of transcriptional control elements upstream of the transcriptional start site (e.g.,
enhancers, promotors). Gene directionality is indicated with arrows and 50 or 30 labels. Transcrip-
tional control elements and their binding partners (e.g., transcription factors, RNA polymerases etc.)
are shown as symbolic cartoons and colored in shades of green
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genes themselves are an average of 1.04 kbp (Corradi et al. 2010). By taking into
account the gene density (1.16 kbp/gene) (Corradi et al. 2010), we can determine that
coding regions account for as much as 90% of the E. intestinalis genome. To put this
in perspective, around 70% of the yeast genome codes for proteins (Dujon 1996) and
only 2% of the human genome is protein coding (Piovesan et al. 2019). The low ratio
of non-coding to coding sequences suggests that microsporidia have extremely
streamlined IGRs. In fact, contrary to most eukaryotes, non-coding regions in
microsporidia have higher sequence conservation than coding regions (Corradi
et al. 2010; Corradi and Slamovits 2011; Whelan et al. 2019), indicating that the
remaining bases form important molecular recognition motifs.

Most regulatory elements are found upstream of the 50 end of a gene. Tellingly,
the length of microsporidian IGRs appears to correlate with the directionality of
adjacent genes (Fig. 1.3b) (Keeling and Slamovits 2004). For Encephalitozoon
cuniculi, regions wedged between the termini of two genes (the 30 ends) are about
20% shorter than regions between parallel genes (one 30, and one 50 end), while
regions abutting divergent 50 ends are a further 20% longer on average. This pattern
is indicative of severe reductive selection operating on IGRs (Keeling and Slamovits
2004), as zero, one, or two sets of upstream transcription factors need to bind
between convergent, parallel, and divergent genes, respectively.

Several other factors suggest that Encephalitozoon spp. are operating at the limit
of IGR reduction. Firstly, the length of IGRs sometimes dips into negative values,
i.e., genes overlap one another (Katinka et al. 2001; Akiyoshi et al. 2009; Corradi
et al. 2010). Secondly, multiple studies have noted that transcripts initiate in
upstream genes and read through into downstream genes (Williams et al. 2005;
Corradi et al. 2008; Gill et al. 2010), suggesting that transcriptional start sites and
termination sequences are often located within adjacent genes. Finally,
microsporidia produce many multigene transcripts, which surprisingly encode both
sense and antisense genes (Peyretaillade et al. 2009; Corradi and Slamovits 2011;
Watson et al. 2015). These transcripts, known as “noncontiguous operons,” are
thought to regulate protein expression levels and result from evolutionary pressure
to minimize genome size (Sáenz-Lahoya et al. 2019). These three examples provide
evidence that microsporidia trim and eliminate IGRs wherever possible and have
adapted more spatially efficient mechanisms to regulate protein expression levels.

Microsporidian parsimony is not only directed toward IGRs but also impacts
other non-coding regions like introns. Splicing machinery and introns appear to have
been convergently eliminated in at least three microsporidian genera: Edhazardia,
Nematocida, and Enterocytozoon (Keeling et al. 2010; Desjardins et al. 2015). Even
when introns are retained, they are reduced in both number and length (Lee et al.
2010; Campbell et al. 2013). In E. cuniculi, for example, a total of 36 introns have
been identified, ranging from only 23 to 76 bases in length (Lee et al. 2010). The
splicing efficiency for many of these introns is very low, often around 10–25%, and
many putative introns display no active splicing (Grisdale et al. 2013; Campbell et al.
2013; Desjardins et al. 2015). For comparison, the yeast genome contains at least
300 introns ranging from around 100 to 1000 bases (Spingola et al. 1999; Xia 2020),
which are frequently spliced with 100% efficiency (Xia 2020). The convergent loss
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of introns and splicing machinery in several microsporidian clades implies there is
little functional utility for most introns. Microsporidian species retaining
spliceosomal machinery may therefore represent an earlier evolutionary snapshot
in the decay of intron usage.

Interestingly, a large proportion of the retained introns are found in ribosomal
proteins (Lee et al. 2010). Splice sites for ribosomal proteins are heavily biased
toward the 50 end of the coding sequence, and Exon-1 often encodes only a few
amino acids (Fig. 1.4a). Ribosome structures are available for Vairimorpha necatrix
and Paranosema locustae, two microsporidia that retain functional splicing machin-
ery. The protein product of a spliced mRNA can be visualized by inspecting the
cryo-EM density for proteins encoded by genes with introns. For example, the
N-terminal region of eS6 in P. locustae displays apparent density for Met1-Lys2
amino acids (Exon-1), followed by amino acids from Exon-2, providing visual
evidence for the successful splicing of a 23-nucleotide intron (Fig. 1.4b).

Fig. 1.4 Visualizing the protein product of eS6 mRNA splicing in Paranosema locustae. (a)
Schematic representation of the 50 end of the gene encoding eS6 in P. locustae, with DNA and
corresponding amino acid sequence indicated. The splice sites are underlined. An in-frame stop
codon in the intron is shown in red. (b) The corresponding cryo-electron microscopy density of eS6
is shown in isolation. The right side displays the entire ribosomal protein density in light blue with
its N-terminus indicated in purple. The left side zoom in depicts the superposition of the model
(PDB 6ZU5) and cryo-EM density (EMDB 11437) for the protein eS6 (Ehrenbolger et al. 2020).
Density and cartoon model are colored according to their coding exons, analogous to (a) (Exon
1, purple; Exon 2, light-blue)
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1.3.2 Gene Deletion and Minimization

Constant selective pressure favoring reductive evolution has led to widespread gene
deletions, resulting in a core of only 800 conserved microsporidian proteins
(Nakjang et al. 2013). These proteins are generally involved in essential processes,
such as replication, DNA repair, and protein synthesis or recycling (Galindo et al.
2018). Categories of deleted proteins span the gamut; however, metabolic and
regulatory pathways are particularly depleted (Nakjang et al. 2013; Dean et al.
2016; Wiredu Boakye et al. 2017; Galindo et al. 2018). Encephalitozoon spp. have
lost almost all proteins involved in glycolysis, oxidative phosphorylation, fatty acid
metabolism, and amino acid/nucleotide biosynthesis (Dean et al. 2016; Wiredu
Boakye et al. 2017). Recent work identified one mechanism by which microsporidia
survive without these important anabolic and catabolic pathways (Kurze et al. 2016;
Luo et al. 2021). During infections, microsporidia secrete enzymatic proteins like
hexokinase and trehalase into host cells (Senderskiy et al. 2014). These secreted
proteins are incorporated into host metabolic pathways, leading to the upregulation
of genes important for the biosynthesis of amino acids, nucleotides, and fatty acids
(Kurze et al. 2016; Luo et al. 2021). Interestingly, transporters are one of the few
classes of proteins that have experienced expansion rather than reduction in
microsporidia (Nakjang et al. 2013; Dean et al. 2016). The slight radiation in
transport genes has facilitated a much more substantial elimination of metabolic
genes, allowing for a large net decrease in genome size.

