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Abstract

The importance of feature selection for statistical and machine learning models derives
from their explainability and the ability to explore new relationships, leading to new
discoveries. Straightforward feature selection methods measure the dependencies be-
tween the potential features and the response variable. This thesis tries to study the
selection of features according to a maximal statistical dependency criterion based on
generalized Pearson’s correlation coefficients, e.g., Wijayatunga’s coefficient. I present
a framework for feature selection based on these coefficients for high dimensional fea-
ture variables. The results are compared to the ones obtained by applying an elastic
net regression (for high-dimensional data). The generalized Pearson’s correlation coef-
ficient is a metric-based measure where the metric is Hellinger distance. The metric is
considered as the distance between probability distributions. The Wijayatunga’s coef-
ficient is originally proposed for the discrete case; here, we generalize it for continuous
variables by discretization and kernelization. It is interesting to see how discretization
work as we discretize the bins finer. The study employs both synthetic and real-world
data to illustrate the validity and power of this feature selection process. Moreover, a
new method of normalization for mutual information is included. The results show that
both measures have considerable potential in detecting associations. The feature selec-
tion experiment shows that elastic net regression is superior to our proposed method;
nevertheless, more investigation could be done regarding this subject.



Popular scientific summary

Two random variables could be independent when the values of one variable are not
related to those of the other variable’s. If they are related mostly, then they are statis-
tically dependent. Therefore, studying the underlying relationship structure of set of
variables requires detecting the dependence among the variable using a valid statistical
dependence measures. A good measure should be sensitive to the underlying relation.
One of the two aims of this thesis is to present a computational proof for two depen-
dence measure.
The second aim is to apply one of the discussed measure in the process of removing
redundant variables from big sets of features. The process of removing features from a
set is known as feature selection. The selection is needed to explore new relationships.
Straightforward feature selection methods measure the statistical dependence between
the features and the response variable. Various dependence measures are proposed for
feature selection in machine learning and statistical modeling; this includes correlation
measures such as Pearson’s and Spearman’s. The Pearson’s correlation works perfectly
for linear relationships, while Spearman’s correlation performs better for non-linear but
monotonic relationships.
This thesis tries to study the selection of the features based on the generalized Pear-
son’s correlation coefficient (Wijayatunga’s coefficient). The Wijayatunga’s coefficient
is a metric-based dependency measure employing a Hellinger distance. The Hellinger
distance is a measure that quantifies the similarity between two probability distribu-
tions. The Wijayatunga’s coefficient is proposed initially for the discrete case. Here,
we generalize it for continuous variables. Moreover, a new normalization method for
mutual information is presented and tested.
Moreover, comparisons with other measures are conducted. The study employs both
synthetic and real-world data to illustrate the validity and power of these new measures.
The results show that the new coefficients, namely Wijayatunga’s coefficient and nor-
malized mutual information, have high detection properties for non-linear associations,
while the results of the feature selection procedure could be investigated further.



sammanfattning

Vikten av funktionsval för statistiska modeller och maskininlärnings-modeller härrör
från deras förklaringsbarhet och förmågan att utforska nya relationer, vilket leder
till nya upptäckter. Enkla funktionsvalsmetoder mäter beroenden mellan funktions-
och svarsvariabler. Denna uppsats undersöker funktionsval enligt ett maximalt statis-
tiskt beroendekriterium baserat på generaliserade Pearsons korrelationskoefficienter,
t.ex. Wijayatungas koefficient. Denna studie presenterar ett ramverk för funktionsval
baserat på Wijayatungas koefficient mellan en högdimensionell slumpvariabel X och en
svarsvariabel Y. Resultaten jämförs med de som erhålls genom att tillämpa en elastisk
nettoreglering. Den generaliserade Pearsons korrelationskoefficient är ett är ett metriskt
M-baserat beroende mått som använder Hellinger-avståndsmätning. Måttet kan be-
traktas som avståndet mellan sannolikhetsfördelningar. Wijayatungas koefficient är ur-
sprungligen föreslagen för det diskreta fallet; här generaliserar vi det för kontinuerliga
variabler genom diskretisering och kernelisering. Det är intressant att se hur diskretis-
ering fungerar när vi diskretiserar facken finare. uppsatsen använder både syntetiska
och verkliga data för att illustrera giltigheten och kraften i denna funktionsvalsprocess.
Dessutom ingår en ny metod för normalisering av ömsesidig information. Resultaten
visar att båda åtgärderna har stor potential för att upptäcka samband. Funktionsval-
sexperimentet visar att elastiskt nät är överlägset vår föreslagna metod; Ändå skulle
mer undersökningar kunna göras i detta ämne.
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1 Introduction.
According to (Borovkov, 1998), two random variables, say, X and Y, can either be dependent
when the values of one variable are associated with those of the other, otherwise the variables
are independent. The dependence can be deterministic when the variable X is a function of
the variable Y or other way around, though the dependence need not be always deterministic.
In the latter case, we say that it is a statistical dependence.
In order to dive into the subject of statistical dependence, we need to distinguish between in-
dependent and dependent random variables formally. Hastings (1997) defines independence
among random variables as follow: The set of random variables, say, X = {X1, ...., Xn} said
to be mutually independent if, for any sub-collection of them, Xa = {Xi, ..., Xk} where,
Xa ⊆ X, we have that

