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”T
he brave things in the old tales and songs, Mr. Frodo,

adventures, as I used to call them. I used to think that
they were things the wonderful folk of the stories went

out and looked for, because they wanted them, because they
were exciting and life was a bit dull, a kind of a sport, as you
might say. But that’s not the way of it with the tales that really
mattered, or the ones that stay in the mind. Folk seem to have
been just landed in them, usually their paths were laid that way,
as you put it. But I expect they had lots of chances, like us, of
turning back, only they didn’t. And if they had, we shouldn’t
know, because they’d have been forgotten.”

- J.R.R. Tolkien, 1954. Lord of the Rings: The Two Towers.
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ABSTRACT

T
his study investigates the possibility of combining an unfitted finite element method,
CutFEM, with neural networks, in an attempt to reduce the computational time on evolv-
ing domains. Finite element methods are used to solve partial differential equations by

fitting a spatial and temporal discretisation to the momentous domain. CutFEM was proposed
to overcome a repeated discretisation of evolving domains by introducing a static background
mesh allowed to cut the domain boundary. The drawback is an increased complexity in quadra-
ture of the cut contributions to the element matrices, which quickly becomes time consuming
for higher order methods.

As machine learning methods have been successful in a variety of areas recently, this study
investigates the possibility of replacing the element matrix quadrature with neural network re-
gression. A classification network is also proposed for a quadrature-free method of identification
of the cut elements. The study has been performed by implementing the networks in alternative
CutFEM algorithms. Different methods of implementation, pre- and post-processing of the
data, as well as different optimisation strategies of the training phase have been investigated in
comparison to CutFEM benchmarks.

The time consumption showed a significant decrease for the modified CutFEM in com-
parison to the conventional method. The classification was shown to be successful for two
elementary domains, yet some difficulties occurred for a non-trivial level set representation.
The approximation of cut elements with sufficient domain intersection showed decent results,
although elements with minor intersection with the domain contributed with some difficulties
and the error tends to propagate towards nearby elements. This was deduced to stem from the
nodal contributions furthest from the domain intersection. Therefore, this study proposes a few
additions to the current method in the event that the study is extended. These suggestions are
based around the introduction or modification of error weights in the neural network training.

Keywords
Finite element method, CutFEM, neural networks.
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1
INTRODUCTION

F
inite element methods (FEMs) are commonly used to solve systems of partial differential

equations (PDEs). These systems typically arise in a wide range of engineering appli-

cations, such as heat conduction or diffusion processes. Ideally, an analytical solution

would be obtained, however, this can rarely be achieved due to high complexity of the system

and finite computational performance. Instead, an approximate numerical solution can be

derived using FEM.

The FEM computations stem from a discretisation of the domain in the spatial and temporal

dimension. In the spatial dimension, this is achieved by sub-sectioning the domain into a set

of elements based upon a mesh with nodal points fitted to the geometry of the domain. The

elements are equipped with basis functions of chosen order to include different properties

and achieve desired precision of the solution. Each of these elements can then be evaluated

independently of others, and the element-wise contribution is assembled into a linear system

containing the discretised properties of the entire domain expressed in terms of element

matrices. Solving the linear system is a much more manageable task than solving the initial

system of PDEs, and the approximation error is strictly dependent on the properties of the

chosen elements.

The momentous evaluation is thus without any issue in the general case, however, some

challenges are introduced if the boundary of the domain is evolving over time. More specifically,

the process of discretisation must be performed for each time iteration since the mesh is fitted

to the momentous domain. This is highly time consuming, and one is left with a trade-off

between computational speed and precision.

An unfitted element method can be used to avoid the repeated process of discretisation. It

is based upon one initial discretisation which is completely independent of the domain of the

system. The elements are thus allowed to cut through the boundary, resulting in a number of

cut elements with partial intersection of the domain. Its implementation and possibilities has

been further examined in many applications. One of them is XFEM which extends the domain

1



CHAPTER 1. INTRODUCTION

space to allow for a solution including the cut elements, and another is CutFEM which can be

considered a stabilised version of XFEM [2].

1.1 Background

This work revolves around CutFEM which has been much researched by, for example, [3, 4]. See

[5] for a collection of research on unfitted FEM as well as further references to related works.

CutFEM differs from conventional FEM since the solution is discretised on a background grid

to the domain in the form of a static mesh, allowing the boundary of the domain to intersect

the elements. The corresponding element matrix contributions are computed using quadra-

ture over the intersection between the element and the domain. This, however, introduces a

challenge to the well-posedness of the element matrices since some intersections may not be

large enough to produce sufficient matrix contributions. This is often approached with a ghost

penalty term, as described in [6], which extends desired properties from the domain to the

elements intersecting it. Another challenge concerns the imposition of boundary values, a task

which becomes non-trivial when the boundary is not aligned to the elemental nodes. This can

however be overcome by a weak enforcement as first introduced for Dirichlet boundaries in [7],

which is outlined for unfitted finite element methods in [8].

CutFEM thus removes the need for repeated discretisation and the primary associated

challenges can be overcome as described above. However, it introduces the requirement of

repeated quadrature for non-trivial contributions stemming from the intersecting elements.

This quickly becomes time consuming for higher orders of the element representation. There

have been many attempts to overcome this limitation, to different results. A conventional

sub-discretisation with Gaussian quadrature is used in [3] which proves successful in terms of

precision, yet may quickly increase the computational time for repeated computations. In [9] a

reduction in the integral dimension is investigated and in [10] a variety of methods, such as

Monte Carlo representation of the integral, is evaluated. The issue is however reoccurring and

one is again left with the trade-off between computational speed and precision.

Artificial intelligence, especially machine learning and neural networks, has become in-

creasingly popular since the necessity for new methods processing data of high dimensionality

has grown. The ingredients to constructing a successful network do however require a specific

fine-tuning of the architecture, data set and input. If a network can be sufficiently optimised, it

might prove suitable to replace the step of quadrature in the CutFEM method using numerical

regression. The task would essentially become a problem of integration for the network, which

has been investigated in, for example, [11–13] in its conventional form. Since the results are

generally successful, especially for smooth functions, it may be possible to combine the neural

network integration method with CutFEM to attain a sufficient finite element approximation

for problems where speed is especially important, such as real time implementations.

2



1.2. OUTLINE OF THESIS

1.2 Outline of thesis

This thesis is structured such that it first presents the CutFEM method in terms which are

relevant for this work. A model problem is introduced, which will be used as a benchmark in

the comparison between the classical method and the neural network based method. It will

also constitute an example in the derivation of the CutFEM method.

This will be followed by some notes on the performance of neural networks and how it

can be fine-tuned in this work. This concerns some specific notes on architectural starting

points as well as any methods applied on the corresponding data set and input to optimise the

performance.

When the general background have been presented, the specific choices of method and

implementation will be discussed. Whilst most motivations will have been outlined at this point,

this section will further specify what has been performed so that any suggested updates can

easily be performed with this work as a reference. A few of the running tests are also mentioned,

although detailed, numerical results of these are generally excluded based on its contextual

relevance.

The results of the methods of choice are then presented, along with some comments on the

relation between the displayed results and the overall study.

Lastly, the results will be discussed and elaborated upon. This will allow for inspection of

any reoccurring errors in the results, providing an analysis of their origin and any suggested

methods of preventing them in a possible extension of this study.

3
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2
FINITE ELEMENT METHODS AND HOW THEY MAKE THE CUT

A
s has been indicated, finite element methods are used within a variety of engineering ap-

plications, commonly by its implementation in computed aided engineering softwares.

Their purpose is to solve systems governed by phenomena which can be modelled by

partial differential equations - such as wave propagation, deformation or heat conduction. The

initial problem is simplified by performing an element-wise evaluation of a discretised domain.

The element-wise contributions are then assembled into a linear system, which can be solved

numerically to a precision related to the choice of element.

This chapter is based around the CutFEM method as illustrated for a model problem

which is used in this thesis. By introducing the problem, we begin our path onto obtaining an

unfitted finite element formulation with relevant theoretical results. Using some introductory

definitions, we define the relevant spaces and can perform an abstract variational analysis of

the problem. Moving further, the unfitted mesh and domain representation are outlined, as

well as a reference mapping, which allows us to formulate a cut finite element formulation

given the performed discretisation. Some mathematical finesses are demonstrated, which will

prove useful later in the implementation. Lastly, stabilisation of ill-conditioned elements is

discussed.

2.1 Introduction of a model problem

The Poisson problem is the most classical benchmark problem used in finite element formu-

lations. One variation of the Poisson equation is the reaction-diffusion equation which has

an extra zeroth order term. For an arbitrary domain Ω ∈ R2 with boundary Γ, the solution

u = u(x, y) is sought to the problem defined by

−∆u + cu = f inΩ (2.1)

n ·∇u = gN on Γ (2.2)

5



CHAPTER 2. FINITE ELEMENT METHODS AND HOW THEY MAKE THE CUT

where f = f (x, y) denotes a load function, gN = gN (x, y) a Neumann boundary condition and

c ∈R+ is some constant.

Remark 2.1 (Model problem). The reaction diffusion problem is chosen for its inclusion of a

zeroth order term. As will be demonstrated later, the resulting finite element system will contain

two different element matrices allowing for a subsequent testing of both matrices.

Remark 2.2 (Boundary conditions). As will be clarified later, the method proposed in this study

mainly relates to the boundary of the domain. Neumann boundary conditions are used for this

reason, in contrast to Dirichlet boundary conditions which are also common. This is because the

Dirichlet condition imposes a direct constraint on the solution (u = gD ), whilst the Neumann

condition only imposes a constraint on the flux, allowing for a study of the boundary with less

influence from the boundary conditions.

The first step onto obtaining the linear system stems from a reformulation of the problem

to the variational form or weak form. This is carried out by multiplying the problem with a test

function, v and integrating over the domain. After applying Green’s theorem and the boundary

conditions, we obtain∫
Ω
∇u ·∇vd xd y + c

∫
Ω

uvd xd y =
∫
Ω

f vd xd y +
∫
Γ

gN vd xd y. (2.3)

The boundary conditions are weakly imposed, in contrary to conventional FEM where they are

commonly imposed strongly (c.f. [14]). For the sake of the test function v behaving smoothly,

we must introduce a suitable vector space. To do so, we introduce some notation.

2.1.1 Some introductory notation

Definition 2.1. Lebesgue spaces on a domainΩ are defined

Lp (Ω) = {v :Ω→R : ‖v‖Lp (Ω) <∞} (2.4)

with the norm

‖u‖Lp =


(∫
Ω |u|p d xd y

)1/p , if 1 ≤ p <∞
sup
x∈Ω

|u(x)|, if p =∞ (2.5)

Remark 2.3. Lebesque spaces are commonly referred to as Lp -spaces.

Definition 2.2. For u ∈ Lp (Ω) the weak derivative Dα is g ∈ Lp (Ω) as defined by∫
Ω

gϕd xd y = (−1)|α|
∫
Ω

u(Dαϕ)d xd y, ∀ϕ ∈ D(Ω), (2.6)

where D(Ω) is defined

D(Ω) = {ϕ ∈C∞(Ω) : supp ⊂⊂Ω}. (2.7)

6



2.1. INTRODUCTION OF A MODEL PROBLEM

Definition 2.3. The Sobolev space on a domainΩ defined

W p
k (Ω) = {u ∈ Lp (Ω) : ‖u‖W

p
k
<∞} (2.8)

for Lp a Lebesgue space and the Sobolev norm defined such that

‖u‖W
p

k
=


( ∑
|α|≤k

‖Dαu‖p
Lp (Ω)

)1/p

, if 1 ≤ p <∞

max
|α|≤k

‖Dαu‖L∞(Ω), if p =∞
(2.9)

where Dα is the weak derivative.

2.1.2 An abstract variational formulation

For Sobolev spaces, the case of p = 2 is also a Hilbert space for we obtain the L2-inner product.

This space is commonly used in FEM for its suitability with the test function, and it has attained

its own notation defined H k (Ω) := W 2
k (Ω). Further, to attain a well-behaved solution for the

problem defined, we must ensure that the functions up to the first order derivative are bounded.