Not only have many proteins been lost in microsporidia, the remaining proteins
are also shorter. In fact, E. cuniculi proteins are on average 15% shorter than the
yeast orthologs (Katinka et al. 2001). The impetus for this gene shortening remains
to be proven, but Katinka et al. (2001) speculate that the loss of proteins led to more
simplified interaction networks, which has facilitated the removal of protein-protein
interaction domains from remaining proteins. One potential example of this can be
seen in Taf5, a subunit of the transcription initiation factor TFIID. In most eukary-
otes, Taf5 contains a conserved, N-terminal Lis1 Homology motif (LisH) (Romier
et al. 2007; Wang et al. 2020). LisH domains are short, ~33 amino acid motifs that
assist in protein dimerization and subcellular targeting (Gerlitz et al. 2005). In Taf5,
the LisH domain is known to both facilitate dimerization (Bhattacharya et al. 2007)
and help mediate interactions between Taf5 and the Spt20 subunit of the SAGA
(Spt-Ada-Gcn5 acetyltransferase) complex (Wang et al. 2020). Interestingly, the
LisH domain is absent in microsporidia (Romier et al. 2007). Although the absence
of spt20 is yet to be verified, a BLAST (Altschul et al. 1990) search against all
available microsporidian genomes produced no reliable hits. Additionally, other core
components of the SAGA complex are absent in microsporidia (Miranda-Saavedra
et al. 2007). As the LisH domain is primarily a structural domain that promotes
protein-protein interactions, the loss of its binding partner would render its function
moot. These data therefore support the hypothesis that simplified protein-protein
interaction networks lead to the ablation of superfluous domains and the minimiza-
tion of microsporidian gene length.
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Although we have thus far described the loss of a gene as the loss of a function,
functional redundancy is common in most eukaryotes (Dean et al. 2008). Organisms
operating under strong reductive selection frequently minimize genomes by elimi-
nating redundancies (Luo et al. 2011). In highly reduced picoplanktonic eukaryotic
organisms, for example, the total number of gene families is conserved despite
extensive gene loss (Derilus et al. 2020). Instead, the average size of each gene
family is decreased as a result of deletions of paralogous genes. A similar trend can
be identified in the most minimal microsporidia, like Encephalitozoon spp., which
are largely devoid of duplications and repetitive elements (Katinka et al. 2001;
Keeling and Slamovits 2004; Cormier et al. 2021). These findings only hold true,
however, for the most reduced microsporidia. Other species, like Nematocida spp.,
have markedly expanded a small number of gene families (Reinke et al. 2017), while
the comparatively large Edhazardia aedis and Hamiltosporidium tvaerminnensis are
quite rich in duplications and repetitive elements (Williams et al. 2008; Cormier et al.
2021).

1.3.3 Gene Retention and Expansion

Gene families that are retained or expanded despite reductive selection provide an
abundance of valuable information. By considering which proteins are retained, it is
possible to identify biologically essential systems. As described above, gene families
retained in microsporidia are often involved in core cellular processes, and their
removal is typically lethal (Nakjang et al. 2013). Additionally, yeast orthologs of
these conserved proteins are significantly more likely to be highly expressed and
have a large number of interaction partners. These traits persist in microsporidia
(Nakjang et al. 2013), revealing the importance of connectivity and expression levels
in gene retention. Unexpectedly, conserved core proteins only account for around
800 of the 1750 (Enterocytozoon bieneusi) to 4500 (Nosema bombycis) predicted
genes (Peyretaillade et al. 2009; Nakjang et al. 2013; Pan et al. 2013). The remaining
genes serve species-specific functions and are often members of novel expanded
gene families (Reinke et al. 2017).

One group that has undergone expansion is the Small Conductance
Mechanosensitive Ion Channel (MscS) family. These membrane proteins are
found in both prokaryotes and eukaryotes and are involved in the regulation of
intracellular pressure in response to extracellular stimuli. Most frequently, this
stimulus takes the form of mechanical stress on membranes resulting from hypo-
or hyperosmotic conditions (Kung et al. 2010). These proteins function by forming a
channel, which allows for the influx or efflux of water and small molecules to relieve
the stress by reducing pressure. Microsporidia encode at least five copies of MscS
proteins, derived from a combination of horizontal gene transfers and lineage-
specific expansions (Nakjang et al. 2013). Based on other MscS functions, it has
been proposed that they play a role in the regulation of osmotic stress during
microsporidian germination (Nakjang et al. 2013). Previous studies have
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demonstrated that the rapid degradation of metabolites like trehalose, followed by a
subsequent increase in turgor pressure, provides the impetus for release of the
microsporidian polar tube (Undeen and Vander Meer 1999). Therefore, it is unsur-
prising that proteins involved in the regulation of turgor pressure would be both
enriched and conserved in microsporidian species.

The most expanded microsporidian gene families are novel and have no known
function (Heinz et al. 2012; Peyretaillade et al. 2012). Examination of these proteins
in Nematocida spp. demonstrated that they are recently generated and rapidly
evolving, as many members are either species- or clade-specific (Reinke et al.
2017). Tellingly, the genes are typically located within the subtelomeric regions of
the chromosomes, an area often associated with rapid evolution and immune evasion
(Fischer et al. 2003; Brown et al. 2010; Pombert et al. 2012; Reinke et al. 2017). As
such, it is likely that these families are involved in direct interactions with hosts and
are expanding and evolving in a species-specific way in response to preferred hosts.
In support of this idea, Reinke et al. (2017) identified host-exposed proteins in
N. parisii using spatially restricted enzymatic tagging and found that 49% of the
experimentally identified proteins belonged to a large gene family and that 88% of
all host-exposed proteins lacked orthologs outside of closely related Nematocida
spp. Although further work is required to understand the role these families play in
host-parasite interactions, their expansion against a background of reductive evolu-
tion suggests a unique and important function.

1.3.4 Variation Between Species

The genome sizes of microsporidia differ considerably between species, from
2.3 Mbp (E. intestinalis) to 51.3 Mbp (E. aedis). This variation is not mirrored in
the number of protein coding genes, which fluctuates within a much narrower
window (1750–4500) (Peyretaillade et al. 2009; Pan et al. 2013). The larger genome
size variation instead reflects the accumulation of non-coding regions in larger
microsporidia. In fact, non-coding regions sometimes accrete to such a degree that
the microsporidian clade contains both one of the most gene dense and one of the
least gene dense fungal species (Fig. 1.2) (Muszewska et al. 2019). This surprising
finding is evidence that not all microsporidia are undergoing aggressive reductive
evolution.

Repetitive sequences make up a large proportion of the non-coding regions of
gene-sparse species (Parisot et al. 2014). These repetitions, largely transposable
elements, are associated with mildly deleterious effects in eukaryotes (Hua-Van
et al. 2011). This begs the questions, what differs between gene-dense and gene-
sparse species, and why are gene-sparse species experiencing less stringent reductive
selection? To address these questions, recent work compared and contrasted the life
cycles of various microsporidia and discovered a correlation between genome size
and mode of transmission. Microsporidia that are transmitted through purely
horizontal means have small and compact genomes, while microsporidia with
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mixed-mode (vertical and horizontal) transmission have larger genomes with a
higher concentration of transposable elements (Haag et al. 2020; De Albuquerque
et al. 2020). These studies suggest that population bottlenecks resulting from vertical
transmission lead to reduced selective pressure and facilitate the expansion of
repetitive sequences. Although more work is required, it is clear that the mode of
transmission contributes to the significant variation in microsporidian genome sizes.