P [Xi ∈ Xi, ..., Xk ∈ Xk] = P [Xi ∈ Xi, ] . . . P [Xk ∈ Xk]

where Xj is the state space of Xj . Random variables that don’t satisfy this relationship
are said to be dependent (Hastings, 1997). To put it in words, a given set of random
variables are mutually independent if their joint probability density function is the product
of the respective marginal probability density functions. Similarly, this is the caase for the
probability mass function for the discrete random variables (Hastings, 1997; Wijayatunga,
2016).
Studying the underlying structure of a set of random variables requires detecting the depen-
dence among them using a valid statistical dependence measure. A valid measure should be
sensitive to the underlying relationship (Martínez-Gómez, Richards, and Richards, 2014).
Moreover, evaluating and comparing different dependence measures with each other requires
considering what reasonable and natural axioms should hold for any measure of dependence
(Móri and Székely, 2018).
Even though Rényi (1959) developed seven important properties/axioms for a valid depen-
dence measure, Móri and Székely (2018) reduced the number to four axioms. According
to Móri and Székely (2018), for a nonempty set S of pairs of generic random variables X

and Y taking values either in Euclidean space or in real, separable Hilbert spaces H, then
Corr(X,Y ) : S → [0; 1] is called a dependence measure on S = X × Y if the following four
axioms are held:

1. Corr(X,Y ) = 0 if and only if X and Y are independent.

2. Corr(X,Y ) is invariant with respect to all similarity transformations of H; that is,
Corr(A ∗X,B ∗ Y ) = Corr(X,Y )where A,B are similarity transformations of H.

3. Corr(X,Y ) = 1 if and only if Y = f(X) with probability 1, where f is a similarity
transformation of H.

4. Corr(X,Y ) is continuous; that is, if (Xn, Yn) ∈ S where n = 1, 2, ... such that for some
positive constant K we have E(|(Xn|2 + |(Yn|2 ≤ K) and (Xn, Yn) converges weakly
to (X,Y ) then Corr(Xn, Yn) → Corr(X,Y ).
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Similarity of H is defined as a bijection (1–1 correspondence) from H onto itself that multi-
plies all distances by the same positive real number (scale). Note that similarity transfor-
mation is simply change of measurement.
This thesis is a computational study of a new dependence measure, which was introduced
in Wijayatunga (2016). This measure is similar to the one proposed in (Granger, Maa-
soumi and Racine, 2004). The differences between them are discussed later. Furthermore,
following Wijayatunga (2016), we introduce a new approach for normalizing the mutual
information measure. The new method of normalization seems to be more powerful in
detecting associations in comparison to other mutual information based measures.
The thesis is organized as follows. Section 2 covers the previous dependence measures and
how they detect dependence. Section 3 is dedicated to the new measure that is based on
probability distance called the Hellinger distance. After that, we combine the knowledge
provided in Sections 2 and 3 to introduce a new normalized mutual information measure. At
the end of Section 2, a small review of Kernel density estimation is provided, which is a vital
part of estimating the Wijayatunga coefficient for continuous cases. Section 4 is devoted to
a simulation study. Section 5 introduces elastic net regularization; moreover, a real-life data
set is included where a comparison between the performance of elastic net and one of the
new measures are done. The new measures select features in the data set using backward
elimination algorithm. Finally, a section of discussion and conclusions concludes the thesis.

2 Previous dependence measure
One can describe correlation as the degree of association between two variables. Generally
speaking, the study of interdependence brings the subject of investigating the correlation.
Several different kinds of correlation coefficients handle the special characteristics of the
variables such as dichotomies, and other measurements of association, deal with nominal
and ordinal variables (Asuero, Sayago and González, 2006). In this section, we cover some
of the most prominent correlation measures.

2.1 Pearson’s Product-Moment Correlation

A random variable X can be reduced to a standardized variable through linear transforma-
tion where

X
′
=

X − X̄√
Var(X)

The Pearson’s correlation coefficient ρ of two random variables X and Y is calculated using
the formula ρ(X,Y ) = E(X

′
, Y

′
)(Borovkov, 1998). Let’s build the aforementioned coeffi-

cient ρ(X,Y ) from scratch; first, we define covariance as the expected value of the product
of the differences of each random variable from their expected values (Hastings, 1997).