Thus, we choose k = 1 and get the space

H 1(Ω) = {u ∈ L2(Ω) : (‖u‖2
L2(Ω) +‖∇u‖2

L2(Ω))
1/2 <∞} (2.10)

which is equipped with the inner product (·, ·) and norm ‖·‖ defined as

(u, v)H 1(Ω) =
∫
Ω

uvd xd y +
∫
Ω
∇u ·∇vd xd y = (u, v)L2(Ω) + (∇u,∇v)L2(Ω)

‖u‖H 1(Ω) = (‖u‖2
L2(Ω) +‖∇u‖2

L2(Ω))
1/2

(2.11)

on the domain. This imposes the condition that u, v ∈ H 1(Ω).

We proceed to write eq. 2.3 in an abstract formulation. Doing so, we introduce the linear

and bilinear form. These are defined as follows.

Definition 2.4 (Linear form). A linear form l (·) is a mapping H 1(Ω) → R such that for any

u, v ∈ H 1(Ω)

1. l (u + v) = l (u)+ l (v), and

2. l (αv) =αl (v) for α ∈R.

Definition 2.5 (Bilinear form). A bilinear form a(·, ·) is a mapping H 1(Ω)×H 1(Ω) →R such that

for any u, v, w ∈ H 1(Ω)

1. a(u +w, v) = a(u, v)+a(w, v),

2. a(αu, v) =αa(u, v) for α ∈R.

Stemming from the Lax-Milgram lemma, some interesting properties follow for the abstract

variational problem (AVP).

7
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Theorem 2.1. If a(·, ·) is a continuous, coercive bilinear form and l (·) is a continuous linear form

on H 1(Ω) then the abstract variational problem: find u ∈ H 1(Ω) such that

a(u, v) = l (v), ∀v ∈ H 1(Ω) (2.12)

has a unique solution u.

The interested reader is advised to [14] for details on the proof.

The abstract variational formulation for eq. 2.3 is then: find u ∈ H 1(Ω) for

a(u, v) = l (v), ∀v ∈ H 1(Ω) (2.13)

such that

a(u, v) = (∇u,∇v)L2(Ω) + (cu, v)L2(Ω) (2.14)

l (v) = ( f , v)L2(Ω) + (gN , v)L2(Γ) (2.15)

and to show existence and uniqueness of a solution we investigate the properties associated to

theorem 2.1. First, we show coercivity for the bilinear form. We do this by showing that there

∃α> 0,α ∈R such that

a(u,u) ≥α‖u‖2
H 1(Ω). (2.16)

Defining c0 > 0,c0 ∈R as a lower bound on on the constant c, the coercivity follows from

a(u,u) = (∇u,∇u)L2(Ω) + (cu,u)L2(Ω) ≥ ‖∇u‖2
L2(Ω) + c0‖u‖2

L2(Ω)

≥ min(1,c0)(‖∇u‖2
L2(Ω) +‖u‖2

L2(Ω)) ≥α‖u‖2
H 1(Ω)

(2.17)

with α= min(1,c0).

Now we shall show that the continuity of the bilinear form holds by showing there exists a

C1 ∈R such that

|a(u, v)| =C1‖u‖H 1(Ω)‖v‖H 1(Ω) (2.18)

which follows from

a(u, v) ≤ (∇u,∇v)L2(Ω) + (cu, v)L2(Ω)

≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) +‖c‖‖u‖L2(Ω)‖v‖L2(Ω)

≤C1(‖∇u‖L2(Ω)‖∇v‖L2(Ω) +‖u‖L2(Ω)‖v‖L2(Ω))

≤C1(‖∇u‖2
L2(Ω) +‖u‖2

L2(Ω))
1/2(‖∇v‖2

L2(Ω) +‖v‖2
L2(Ω))

1/2

≤C1(‖u‖H 1(Ω)‖v‖H 1(Ω))

(2.19)

where the Cauchy-Schwarz inequality has been applied twice.

Lastly, we shall show the continuity for the linear form by showing that there exists a C2 ∈R
such that

|l (v)| =C2‖v‖H 1(Ω). (2.20)

8
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We partition the terms into two parts

l (v) = ( f , v)L2(Ω) + (gN , v)L2(Γ) = (1)+ (2) (2.21)

and obtain the following from (1)

( f , v)L2(Ω) ≤ ‖ f ‖L2(Ω)‖v‖L2(Ω) ≤C3‖∇v‖H 1(Ω) (2.22)

as well as the following from (2)

(gN , v)L2(Γ) ≤ ‖gN‖L2(Γ)‖v‖L2(Γ) ≤C4‖v‖H 1(Γ) (2.23)

using Trace’s inequality and thus finally arriving at

l (v) = ( f , v)L2(Ω) + (gN , v)L2(Γ) ≤C3‖v‖H 1(Ω) +C4‖v‖H 1(Γ) ≤C2‖v‖H 1(Ω) (2.24)

where C2 = max(C3,C4), C3 = ‖ f ‖L2(Ω) and C4 = ‖gN‖L2(Γ).

2.2 The background mesh

As previously outlined, the major difference between conventional FEM and CutFEM lies within

the mesh.Another common difference concerns the domain representation. In CutFEM, the

boundary is often implicitly defined and instead of fitting the mesh to the domain, the domain

is laid upon the mesh such that the boundary will cut through the elements underneath. One

example of this is illustrated in fig. 2.1 for a circular domain, where the green region highlights

the elements which are cut by the domain.

(a) Level set in R3 for circular representation in R2.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2
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0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Level set representation in R2 for circular do-
main. Green colouring shows cut elements, yellow
colouring shows interior elements.

Figure 2.1: Level set representation of circular domain with representation in R2 for a quadrilat-
eral mesh.

The domain representation can be done in a number of ways, where one common approach

is to let the domain boundary be represented by a level set function. This is efficient for domains

9



CHAPTER 2. FINITE ELEMENT METHODS AND HOW THEY MAKE THE CUT

which can be expressed using some function φ(x, t ), where x denotes the spatial coordinates

and t denotes the temporal counterpart. The level set representation is especially convenient

for cases with an evolving boundary, for the change on the boundary can be modelled over

time.

In the two-dimensional and time-independent case, as studied in this work, the level set

function is reduced to φ(x, y). If we denote the interior domain asΩ1 ⊂Ω, the exterior domain,

Ω2 and the common boundary as Γ for which Γ⊂Ω, then it holds that

φ(x, y)


> 0 ⇔ (x, y) ∈Ω1

= 0 ⇔ (x, y) ∈ Γ
< 0 ⇔ (x, y) ∈Ω2

(2.25)

for all variations of function φ.

The background mesh is in this study chosen to consist of uniform quadrilateral elements,

Th , where the mesh size is determined by a parameter h. We denote the size dependent back-

ground mesh as Th,0 which allows us to define the active mesh, that is, the union of green and

yellow elements as illustrated in fig. 2.1. The active mesh is then defined

Th = {Th ∈ Th,0 : Th ∩Ω 6= ;}. (2.26)

For easy referral later in this thesis, we also define the exterior Th,E , the interior Th,I and the cut

mesh Th,C as

Th,E = {Th ∈ Th,0 : Th ∩Ω2 6= ; : Th ∩Ω=;} (2.27)

Th,I = {Th ∈ Th,0 : Th ∩Ω1 6= ; : Th ∩Ω2 =;} (2.28)

Th,C = {Th ∈ Th,0 : Th ∩Γ 6= ;} (2.29)

where the first is illustrated by the white elements in fig 2.1, the second is illustrated by the

yellow elements and the last is illustrated by the green elements.

2.2.1 The use of C 1-splines

Our abstract variational formulation in eq. 2.13-2.15 is continuous on the space H 1(Ω). By

imposing our mesh on the system, we wish to discretise the space by creating a finite element

space Vh ⊂ H 1(Ω). This allows us to define the mesh in terms of elements with nodes equipped

with basis functions. An example Lagrange element with nodal placements corresponding

to polynomial basis functions of order 1 and 2 as well as an example element for C 1-spline

basis functions of order 2 is illustrated in fig. 2.2. The second order is convenient for including

rounded boundary representations, whereas the first order represents each segment as a linear,

first order approximation. For quadrilateral elements, the first order functions induce four

nodal points per element, whilst the second order functions induce nine nodal points. The

spline elements get contributions from nodes with location outside of the element due to the

overlap from nearby spline basis functions.

10
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(a) Lagrange order 1. (b) Lagrange order 2. (c) Spline order 2.

Figure 2.2: Elemental nodes for a first and second order quadrilateral element with polynomial
and spline basis functions.

A finite element function is expressed as a linear combination of all basis functions, and

locally, on a single element such a function will be a polynomial. For second order spline basis

functions this polynomial space is Q2 = span{1, x, y, x y, x2, y2, x2 y, x y2, x2 y2} and hence, any

function v ∈Q2 can be expanded

v = a(1)ϕ1 +a(2)ϕ2 + ...+a(8)ϕ8 +a(9)ϕ9 =
9∑

k=1
a(k)ϕk (2.30)

with basis functions ϕi and i = 1, ..,9. Since derivatives of a function in Q2 also belong to (a

subspace of) Q2, we can locally express derivatives of basis functions in terms of the basis

functions themselves
∂ϕi

∂x
=

9∑
k=1

b(k)
i ϕk ,

∂ϕi

∂y
=

9∑
k=1

c(k)
i ϕk . (2.31)

The coefficients can be found by solving the system.

In this work, spline functions as shown in above illustration, called C 1-splines of second

order, are used in R2. The specific spline functions in two dimensions become a tensor product

as given by

ϕk = B 2
k,h(x, y) = B 2(x/h −kx)B 2(y/h −ky ), kx ,ky ∈Z (2.32)

for a uniform mesh with mesh size h. The dimension specific splines can be determined from

the Cox-de-Boor recursion formula, stating

B 0
i (x) =

1 if ti ≤ x ≤ ti+1,

0 otherwise
(2.33)

B p
i (x) = x − ti

ti+p − ti
B p−1

i (x)+ ti+p+1 −x

ti+p+1 − ti+1
B p−1

i+1 (x) (2.34)

where ti for i = 1, ...,n denotes some discretisation of parameter x, n denotes the number of

partitions and p = 1,2. This yields the following corresponding expansion of a function v within

the space of second order C 1-splines on R2

v =
9∑

k=1
a(k)ϕk =

9∑
k=1

a(k)B 2
k,h(x, y) (2.35)

11



CHAPTER 2. FINITE ELEMENT METHODS AND HOW THEY MAKE THE CUT

and the result from eq. 2.31 follows directly. For further information on spline functions in FEM,

see [1, 15].

The choice of C 1-splines in the level set representation of the domain has two useful

properties.

1. Additional smoothness of the boundary, limiting the set of admissible geometries to more

sane shapes compared to Q2 Lagrange basis functions.

2. The C 1−splines are non-negative whilst the Q2 polynomials have some negative contri-

bution, see fig. 2.3 for illustration.

The latter contribute to the level set values. For the spline basis functions it means that

element-wise paired nodes with all positive or negative values can be determined as an exterior

or interior element respectively, whilst there may occur some non-trivial variations for the

polynomial case. The predictability of the elemental level set values is useful for an efficient

element classification, which will be discussed further later. However, due to the great overlaps

of supporting splines to a node, the nodes in close proximity to the boundary attain some

variations which introduces some uncertainties in the elements containing both negative and

positive level set values. This is conventionally solved by applying some quadrature rule to

include or outrule any element in the active mesh and will be discussed further later.

(a) C 1-splines. (b) Polynomial.

Figure 2.3: Second order nodal functions in R1 [1].

The resulting finite element space for C 1-splines thus becomes

Vh = {v : v ∈C 1(Ω), v |Th ∈Q2,∀Th ∈ Th} (2.36)

and is thus defined on the active mesh.

2.2.2 Mapping to the reference element

It is common to make use of an isoparametric mapping in finite element methods to allow for

computation of curved elements by mapping them from a higher order element to a first order

element type (more on this can be found in [14]). An isoparametric map like such is not used in

this work, however, a linear map from an actual element to a reference element can be useful.