1.4 The Ribosome as a Molecular Fossil Record

As seen above, reductive evolution operates on all facets of the microsporidian
genome. Although we have thus far focused on the factors leading to genome
reduction, it is just as important to understand the structural and functional adapta-
tions resulting from that reduction, i.e., which pathways are lost or minimized, and
how does the loss or minimization of these pathways fit in with what we know about
the microsporidian life cycle? For the remainder of this chapter, we will describe the
results of genome compaction on cellular systems, using ribosome structure, func-
tion, and biosynthesis as our case study. There are a variety of reasons to choose the
ribosome for this analysis. Firstly, microsporidia suffer from a dearth of structural
data. There are only 43 microsporidian structures available on the PDB (using
keyword “microsporidia,” www.rcsb.org; June 2021), as opposed to over 5000 for
Saccharomyces cerevisiae. Two of the microsporidian structures encompass the
whole ribosome, making it one of the most studied microsporidian structures
(Barandun et al. 2019; Ehrenbolger et al. 2020). Secondly, the ribosome is an
essential macromolecular complex responsible for protein synthesis in all known
“living” organisms. Thirdly, despite a relatively conserved core, ribosomes differ
significantly between clades (Fig. 1.5). They are dramatically expanded in most
eukaryotes compared to prokaryotes, but highly reduced in intracellular parasites
like microsporidia or apicomplexans. Finally, because of both its variation and
ubiquity, the ribosome has long been used to build gene-based phylogenetic trees,
promoting a function for ribosomes as evolutionary timekeepers.

In 1977 Carl Woese and George Fox recognized the ribosomal genes’ potential to
serve as a molecular fossil record of life and revolutionized biology by establishing
ribosomal RNA (rRNA) sequencing as a tool in molecular phylogenetics (Woese
and Fox 1977). Their work led to the discovery of the Archaea and a fundamental
re-drawing of the tree of life. When analyzing the ribosomal RNA of the
microsporidia V. necatrix in 1987, Vossbrinck and Woese found a highly reduced
ribosomal RNA sequence, more akin to a prokaryote than a eukaryote. It was
concluded with the data available at the time, that microsporidia might be early
branching, primitive eukaryotes (Vossbrinck et al. 1987). However, with the advent
of genome sequencing and the increasing availability of protein and ribosomal RNA
sequences from different species in the decades since, mounting evidence has shown
that microsporidia are closely related to fungi (James et al. 2006; Haag et al. 2014),
rather than being primitive eukaryotes. Hence, the “prokaryote-like” ribosomal gene
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Fig. 1.5 The evolution of the microsporidian ribosome is shaped by an unusual reversal of
eukaryotic expansions. A simplified schematic phylogenetic tree (James et al. 2006, 2013; Haag
et al. 2014), depicting the expansive evolution of the ribosome from prokaryotes to eukaryotes and
the reduction in microsporidia. Ribosomes are displayed for representative organisms in four views,
related by 90-degree rotations [bacteria, E. coli PDB 4YBB (Noeske et al. 2015); archaea,
Pyrococcus furiosus PDB 4V6U (Armache et al. 2013); plants, Triticum aestivum PDB 4V7E
(Gogala et al. 2014); animals, Homo sapiens PDB 6EK0 (Natchiar et al. 2017); fungi, S. cerevisiae
PDB 4 V88 (Ben-Shem et al. 2011); and microsporidia, V. necatrix PDB 6RM3 (Barandun et al.
2019)]. The shared rRNA core and all ribosomal proteins are shown in white, 5S rRNAs are in red,
and rRNA elements absent in microsporidia are colored in blue (LSU rRNA) or gold (SSU rRNA).
The organism’s name, number and size of rRNAs, and number of ribosomal proteins (rps) are
indicated on the right side
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arrangement, reduced size of the ribosomal RNA, and minimized proteins in
microsporidia are the result of genome compaction and represent an unusual reversal
of the drastic expansion that occurred in eukaryotes (Fig. 1.5).

1.5 The Microsporidian Ribosome: An Outlier in Ribosome
Evolution

The ribosome is a complex macromolecular machine responsible for the production
of all proteins. To perform this vital function, many ribosomes are produced,
accounting for nearly 30% of the dry mass of a rapidly dividing bacterial cell
(Bremer and Dennis 2008; Piir et al. 2011). Ribosomes are composed of both
proteins and RNA (i.e., they are ribonucleoproteins) and are typically segregated
into two sections: the small subunit (SSU, 40S in eukaryotes) and the large subunit
(LSU, 60S in eukaryotes). As a result of the ribosome’s large size and essential role,
as much as 80% of a cell’s resources are dedicated to its biosynthesis and functional
upkeep in nutrient-rich conditions (Tempest and Neijssel 1984; Maitra and Dill
2015). Although all known living organisms produce ribosomes, the ribosome
composition varies significantly between clades (Fig. 1.5).

Most prokaryotes have simple genomes smaller than 10 Mbp (Fig. 1.1) and are
tightly packed with protein-coding genes (Fig. 1.2). In extreme cases, genomes can
be as small as 0.112 Mbp (Nasuia deltocephalinicola) (Bennett and Moran 2013), or
as large as 13 Mbp (Sorangium cellulosum) (Han et al. 2013). Despite the tiny
genome of N. deltocephalinicola containing only 137 coding genes, it still manages
to produce ribosomes, which are composed of 3 rRNAs (4445 nucleotides total)
and ~ 50 proteins (Moran and Bennett 2014). In more typical bacteria like
Escherichia coli, ribosomes still consist of 3 ribosomal RNAs (rRNAs) with a
combined size of 4567 nt. The surface of the rRNA is coated with 51 ribosomal
proteins (Fig. 1.5), and the biogenesis process requires dozens of additional proteins
(Shajani et al. 2011). The eukaryotic ribosome, on the other hand, is significantly
expanded in size and number of components. For example, the cytoplasmic ribo-
some from S. cerevisiae contains 4 rRNAs of a combined 5475 nt, and a total of
79 proteins. The eukaryotic assembly process also differs drastically from prokary-
otic ribosome assembly and utilizes over 300 trans-acting factors for ribosomal
maturation (Woolford and Baserga 2013; Klinge and Woolford 2019).

While translational machinery is expanded in most eukaryotes, it has been
significantly affected by genomic erosion in microsporidia. Recently, the ribosome
structures have been solved for two microsporidian species: V. necatrix and
P. locustae (Figs. 1.5 and 1.6) (Barandun et al. 2019; Ehrenbolger et al. 2020).
These structures provide one of the first glimpses of the effects of reductive evolu-
tion on macromolecular complexes in microsporidia. Interestingly, microsporidian
ribosomes have been reduced to such an extent that their rRNAs are smaller than
many bacterial ribosomes (3 rRNAs totaling ~3850 nt), including those from
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Fig. 1.6 Extensive rRNA expansion segment loss in microsporidia. (a, b) Schematic secondary
structure diagram of the small (a) and the large subunit ribosomal rRNA (b), based on the
S. cerevisiae structure, with expansion segments that have been lost in V. necatrix colored (SSU,
shades of orange and yellow; LSU, shades of blue and green). (c–e) Related views of the ribosome
from S. cerevisiae PDB 4 V88 (c), P. locustae PDB 6ZU5 (d), and V. necatrix PDB 6RM3 (e). The
middle section displays the full ribosome, while two 90-degree-related views of the SSU and the
LSU solvent-exposed sides are shown in isolation on the left and right. Ribosomes are colored in
white, while locations of expansion segments or other elements that have been lost in V. necatrix are
colored as in (a, b). The microsporidian ribosomal protein (msL1) is shown in light-green, while
MDF1 and MDF2 are colored purple and red
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N. deltocephalinicola, and are significantly smaller than the yeast ribosome. Many
parts of the ribosome have been lost or reduced in microsporidia; in this section, we
will describe some regions that have been altered, analyze the functional significance
of those regions, and postulate on the implications of those changes for
microsporidia.