X,Y = E[(X − µX)(Y − µY )]

The ρ is defined as covariance normalization (Hastings, 1997); the following equation presents
the Pearson correlation coefficient.
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ρ(X,Y ) = E
[(

X − µX

σX

)(
Y − µY

σY

)]
The different formulas in which Pearson’s coefficient could be presented suggest that there
are various ways to understand the coefficient (Rodgers and Nicewander, 1988). The geo-
metric representation of ρ is of a great importance for this thesis.
Pearson’s coefficient describes perfectly the linear relationship between two variables, as we
can see in figure 1 where the coefficient is able to detect the full linearity dependence. At
the same time, this accuracy in describing linearity has no power in explaining any other
type of correlations. The ρ provides no information about the underlying relationship if the
two variables are non-linearly correlated.

Linear Relationship

Figure 1: Small simulated sample with number of observation n =100

Calculating ρ requires assumptions regarding the normality of the distribution of the vari-
ables (Hastings, 1997; Myers and Well, 2003). Those disadvantages can be overcome by
using a non-parametric measure of rank correlation, namely, Spearman’s rank correlation
coefficient r. It’s calculated as follows, let’s sort the observations of a random variable X
ascendingly. The second step is to rank those observations; then, let’s rank the observations
of the Y variables accordingly. The difference in ranks for each pair represents the main
component of the coefficient. The formula for the coefficient is

rs = 1− 6Σd2i
n(n2 − 1)

where di is the difference in rank between Xi and Yi and n is the number of observations.
Spearman’s rank coefficient r performs better than ρ in case on monotonic non-linear rela-
tionships. Furthermore, as opposed to Pearson’s correlation coefficient, Spearman’s coeffi-
cient can also be used with ordinal variables. A drawback of Spearman’s is its limitation
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when dealing with a non-monotonic relationship(Myers and Well, 2003). Replacing Pear-
son’s coefficient Spearman’s coefficients could solve some of Pearson’s drawbacks, yet, the
rank coefficient requires monotonic associations (Myers and Well, 2003). Figure 2 illustrates
the power and the shortcomings of ρ.

Pearson Correlation

Figure 2: An illustration of the correlation coefficient for different type of relationships.
Pearson’s correlation coefficient is reported above each scatter-plot
This figure is created using an altered version of the code in (Wikimedia Commons, 2022)

2.2 Distance Correlation

Distance correlation measures the dependence between random vectors analogous to the
product-moment correlation ρ; similarly, distance covariance is equivalent to product-moment
covariance. These distance measurements are based on certain Euclidean distances between
the sample elements rather than the sample moments(Székely, Rizzo, and Bakirov, 2007).
There are two main fundamental aspects where the distance correlation generalizes the cor-
relation for all distributions with finite first moments:

1- R(X,Y ) is defined for X and Y in arbitrary dimensions.
2- R(X,Y ) = 0 characterizes independence of X and Y .

Distance correlation is a metric, which means it satisfies the properties of the true dependence
measure. Moreover, in a case of bivariate correlation, R is a function of ρ and R(X,Y ) ≤
|ρ(X,Y )|. In the bivariate normal case, R is a function of ρ and R(X,Y ) ≤ |ρ(X,Y )| with
equality when ρ = ±1.
The distance covariance performs significantly better against the non-monotone dependen-
cies; at the same time, it holds good power performance in the multivariate normal case
compared to the parametric likelihood ratio test(Lyons, 2013). Furthermore, distance cor-
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relation can replace the Pearson correlation without requiring normality assumptions to
validate the inference. The figure 3 shows how much better distance correlation performs
compared to Pearson’s ρ.

Distance correlation

Figure 3: We see that the distance correlation is detecting the existing of a relationship more
accurately than ρ. The values above each shape reports the distance correlation coefficient.
This figure is created using the an altered version of the code in (Wikimedia Commons,
2022)

The distance covariance between random vectors X and Y with finite first moments is the
non-negative number defined as:

dCoυ2(X,Y ) =
1

n2

n∑
i=1

n∑
j=1

D(Xi, Xj).D(Yi, Yj)

In the equation above, we replace the inner product of two centered vectors used in Pearson
covariance with centered Euclidean distances. Similarly, we define the variance as follow:

dV ar2(x) = dCoυ2(X,X) =
1

n2

n∑
i=1

D(Xi, Xj)

dV ar2(Y ) = dCoυ2(Y, Y ) =
1

n2

n∑
i=1

D(Yi, Yj)

The distance correlation is calculated using an equation that mimics Pearson’s correlation
coefficient equation.

dCor(X,Y ) =
dCoυ(X,X)√

dV ar(x)dV ar(Y )
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What is left to be done is to calculate an (N ∗N) distance matrices for each random vector;
then, those matrices need to be double centered.