The reason for this will be slightly touched upon in the upcoming section, and it will be further

clarified in section 3.3.2 why this is especially useful.
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For some quadrilateral element K with dimensions hx ,hy , a suitable reference element may

be the unit square K̂ = [0,1]× [0,1]. For the reference coordinates (x̂, ŷ) we can define the map

p(x̂, ŷ) : K̂ → K between the elements with the corresponding Jacobian

J =
[

∂x̂
∂x

∂ŷ
∂x

∂x̂
∂y

∂ŷ
∂y

]
=

[
hx

hy

]
. (2.37)

. The basis functions which have been used are then related to the corresponding reference by

ϕi = ϕ̂i ◦p = ϕ̂i (p(x̂, ŷ)) (2.38)

with gradient

∇ϕi = J−T ∇̂ϕ̂i =
[

h−1
x

h−1
y

][
∂ϕ̂i
∂x̂
∂ϕ̂i
∂ŷ

]
(2.39)

and the previous results thus directly translates with above.

2.3 A finite element formulation of the model problem

With the abstract variational problem as obtained in eq. 2.13-2.15 and the finite element vector

space Vh as defined in eq. 2.36, we can now define the finite element formulation as: find

uh ∈Vh for

ah(uh , v) = lh(v), ∀v ∈Vh (2.40)

such that

ah(uh , v) = (∇uh ,∇v)L2(Ω) + (cuh , v)L2(Ω) (2.41)

lh(v) = ( f , v)L2(Ω) + (gN , v)L2(Γ). (2.42)

Remark 2.4. Note that a stabilisation term should be included in the finite element formulation

to ensure that the cut elements obey certain properties. This will be further discussed in section

2.3.2, and the term is therefore excluded until then.

2.3.1 The element matrices

Now that we have the finite element formulation of the problem as well as our basis func-

tions, we can formulate the expression in terms of these basis functions. We have that Vh =
span({ϕ}N

i=1), where N is the degrees of freedom, and as previously discussed, any function

v ∈Vh can be expressed using a combination of the basis functions. For the solution uh and the

test function v , this gives us

uh =
N∑

i=1
ξiϕi , v =

N∑
j=1

ϕ j (2.43)
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which can be written into the system in eq. 2.40-2.42. For the bilinear form in eq. 2.41, this

yields

ah(uh , v) =
∫
Ω
∇uh ·∇vd xd y + c

∫
Ω

uh vd xd y =

=
∫
Ω
∇

(
N∑

i=1
ξiϕi

)
·∇

(
N∑

j=1
ϕ j

)
d xd y + c

∫
Ω

(
N∑

i=1
ξiϕi

)(
N∑

j=1
ϕ j

)
d xd y

=
N∑

i=1

N∑
j=1

ξi

(∫
Ω
∇ϕi ·∇ϕ j d xd y + c

∫
Ω
ϕiϕ j d xd y

) (2.44)

and for the linear form in eq. 2.42 we obtain

l (v) =
∫
Ω

f vd xd y +
∫
Γ

gN vd xd y =
∫
Ω

f
N∑

j=1
ϕ j d xd y +

∫
Γ

gN

N∑
j=1

ϕ j d xd y

=
N∑

j=1

∫
Ω

f ϕ j d xd y +
∫
Γ

gNϕ j d xd y

(2.45)

which we can assemble into a linear system. This linear system gives us

(A+ cM)ξ= b +n, with (2.46)

Ai j =
∫
Ω
∇ϕi ·∇ϕ j d xd y, Mi j =

∫
Ω
ϕiϕ j d xd y

b j =
∫
Ω

f ϕ j d xd y, n j =
∫
Γ

gNϕ j d xd y
(2.47)

and we have thus obtained our stiffness matrix A, mass matrix M , load vector b and Neumann

boundary condition vector n.

As we discussed in section 2.2.2, we ought to perform a mapping from an element K to K̂ .

To do this, we must study the element-wise entries of the element matrices. We retrieve the

following by using eq. 2.38-2.39

AK
i j =

∫
Ω∩K

∇ϕi ·∇ϕ j d xd y =
∫
Ω∩K̂

(J−T ∇̂ϕ̂i )T J−T ∇̂ϕ̂ j det(J )d x̂d ŷ

M K
i j =

∫
Ω∩K

ϕiϕ j d xd y =
∫
Ω∩K̂

ϕ̂i ϕ̂ j det(J )d x̂d ŷ
(2.48)

and the same method is applied to right and side, l (v). We note that det(J ) = hxhy and retrieve

an interesting relationship for the mass matrices. We get

M K
i j = hxhy

∫
Ω∩K̂

ϕ̂i ϕ̂ j d x̂d ŷ = hxhy M K̂
i j (2.49)

and we thus have a direct scaling between the element K and the reference element K̂ . From

our previous discussion regarding the relation between the basis functions and their derivatives,

as shown in eq. 2.31, we can extend this to the reference element and re-write the expression of
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the stiffness matrix. We get

AK
i j = hxhy

∫
Ω∩K̂

(J−T ∇̂ϕ̂i )T J−T ∇̂ϕ̂ j d x̂d ŷ

= hy

hx

∫
Ω∩K̂

∂ϕ̂i

∂x̂

∂ϕ̂ j

∂x̂
d x̂d ŷ + hx

hy

∫
Ω∩K̂

∂ϕ̂i

∂ŷ

∂ϕ̂ j

∂ŷ
d x̂d ŷ

= hy

hx

∫
Ω∩K̂

p∑
k,l=1

b(k)
i ϕ̂kϕ̂l b(l )

j d x̂d ŷ + hx

hy

∫
Ω∩K̂

p∑
k,l=1

c(k)
i ϕ̂kϕ̂l c(l )

j d x̂d ŷ

= hy

hx
bT

i M K̂ b j + hx

hy
cT

i M K̂ c j

(2.50)

and can thus assemble the local stiffness matrix from the local reference mass matrix if we

previously have computed the coefficients in eq. 2.31. For a mesh with the same reference

element for all elements, this only has to be performed once, for the results will hold for all

elements.

Remark 2.5. The load vector can also be assembled in terms of the mass matrix, albeit the global

one. This is achieved by performing an L2-projection of the load function f onto Vh , yielding the

discrete Ph f ∈Vh . The load vector b is then obtained from b = MPh f . This will prove useful later.

2.3.2 Ghost penalty

Not fitting the mesh to the domain may result in a large variation of accumulated intersections

between an element and the domain. Some of the partially intersecting elements will almost

entirely be covered by the domain, whilst some elements will have a very small intersection

area. One example of an element with little domain intersection is illustrated in fig. 2.4. This

type of intersection produces low valued matrix entries after integration, resulting in a poor

conditioning of the element matrices which may be fatal for the linear system.

(a) Four elements on domain.
(b) Closer inspection of slightly intersecting ele-
ment.

Figure 2.4: Elements on geometry with instance of small domain intersection as highlighted by
yellow.
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This can be overcome by extending the coercivity from the domain of the system, as was

shown to hold in section 2.1.2, to all of the elements intersecting the domain. This was proposed

in [6] by introducing a penalty term, ghost penalty, and some further notes on the stabilisation

is also discussed in [16, 3]. The jump in derivative between the elements must be accounted for

to form this fictious domain. We denote one of the elements T h
1 and the other T h

2 , introducing

a separating facet F h in a set of all facets F (see fig. 2.4). the jump in derivative over the facet

can be denoted by a jump operator as defined by

JuK= u1|F h −u2|F h (2.51)

for u1 ∈ T h
1 and u2 ∈ T h

2 .

This allows us to introduce the penalty term as given by

jh(uh , v) = ∑
F h∈F

k∑
l=1

(γh2l+1JD l
nuhK,JD l

nvK)F h (2.52)

with D l
n is a normal partial derivative to the element facets (c.f. [4]), γ being a positive penalty

parameter which can be set to γ = 1 [16] and k is the elemental order, which is k = 2 in this

study.

Remark 2.6. The first order derivative provides no contribution since this study is performed

using C 1-splines. Therefore the second summation can be removed and we can set l = k = 2 for

any further uses of the penalty term.

The final finite element formulation with ghost penalty term specific for this study is given

by

Ah(uh , v) = lh(v), ∀v ∈Vh (2.53)

such that

Ah(uh , v) = ah(uh , v)+ jh(uh , v) (2.54)

(2.55)

with the terms as given by

ah(uh , v) = (∇uh ,∇v)Ω+ (cuh , v)Ω (2.56)

l (v) = ( f , v)Ω+ (gN , v)Γ (2.57)

jh(uh , v) = ∑
F h∈F

(h5JD2
nuhK,JD2

nvK)F h (2.58)

and our finite element formulation is complete.

2.3.3 A priori error estimate for CutFEM

For the analytical solution u ∈ H 1(Ω) and the cut finite element solution uh ∈Vh as derived from

the finite element problem defined in eq. 2.53-2.58 a priori error estimate can be derived. This
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is directly dependent on the order of the finite element space, which is as previously defined 2.

It then holds that the optimal error bound on the L2-norm error on the domainΩ is given by

‖u −uh‖L2(Ω) . h3 (2.59)

and the optimal error bound on the energy sub-norm on the domainΩ is given by

|||u −uh ||| = ‖∇(u −uh)‖L2(Ω) . h2 (2.60)

where. denotes less than or equal to a constant C ∈R. Above follows from usage of the Galerkin

orthogonality and Cea’s lemma.
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3
THINKING OF NEURAL NETWORKS

A
rtificial intelligence, and especially machine learning and neural networks, is becoming

increasingly popular in data science. We may not yet fully understand our own brains,

however, by mimicking the known behaviours of our neurons, neural networks offer

promising results regarding pattern recognition in complex data sets. The multi-tasking proper-

ties of the networks allow for a relatively quick evaluation of high-dimensionality data, making

it especially relevant for improving the efficiency of unfitted finite element methods.

In this chapter, the motivations for the neural networks of choice are outlined, as well as the

pre- and post-handling of the data. Moving forward, the handling of the data will altogether be

referred to as filtering. Lastly, some architectural benchmarks are discussed.

3.1 The essentials of a CutFEM quadrature rule

The elemental matrices as shown in eq. 2.48 are relatively easy evaluated in a conventional

finite element method, since the intersection with the domain occurs over the entire element.

For a uniform mesh and a sufficiently regular problem, all local matrices look the same and

the matrices can thus be computed beforehand. For the case of CutFEM, this still holds for

the interior elements, however, the cut elements must be computed using quadrature of

increased complexity. This occurs due to the intersection between a specific element and

domain, K ∩Ω, and as seen in eq. 2.48 this intersection must be integrated over to obtain the

element matrices. This is performed using a sub-discretisation and Gaussian quadrature in

[3], whilst [9] implements a dimensionality reduction of the initial volume integrals. In [10] a

number of integration methods are investigated and compared, although most of the methods

are deemed to be insufficient for the task. The difficulty of integration stems from an increased

order of the elements, for this quickly makes the integration process cumbersome.

It was mentioned briefly in section 2.2.1 that the overlap of spline basis functions results in

certain elements which are difficult to classify from their sets of level set values. As said, this is
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usually solved by applying quadrature on all elements, then outruling the elements with empty

support and using the resulting active elements in the assembly of the element matrices.

With above as motivation, removing the quadrature must not only replace the process of

integration, but it must also determine whether the element in question provides any global

contribution to the linear system. This can be done by classifying the elements based on some

grounds of choice on beforehand and thus only apply the integration process over the cut

elements (as mentioned, the interior elements can be pre-computed). This would be ideal

since, given it can be implemented sufficiently effective, it would remove the requirement

for quadrature of interior and exterior elements. In this context, sufficiently efficient must be

related to the time at which the quadrature currently takes and the resulting precision.

Further, since the quadrature ought to be replaced by some method based upon a neural

network, specifically it must be a regression network, it would be an advantage to only allow the

elements that truly are to be integrated pass through the network. Otherwise, the network would

have to act as a regression network and a classification network subsequently, introducing the

risk of over-fitting or merely a reduced performance in a mean error sense by including these

data points.

With above as motivation, the preluding classification task can be performed using a classi-

fication network, which labels the elements before they are given to the regression network,

which performs an approximation of the integration as displayed in eq. 2.48. This is presented

in a brute force pseudo algorithm in 1, for easy overview of each specific step. Rnet denotes the

regression network, and Cnet denotes the classification network.