1.5.1 Minimization of Expansion Segments

Eukaryotic ribosomes are characterized by approximately 30 additional eukaryote-
specific proteins and 50 additional rRNA elements known as expansion segments
(ES). These segments are aptly named, as they are regions of the rRNA that have
been expanded in eukaryotes compared to prokaryotes. The functions of most ESs
have not been thoroughly studied; however, many ESs seem to stabilize the addi-
tional layer of proteins present in eukaryotic ribosomes (Ben-Shem et al. 2011).
Others aid in recruiting and organizing components of the much more complex
eukaryotic ribosome biogenesis process (see Sect. 1.6) (Ramesh and Woolford
2016). More targeted studies have suggested that specific expansion segments are
involved in recruiting regulatory factors (Fujii et al. 2018), or serving auxiliary roles
by engaging and stabilizing mRNA during translation (Parker et al. 2018). Regard-
less of function, ESs are a hallmark of typical eukaryotic ribosomes.

Microsporidia have reversed the evolutionary trend to expand rRNA elements
and have removed the vast majority of eukaryotic ESs (Fig. 1.6). Those that do
remain are significantly reduced in size. A comparison of the SSU rRNAs indicates
that microsporidia are indeed evolving toward the loss of ESs (Fig. 1.7), rather than
simply not expanding in the first place. Step-wise deletions lead to early branching
species like Rozella allomycis and Mitosporidium daphinae encoding partial ver-
sions of ESs, while more recently diverged species have removed many ESs
altogether (see, e.g., es9 or es3; Fig. 1.7). If ESs were instead convergently evolving
from a minimal core in a last common ancestor, we would not see ES sequence
homology between early diverging microsporidia and other eukaryotes. Although
most ESs do not have defined roles or specific known interaction partners, several
segments have been studied in more detail, allowing us to draw conclusions on the
causes and effects of ES loss in microsporidia.

N-terminal acetylation of proteins is extremely common, with 60% of the yeast
proteome and 85% of the human proteome containing this modification (Arnesen
et al. 2009). Acetylation plays a role in protein half-life, most commonly by
protecting proteins from ubiquitination of N-terminal residues, thereby preventing
their proteasomal degradation (Ree et al. 2018). Nearly 40% of all acetylation in
humans happens co-translationally and is mediated by the NatA acetylation complex
(Ree et al. 2018). Co-translational acetylation is achieved via direct interactions
between NatA and multiple ribosome ESs, including H24, ES7, ES27, and ES39
(Knorr et al. 2019). In microsporidia, these ESs are extremely reduced (as in the case
of P. locustae; Figs. 1.6 and 1.7), or completely absent (V. necatrix), indicating
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N-terminal acetylation is either not performed co-translationally or is mediated by a
different complex. Consistently, an analysis of microsporidian proteomes demon-
strated that, while some subunits of the NatA complex are present, there is a
significant depletion in NatA substrate motifs in microsporidia (Rathore et al.
2016), suggesting a greatly diminished role for the acetylation complex. Intrigu-
ingly, N-terminal acetylation has also been associated with cellular targeting, where
cytoplasmic proteins are enriched and secreted proteins are depleted in the

Fig. 1.7 Expansion segment loss and sequence divergence in the microsporidian ribosomal RNA.
Small subunit rRNA sequence alignment of selected microsporidian and eukaryotic organisms,
created with Clustal Omega using RNA settings (Sievers et al. 2011). A structurally impossible
sequence insertion and potential sequencing issue in the N. ceraneae rRNA was manually removed
(nt 700–728). Not included are sequences from E. romaleae, P. neurophilia, and N. displodere,
which are only partially available. Organisms are labeled on the top left with microsporidia in the
dark box and other eukaryotes in light-gray. Conservation is indicated with shades of gray, from
white (variable) to dark gray (conserved). Elements which are not present in the V. necatrix rRNA
are indicated with colored boxes and labeled on top using the same coloring scheme as in Fig. 1.6.
The SILVA ribosomal RNA gene database (Quast et al. 2013) was used to obtain sequences
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modification (Forte et al. 2011). As intracellular parasites, microsporidia interact
extensively with hosts and are known to have a large number of secreted proteins
(Reinke et al. 2017). It is therefore possible that the loss of NatA-interacting ESs
serves to both conserve nutrients by minimizing the ribosome and facilitate protein
secretion into host cells.

In addition to recruiting the acetylation complex, ES27 has a purported role in
translational fidelity (Fujii et al. 2018). The deletion of segments of ES27 in yeast
leads to the misincorporation of amino acids during translation. Microsporidia lack
ES27 (Barandun et al. 2019; Ehrenbolger et al. 2020), indicating that they ensure
translational fidelity via alternative mechanisms or have higher error rates. A recent
study on the microsporidia Vavraia culicis supports the latter possibility and shows
that nearly 6% of leucine residues are erroneously translated (Melnikov et al. 2018b).
For comparison, E. coli has a mistranslation rate of only 0.2% (Zaher and Green
2009). A low translational fidelity is utilized by many organisms as an adaptive
strategy, facilitating immune evasion by increasing proteomic diversity (Miranda
et al. 2013; Ling et al. 2015). For organisms like microsporidia that have both high
numbers of host-exposed proteins and extremely restricted proteomes, the additional
flexibility garnered by mistranslation may be particularly beneficial. Therefore, the
loss of ES27, and the potential decrease in translational fidelity, would be both
economically and functionally advantageous.

The P. locustae ribosome structure provides an extremely economical example of
ES ablation. In most eukaryotic ribosomes, ES39 contains a highly conserved
nucleotide that appears to stabilize the interface between two ribosomal proteins
(Ehrenbolger et al. 2020). The microsporidian ribosome has eliminated the vast
majority of ES39; however, extra density consistent with a single nucleotide is
present at the same location. These data indicate that the free nucleotide is a relic
of ES39 and serves an important role as an architectural cofactor to stabilize the
protein-protein interface. The near-complete reduction of ES39 to a single nucleotide
is an exceedingly economical solution and lends credence to the idea that
microsporidia are under high levels of reductive selection.

The minimization of this ES to a single-nucleotide relic, in conjunction with the
previous examples of ES loss, demonstrates that ES deletion is a common mecha-
nism by which microsporidia reduce genome size and cut nutrient costs in the
biosynthesis of ribosomes. Interestingly, the localization of rRNA elements within
the subtelomeric regions of the genome may facilitate rRNA minimization.
Subtelomeres are often repetitive, associated with higher evolutionary rates, and
have increased frequencies of double-strand breaks (Brown et al. 2010; Muraki and
Murnane 2017). The high repetition may accelerate the deletion of ESs during
double-strand break repair. Regardless of the underlying mechanism, it is clear
that microsporidia have removed the vast majority of ESs, resulting in the smallest
known cytoplasmic ribosome in eukaryotes.
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1.5.2 Changes to the Proteinaceous Composition
of Microsporidian Ribosomes

Ribosomal proteins are some of the most widely conserved across the tree of life.
Approximately half of the protein subunits are present in both prokaryotic and
eukaryotic ribosomes and are thus called the “universal” or “u” ribosomal proteins
(Ban et al. 2014). However, as seen with ESs, eukaryotic ribosomes have greatly
expanded their proteinaceous repertoire, developing the “eukaryotic” or “e” proteins
of the ribosome. It is somewhat surprising then that the drastic microsporidian
reduction in ESs is not accompanied by a concomitant loss in the number of
ribosomal proteins (Fig. 1.5).