Xi,j = |xi − xj | X̄i =
1

n

n∑
i=1

xi.

X̄j =
1

n

n∑
j=1

xi. X̄i,j =
1

n2

n∑
j=1

1

n

n∑
i=1

xi,j

D(Xi, Xj) = Xi,j − X̄i − X̄j + X̄i,j

The Distance correlation measurement suffers from a few drawbacks; the most obvious flaw
is the computational cost, where the basic algorithm to compute the test statistic is of order
O(n2) in the sample size as opposed to O(n) for product-moment correlation. Moreover, the
test statistic is not distribution-free, even asymptotically. The distribution under the null
depends on the underlying distribution of X and Y even as the sample size tends to infinity.
Indeed, the distributions are uniformly bounded by a χ2 distribution, which allows for the
calculation of a conservative critical value.

2.3 Entropy and Mutual information

We define the information regarding the occurrence of an event using the probability of its
occurrence. This “self-information” is inversely proportional to the probability of occurrence.
Low probability event has high information, i.e., it is surprising. While a high probability
event has low information, i.e., we are not surprised if this event happens. (Borovkov, 1998)
the information in an event A can be calculated as follow:

I(A) = − logP (A)

In his groundbreaking paper “A Mathematical Theory of Communication” in 1948, Claude
Shannon presented the concept of entropy. According to the information theory, entropy
measures the average amount of information needed to represent a possible outcome drawn
from a random variable’s probability distribution. For a discrete random variable X with
the state space X = {x1, ..., xn} and probability mass function p(X = x) = p(x), we define
the entropy as follows:

η(X) = −Σn
i=1p(xi) logb p(xi)

Where b represents the base of the logarithm used. Common values of b are 2, Euler’s
number e, and 10, and the corresponding units of entropy are the bits for b = 2, nats for b
= e, and bans for b = 10. We can define the conditional entropy of two discrete variables
X and Y , which take values x1,…..xk and y1,…..yl respectively as follow:

η(X|Y ) = −Σi,jp(xi, yj) log p(xi, yj)

p(yj)

where p(x, y) represents the joint probability distribution, while p(y) is the preserved marginal
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of Y and similary for p(x).

The mutual information (MI) of two random variables measures the mutual dependence
between the two random variables. The mutual information is linked to the entropy of
random variables mentioned above. The mutual information quantifies the deviance between
the joint probability distribution of two random variables, pXY (x, y) and the product of their
marginals pX(x) and pY (y), i.e., the kullback-Leibler deviance between the dependence and
independence (Wijayatunga 2016). This concept is connected to our new coefficient, which
will be explained later in this Chapter. We calculate the mutual information between two
discrete random variables X and Y as a double sum.

MI(X;Y ) =
∑
y∈Y

∑
x∈X

pXY (x, y) log
(

pXY (x, y)

PX(x)PY (y)

)
Similarly, we replace the sums with integrals when dealing with continuous random variables.

MI(X;Y ) =

∫
y∈Y

∫
x∈X

pXY (x, y) log
(

pXY (x, y)

pX(x) pY (y)

)
As mentioned above, we can represent this measure in terms of entropy:

MI(X;Y ) = η(X)− η(X|Y )

MI(X;Y ) = η(Y )− η(Y |X)

Therefore, it is symmetric similar to Pearson’s, Spearman’s and distance correlation. The
entropy measure and the mutual information fail to satisfy the metric conditions as they
violate either the symmetry property or the triangle inequality property, or both. Those
measures are rather measures of divergences but metric distances. (Granger, Maasoumi and
Racine, 2004).

2.3.1 A Normalized Mutual Information

Overcoming the metric issue mentioned above requires finding a way to normalize the mutual
information to bound into the closed interval [0, 1]. There are many suggested normalization
approaches. Proficiency is an information-theoretic measure developed by White, Steingold
and Fournelle in 2004. It is a scalar measure, based on mutual information and entropy.

CXY =
MI(X;Y )

η(Y )

CY X =
MI(X;Y )

η(X)

This metric has a shortcoming due to its being non-symmetrical nature where CXY = CY X

could be violated. A replacement is a symmetrical measure. there different suggested
measures. The symmetric uncertainty is a measure developed by Witten and Frank in 2005.

U(X,Y ) = 2
MI(X;Y )

η(X)η(Y )
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A new approach to normalization will be discussed later on.