Algorithm 1 CutFEM using neural networks (brute force)
1: Th,0 ← background mesh
2: l s ←element-wise level set values
3: N ← number of elements
4: F ← filtering functions
5: for k = 1 : N do
6: l̃ s(k) ← F (l s(k))
7: Class ← Cnet(l̃ s(k))
8: if Class == Interior then
9: M K ← pre-computed

10: else if Class == Cut then
11: M K̂ ← Rnet(l̃ s(k))
12: M K ← F−1(M K̂ )
13: else
14: M K ← 0
15: end if
16: M ← M +M K

17: end for

The same method is expressed in a more efficient, compressed version in 2, where every-

thing is computed in batch instead of element-wise.
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Algorithm 2 CutFEM using neural networks (efficient)
1: Th,0 ← background mesh
2: l s ←element-wise level set values
3: F ← filtering functions
4: l̃ s ← F (l s)
5: {Th,E ,Th,C ,Th,I } ← Cnet(l̃ s)

6: M K̂ ← Rnet(l̃ s(Th,C ))

7: M K (Th,C ) ← F−1(M K̂ )
8: M K (Th,I ) ← pre-computed
9: M ← assemble M K

One advantage of the compressed version is that the outer elemental loop is removed. There

must, of course, remain some traces of an element-wise loop in the filtering and assembly

loops, however, comparing algorithm 1 and algorithm 2, each call to external functions only

has to be performed once.

Remark 3.1. The algorithms above only display the procedure of the mass matrix. This is be-

cause the stiffness matrix and the load vector can be derived using the mass matrix, see section

2.3.1 where the mathematical operations and constant values are discussed. The load vector is

assembled using the global stiffness matrix, hence it is constructed once the above algorithms

have been carried out. The stiffness matrix is assembled from the local reference mass matrix,

and it thus has to be computed before the inverse filtering is applied. It is computed using eq. 2.50

and is assembled into a global correspondence similarly to the mass matrix.

3.2 Production of the data set

The data set must be produced so that the training data is representative of the geometries

that may occur for an arbitrary discretisation. For a sufficiently small mesh size, any domain-

intersecting element may be approximated as a plane of some angle and orientation. However,

as this imposes some major constraint on the mesh, we want to allow for some slack. In fig.

3.1, a slightly curved domain for a relatively coarse mesh size is illustrated. It is apparent from

the example elements that most of the domain-intersecting elements can be approximated by

either a plane or some part of a circular domain, such as a circle or a hole.

This motivates the choice to include planar and circular geometries, where the latter in-

cludes circles as well as holes. However, this excludes the occurrence of corner singularities, as

investigated for CutFEM in for instance [17], and can instead be left as a potential extension of

the method.

For these geometries to be a reasonable representation, it does pose some restrictions on the

mesh size that can be implemented by the user. The mesh size must be chosen with the sharpest

curvature of the domain in mind, making each intersection a reasonable approximation of a

plane, circle or a hole. The mesh size is chosen to be uniform in this study, that is, h = hx = hy ,
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Figure 3.1: Curved ”bean” domain with coarse mesh and highlighted examples of domain-
intersecting elements.

hence any notation separating the mesh size in the spatial coordinates is dropped. Further, all

geometries are generated upon the unit square, that is [0,1]× [0,1].

3.2.1 Circular geometries

The circular geometries consist of circles and holes. The general level set function for a circle is

φc (x, y) = R2 − (x −xc )2 − (y − yc )2 (3.1)

and for a hole the corresponding function is defined

φh(x, y) =−φc (x, y) = (x −xc )2 + (y − yc )2 −R2 (3.2)

where xc , yc denotes the center coordinates and R denotes the radius. For all further discussion,

only the circle will be considered, for the results of the hole are analogous.

To attain some variations in the intersections, the main idea is to generate circles of varying

radius over a defined range (0,0.5) ≈ [Rmi n ,Rmax], with a defined increment dR. By including

some randomness to the center coordinates, further variations can be included. This is mod-

elled by randomising the center coordinates within the range of half an element from the center

(0.5,0.5) resulting in an allowed range of coordinates xc , yc ∈ [0.5−h/2,0.5+h/2]. The values of

xc and yc are determined from

xc = 0.5+ξxh, yc = 0.5+ξy h

ξx ,ξy ∈ [−0.5,0.5]
(3.3)

where ξx ,ξy are stochastic, uniformly distributed variables.

It must also be considered that there is a greater variation between elements relating to a

circle of smaller radius than a circle of larger radius. This must be taken into account for two

reasons.

1. A smaller radius results in less elements actually intersecting with the domain, resulting

in only a small fraction of the elements in the total data set having much curvature if not

taken into accounts.
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2. A smaller radius in relation to the mesh size results in more curvature of the intersecting

domain, producing greater variations between any two elements, hence more elements

of this kind must be included to represent all the varying types of cuts.

This motivates the introduction of zones in the discretisation. The zones represent different

sizes of the radius increment dR and are demonstrated in fig. 3.2. The domain and mesh size

are merely for illustration. The radius increment is chosen to be dependent on the mesh size

and for the three zones it should hold

dRr (h) < dRb(h) < dRg (h) (3.4)

where the subscripts denotes the colour zones and is chosen in relation to the mesh size. r

denotes the zone up to the red marking, b denotes the zone between the red and the blue

marking and g denotes the zone between the blue and the green marking. By doing this, we

ensure to represent the greater variation of the intersections of the smaller circles, and to not

over represent the close to planar cuts as occur for the circles of larger radius.

Figure 3.2: Example of circular domain with three zones representing different radius incre-
ments dR.

3.2.2 Planar geometries

The planar geometries are generally given by

φp (x, y) = ax +bx −d (3.5)

where a,b,c ∈ [0,1] are constants with tilt coefficients a,b and level of the plane d . Generally,

three different planes may occur within the set of the cut elements. These types differ from

each other in the incline θ of the plane. The three categories can be defined to

1. planes of θ = 0 degree incline (straight),

2. planes of 0 < θ < 45 degrees incline (tilted), and
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3. planes of θ = 45 degrees incline (diagonal)

and are demonstrated in fig. 3.3. All geometries are created along one axis and one orientation

due to the filtering processes which will be discussed later.

(a) Straight plane. (b) Tilted plane. (c) Diagonal plane.

Figure 3.3: The three types of variations of the planar cuts as included in the data set of this
thesis.

The straight type of cuts as shown in fig. 3.3 and fig. 3.4 occur for a = 0 and b = 1 for different

values of d ∈ [0.5−h/2,0.5+h/2]. These need only be iterated over the closest elements to the

middle of the background domain, since any further iterations will merely be repetitions of the

same values thereafter.
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Figure 3.4: Illustration of straight plane at different cuts within one element.

The tilted type of cuts as shown in fig. 3.3 and fig. 3.5 occur for a ∈ [h,1−h], b = 1 and d = 1.

The coefficient a must be iterated along the entire side to generate a sufficient representation of

cuts. As discussed, due to symmetries and filtering, only one orientation need to be investigated.
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Figure 3.5: Illustration of tilted plane at different cuts along the reference element.

The diagonal type of cuts as shown in fig. 3.3 and fig. 3.6 occur for a = 1, b = 1 and d ∈
[1−h,1+h]. Similar to the straight case, the cuts only need to be iterated over one element

since any further iterations would result in repetitions of the same geometries.
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Figure 3.6: Illustration of tilted plane at different cuts along the reference element.

3.3 Filtering of the data

The geometries which has been motivated above also comes with some weaknesses which

must be addressed, and when possible, remedied. The strengths and weaknesses with including

circular geometries has already been mentioned and motivated for the intentions of this

method, hence this will not be further discussed in this section. Instead, there are a few other

points to look at which will motivate the choices of filtering methods for the data set of choice.

These are as follows.

1. The level set values depend directly on the level set function of choice, and whilst it ideally

will be near zero close to the boundary this will differ between different geometries. ”Near

zero” is essentially a relative term depending on the magnitude of values any level set

representation takes on in general. If, for instance, the level set function is relatively flat

in three dimensions, this may lead to level set values which are particularly close to zero

even for interior elements, and the network may be ill fitted to handle this type of input.

2. The intersection between the element and the domain is directly affected by the mesh

size as the element matrices are integrated over the element. If the element is small,

this will be represented in the set of local contributions. In the most simple case, this

essentially means that a smaller element size produces a smaller intersection area.

3. The orientation of the cut element produces level set values in varying orders. For in-

stance, if the intersection occurs in the upper right corner, the nodes related to the

intersection will attain larger values. However, if the intersection is around the lower

left corner different nodes will be associated with these values. This produces a large

variation in the input resulting in unnecessary symmetries and potentially an increased

dimensionality of the problem.

All these potential issues can be remedied to some extent, which will be outlined in the following

sections.

3.3.1 Normalisation of level-set values

The first point concerns the variations of the set of level set values between different elements,

and more importantly, different geometries. This can be overcome by normalisation and
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performed on the entire training set to attain some representative variations in the data.

Because it is not straightforward whether a positive or negative node is inside or outside

the boundary of the domain, one must instead look at the variations in the nearby nodes

within the element to determine its probable position. Whilst this determination approach is

mainly relevant for the classification network, the node-wise result does affect the numeric

results of the regression network and hence it follows a similar reasoning. The requirement for

comparison to nearby nodes introduces a relevance in comparing relative magnitudes within

an element. For this reason, we look at a specific element-wise normalisation in this work.

The goal is to attain a pre-defined variation within each set of nine level set values. One

may motivate a probabilistic interpretation for each node is directly or indirectly classified as

interior or exterior, which implies that the range [0,1] may be of interest. However, as we do not

wish to lose the signum properties of the values, we may extend the range to [−1,1].

We may denote the set of level set values of an element k as

LSk = {l sk
1 , l sk

2 , l sk
3 , l sk

4 , l sk
5 , l sk

6 , l sk
7 , l sk

8 , l sk
9 } (3.6)

for nine nodal points on the element and l sk
i ∈R for i = 1, ..,9. The normalisation of the element

is then reduced to a scaling with the largest value (in magnitude) of the values l sk
i . Again, as we

do not want to change the sign, we must scale with the absolute value. This yields a normalised

set

L̃S
k = LSk

|max(LSk )| (3.7)

for the element k. This will ensure that the largest element in magnitude will attain a value of 1

or −1, with the others ranging within [−1,1].

3.3.2 Scaling to reference element

The second point concerns how the element matrices are affected by the mesh size. This can be

solved in many ways, however, many which increases the dimensionality and input data of the

problem rather than reducing it. One way which reduces the complexity is already outlined in

a few sections in chapter 2. One way to represent an element or intersection with undesired

geometry is by mapping the element K to a reference element K̂ . If the reference element is

determined to be the unit square, all reference element matrices will be within an expected and

uniform range regardless of mesh size. Training the network to approximate the local reference

matrix is thus a better choice in terms of dimensionality. This simplification of the problem

requires a step of invers-filtering to convert the local reference matrix to the true local matrix.

However, looking at eq. 2.49, we see that the true local mass matrix can be obtained by direct

scaling with the mesh size according to

M K = hxhy M K̂ (3.8)

where the values in M K̂ stems directly from the Rnet output. Further, looking at eq. 2.50, we

are reminded that the stiffness matrix can be determined from the local reference mass matrix,

and therefore both element matrices are quickly obtained from the reference element.
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3.3.3 Permutation of level set values

The third point mentions the symmetries and the variations in the sequences of the magnitudes

of level set values. It was also briefly indicated in section 3.2 that the any symmetries ought to

be removed, hence the motivation as why to only include certain variations of the planes. An

interchange in the sequences introduces an idea of a sorting of each set of elemental level set

values, so that the highest values are first or last in the sequence. However, as this might result

in a permutation of neighbouring nodal points, this would introduce new uncertainties and

thus an other approach of sorting must be carried out instead.

Preferably, each element intersecting the domain would be orientated equally in terms of

geometry. That is, the nodal points with the heaviest nodes (nodes with highest level set values)

would be oriented along a pre-defined side or corner, which can be achieved by geometric

transformations such as mirroring and rotation of the element. The idea is illustrated in fig. 3.7

where the heaviest weights are defined to be permutated to the lower, left corner and lower

side.