To better understand the proteinaceous changes to microsporidian ribosomes, we
have collected sequences from genomes available on MicrosporidiaDB
(Aurrecoechea et al. 2011) and compared their conservation in Fig. 1.8. Caution is
advised while drawing conclusion from these data, as many microsporidian genomes
are derived from incomplete assemblies and microsporidian proteins are rapidly
evolving. It is therefore very likely that some of the proteins marked as absent were
simply not identified via our methods. That said, microsporidia have retained most of
the ribosomal proteins found in yeast, and only a few of the 80 yeast proteins are
potentially absent in many microsporidian species. Remaining proteins have a 38%
average sequence identity to yeast homologs and are often considerably shorter
(Fig. 1.8a and b). Some proteins have lost loops or linkers, while others have been
truncated at the N- or C-terminus. Additionally, low levels of sequence identity can
be used to demarcate proteins that have structurally diverged from yeast (Fig. 1.8c).

Genome-wide knockout screens have been performed in yeast, which allows us to
identify essential ribosomal proteins (Giaever et al. 2002; Gao et al. 2015)
(Fig. 1.8a). These studies further noted knockouts that led to slow-growth defects.
It is important to mention, however, that yeast have duplicated the majority of
ribosomal genes. Some deleterious effects may have therefore been ameliorated by
the presence of paralogs during single-gene deletion studies. Nevertheless, compar-
isons between gene conservation and essentiality reveal several interesting results.
Firstly, as might be expected, many of the essential genes in yeast were not
duplicated. Secondly, essential genes are still extant in almost all microsporidia.
Instances of their loss, such as uL16 in Enterocytozoon hepatopenaei, are more
likely a result of incomplete genome assemblies or low sequence conservation. This
is evinced by the isolation of purported losses. Only in the case of uL23 are essential
genes unidentifiable in a related cluster of microsporidia (Trachipleistophora
hominis and Pseudoloma neurophilia). Numerous studies have demonstrated the
essentiality of uL23 for the formation of the polypeptide exit tunnel (Kaur and Stuart
2011; Polymenis 2020). We therefore find it more probable that its absence is a
matter of incomplete genome assemblies; however, a genuine absence would
undoubtedly provide useful insights into evolutionary strategies developed by
microsporidia to minimize the ribosome exit tunnel. Thirdly, all of the yeast proteins
unidentifiable in most microsporidia are nonessential (see eL28, eL38, eL41, P1, and
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Fig. 1.8 Microsporidian ribosomal protein phylogeny, identity, and structure relative to their yeast
homologs. (a) Ribosomal protein phylogeny generated by using protein sequences conserved in all
listed microsporidian species. Connected to the microsporidian phylogeny (black) is a simplified
tree for other non-microsporidian species, based on (James et al. 2006, 2013; Haag et al. 2014). For
the microsporidian phylogenetic tree, the protein sequences were obtained by performing translated
nucleotide blast (tblastn) searches with an E-value cutoff of 0.05, using the S. cerevisiae sequences
or verified microsporidian hits as query and MicrosporidiaDB (Aurrecoechea et al. 2011) as
database. For P. locustae and V. necatrix, protein sequences were obtained from (Barandun et al.
2019; Ehrenbolger et al. 2020) or local genome databases. For the non-microsporidian species,
sequences were obtained from https://www.ncbi.nlm.nih.gov/. Proteins were aligned using MUS-
CLE 3.8.31 (Edgar 2004) and trimmed using trimAl (Capella-Gutiérrez et al. 2009) with the –

gappyout option. The trimmed alignments were then concatenated using FASconcat 1.11 (Kück and
Meusemann 2010). The phylogenetic tree was constructed with RAxML 8.2.12 using the model
PROTGAMMAILGF, determined with ProtTest 3.4.2, and 1000 bootstrap replicates. The sequence
identity heatmap was constructed using MUSCLE 3.8.31 (Edgar 2004) and Clustal-Omega (Sievers
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P2), as are some of the frequently missing proteins (eS12, eS25, and eL29). The
nonessential eL38 is present in all earlier branching eukaryotes and is absent in all
but two microsporidian species (M. daphinae, Amphiamblys sp.), suggesting a
relatively recent loss of this ribosomal protein (Barandun et al. 2019). These findings
demonstrate that microsporidia have typically retained essential proteins and elim-
inated nonessential ones.

The nonessential protein eL41 is the only yeast subunit absent in all sequenced
microsporidia (Fig. 1.8a) (Barandun et al. 2019; Ehrenbolger et al. 2020). It is
remarkably short in other eukaryotes, only ~25 amino acids, and forms a small
bridge between the LSU and the SSU (Tamm et al. 2019). Deletions of eL41 are
easily tolerated, with knockout yeast strains displaying growth rates similar to wild-
type strains (Giaever et al. 2002). More in-depth analyses have revealed that eL41
plays a role in translational efficiency (Dresios et al. 2003; Meskauskas et al. 2003).
Ribosomes lacking eL41 had both lower translational fidelity and slower rates of
peptidyltransferase activity. This suggests that the removal of eL41 in microsporidia
may be another factor contributing to their markedly high rate of missense mutations
(Melnikov et al. 2018b). The deletion of eL41 may also result in a slower translation
rate, although no information is currently available on the kinetics of microsporidian
ribosomes.

The ribosomal stalk proteins, which also have a purported role in translational
efficiency (Wawiórka et al. 2017), are reduced in most microsporidia. A typical
eukaryotic ribosomal stalk is composed of uL10, two subunits of P1, and two
subunits of P2. All five protomers contain a highly conserved, C-terminal
SDDDMGFGLFD motif, preceded by a long and flexible linker (Choi et al. 2015).
This organization and motif is found in organisms as diverged as humans and the
archaeon Pyrococcus horikoshii (Ito et al. 2014). During active translation, the
C-termini of the pentamer bind to and recruit the essential elongation factor EF1α,
which delivers charged aminoacyl-tRNA to the ribosome. It is proposed that the five
redundant motifs aid in the rapid and efficient recruitment of the correct aminoacyl-
tRNA, by greatly increasing the local concentrations of EF1α (Wawiórka et al.
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Fig. 1.8 (continued) et al. 2011). The S. cerevisiae sequences were set as reference, except for eL28
and msL1, where H. sapiens and V. necatrix were used. The different shades of blue describe the
percentage identity of the protein sequence compared to the reference. The row for S. cerevisiae
contains viability data, color coded for lethal (dark yellow), slow-growing (yellow), and normal-
growing (cream) ribosomal gene knockouts (Giaever et al. 2002; Gao et al. 2015). A black dot is
used to mark genes that are duplicated in the yeast genome. Only single gene knockouts were
performed in the referenced study. The sequence of eS31* was modified by removing the ubiquitin
moiety to create the mature protein. (b) Difference in length between the V. necatrix or P. locustae
and S. cerevisiae ribosomal proteins. (c) Comparison of the region around ES4 between the
S. cerevisiae (left, PDB 4 V88), V. necatrix (middle, PDB 6RM3), and P. locusate ribosome
(PDB 6ZU5). Selected ribosomal proteins are colored and labeled with name and N- and
C-termini in shades of red. The lost eL38 and the gained msL1 are shown in shades of green. (d)
The same view is shown as in (c) with selected proteins colored solid and the ribosome structure
transparent
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2017). Additionally, this kinetic model of decoding suggests that ribosomal pausing
leads to the acceptance of near-cognate anticodons, resulting in missense mutations.
It is therefore interesting that the majority of microsporidia do not to encode P1, and
some may have lost P2 (Fig. 1.8), implying a single EF1α-binding motif is present.
Previous work has demonstrated that P1 and P2 are nonessential in eukaryotes only
because uL10 retains an EF1α binding domain (Santos and Ballesta 1995; Remacha
et al. 1995). On the other hand, the prokaryotic equivalents to P1/P2 are required for
translation (Huang et al. 2010), as prokaryotic L10 lacks the binding motif. Remark-
ably, the uL10 homologs for microsporidian clades have lost the linker and the
SDDDMGFGLFD motif (data not shown). Some microsporidia therefore have no
identified proteins that can recruit EF1α to ribosomes. This finding may indicate that
the translation rate and fidelity are much lower in microsporidia. Alternatively,
microsporidia might have developed novel proteins or binding motifs to recruit
EF1α. This possibility is of particular interest, as the C-terminal motif utilized by
eukaryotes and archaea is a common target for potent toxins like ricin (Choi et al.
2015; Fan et al. 2016). A unique motif would represent an attractive target for
therapeutics or pesticides.