2.4 Maximal Information Coefficient

Before moving to the new coefficient, which is the goal of this thesis, we must mention the
maximal information coefficient (MIC). The MIC is a maximal information-based nonpara-
metric exploratory statistic that identifies and classifies relationships (Reshef et al., 2011).
MIC estimates the relationship between two variables by finding the grid that maximize the
resolution on the scatter-plot of those two variables (Reshef et al., 2011). The normalized
largest possible mutual information achievable by any x-by-y grid builds up a matrix M .
The statistic MIC is the maximum value in M(Reshef et al., 2011).

MIC(X,Y ) = max
nx×ny

MInx×ny
(X;Y )

log(min(nx, ny))

nx is the number of bins on x-axis and similarly for ny. Therefore nx × ny is a grid over
the plotted data so that the mutual information under the grid nx × ny is represented
by MIny×ny

(X;Y ). The normalization of the maximum value of MInx×ny
(X;Y ) over all

nx × ny is a result of the following an inequality

0 ≤ MInx×ny (X;Y ) ≤ min(nx, ny)

That is, MIC is the normalized maximal mutual information over all possible grids of the
data.

3 New measures of degree of dependence
The Pearson coefficient is simply a normalized distance between the joint probability distri-
bution of two variables and its distribution when the independence of two variables is as-
sumed, where the normalizing constant is the geometric mean of the two maximal distances.
The Pearson coefficient uses a Euclidean-type distance as the distance (Wijayatunga, 2016).
This has caused that it can only measure linear associations. Those distributions could be
seen as contingency tables representing the frequencies of values for each variable (Fienberg
and Gilbert, 1970).
A new dependence measure that is proposed in Wijayatunga (2016) generalizes the Pear-
son’s coefficient using a more general metric distance, namely, Hellinger distance. It utilizes
the idea of the distance between a given joint probability distribution of two variables and
their joint probability distribution when their independence is assumed. This distance is
normalized by the geometric mean of similar distances related to all possible maximal depen-
dencies while preserving only one of the marginals at each time. Many types of dependencies
emerge in the case of multinary (discrete) variables; those types of dependencies are not easy
to allocate using only a single component or a weighted average of differences. Suppose the
weighted average difference is a Euclidean type distance, which can measure only linear
dependencies. The inadequacy of those measurements pushes us to find a more suitable
distance to measure any non-linear dependencies.
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Wijayatunga (2016) proposed using Hellinger metric distance as a distance measure. There-
fore, it is argued that it can measure the degree of any type of dependence between two
discrete variables. The continuous variables can be discretized appropriately first to mea-
sure their dependence. Note that in the discretization process there can be some information
loss that should be minimized. However, even though the coefficient is based on a metric
distance, it is an open problem to show that resulting coefficient satisfies the metric prop-
erties.

3.1 Hellinger Distance

Hellinger is an f -divergence that quantifies the similarity between two probability distri-
butions. Moreover, Hellinger’s type of distance is an L2 type of distance. The Hellinger
distance is defined as the Hellinger integral (Van der Vaart, 2007). Integral is replaced by
the summation for discrete variables. Let P and Q denote two discrete probability measures
that their Hellinger distance is defined as

h(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2

where p is the probability mass function of the probability measure P such that
∑

i pi = 1,

and similarly for q. This is directly related to the Euclidean norm of the difference of the
square root vectors

h(P,Q) =
1√
2
∥ √

pi −
√
qi ∥2

The Hellinger distance forms a bounded metric on the space of probability distributions for
given set of random variables. The maximum distance is equal to 1, which is attainable
when P assigns probability zero to every set to which Q assigns a positive probability and
vice versa(Van der Vaart, 2007). The Hellinger distance is related to the Bhattacharyya
coefficient BC(P,Q) as it can be defined as

h(P,Q) =
√

1−BC(P,Q)

Hellinger distance satisfies the following properties:
1. 0 ≤ h(P,Q) ≤ 1

2. h(P,Q) = 1 if and only if the measures P and Q are mutually singular, i.e. They share
no space.
3. h(P,Q) = 0if and only if P = Q ,i.e they shape the same curve.
4. h(P,Q) = h(P (x+ α), Q(x+ α)) for any constant.
5. h(P,Q) = h(P (x ∗ α), Q(x ∗ α)) for any constant α ̸= 0.