(a) Before permutation. (b) After permutation.

Figure 3.7: Example of geometry before and after level set values have been permutated along
the lower left corner and lower side.

This motivates partitioning the type of intersections into two types of geometries; corner

geometries and side geometries. An example of these are illustrated, at desired nodal location, in

fig. 3.8. The elemental nodes are numbered in both figures. A corner geometry may also include

diagonal planar cuts, and side geometries may also include circles intersecting with a side of

the element, thus, there may be many variations on the types of intersections included in the

class.

Remark 3.2. Note that a second order Lagrange element nodal distribution is used in the above

and following figures to better illustrate the points. The differences between the Lagrange and

the spline nodal positions are illustrated in fig. 2.2, yet due to the similar configuration the same

transformations hold and the Lagrangian nodes are used here for illustrative purposes.
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(a) Corner geometry.

9  6    3

8  5  

7  4  

  2

  1

(b) Side geometry.

Figure 3.8: Example of corner and side geometry after transformation to desired nodal location.

Above essentially means that the heaviest (highest valued) level set values should be located

towards the nodes 9, 8 and 6 for a corner geometry and nodes 9, 6 and 3 for a side geometry.

Any elements with other orientations must be geometrically transformed to achieve this. There

are four types of transformations, defined as below.

1. Horizontal mirroring - a mirroring along a horizontal axis along nodes 8, 5 and 2.

2. Vertical mirroring - a mirroring along a vertical axis along nodes 4, 5 and 5.

3. Descending diagonal (D-diagonal) mirroring - a mirroring along a descending diagonal

axis along nodes 7, 5 and 3.

4. Ascending diagonal (A-diagonal) mirroring - a mirroring along an ascending diagonal

axis along nodes 9, 5 and 1.

The transformations have to be carried out in a maximum of two steps. The first step aligns

the geometry at the correct corner or side, whilst the second step is carried out to correct the

orientation of any asymmetries.

Starting with the corner geometry, it is clear that the initial step requires either a horizontal,

vertical or descending diagonal mirroring. This is illustrated in fig. 3.9.

9  6    3

8  5  

7  4  

  2

  1

(a) Vertical mirroring.

9  6    3

8  5  

7  4  

  2

  1

(b) D-diagonal mirroring.

9  6    3

8  5  

7  4  

  2

  1

(c) Horizontal mirroring.

Figure 3.9: Corner geometry at different positions requiring different transformations to achieve
desired level set orientation.

For the side geometries, the corresponding mirroring relevant for the first step is shown in

fig. 3.10. These include the D-diagonal, horizontal and A-diagonal mirroring.
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(a) D-diagonal mirroring.
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(b) Horizontal mirroring.
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(c) A-diagonal mirroring.

Figure 3.10: Side geometry at different positions requiring different transformations to achieve
desired level set orientation.

The examples above are all symmetric, but this is seldom the case. Therefore, after the first

step has been carried out, the second step is to determine where the weight is located in an

asymmetric geometry. This may result in an extra transformation; an A-diagonal for the corner

geometry or a vertical for a side geometry. This is illustrated in fig. 3.11.
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(a) A-diagonal mirroring for cor-
ner geometry.

9  6    3

8  5  

7  4  

  2

  1

(b) Vertical mirroring for side ge-
ometry.

Figure 3.11: Asymmetric corner and side geometry requiring different transformations to
achieve desired level set orientation.

To achieve the desired level set value orientation in an element, the level set vector has to

be permutated in accordance with above defined transformations. That means that any level

set values that are interchanged in the mirroring has to be interchanged in the vector. As an

example, performing a vertical mirroring permutates the level-set vector in eq. 3.6 to

LSk
ver t i cal = {l sk

7 , l sk
8 , l sk

9 , l sk
4 , l sk

5 , l sk
6 , l sk

1 , l sk
2 , l sk

3 } (3.9)

since the level set values at node 1 has been interchanged with the level set value node 7, and

so on.

The process of determining the orientation and applying the permutation must be per-

formed for all relevant elements. This is done by evaluating all corner and side trios of nodal

level set values and comparing their sums. That is, if (l sk
4 + l sk

7 + l sk
8 ) > (l sk

9 + l sk
6 + l sk

3 ), then

it is more likely to be an upper right corner geometry rather than a lower side geometry. This

comparison is carried out for all trios, and the maximum sum determines type and position of

geometry, and thus also which transformations are to be carried out.

29



CHAPTER 3. THINKING OF NEURAL NETWORKS

3.3.4 Permutation of mass matrix

Each level set value in the level set vector is associated to a node and each local mass matrix

entry is associated to two nodes. This means that any permutation of the level set values

will result in a corresponding permutation of the mass matrix entries. Taking the vertical

permutation in eq. 3.9 would correspond to the local mass matrix M K on the element K as

defined by

M K
ver ti cal =



M K
77 M K

78 M K
79 M K

74 M K
75 M K

76 M K
71 M K

72 M K
73

M K
88 M K

89 M K
84 M K

85 M K
86 M K

81 M K
82 M K

83

M K
99 M K

94 M K
95 M K

96 M K
91 M K

92 M K
93

M K
44 M K

45 M K
46 M K

41 M K
42 M K

43

M K
55 M K

56 M K
51 M K

52 M K
53

M K
66 M K

61 M K
62 M K

63

M K
11 M K

12 M K
13

M K
22 M K

23

M K
33



(3.10)

with M K
ver ti cal symmetric such that M K

i j = M K
j i . Therefore, the permutation of the level set

values requires an inverse permutation of the local mass matrix. This is performed using the

index vector Isor t as given by

LSK = LSK
ver ti cal (Isor t ) (3.11)

such that

M K = M K
ver ti cal (Isor t , Isor t ) (3.12)

which allows the local matrix to be assembled into the global mass matrix and a corresponding

stiffness matrix.

3.4 Architecture of the networks

The procedure of generating an optimal multi layered perceptron (MLP) combines some general

benchmarks with the fine method of trial and error. A variety of networks must thus be properly

tested before reducing the set to a final and functioning choice. Two networks are relevant for

this study, one for classification (Cnet) and one for regression (Rnet). Both are feedforward

networks with back propagation algorithms to adjust the weights and biases according to

feedback.

There are a few key characteristics associated in the construction of a classification network.

First and foremost, hidden layers in the network are all equipped with an activation function

which transforms the the level of neural activation to a numeric response. As a rule of thumb, a

smooth, differentiable function within the range [0,1] is beneficial to use for classification as it

can be interpreted as a probabilistic measure. As found in, for instance, [18] a sigmoid function
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is a suitable choice for a classification data set. The function is defined by

fsi g (x) = 1

1+e−x
. (3.13)

The number and sizes of hidden layers must also be determined. This can be related to the

sizes of the input and output layers, which are directly dependent on the size of the data. As has

previously been discussed, the task of Cnet is to determine whether the element is cut, exterior

or interior given its 9 level set values. MATLABs patternnet function requires the output to be

numerical, hence the three classes can be implemented as a discrete and given by {1,2,3}, or

binary and defined by [1,0,0], [0,1,0], [0,0,1]. For a probabilistic interpretation of the values,

the binary classification can be used, resulting in an input size of 9 and an output size of 3. The

hidden layers can thus be chosen to be of decreasing size.

A common choice of performance function is the mean squared error (MSE) function,

which is given by

MSE =W
1

n

n∑
i=1

(xi − x̂i )2 (3.14)

where n is the number of observations, xi ∈Rm is the observed value, x̂i ∈Rm is the approxi-

mated value and W denote error weights (which are to be discussed later). The observations

can thus consist of a set of m labels per element. The MSE function is to be minimised using

some optimisation algorithm, with the Levenberg-Marquardt (LM) algorithm as presented in

[19, 20] being common. It is a trust region type algorithm best compared to a combination

of a steepest descent with a Gauss-Newton method. The derivation stems from a first order

Taylor expansion of a minimisation function F (x) providing the Newton function, which for

the Levenberg-Marquardt algorithm is modified to a step direction function which updates the

current guess according to the recursive function given by

xk+1 = xk − (J T (xk )J (xk )+λk I )−1 J T (xk )r (xk ) (3.15)

with J(x) being the Jacobian of the minimisation function, r (x) is the residual function, I the

identity matrix and xk is the guess of the current iteration. λk is a damping parameter related to

the steepest descent, J T (x)r (x) ≈∇F (x) is an approximation of the gradient of the minimisation

function F (X ), whilst J T (x)J(x) ≈∇2F (x) is an approximation of the corresponding Hessian.

The weights and biases of the network are updated according to this scheme for each training

iteration.

There are less benchmarks for the construction of a regression network. In regards of

activation functions, it is common to use a rectified linear unit (ReLU) function due to its

strength in the case of a vanishing gradient during network training. It is given by

fReLU (x) = max(0, x) (3.16)

However, a smooth function may be useful when the data at hand is of varying magnitude as

in this study, which re-introduces the sigmoid function as well as a hyperbolic tangent function

31



CHAPTER 3. THINKING OF NEURAL NETWORKS

and a softmax function. The hyperbolic tangent is given by

ft an(x) = tanh(x) = 2

1+e−2x
−1 (3.17)

and the softmax by

fso f t (x) = ex∑n
i=1 exi

(3.18)

for x ∈ Rn which can only be applied on discrete input. Some general notes regarding some

common activation functions are outlined in [21, 22].

The architecture of the hidden layers can be constructed based upon a similar argument

as the classification network. The input size is likewise 9, however, the output consists of the

entries of the local mass matrix. The local mass matrix consists of 92 = 81 entries for second

order elements, however, since the matrix is symmetric this reduces to (81− 9)/2+ 9 = 45

elements. Hence, the output size of the regression network ought to be 45 and the hidden layers

can thus constitute an increase from 9 to 45. Given that the difference in input and output size

is relatively large, it may indicate that at least two, albeit likely three, layers are required.

The LM method combined with the MSE function can be used for the regression network as

well, for it is generally a suitable choice regardless of network type.

It may be necessary to introduce error weights into the training when the output varies

remarkably in magnitude, as in this study. The error weights determine the importance of the

error which is generated at a given data point, and allow for a focused training on certain data

points as specified by the user. There are two ways (three if combined) the weights can be

applied (other than W = 1 if they are not used). One way is to weigh the different outputs in a

sample differently, such that certain outputs are especially important during training. In this

regression study, this would correspond to weighing the 45 local mass matrix entries differently

based upon which entries that require extra training. One other way is to weigh each sample

differently, which in this study would correspond to weighing all 45 entries per element equally,

although weighing different sets of 45 elements within the training data differently. That is, for

a set of data points X with dim(X ) = [m,n], the error weights W can be either W ∈Rm ,W ∈Rn

or W ∈Rm×n .
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4
METHOD AND IMPLEMENTATION

T
he previous chapters have outlined information regarding CutFEM, some mathematical

finesse and neural networks which are all required for the implementation as well as the

decisions and motivations that follow with it. The ultimate goal is to produce a method

as described in algorithm 2, although this work requires the networks to be implemented and

tested individually for a sufficient evaluation of the individual networks.

The implementations have been entirely carried out in MATLAB. There have been an

emphasis on the Statistics and Machine Learning toolbox as this includes the functions for

creating and using neural networks.

4.1 Producing and filtering the data set

The full, unfiltered data set was generated for the three geometries as discussed in section 3.2.

A mesh size of h = 0.05 was used for all geometries, for whilst this is eventually scaled to a

reference element it does have an impact on the number of elements as generated for each

geometry.

The radius increment and the center coordinates can be changed to achieve different

domains of the circular geometries. The radius increments were set to

dRr (h) = h

10
, dRb(h) = h

5
, dRg (h) = h

2
(4.1)

in this study, which satisfies eq. 3.4 and the subscripts denote the same zones as shown in fig.

3.2. The same was applied to both circles and holes. The radius had an allowed range defined

by [dRr (h),
p

0.5 −dRg (h)] as any larger radius would completely fill the background mesh and

thus generate no intersections.