1.5.3 Retained and Gained Ribosomal Proteins

Most microsporidian proteins have relatively low sequence identity to yeast proteins
(Fig. 1.8). This is not entirely unexpected, as even proteins from two closely related
Nematocida species share only ~70% of their amino acid sequence (Balla and
Troemel 2013). A noticeable outlier in this divergence is eS31, an essential protein
located in the beak of the SSU. Interestingly, eS31 is always produced as a fusion
with a ubiquitin moiety. The ubiquitin acts as a chaperone protein to assist in the
production and folding of eS31 and is cleaved off before eS31 is incorporated into
ribosomes (Martín-Villanueva et al. 2019). The high sequence identity for eS31
derives from this ubiquitin moiety, as a realignment without ubiquitin results in
much lower values (see eS31 vs eS31* in Fig. 1.8). Another highly conserved
protein is eL15, which is present in all sequenced microsporidia. Little is known
about eL15’s function other than that it is essential; however, it is a structural protein
that is mostly buried and is therefore likely to have many conserved intermolecular
interactions. Additionally, eL15 seems to mediate concentrations of other core
ribosomal proteins, and its dysregulation leads to various cancers and diseases
(Wlodarski et al. 2018; Ebright et al. 2020). Despite the lack of focused studies,
the high conservation of eL15 in microsporidia evinces a high level of functional
significance, which is not amenable to mutations in sequence or structure.

In addition to retaining most ribosomal proteins, microsporidia have also gained
at least one novel subunit. The microsporidia-specific ribosomal protein (msL1)
binds to V. necatrix ribosomes in a gap left by the loss of four ESs (Fig. 1.5)
(Barandun et al. 2019). Although the specific role of this protein is unknown, it
may be required to stabilize the ribosome in the absence of ESs. Genomic erosion in
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organelles, such as mitochondria, has resulted in a similarly minimized rRNA. In
response, many mitochondria have acquired unique proteins used to patch unstable
ribosomes (Petrov et al. 2019). It is likely that msL1 serves a similar patching
function in microsporidia where rRNA reduction led to structural instability.

1.5.4 Conserving Energy by Utilizing Ribosome Hibernation
Factors

Translational costs are high, and an estimated 30 ATPs are required for the biosyn-
thesis and attachment of each amino acid (Wagner 2007). Such costs are
unsustainable in nutrient-poor conditions. Organisms therefore express proteins
known as hibernation factors, which bind to and inhibit ribosomes when nutrients
are scarce (Prossliner et al. 2018). These factors allow cells to sequester intact
ribosomes instead of degrading them (Brown et al. 2018; Trösch and Willmund
2019). The ability to inactivate ribosomes and recover them post-quiescence is of
vital importance to microsporidia, as they spend a significant portion of their
lifecycle as metabolically inactive spores (Weiss and Becnel 2014).

Microsporidia encode multiple hibernation factors, including the late-annotated
short open reading frame 2 (Lso2), and microsporidian dormancy factors (MDF)
1 and 2 (Barandun et al. 2019; Ehrenbolger et al. 2020). All three of these proteins
block active sites of the ribosome (Fig. 1.6) and are incompatible with active
translation. In yeast, Lso2 is important for recovery of ribosomes post-starvation
(Wang et al. 2018), and roughly 10% of ribosomes isolated from starved yeast are
bound by Lso2 (Wells et al. 2020). Microsporidian ribosomes isolated from spores,
on the other hand, displayed an approximately 92% occupancy rate, indicating that
the vast majority of ribosomes in spores are in an inactivated state (Ehrenbolger et al.
2020). MDF1 and MDF2 have not been biochemically characterized; however, their
high occupancy in spores and mechanisms of binding indicate that they are likely
hibernation factors (Barandun et al. 2019). While MDF1 is broadly conserved in
eukaryotes, MDF2 may be species-specific. Orthologs have thus far only been
identified in V. necatrix, Nosema ceranae, and Nosema apis. The high occupancy
of these factors bound to spore-stage ribosomes, and the fact that microsporidia have
potentially evolved species-specific hibernation factors, demonstrates that seques-
tration of ribosomes during the spore stage is crucial. Although hibernation factors
are not specifically associated with reductive evolution, they provide an additional
example of the mechanisms by which microsporidia conserve energy.
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1.6 Microsporidian Ribosome Assembly

In eukaryotes, ribosome biogenesis is a multidimensional process requiring the
action of all three RNA polymerases (Pol) and a complex repertoire of over
300 assembly factors and snoRNAs (Woolford and Baserga 2013; Ebersberger
et al. 2014; Klinge and Woolford 2019). The pathway starts in the nucleolus, a
subcompartment of the nucleus, where the transcription of a precursor ribosomal
RNA (pre-rRNA) initiates a co-transcriptional maturation pathway. In yeast, the
precursor contains the rRNAs of both the small subunit (18S) and the large subunit
(5.8S, 25S). These rRNAs are flanked by four transcribed spacer regions, two
external and two internal (ETS, ITS; Fig. 1.9a). The third rRNA of the large subunit
(5S) is transcribed from a different locus and is not part of this long precursor RNA.
Assembly factors associate in a co-transcriptional manner with the rRNA precursor,
including the transcribed spacers, to assist in the folding and enzymatic processing of
the pre-rRNA and to incorporate ribosomal proteins. Several co-transcriptional
endonucleolytic cleavage events are required to process the spacers and release the
partially matured pre-ribosomal particles. Maturation then continues in the nucleus,
where the pre-mature rRNA ends (e.g., 50 ETS or ITS2) are further processed and
degraded. After a controlled export through the nuclear pore complex, the last
ribosomal maturation steps and quality control events occur in the cytoplasm.

The transcribed spacers are not present in the mature ribosome, but are essential
elements required to recruit ribosome assembly factors. The level of spacer
processing is also used to demarcate the maturation stage of this complex particle
(Klinge and Woolford 2019). In addition, eukaryotic ribosomal expansion segments,
which are part of the mature ribosome, are also involved in recruiting specific
assembly factors. Genome compaction in microsporidia has not only removed
rRNA elements, such as eukaryotic ESs, but also drastically affected the transcribed

Fig. 1.9 Compaction of the microsporidian rDNA locus to a prokaryotic-like organization. Sche-
matic representation of a single rDNA locus, below a diagram indicating the genomic distribution of
all rDNA loci, from (a) S. cerevisiae, (b) microsporidia (nucleotide sizes from V. necatrix), and (c)
E. coli. The genes and known spacer sizes are indicated and drawn to scale for comparative
purposes
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spacers of the ribosomal precursor (e.g., removal of ITS2; Fig. 1.9b). While the
pre-ribosomal and ribosomal RNA have been minimized, the number of ribosomal
proteins associated with the mature microsporidian ribosome has been less affected
(see Sect. 1.5.2) (Barandun et al. 2019; Ehrenbolger et al. 2020). This raises the
question of whether ribosome assembly factors and the maturation pathway have
been similarly reduced overall, or if specific assembly factor categories have been
more impacted by genome reduction than others. Have microsporidia lost ribosome
assembly factors with a role in maturing eukaryotic-specific RNA or protein ele-
ments? The following section discusses the impact of reductive evolution on the
organization of rDNA loci and the maturation of pre-rRNA in microsporidia.