The last two are called the linear invariance properties of the probability metric (Wijay-
atunga, 2016).
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3.2 Wijayatunga coefficient

For two discrete variables, X and Y , with joint probability measure P the Hellinger distance
is metric in their joint probability simplex, i.e., follows the properties mentioned above; a
measure of dependency between those variables that is based on Hellinger distance is defined
as

ρh(X,Y ) =
h(P I , P )∏

PX∈PX
max

[h(P I , PX)]
1

|PX
max|

∏
PY ∈PY

max
h(P I , PY )]

1

|PY
max|

(1)

where P is the joint probability measure of X and Y, P I is the joint probability measure
when the independence of X and Y is assumed, and PX is the joint probability measure
when maximal dependence is assumed while the marginal of X is preserved, similarly, for
PY , PX

max is the set of all probability measures of maximal dependence of X and Y while
marginal of X is preserved, and similarly for PY

max. Here, |A| denotes the cardinality of the
set A. Finally, h(P ;Q) is the (Hellinger) distance metric between two probability measures
P and Q.

Wijayatunga coefficient

Figure 4: An illustration of the performance of Wijayatunga coefficient in the continuous
case for different type of relationships. The function used here employs kernel estimation
to calculate the joint probability distribution The coefficient values is reported above each
scatter-plot This figure is created using the an altered version of the code in (Wikimedia
Commons, 2022)

Wijayatunga generalizes the coefficient for two continuous variables in his discussion on the
paper ”Sparse graphs using exchangeable random measures” by Caron, F. and Fox, E. in
2017. He states that Hellinger distance requires a normalizing constant of 1. The result is
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a measure defines as follows:

ρh(X,Y ) =

(
1

2

∫∫
x,y

[√
f(x, y)−

√
f(x)f(y)

]2
dx dy

) 1
2

(2)

where fx,y represents the joint probability density function, furthermore, fx and fy are the
marginals probability densities.

This function is similar to the one defined in (Granger, Maasoumi and Racine, 2004). The
difference can be spotted easily. In the paper mentioned,(Granger, Maasoumi and Racine,
2004) define their measurement as generalization of Bhattacharya–Matusita–Hellinger mea-
sure of dependence given by the function:

Sp(X,Y ) =
1

2

∫∫
x,y

[√
f(x, y)−

√
f(x)f(y)

]2
dx dy

This is a metric entropy measure that satisfies distance metric properties. It performs well
with non-linear relationships. Both measures aim to estimate the divergence of the joint
distribution of two variables from the product of their marginals.

3.3 A new approach for normalization of the mutual information

The Wijayatunga coefficient uses the Hellinger distance to examine the statistical separation
of two joint probability distributions, one representing the dependence and the other repre-
senting the independence. Then, it uses similar type of distance to normalize the measure
by considering the space between the product of marginals and the joint probability distri-
bution that portrays maximal dependence while preserving the marginal of X or Y . Using
the same analogy, for two discrete random variables X and Y , we can write a normalized
version of their mutual information as follows:

NMI(X,Y ) =
MI(X;Y )∏

PX∈PX
max

[MIX(X;Y )]
1

|PX
max|

∏
PY ∈PY

max
MIY (X;Y )]

1

|PY
max|

(3)

where MIX(X;Y ) is the mutual information between XY calculated when joint probability
distribution portrays maximal dependence while preserving the marginal of X and simi-
larly for MIY (X;Y ). As mentioned before, mutual information quantifies the divergence
of joint probability distribution and the product of the marginals of X and Y . If a similar
divergence between the marginal product and the ”jpd” that portrays maximal dependence
while preserving the marginal of X or Y is calculated, those divergences could be used to
normalize the mutual information.
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Normalized Mutual Information

Figure 5: An illustration of the building blocks of the suggested normalized mutual infor-
mation.
Upper left grid is the joint probability distribution. Lower left grid is the product of the
marginals of X and Y .
Upper right is the joint probability distribution that portrays maximal dependence while
preserving the marginal of X
Lower right is the joint probability distribution that portrays maximal dependence while
preserving the marginal of Y
Every mutual information in the figure measure the divergence from the product of the
marginals.

Figure 5 shows how the different ”jpd”s interact; note that there could be more than one
PX(X;Y ) as well as PY (X;Y ). As shown in figure 5, it is easy to see that this coefficient
is computational rather than analytical, i.e., in order to calculate it a computer code is
necessary.This is the case for MIC too. Notably, most of the estimation tasks in statistics
are increasingly becoming computation nowadays, e.g., high-dimensional regression, etc.