Five random center coordinates were produced for each iteration of the radius increment to

achieve the variation of center coordinates as described in eq. 3.3. This means that five different

circles and holes were produced for each radius as included in the study. For the planar set, the
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iteration instead occurs over the coefficient a in a step d a(h) and the level constant d in step

dd(h). These were defined to

d a(h) = dd(h) = h

10
(4.2)

for both.

Nine level set values was generated for each element on each specific domain. These were

used as features in two data sets; one for classification and one for regression.

As discussed in section 2.2.1, there are no negative contribution from the spline functions,

ensuring that any element with all positive nodes is on the interior of the domain, and vice versa.

These elements are thus not of relevance for the classification problem, since these can be

classified without passing them through a classification network. Thus, these known elements

were excluded from the data set to reduce the dimensionality of the classification problem,

whilst the rest of the elements were classified to generate the corresponding elemental labels.

The labels were set to binary classification labels, as discussed in 3.4, and a corresponding key

was generated to keep track of the categorical representation. The resulting data set constitutes

the unfiltered classification data set.

For the regression data set, the 45 unique mass matrix entries were sought as labels to

the data set. Only the elements that actually cut the boundary of the domain, that is T ∈ Th,C ,

was included to reduce the task of the regression network. This is based upon the assumption

that Cnet will work sufficiently well and only the intersecting elements will pass on to Rnet.

The elements on the exterior T ∈ Th,E need not to be approximated since these have zero

contribution, whilst the elements on the interior T ∈ Th,I have the same contribution and can

thus be pre-computed and applied for all.

The features of both networks as well as the labels of Rnet were filtered by the processes

as described in section 3.3. Although the inverse of the scaling and permutation of the mass

matrix elements had to be applied for the data set to generate the desired form of the labels.

Lastly, the filtered data was to be partitioned into a training and a testing set. This was

performed for both the Cnet data set and the Rnet data set, with 85% to the training set and

15% to the testing set. The partition was performed randomly and a few different partitions

were made for the regression set to later investigate the effect. The quality of the results may

differ for different partitions since they were performed randomly and it is therefore unknown

on beforehand whether a good or a bad selection would be generated. It would be beneficial to

include elements with especially large variance in the training set, and some random partition

may or may not sufficiently represent this. Further, some data sets were created in which any

duplicates in the feature set up to a determined tolerance were removed.

4.2 Constructing the networks

A few areas were investigated in the construction of the neural networks. These are shortly

outlined below for the most important steps.
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4.2.1 Optimisation of Cnet

A variety of 1- and 2-layer classification networks were created and trained. This included some

of decreasing hidden layer size, as previously mentioned, but also a few other variations for

testing purposes. The results did not differ tremendously between the different architectures,

but eventually two hidden layers of sizes 7 and 5 were chosen. The sigmoid activation function

as discussed was used for all classification networks. The final choice of Cnet is illustrated in fig.

4.1.

Figure 4.1: Final architecture of Cnet.

4.2.2 Optimisation of Rnet

The construction of Rnet was a far more extensive task than that of Cnet. This was performed

in multiple steps to evaluate one property at the time.

First, a suitable activation function was to be chosen. All activation functions as outlined

in section 3.4 were used to train a one layered network of hidden layer size 10. The training

did only converge for the hyperbolic tangent function, since all algorithms based on other

functions aborted due to minimum gradient reached. Some variations on the architecture was

performed to study whether the error stemmed primarily from the network only consisting

of one hidden layer, although since the results were not sufficiently improved the hyperbolic

tangent function was eventually settled upon and used.

Moving forward, the number of hidden layers and their sizes were investigated. This was

performed primarily for networks consisting of two or three hidden layers, however, a few

networks of a singular hidden layer were also included. The lowest testing MSE was eventually

found to occur for a network of three hidden layers of sizes 15, 25 and 35.

As this was further studied, there appeared to be an issue with the magnitudes of the mass

matrix approximations. Several networks of the same architecture were created to investigate

any issues in stemming from any subsets of the 45 labels per element. Each of these networks

were trained on the different subsets, and the results were evaluated to identify any patterns in

the difficulties. Below are a few examples of what labels of subsets were tested.

1. One label corresponding to some specific matrix entry at M K
i j , where the indices i , j ∈

{1,2, ..,9} were tested for a few different alternatives.

2. One label corresponding to the elemental area as computed from the local mass matrix.

3. Nine labels corresponding to the diagonal of the local mass matrix M K
i i for i = 1,2, ..,9.
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And further, some element-wise tests were performed to investigate how the regression per-

formed for different elemental cuts.

The above investigation showed that the middle to lower valued contributions in the local

mass matrices were badly approximated, sometimes to several orders of magnitude. This passes

the training and testing since the generally low values passes of as a low MSE, despite being

orders of magnitude wrong. This may severely affect the final method, especially if the values

are highly over approximated. Because of this, it was of uttermost importance to induce a focus

towards the MSE of these lower values during training, so that they were not overlooked despite

their low error contribution. This was performed by introducing error weights to the training

data.

The idea with the error weights was to upscale the impact of the low valued entries. These

entries were mostly element related, meaning that an element with generally low mass matrix

values was the most prone to errors. This introduced the idea that the error may be related to

any cuts between the error and domain with lower intersection area. Thus, the error weights

could be chosen element-wise as inversely proportional to the elemental area, given by

Wk = (aK )−1 (4.3)

where aK denotes the elemental area of element K which can be computed using quadrature

or according to the method which will be presented in section 4.3.3.

The results improved with the implementation of the error weights and these were therefore

used. Some comparison tests were performed to study the effect of the weights as well the

effect of the filtering of the data, both which proved to be crucial in the training as proven in

the convergence of the training.

The final choice of Rnet is illustrated in fig. 4.2.

Figure 4.2: Final architecture of Rnet.

4.3 Performance test

The performance tests were carried out differently for the different networks depending on

which properties that proved to be of relevance to investigate further. A few of the performance

measurements which were carried out are as defined below. The model problem in eq. 2.1 -2.2

was used with the parameters

c = 1, f (x, y) = 2sin(x)sin(y) (4.4)
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and the Neumann boundary condition

gN = n · (cos(x)sin(y),sin(x)cos(y)) (4.5)

which corresponds to the solution

u(x, y) = sin(x)sin(y). (4.6)

4.3.1 Algorithmic implementation

The algorithm as shown in 2 is the ultimate goal of the method, however, two different algo-

rithms were created as the networks ought to be tested separately for best evaluation. For Cnet

this is outlined in algorithm 3.

Algorithm 3 CutFEM using Cnet.
1: Th,0 ← background mesh
2: l s ←element-wise level set values
3: F ← filtering functions
4: l̃ s ← F (l s)
5: {Th,E ,Th,C ,Th,I } ← Cnet(l̃ s)
6: M K (Th,C ) ← quadrature
7: M K (Th,I ) ← pre-computed
8: M ← assemble M K

The above algorithm shows that quadrature only has to be applied on the elements that are

determined to actually cut the boundary. The corresponding algorithm for Rnet is displayed in 4

and quadrature is used to determine which elements are cut, yet removed from a computational

loop over the cut elements.

Algorithm 4 CutFEM using Rnet.
1: Th,0 ← background mesh
2: l s ←element-wise level set values
3: F ← filtering functions
4: l̃ s ← F (l s)
5: {Th,E ,Th,C ,Th,I } ← quadrature

6: M K̂ ← Rnet(l̃ s(Th,C ))

7: M K (Th,C ) ← F−1(M K̂ )
8: M K (Th,I ) ← pre-computed
9: M ← assemble M K

4.3.2 Benchmark domains

Both of the networks were tested on three benchmark domains. The idea with the benchmark

domains was to investigate how any error propagated for different curvature on the domain.
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A circular domain was of relevance to be included since the data set was partially based upon

such. The level set of the circle is as shown in eq. 3.1. The parameters were set to xc = yc = 0.5

and R = 0.3 throughout the testing.

An elliptical domain was also used to include some slight variation on the curvature of the

circular domain. The level set is given by

φe (x, y) = R2 − (x −xc )2

2
−2(y − yc )2 (4.7)

with the same parameters as defined for the circle.

A flower geometry was also included to generate a domain with heavy curvature and bound-

ary sections approaching an edge yet still maintaining the rounded shape. The level set of the

flower is essentially consisting of the maximum of five circles as given by

φ f (x, y) = max(φ(1)
f ,φ(2)

f ,φ(3)
f ,φ(4)

f ,φ(5)
f )−0.0085, (4.8)

φ(1)
f (x, y) = R2

2
− (x − c1 + c2

2
+ξx)2 − (y − c1 + c2

2
+ξy )2,

φ(2)
f (x, y) = R2 − (x − c1 +ξx)2 − (y − c1 +ξy )2,

φ(3)
f (x, y) = R2 − (x − c2 +ξx)2 − (y − c1 +ξy )2,

φ(4)
f (x, y) = R2 − (x − c1 +ξx)2 − (y − c2 +ξy )2,

φ(5)
f (x, y) = R2 − (x − c2 +ξx)2 − (y − c2 +ξy )2

(4.9)

where c1,c2 denote some center coordinates of the circles, and ξx ,ξy ∈ h[−0.5,0.5] are evenly

distributed stochastic variables with h denoting the mesh size. The stochastic variables allow

for a perturbation of the center coordinates, which may generate a variation of cuts. These can

be manually set to zero for a centered domain. c1 = 0.3, c2 = 0.7 and R = 0.2 were used for the

flower.

The three domains are illustrated in fig. 4.3 with an example mesh size of h = 0.1. Any sharp

edged geometries were excluded since this was not included in the training data.

(a) Circle. (b) Ellipse. (c) Flower.

Figure 4.3: Three benchmark domains used for performance tests.
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4.3.3 Measurement of errors

A few measurements of errors are of interest for the two networks when comparing them to an

analytical solution as well as a CutFEM-based method. Below are a few of these defined, other

than the error estimates and expected bounds as defined in section 2.3.3.

As have been discussed in section 2.2.1, any function in the space can be expressed as a

linear combination of the basis functions. This is up to second order polynomials for the second

order case. There are some information to be extracted from lower order linear combinations

too, which can be used for testing the method in steps of increasing order. One measure of

interest is the area, which can be derived from a zeroth other linear combination. The function

expansion in the zeroth order yields zeroth order coefficients of ones which can be used to

compute the area using

aK =
[

1 . . . 1
]
·M K ·


1
...

1

 (4.10)

where M K denotes the local mass matrix. A global measure can be performed to obtain the

domain area a by using the global mass matrix M instead and a reference measure can be

performed using the reference mass matrix M K̂ . The relative error is then given by

E K ,r el
ar ea = |aK −aK

ana |
aK

ana
(4.11)

where aK
ana is the analytical area.

Based upon a first order linear combination, the center of mass (CM) can be derived using

certain coefficients. These coefficients are related to the spline element nodal coordinates. The

computation can be performed for the specific element M K , however, for a relevant comparison

this is better carried out on the the reference element M K̂ and with corresponding reference

spline element coordinates as coefficients. The CM coordinates are thus computed from

C M K̂ = 1

aK̂

[
1 . . . 1

]
·M K̂ ·

[
1.5 1.5 1.5 0.5 0.5 0.5 −0.5 −0.5 −0.5

1.5 0.5 −0.5 1.5 0.5 −0.5 1.5 0.5 −0.5

]T

(4.12)

and the results of the Rnet approximation can be compared to the corresponding results using

quadrature.

One last general error measure which was studied constituted of a relative local mass matrix

entry error. This was computed from

E K ,r el
i j =

|M K ,RN
i j −M K ,C F

i j |
M K ,C F

i j

(4.13)

where M K ,RN denotes the local mass matrix as approximated by Rnet and M K ,C F is the local

mass matrix as computed using CutFEM.
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5
RESULTS

T
he initial tests of the networks consists of some general performance tests. With the

results as a baseline, different characteristics have been investigated further to examine

any reoccurring difficulties. Further, the different networks have been tested individ-

ually and with different techniques due to their different characteristics and depending on

which properties which have revealed themselves during the phase. The networks are tested

individually since it would not be straightforward to analyse any errors occurring from a combi-

nation of the networks (as mentioned in chapter 4). The results are accompanied by some brief

comments on what can be observed and why any proceeding tests were performed, however, a

further discussion of the results is carried out in chapter 6.