1.6.1 Impact of Genome Compaction on Number
and Localization of the rDNA Loci

In most organisms, the ribosomal RNAs are transcribed from one or more polycis-
tronic ribosomal DNA loci. The number of rDNA loci increases considerably from
prokaryotes to eukaryotes: from a single rDNA locus in slow-growing bacteria (e.g.,
Mycobacterium tuberculosis) to ~150–200 copies in yeast (Petes 1979) to more than
10,000 in some plants (Kobayashi 2014). In S. cerevisiae, the primary model
organism to study eukaryotic ribosome assembly, all rDNA loci are clustered head
to tail on a single chromosome (Petes 1979) (Fig. 1.9a). Within eukaryotes, the size
of one pre-rRNA coding locus varies substantially. These size variations are mostly
due to differences in the lengths of external and internal spacer elements or
eukaryotic-specific ribosomal expansion segments. Eukaryotic rDNA sizes range
from the minimal microsporidian version with approximately 4.5 kbp (calculated
from the V. necatrix sequences), which has lost many regulatory spacers and ESs, to
~9.1 kbp in yeast or ~ 43 kbp in humans, which contain long ETSs and extensive
intergenic spacer regions.

In microsporidia, the rDNA organization and localization within the genome
differ between species. While other eukaryotes contain large numbers of clustered
rDNA repeats, microsporidia are left with fewer and often not clustered rDNA genes.
Twenty-two rDNA copies have been reported for E. cuniculi, located on both
telomeric ends of its 11 chromosomes (Brugère et al. 2000; Katinka et al. 2001;
Dia et al. 2016). Forty-six partial and polymorph rDNA loci have been found in
N. ceraneae (Cornman et al. 2009), and similar to the rDNA loci in N. bombycis,
they appear to be distributed over all chromosomes (Liu et al. 2008). While the
individual loci are scattered throughout different chromosomes in many
microsporidian species, in N. apis, the rDNA genes cluster as repeats head to tail
(Gatehouse and Malone 1998), which is more similar to the classical arrangement
observed in other eukaryotic organisms.

In most eukaryotes, the 5S encoding gene is dispersed throughout the genome and
is not adjacent to the other three rRNAs. One exception to this observation is
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S. cerevisiae, where the 5S rRNA gene clusters in the intergenic spaces between
rDNA repeats (Fig. 1.9a). Both arrangements have been observed in microsporidia.
Similar to yeast, in N. bombycis, the 5S gene is located next to the rDNA locus
(Huang et al. 2004). Other species, such as E. cuniculi and E. intestinalis, have
dispersed the 5S throughout the genome. In these two microsporidia, three copies for
the 5S have been detected (Katinka et al. 2001; Corradi et al. 2010), in contrast to the
22 rDNA loci. While the rDNA locus is transcribed by RNA Pol I, the 5S rRNA is
transcribed by RNA Pol III (Ciganda and Williams 2011). The microsporidian
transcription machinery includes elements for RNA pol I, II, and III (Katinka et al.
2001), indicating that the use of separate polymerases for 5S and rDNA transcription
may be retained in microsporidia.

The comparatively small number of rDNA repeats in microsporidia may be a
result of their diminutive cell size, simple genomes, and low proteomic complexity.
Fewer and shorter genes might require a reduced number of ribosomes, which in turn
can be synthesized from fewer rDNA repeats. Indeed, a strong positive correlation
between genome size and the number of rDNA repeats in eukaryotes has been noted
(Prokopowich et al. 2003). Although this correlation exists, in general, only a
fraction of all rDNA repeats are transcriptionally active. The actual rRNA synthesis
rate is more so determined by the rate of RNA polymerase recruitment. A yeast strain
with only 42 rDNA repeats, compared to the original 142 repeats, grows as well as
wild type because two times more RNA polymerases are recruited to the rDNA locus
(French et al. 2003). In addition to a potentially reduced need for ribosomes and
increased RNA polymerase recruitment to a single locus, the simplified
microsporidian rDNA gene organization might allow for a more streamlined ribo-
some maturation. Fewer pre-rRNA processing steps might be required than in other
eukaryotes, due to missing pre-rRNA elements such as internal transcribed spacer
2 (ITS2).

1.6.2 Loss and Minimization of Transcribed Spacers

In many microsporidian species, genome compaction and gene fusion led to a
reduction in the total number of ribosomal RNAs from four to three, which repre-
sents a reversal of the evolutionary trend seen in eukaryotic ribosomes. The eukary-
otic 5.8S rRNA sequence and the 50 end of the prokaryotic large subunit gene are
homologous (Jacq 1981). In typical eukaryotes, ITS2 separates the 5.8S from the
remainder of the large subunit rRNA gene (Fig. 1.9b). Early branching
microsporidia like M. daphnia and Chytridiopsis typographi still contain highly
reduced versions of ITS2 and thereby preserve the traditional eukaryote-specific
separation of the 5.8S from the LSU gene (Corsaro et al. 2019). In all later-branching
microsporidia, ITS2 has been removed (Vossbrinck andWoese 1986). The reductive
evolution in these organisms led to a complete loss of ITS2 and fusion of the 5.8S
rRNA with the LSU rRNA (23S), which has created a unique eukaryotic rDNA
locus (Fig. 1.9b) with prokaryotic features (Fig. 1.9c). The remaining ITS has been
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reduced to a surprisingly short sequence in some microsporidia. While N. bombycis
(Huang et al. 2004) contains an ITS of ~179 nt, other microsporidians, such as
V. necatrix or N. apis (Gatehouse and Malone 1998), compacted this element to only
~33/34 nt. The intergenic spacer regions are important signal sequences for
co-transcriptional endonucleolytic processing of the pre-rRNA fragment. Together
with an apparent reduction of the 50 and 30 ETS regions and the removal of ITS2, the
shortening of the ITS has significant implications for the ribosome maturation
process, which is tightly controlled by ribosome assembly factors binding to these
regions.

1.6.3 Impact of rDNA Compaction on Ribosome Biogenesis
Factors

In 2014, Ebersberger et al. performed an evolutionary analysis of 255 yeast protein
factors involved in ribosome biogenesis and included four microsporidian species in
their analyses (Ebersberger et al. 2014). From these initial factors, 244 were pro-
posed to be present in the last common ancestor shared with the microsporidia.
Remarkably, only about half of them could be identified in microsporidia, which was
highlighted as “the most remarkable gene loss” observed among the eukaryotic
supertaxa (Ebersberger et al. 2014). Although extensive lists of factors involved in
yeast ribosome biogenesis existed at the time, the precise functions or binding sites
of most of these factors were unknown due to a lack of structural and biochemical
data. During the decade since, our knowledge of fungal ribosome biogenesis has
advanced to a detailed structural and functional description of the individual factors.
This is mainly due to the technical progress made in cryo-EM, which provided high-
resolution information and enabled the study of previously inaccessible
pre-ribosomal particles from the fungi S. cerevisiae or Chaetomium thermophilum.
These structures now provide an updated and comprehensive picture of fungal
ribosome maturation and depict the intricate interaction network of assembly factors
and ribosomal proteins bound to pre-ribosomal rRNA elements (Barandun et al.
2018; Klinge andWoolford 2019). They show how ribosome maturation proceeds in
a hierarchical manner through several different conformational states to produce the
final mature eukaryotic ribosome (Klinge and Woolford 2019). The emerging
structural data on the fungal biogenesis process, together with recent studies on
the microsporidian ribosomes (Barandun et al. 2019; Ehrenbolger et al. 2020),
allows us to give a few selected examples of why expansion segment and transcribed
spacer removal or shortening might have enabled assembly factor loss (or vice
versa).