3.4 Kernel density estimation

Firstly, we use a histogram to represent the probability distribution of a random variable
through approximation of the frequency in each bin. Bins are data structures that allow
efficient region queries. Every time a value occurs in a specific bin, the bin’s frequency
increments by one (Jones, Marron and Sheather, 1996). A bi-dimension histogram is a
generalization of the histogram where we expand the bins to a grid of cells; each cell has a
size of bandwidthX× bandwidthY . The bandwidth is a real positive value, which describes
the smoothness of a density plot. Furthermore, this number is a free parameter, in which
its value cannot be predicted precisely and needs to be estimated; this gives the bandwidth

12



a strong influence on the results of the estimations (Kroese, Taimre and Botev, 2011). The
frequency in each grid cell is the number of data points that their x and y coordinates fall in
that cell. Removing the binning grid and estimating the joint probability density function
is the goal of kernel density estimation.
The density estimation is the construction of the probability density function of a population
using an observed sample (Rosenblatt, 1956). The goal here is to infer the probability density
function using a finite sample of data. One of the methods to estimate density is to use
the kernel function. Kernel density estimation is a non-parametric way to approximate the
probability density function of a random variable (Rosenblatt, 1956). It is a smoothing
technique that generalizes a histogram estimation with more robust statistical properties
(Kroese, Taimre and Botev, 2011).
Let {x1, ..., xn} be a sample of d-variate observed data drawn from a common distribution
described by the density function f . The kernel density estimate is defined to be

f̂H(X) =
1

n

n∑
i=1

KH(x− xi)

where
1- x = x1, x2, ..., x

T
d , xi = xi1, xi2, ..., x

T
id, i = 1, 2, ....n are d-vectors.

2- H is the bandwidth (or smoothing) d×d matrix which is symmetric and positive definite.
3- K is the kernel function which is symmetric multivariate density.
4- KH(x) = |H| − 1/2K(H

− 1/2x)

The bandwidth choice is very crucial in creating the kernel estimation. A poor choice of the
bandwidth might lead to undesired transformations of the density plot:
1- A small bandwidth leads to under smoothing.
2- A vast bandwidth leads to over smoothing.

There are good reasons to expect that this approximation would be poor. First comes
the sensitivity of the kernel-based tests to the choice of bandwidth. Moreover, the asymp-
totic variance is very poorly estimated in the case of the Hellinger and mutual information
measures (Skaug and Tjøstheim 1993). In this study, two different bandwidth selectors are
used, the first one is Silverman’s rule of thumb (Silverman, 1998), the second one utilizes the
SAMSE pilot bandwidths (Duong and Hazelton, 2003; Chacón and Duong, 2009). Bivariate
bandwidth selection is a complex problem; the complexity can be overcome by enforcing
some constraints on H. These constraints come at the expense of flexibility. The choice of
diagonal bandwidth could be adequate in some cases; in other cases, it is more informative
to select a full-bandwidth matrix (Duong and Hazelton, 2003).

4 Simulations in R
The comparison of different measures of dependence requires testing them under different
scenarios. One way to do that is through simulations. An extensive simulation are per-
formed. R programming language has the tools necessary to facilitate the simulations. Two
main aspects are tested, the size of the sample and the effect of the Gaussian noise.
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4.1 Dependence measurements

This thesis aims to examine the performance of the Wijayatunga coefficient and the nor-
malized mutual information in various cases and models. There are no built-in functions
for this coefficient; therefore, new functions are written in R. Four different versions of the
coefficient are included.
The first one is the representation of the measurement for discrete variables. It produces
the measure in equation 1. It can be used for continuous cases due to the inclusion of a
discretization method. Across this paper, the discretization is performed using the func-
tion discretize from R package infotheo, which uses the equal width binning algorithm.
Moreover, the number of bins is equal to 3

√
n where n is the number of observations. The

function is named W.D.
The second one represents the Wijayatunga coefficient for the continuous variables repre-
sented in equation 2. It utilizes the idea of a two-dimensional histogram. We can easily
show that this function results from binning the data into fine bins. The function is named
W.C.H. The function works by assigning each observation to a square made by the inter-
section of the intervals on the X-axis and Y -axis. This differs from the kernel functions,
where the kernel tries to smooth the edges of the square for more accuracy in allocating the
observations.

The third function serves the same purpose as the previous one. It differs because of the
usage of a self-written kernel density estimation, The function is namedW.C.KDE. The func-
tion works by estimating the kernel for the joint probability distribution. I use the joint
probability distribution to find the marginals and their product. The function suffers due
to the choice of bandwidth.The bandwidth is chosen by using a bandwidth selector function
named bandwidth.nrd.1; this selector is built upon Silverman’s rule of thumb (Silverman,
1998).

The fourth function takes advantage of the new R package ks which includes more ad-
vanced kernel density estimation functions and bandwidth selectors. The function is named
W.C.KDE.2. While this function produces more accurate results than the previous function,
it has three disadvantages. Those flaws are speed, minimal and negligible negative density
estimates, and the inability to estimate the ”jpd” for full dependent variables because it
produces an eigenvalue that is zero or very close to zero. Two of those shortcomings are
avoided, and the small negative values within the ”jpd” are replaced with zero. To estimate
the ”jpd” for full dependent variables, a small noise was added to the predictor to remove
zero or very close to zero eigenvalues. The results shown in the next figure depict the value
of the measurement for different scenarios of association.