5.1 Classification results

For Cnet it is not obvious how to obtain a meaningful error comparison. This is because of

below reasons.

1. It is not apparent which norm would provide a meaningful error estimation.

2. The dimensions of the resulting linear system may be different for the Cnet method, for

the number of active elements may differ due to wrongful classifications.

For this reason, other performance comparisons are illustrated below which may provide some

clarity on the overall success rate.

The relative error area of the entire domain was computed to evaluate the final mass matrix.

This was done using the expression in eq. 4.11 but with the global mass matrix. The analytical

area was set to the corresponding area of CutFEM using the same mesh size. The results are

illustrated in tab. 5.1. It shows that the algorithm successfully classifies all elements for the circle

and the ellipse, although it has some difficulties in classifying the elements of the flower. This
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error decreases with mesh size, yet it is not apparent whether this is due to a better performance

or a smaller contribution to to the areal error since the elements also become smaller with

mesh size.

Table 5.1: Relative error of area computed from mass matrix using Cnet and CutFEM.

Mesh size 0.1 0.05 0.025
E r el

ci r cle 0 0 0
E r el

el l i pse 0 0 0

E r el
f lower 4.08 ·10−2 1.14 ·10−2 2.98 ·10−5

The success rate of the flower domain was further evaluated to investigate whether the

results improved with a smaller mesh size. The circle and ellipse were excluded since it was

apparent from the area study that these had a 100% success rate.

The flower was investigated by randomising the center coordinates ten times for each

mesh size. This was performed to average any outliers occurring from certain variations on the

domain. The results are displayed in confusion plots in fig. 5.1. It is apparent that there is an

increase in success rate with a decreasing mesh size, indicating that the effect of the issue can

be reduced.
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Figure 5.1: Success rate of Cnet on 10 flower geometries with randomised center coordinates
for different mesh sizes.

The wrongfully classified elements were investigated for a mesh size of h = 0.1 to determine

where any errors may occur. The elements which were misclassified are tinted in red in fig. 5.2.

It shows that the innermost elements, where the circles meet, appear to be difficult to classify.

The same trend is apparent for the smaller mesh sizes. The Cnet classification for some mesh

sizes and the corresponding quadrature classifications are displayed in appendix A

5.2 Regression results

The results for Rnet consist of two parts. The first concludes some final investigations which are

relevant for final motivations and any further suggestions for updates of this work. The second

42



5.2. REGRESSION RESULTS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: Flower geometry with mesh size h = 0.1. The wrongfully classified elements by Cnet
are marked in red tint. Green denotes the domain and the yellow elements are cut elements.

is a concluding error analysis by studying the model problem. The errors from this are then

investigated in a final data science analysis.

5.2.1 Effect of variations

The results of the different data partitions were investigated to examine if the extracted elements

had any effect on the final tests. The error in L2-norm was computed for the model problem

and the results are displayed in tab. 5.2. The partition variation factor denotes a network which

was trained upon a data set multiplied with a factor of 1/1.05125 and was originally included by

mistake. The output is multiplied by the reciprocal of the factor to obtain the correct values.

Table 5.2: Error in L2-norm for variations of regression networks.

Partition variation Error
None 1.89 ·10−2

Factor 2.86 ·10−5

Tolerance 1 9.59 ·10−3

Tolerance 2 1.72 ·1012

The table shows that the best results occur for the data set multiplied by the factor. The

results overall display some large variations, although one of the networks trained on the data

with a tolerance based duplicate removal appears to be have an exploding error. This may

be dependent directly on the partition, or by some unforeseen optimisation process which

have gone wrong during training. Based upon the above results, the network trained using the

factored data set was used for all computations.

The load vector cannot be computed conventionally if the algorithm is to be completely

free of unnecessary quadrature. This can be overcome by making a L2-projection of the load

function onto the mesh, and multiplying it with the mass matrix specific to the domain, that

is, the approximated mass matrix. This was briefly mentioned in section 2.3.1. Whilst the goal

is to use this method, a comparison between the results of this quadrature free method and a
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conventional method can be compared. This was performed for the model problem as well as a

L2-projection of the solution and the resulting error in L2-norm is displayed in tab. 5.3. The

domain is the elliptic one since this showed some error prone results, and the mesh size was

set to h = 0.1.

Table 5.3: Error of L2-projection and model problem for different methods of computing the
load vector. A CutFEM benchmark is included.

Origin of load vector L2-projection Model problem error
Mass matrix 6.96 ·10−7 1.44 ·10−3

Quadrature 1.05 ·10−2 8.94 ·10−4

CutFEM benchmark 7.27 ·10−7 5.11 ·10−7

From the results it is not apparent which method produces the best results, but the error for

the quadrature based load vector is remarkably large in the L2-projection. The corresponding

graphical results are illustrated in fig. 5.3. The L2-projection with quadrature assembly displays

some major difficulties, whilst the model problem does not seem to differ much between the

methods. The analytical solution is displayed in fig. A.3.

(a) L2-projection, mass matrix. (b) L2-projection, quadrature.

(c) Model problem, mass matrix. (d) Model problem, quadrature.

Figure 5.3: Graphic illustration of different methods of load vector assembly for L2-projection
and model problem on ellipse of mesh size h = 0.1.
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5.2.2 Error convergence and analysis

The error study was performed on the model problem for all geometries and the mesh sizes

h = 0.1,0.05,0.025,0.0125. The error was computed in L2-norm and energy sub-norm for both

Rnet and CutFEM. The results are illustrated in fig. 5.4. We know from section 2.3.3 that the

error in L2-norm converges to rate of third order and the error in energy sub-norm converges

to a rate of second order for CutFEM. We do note some convergence in L2-error with mesh size

for Rnet, however not as fast as for the CutFEM algorithm. The error in energy sub-norm is of a

more static character.
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(b) Energy sub-norm error.

Figure 5.4: Error in L2-norm and energy sub-norm for the regression network (RN) and CutFEM
algorithm (CF) over mesh size and geometries circle (C), ellipse (E) and flower (F).

The solutions on all three geometries were graphically illustrated to investigate any error-

prone areas. This was performed for a mesh size of h = 0.025. The results are displayed in fig. 5.5.

The overall solutions appear to be approximated decently, however, there are some instabilities

along the boundary.

A node-wise comparison was made between Rnet and CutFEM to investigate the origin of

any errors. This was performed for the ellipse of mesh size h = 0.05, which had shown some

instabilities despite its rounded boundaries. This was done by comparing the 45 estimated

matrix entries to the 45 matrix entries as computed by CutFEM. The 45 entries were stored in a
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(a) Circle. (b) Ellipse.

(c) Flower.

Figure 5.5: Graphical illustration of solution for Rnet of three geometries and mesh size h =
0.025.

vector mK ∈R45 and the corresponding position in the local mass matrix M K is illustrated in

M K =



mK (1) mK (2) mK (4) mK (7) mK (11) mK (16) mK (22) mK (29) mK (37)

mK (3) mK (5) mK (8) mK (12) mK (17) mK (23) mK (30) mK (38)

mK (6) mK (9) mK (13) mK (18) mK (24) mK (31) mK (39)

mK (10) mK (14) mK (19) mK (25) mK (32) mK (40)

mK (15) mK (20) mK (26) mK (33) mK (41)

mK (21) mK (27) mK (34) mK (42)

mK (28) mK (35) mK (43)

mK (36) mK (44)

mK (45)



.

(5.1)

The relative nodal error was computed as in eq. 4.13 for each element, and the mean was

taken over all samples. This was performed for a mass matrix without permutation as well as

a mass matrix which was permutated such that the heaviest level set values were distributed

towards the lower, right side. See fig. 3.8 for nodal numbers. The results are displayed in fig. 5.6.

46



5.2. REGRESSION RESULTS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
e
a
n
 r

e
la

ti
v
e
 e

rr
o
r

0 5 10 15 20 25 30 35 40 45

Matrix element number

(a) Not permutated.

0

5

10

15

20

25

M
e
a
n
 r

e
la

ti
v
e
 e

rr
o
r

0 5 10 15 20 25 30 35 40 45

Matrix element number

(b) Permutated.

Figure 5.6: Mean nodal relative error for ellipse and mesh size h = 0.05.

For the case without permutation, the values with remarkably higher mean relative error

are related to mK (22) = M K
17 and mK (39) = M K

39 which are related to the corners of the element.

Further, mK (1) = M K
11, mK (6) = M K

33, mK (24) = M K
37, mK (28) = M K

77, mK (37) = M K
19, mK (45) =

M K
99 are also higher than most of the values, and also related to the corners of the element.

When the values have been permutated, the domain intersection of the element would

generally be located towards the nodes 9,6,8,3, and the domain exterior to nodes 1,4,2,7. From

the figure we see that mK (1) = M K
11, mK (22) = M K

17 and mK (37) = M K
19 attain high values. These

values are all related to node 1, which is the node supposed to be located the very furthest from

the intersection to the domain after permutation. This indicates that the nodes exterior of the

domain appears to be the most difficult to approximate.

To investigate any elemental errors, the elemental area and center of mass were computed

on the reference element K̂ . The sample domain and mesh size were used as previously. The

relative error was computed using eq. 4.11 and the results are displayed in fig. 5.7. The relative

error seems to be nearly the inverse of the area, showing that smaller area yields larger errors,

and vice versa. There are four distinguished peaks in the plot, these peaks are related to the

elements with peaking values in fig. 5.3. These elements have an intersection area close to zero,

as demonstrated in the area plot.

The center of masses on the elements of same sample domain were computed to further

investigate the elemental errors. This was computed using eq. 4.12. Since the elemental area

was used, any errors stemming from the zeroth order study are carried onto the center of

mass. The results of the CM using Rnet and quadrature as well as the error are displayed in

fig. 5.8. CM coordinates near (0.5,0.5) indicates nearly fully domain intersecting elements,

whilst coordinates near x, y ∈ {0,1} indicate minor intersection with the domain. The figure

shows that the further from the center the CM is located, the greater is the displacement. This

essentially confirms what has previously been noted; the elements with minor intersection

are the most difficult to approximate. The CM error follows a similar shape as the the area
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Figure 5.7: Relative elemental area error and corresponding area for ellipse and mesh size
h = 0.05.

error. The X-coordinates seem to contribute the most for large errors and vice versa. This may

however only be a coincidence occurring from the specific domain.
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Figure 5.8: Center of mass (CM) computed using Rnet (RN) and quadrature (Quad) in coordi-
nates and corresponding errors.

5.3 Time consumption

As discussed, the networks are tested individually and so are the measurements on the time

consumption. The results for the networks in comparison to CutFEM are displayed in fig. 5.9.

Cnet shows slightly reduced computational time, which becomes more prominent for

smaller mesh sizes (that is, a greater number of elements). The difference is increased further

for Rnet, in which the network seems to barely be affected by an increased number of elements.
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Figure 5.9: Time consumption of classification (Cnet, CN) and regression (Rnet, RN) network
in comparison to CutFEM (CF) over different mesh sizes. The geometries used are circle (C),
ellipse (E) and flower (F).
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6
DISCUSSION

T
he results which have been presented are discussed in this section. The disposition

closely follows that of chapter 5 for easy reference. Some new ideas based upon the

results that have been investigated will be presented and outlined for any future work

on this study.

6.1 Evaluation of Cnet

The wrongfully classified elements by Cnet are displayed in tab. 5.1 and fig. 5.1. They may stem

from two reasons.

1. The curvature of the innermost elements of the flower may not be largely represented in

the training data.

2. The level set equation for the flower is a maximum of five level set equations (see eq. 4.8).

This may generate discontinuities in the level set function on certain elements. These

discontinuities likely result in odd combinations of level set values on these elements

and it is likely that the network has not previously been trained upon them.

If the error would have been dependent on (1) alone, we would likely have noted a more

prominent decrease in the error with the smaller mesh sizes and the problem would likely

have vanished for the smallest mesh size since all elemental geometries are similar to circles

or planes at that point (see fig. A.1 and fig. A.2). Therefore it is likely that the error is partially

or entirely dependent on (2). This issue would therefore be reduced if multi-function level set

representations would be included in the training set, or if these types of representations were

entirely prohibited from being used with Cnet. Similar geometries may instead be interpreted

using some other method, for instance a summation without taking the maximum of the values.