In yeast, the 50 ETS is 700 nt long and is involved in the co-transcriptional
recruitment of up to 27 ribosome biogenesis factors and the formation of an
assembly platform for the SSU. In microsporidia, the exact size and structure of
the 50 ETS pre-rRNA fragment are not known. However, several factors that
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typically bind to this region have not been identified in microsporidia (Fig. 1.10).
One of the first and largest multi-subunit complexes bound to the newly synthesized
50 ETS is UtpA (Fig. 1.10b) (Hunziker et al. 2016). UtpA is a 7-subunit complex in
yeast but appears to be absent or drastically reduced in microsporidia. The UtpA

Fig. 1.10 A reduced set of ribosome biogenesis factors and selected examples of assembly factor
and expansion segment loss in microsporidia. (a) Presence and conservation of ribosome assembly
factors in selected eukaryotes and microsporidia. The protein sequences were obtained by
performing translated nucleotide blast (tblastn) or protein blast (blastp) searches with an E-value
cutoff of 0.05, using the S. cerevisiae sequences and MicrosporidiaDB (Aurrecoechea et al. 2011)
as database. For P. locustae and V. necatrix, protein sequences were obtained from local genome
databases. For the non-microsporidian species, sequences were obtained from https://www.ncbi.
nlm.nih.gov/. For phylogenetic tree calculation, see legend of Fig. 1.8. Many biogenesis factors
display significant sequence similarity (e.g., WD40 domain proteins). It was therefore common for
the same open reading frame to be identified as homologous to multiple different biogenesis factors.
In such cases, we selected hits with the lowest E-value. It should be noted that the figure thus serves
as only a guide to general trends for absent and present proteins, since annotations may be
inaccurate. Proteins that were not identifiable (NI) are shown in cream. Biogenesis factors are
clustered based on known or predicted binding regions within the 5’ ETS, SSU, ITS2, or LSU of the
pre-rRNA. Conservation correlates between members of the same complex. Example complexes
are labelled below (a) in shades of gray. (b-d) Structures of S. cerevisiae pre-ribosomal particles
denoting selected maturation factors that are often absent in microsporidia, as highlighted in (a).
Pre-SSU structures from PDB 5WLC (Barandun et al. 2017) (b), PDB 7AJU (Lau et al. 2021) (c),
and a pre-LSU-structure from PDB 6C0F (Sanghai et al. 2018) (d) are displayed with expansion
segments missing in V. necatrix, colored in shades of orange and yellow (SSU) or shades of blue
and green (LSU), and selected biogenesis factors colored as in (a). These examples demonstrate a
correlation between ES reduction and the loss of biogenesis factors that typically bind to those ESs
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binding site on the 50 ETS is shared with Utp18, a subunit of another early binding
biogenesis complex, UtpB. The potential absence of Utp18 and the entire UtpA
complex (Fig. 1.10a) suggests microsporidia may contain a shorter 50 ETS sequence,
which recruits a minimal small subunit assembly platform. Alternatively, assembly
factors may be too divergent to be identified.

During pre-rRNA maturation, several eukaryotic expansion segments of the
ribosomal RNA are bound and remodeled by assembly factors. In general, the
absence of an assembly factor correlates with removal of its binding site in other
organisms (Fig. 1.10). One striking example includes the SSU segments es3 and es6,
which are bound and stabilized by the large HEAT repeat protein Utp20 (Fig. 1.10c).
Es3 and es6 are the two largest small subunit expansion segments and have been
completely lost or strongly reduced in microsporidia (Barandun et al. 2019;
Ehrenbolger et al. 2020). Similarly, Utp20 appears to be absent in all microsporidian
species. This suggests the primary role of Utp20 in chaperoning the maturation of
these two expansion segments is no longer required in microsporidia. Similarly, the
loss of h41 correlates with the loss of Utp30, an assembly factor binding to this
rRNA element in pre-ribosomal particles (Fig. 1.10b). In the large subunit, ES7 is
bound by two assembly factors, Rrp1 and Nsa1. Again, both the ES7 and the two
assembly factors seem to be eliminated from microsporidian genomes.

A key step in large subunit maturation in S. cerevisiae involves processing of the
ITS2 prior to nuclear export. Absence of ITS2, the spacer separating the two LSU
rRNAs, explains the absence of many ribosome assembly factors binding this RNA
region, such as Cic1, Rlp7, or the Las1 complex (Woolford and Baserga 2013). ITS1
processing in yeast is catalyzed by the essential ribozyme-protein complex RNAse
MRP. While microsporidia still contain a highly reduced version of RNAse MRP
(Zhu et al. 2006), ITS1 has been ablated to only 33 nt. It is unclear if this short ITS
region can fold into a structure recognized by the minimized RNAse MRP, or if a
simpler mechanism is used.

Apart from the mature ribosome structure, genomic data, and bioinformatics, very
little is known about ribosome assembly in microsporidia. By studying the process in
these minimal organisms, we can learn more about the still relatively unknown role
of expansion segments during the assembly process in other eukaryotic organisms.
The compaction of rRNAs together with the removal of transcribed spacer regions
appears to have significantly affected the assembly process in microsporidia. A more
thorough analysis of how expansion segment removal correlates with assembly
factor loss will be required to understand the process in microsporidia and relate
loss and compaction to a potential functional role in other eukaryotes.

1.7 Conclusion and Future Perspectives

Genome reduction and size appear to correlate with the degree of metabolic depen-
dence on other organisms. Consequently, an obligate intracellular lifestyle provides
a plausible explanation for the loss of redundant metabolic pathways and the
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invention of novel and more energetically efficient mechanisms of host exploitation.
The drastic impact of genome compaction in microsporidia, however, has not only
reduced the complexity of metabolic pathways but also affected intergenic regions,
minimized gene sizes, and removed regulatory elements and features considered to
be essential in eukaryotic organisms.

Genome erosion has significantly altered the microsporidian ribosomal DNA
locus. By removing eukaryote-specific elements, such as ITS2 and nearly all expan-
sion segments, the rDNA gene arrangement regressed to a prokaryote-like organi-
zation. The recent structural characterization of the microsporidian ribosome has
illustrated the impact of genome reduction on the composition and assembly of this
essential and ancient particle. It provided the surprising information that despite the
loss of their rRNA binding site, almost all eukaryote-specific ribosomal proteins,
albeit shortened, are still retained in the structure. Could limited access to primary
metabolites precipitate a more compact ribosome? Are nucleotides more “rare” than
amino acids, and could this be one reason why the rRNA is much more compacted
than ribosomal proteins? Does the extensive rRNA loss affect the fidelity of the
ribosome? Further studies are required to delineate the functional implications of
ribosome compaction on protein synthesis and to reveal the suitability of ribosome-
targeting antibiotics as translation inhibitors in microsporidia.

Microsporidia are of great interest in the fields of infection biology and compar-
ative structural biology. They act as a reservoir for many unique and peculiar
structures and have developed the most minimized versions of eukaryotic macro-
molecular complexes. Additional biochemical and structural studies in
microsporidia not only will illuminate their own lifecycle but will also shed light
on optional elements in many highly conserved cellular processes.
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