If the error still remains after the effect of (2) has been reduced further steps can be taken.

The most obvious approach is to increase the fraction of intersections with high curvature in
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the data set. This would result in more training of the element type and may reduce the error.

Another approach of increasing the training on high-curvature cuts is to use the method with

error weights to increase the relevance of these classifications.

One third, and more general, approach to both problems (1) and (2) is also related to error

weights. Looking at target class 1 in fig. 5.1 and comparing to the other classes, it appears that

the most common type of misclassification is to classify cut elements as exterior elements.

The second most common error is to classify cut elements as interior elements. Both of these

are fatal errors since the interior and exterior elements are either neglected or pre-computed

(see algorithm 3). It would therefore be better if a fraction of the exterior and interior elements

would be wrongfully classified as cut, since the quadrature would determine the true elemental

contribution 1. This could be accomplished by applying weights to the output. The weights

can be applied element-wise, although this might yield unfavourable results since it essentially

only would result in more focused training on the cut elements. Instead, the specific entries

in the binary classification can be weighted differently. For instance, if [1,0,0] denotes a cut

element, the corresponding weight per sample could be

W =
[

w1 w2 w2

]
, w1 > w2 > 0 (6.1)

and would thus be the same for all samples. This weight would be applied to each sample error

and hence increase the importance of the cut classification, introducing a bias which likely

identifies elements which are difficult to classify as cut.

6.2 Evaluation of Rnet

The evaluation of Rnet consists of some initial remarks on the results, followed by an analysis

of the error.

6.2.1 Remarks on the regression

The different magnitudes of the error in tab. 5.2 shows the importance of a good training set.

It is not guaranteed that a representative partition is made when the partition is performed

randomly, and subsets of high variance may be excluded from the training set. Small, but

important, variations between similar samples may also be excluded when a tolerance measure

is applied and duplicates up to the tolerance is removed.

Generating multiple partitions and training different networks to find the most suitable

alternative is a most tedious task, since the network training for this type of task may take

many days to finish. Instead, as suggested by [12] yet not implemented, an adaptive partition

algorithm can be used to ensure that the training data is of sufficient variance.

The especially high error for the L2-projection when the load vector is computed from

quadrature, as shown in tab. 5.3, is somewhat concerning. The problem involving only the
1Note that this is only a certainty for the algorithm without Rnet, since Rnet is not trained on approximating

the values of exterior and interior elements.
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mass matrix is slightly more sensitive to inconsistencies in the approximated result, since the

smoothing effect of the differentiated basis functions as present in the stiffness matrix is not

applied. This allows any element-wise error to directly carry on to the result on the correspond-

ing nodes. Therefore it would be great to improve the approximation further, however, it is not

entirely surprising that the error displays such instabilities as shown in fig. 5.3 when the right

and the left hand side of the linear system is computed using different techniques.

6.2.2 Error analysis of Rnet and model problem

The error in L2-norm is indeed larger than that of the corresponding CutFEM solution, however,

it does show a slightly converging trend. The convergent trend displays some variation between

the different mesh sizes, which may stem from the different fractions of curved and straight

cuts occurring. Perhaps a more clear trend would be observed if the training data would only

contain planes, for then the intersections would closer resemble a straight cut for a smaller

mesh size. However, it is likely that the general error would be larger in that case. It seems

plausible that the error is larger for the ellipse and further larger for the flower, since these

are expected to constitute more difficult geometries, and we also observe the same trend for

CutFEM. The nearly static trend of the energy sub-norm error is not surprising given the low

convergence order of the L2-error. Looking at fig. 5.5, we see that some elements are better

approximated, whilst some are worse. Thus, the peaking values of the worse regions must be

contributing severely to the error.

It was shown in the nodal study in fig. 5.6 and the basis function study for different orders

in fig. 5.7-5.8 that the majority of the contributions to the error stems from the elements which

have minor intersection, and especially the nodes outside of the intersection. This can be further

discussed by looking at the corresponding basis function contribution at these nodes. For a

one-dimensional example of the basis function, we have the C 1-spline basis functions in R1

(see fig. 2.3). An example element with small intersection and an illustration of an approximate

corresponding spline basis function contribution of node 1 is displayed in fig. 6.1. Node 1 is the

furthest from the intersection and has therefore little contribution, which is illustrated by the

red fill to x = δ under the spline function in the plot.

The spline function between 0 and δ can be approximated as ϕ1 ≈ x2 for node 1. Recalling

the mass matrix entries on an element K as expressed in eq. 2.48, we may thus approximate the

contribution to node 1

M K
11 =

∫
K∩Ω

ϕ1ϕ1d xd y ≈
∫ δ

0
x4d x = δ5

5
(6.2)

which rapidly approaches zero when δ → 0. It is for this reason the contribution at node

1 becomes difficult to approximate, as well as the matrix entries corresponding to M K
1i for

i = 2, ..,9.

Following from above discussion, a potential remedy may be proposed. Since the error

weights were applied element-wise in this study, certain nodes (such as node 1) were not

especially focused upon and instead the 45 values in the output were treated equally despite
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(a) Element with minor intersection (La-
grange element used for graphical illustra-
tion).

x

(b) Spline contribution of basis function for
node 1 along one coordinate axis. 0 < δ<< 1

Figure 6.1: Element with minor intersection and an one dimensional illustration of an approxi-
mate corresponding spline basis function contribution for node 1.

the error contribution of node 1 being remarkably smaller than that of the other nodes (due to

its lower magnitude). One method of solving this is to apply error weights on all 45N values

(for N denotes the number of samples). To do this, each mass matrix entry has to be weighted

individually in relation to its basis function contribution. Once again recalling the mass matrix

expression in eq. 2.48 and applying the Cauchy-Schwarz inequality, we get an upper bound

M K
i j =

∫
K∩Ω

ϕiϕ j d xd y ≤
(∫

K∩Ω
ϕi d xd y

)1/2 (∫
K∩Ω

ϕ j d xd y

)1/2

(6.3)

thus the mass matrix values would be bounded below one for the following division

M K
i j(∫

K∩Ωϕi d xd y
∫

K∩Ωϕ j d xd y
)1/2

≤ 1 (6.4)

which would impose a relative measure on the corresponding nodal MSE. Thus, the nodal

weights can be determined according to

Wi j = 1

wi w j
= 1(∫

K∩Ωϕi d xd y
∫

K∩Ωϕ j d xd y
)1/2

(6.5)

for W ∈ RN×45 (after symmetries in the mass matrix and weights have been removed), and

applied on the data set for each element.

A quick comparison between the new and the old weights can be performed for the three

relevant cases; when i = j = 1, when i = 1, j 6= 1, and when i 6= 1, j 6= 1. Following the same

reasoning as above, we can compute an approximate measure of proportion. Doing so, we first

approximate the mass matrix entries as in 6.2, yet we integrate over values up to 1 to to get the

different spline situations as is present for different nodes at the element. This yields M K
1 j ∝ δ3

and M K
i j ∝ 1 for i , j 6= 1. We can then compute the new weights using eq. 6.5.

Above reasoning yields the results proportional to the values in tab. 6.1 which carries onto

the MSE. The suggested weights thus indicate that the remarkably low values related to node
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1 will be somewhat dampened whilst other values will not be affected. We see that the effect

is greatest upon M K
11, but there is also slightly smaller effect on the matrix entries related to

node 1, M K
1, j 6=1. In fig. 5.6 we noticed that the largest error stemmed from M K

11 whilst M1, j 6=1

also contributed with some difficulties. These errors would likely be reduced proportionally,

since the new weights offer stability primarily for these two cases.

Table 6.1: Proportionality between weighted local mass matrix entries and element intersection
as illustrated in fig. 6.1 for two types of weights.

Area weights Basis weights
W ·M K

11 ∝ δ4 ∝ δ2

W ·M K
1, j 6=1 ∝ δ2 ∝ δ

W ·M K
i 6=1, j 6=1 ∝ 1 ∝ 1

6.3 Comments on the time consumption

We see that the computational speed is increased for both methods in comparison to CutFEM

by looking at fig. 5.9. This indicates that both networks can be used individually depending on

what task is to be performed. It also suggest that a combination of the networks will reduce the

time significantly, in comparison to CutFEM.

The difference is especially prominent for Rnet which shows that the removal of the inner

quadrature loop over the cut elements has high impact on the speed of the method. Cnet

is not as fast as the Rnet algorithm, however, this may stem from some of the required sub-

discretisations which had to be included in the matrix assembly for the script to be compatible

with other, already existing scripts. Therefore, the time consumption can likely be further

reduced by optimising some of the existing scripts to better suit the new method. It has been

mentioned previously that a repeated discretisation of the domain is indeed time consuming,

which partially comes into effect in the current Cnet method.

6.4 Conclusion

This study was performed with the aim of reducing the computational time for CutFEM by

replacing quadrature on cut elements with two neural networks; one classification network for

identifying the cut elements, and one regression network to approximate the element matrix

contributions of the cut elements. The main findings are:

• The time consumption for the matrix assembly showed a significant decrease for the

modified CutFEM in comparison to the conventional method.

• The classification network showed a 100% success rate for two elementary domains,

although it displayed some difficulties for a domain with a non-trivial geometry represen-

tation.
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• The regression network showed promising results for elements with a sufficient intersec-

tion of the domain, however, elements with minor intersection contributed majorly to the

error. This was deduced to stem from the nodal contributions furthest from the domain

intersection. A modification of the error weights as used in the training is proposed as a

potential remedy to this instability.

While there are some loose ends that need to be addressed, using a network to replace com-

plicated and time-consuming quadrature rules for cut elements shows great promise for the

right applications - where computational speed is essential and some loss of accuracy can be

tolerated.
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COMPLIMENTARY RESULTS AND REFERENCES

A.1 Classification on flower domain

In fig. A.1 we see the classification of the elements on the flower geometry as approximated by

Cnet.
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Figure A.1: Element classification of Cnet with different mesh sizes on the flower geometry.
White elements are classified as exterior, yellow as cut and green as interior.

61



APPENDIX A. COMPLIMENTARY RESULTS AND REFERENCES

In fig. A.2 we see the corresponding classification as performed using quadrature. The

misclassifications of Cnet appear to only occur for the innermost elements where the circles

coincide.
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Figure A.2: Element classification using quadrature with different mesh sizes on the flower
geometry. White elements are classified as exterior, yellow as cut and green as interior.
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A.2 Analytical references

Fig. A.3 displays the analytical solution of eq. 4.6 on an ellipse of mesh size h = 0.1.

Figure A.3: Analytical solution eq. 4.6 on an ellipse with mesh size h = 0.1.

Fig. A.4 displays the analytical solution eq. 4.6 on the circle, ellipse and flower with a mesh

size of h = 0.025.

(a) Circle. (b) Ellipse.

(c) Flower.

Figure A.4: Analytical solution eq. 4.6 on three geometries with mesh size h = 0.025.

63


	Introduction
	Background
	Outline of thesis

	Finite element methods and how they make the cut
	Introduction of a model problem
	Some introductory notation
	An abstract variational formulation

	The background mesh
	The use of C1-splines
	Mapping to the reference element

	A finite element formulation of the model problem
	The element matrices
	Ghost penalty
	A priori error estimate for CutFEM


	Thinking of neural networks
	The essentials of a CutFEM quadrature rule
	Production of the data set
	Circular geometries
	Planar geometries

	Filtering of the data
	Normalisation of level-set values
	Scaling to reference element
	Permutation of level set values
	Permutation of mass matrix

	Architecture of the networks

	Method and Implementation
	Producing and filtering the data set
	Constructing the networks
	Optimisation of Cnet
	Optimisation of Rnet

	Performance test
	Algorithmic implementation
	Benchmark domains
	Measurement of errors


	Results
	Classification results
	Regression results
	Effect of variations
	Error convergence and analysis

	Time consumption

	Discussion
	Evaluation of Cnet
	Evaluation of Rnet
	Remarks on the regression
	Error analysis of Rnet and model problem

	Comments on the time consumption
	Conclusion

	Bibliography
	Complimentary results and references
	Classification on flower domain
	Analytical references