Lastly, Two functions are written to investigate the normalization of mutual information;
they employs the equation 3. The first of those two functions is a simple direct function; this
function discretizes the data and calculates both MI and NMI from an obtained ”jpd.” The
second function uses Laplace smoothing to handle the problem of zero probability estimation
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4.2 Association models

Studying the behavior of those measures of dependence is done by simulating data sets of n
observations of pair of random variables (X,Y ) according to the following sixteen models.
The models are constructed so that a number of observations n = 1000 could be fit in a box
of (−1, 1)× (−1, 1) very often; this helps in the comparison between different level of noise.
The figure below shows those models without any noise.

Association Models

Figure 6: Scatter plots of one simulation from the all 16 models included. The number of
observations for each model n = 1000 without any noise σ = 0

In the Table 1, a list of functions are listed. Each row depicts one type of association
illustrated in the figure above. Two main characters will vary throughout the simulation,
the number of observations n and the noise added which has a mean µ = 0 and variance σ2.
The value of σ2 ranges between 0 and 0.09
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Association functions
Type of
dependence

X Y Comment

Independence
Case

xi ∼ N(0, 0.1) yi ∼ N(0, 0.1) i = 1, ....n

Linear Dependence xi ∼ N(0, 0.1) yi = xi + ϵi ϵi ∼ N(0, σ2)
i = 1, ....n

Cubic Dependence xi ∼ N(0, 0.1) yi = x3
i + 1/3xi + ϵi ϵi ∼ N(0, σ2)

i = 1, ....n
Quadratic
Dependence

xi ∼ N(0, 0.1) yi = x2
i − 1 + ϵi ϵi ∼ N(0, σ2)

i = 1, ....n
Sinusoidal
Dependence

xi ∼ N(0, 0.1) yi = sin 9 ∗ xi + ϵi ϵi ∼ N(0, σ2)
i = 1, ....n

Cross−Shaped
Dependence

xi ∼ N(0, 0.1)
xi ∼ N(0, σ 2

4 )
yi ∼ N(0, σ 2

4 )
yi ∼ N(0, 0.1)

i = 0, ....k
i = k + 1, ....n
k ∼ N(n, 0.5)

Circular
Dependence

xi = −li ∗ cos ki yi = −li ∗ sin ki li ∼ N(1, σ2)
ki ∼ N(0, 1)
i = 1, ...., n

Two Functions xi = 2/3ki − 1
xi = −(−ki)

.1 + .1
yi = xi + ϵi
yi = (xi − .1)10 + 1 + ϵi

ki ≥ 0
ki < 0
ki ∼ N(0, 1)
ϵi ∼ N(0, σ2)
i = 1, ...., n

Checkerboard
Dependence

xi = ki0 yi = ki1 + ϵi ϵi ∼ n(0, σ 2

9 )
i = 1, ....n
ki0, ki1 ∼ N(µ,Σ)
[3ki0]− [3ki1] ≡ 0

Exponential
Function

xi ∼ N(0, 0.1) yi = e2x i + ϵi ϵi ∼ N(0, σ2)
i = 1, ....n

Logarithmic
Dependence

xi ∼ N(0, 0.1) yi = log(|xi|) + ϵi ϵi ∼ N(0, σ2)
i = 1, ....n

Non-Linear
Dependence

xi ∼ N(0, 0.1) yi = |xi|e
sin(xi )

cos xi

+ ϵi ϵi ∼ N(0, σ2)
i = 1, ....n

Cubic Root
Dependence

xi ∼ U[a=0,b=1] yi = x
1/3
i + ϵi ϵi ∼ N(0, σ2)

i = 1, ....n
Hyperbolic
Dependence

xi ∼ U[a=−1,b=1] yi = (x2
i + ϵi ∗ ki) ∗ li i = 1, ...., n

ϵi ∼ N(0, σ2)
ki ∼ U[a=0,b=1/2]

li ∼ U[a=−1,b=1]

Step Dependence xik = k + ϵi yik = 1
4e

k + δi ϵi ∼ N(0, .1)
δi ∼ N(0, σ2)
i = 1, ...., n

k
k = 1, 2, 3, 4

Cluster
Dependence

xik = k + ϵi yik = k + ϵi ϵi ∼ N(0, .1)
i = 1, ...., n

k
k = [−1,+1]

Table 1: The table includes a short description of each type of association investigated.
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4.3 Noiseless simulations

The first step to understanding our new measures is to check how they perform in a noiseless
simulation. The value of each measure is calculated for each data sets simulated. Two main
values are reported for each measure in each model in table 2, the average of 1000 iteration
is reported followed by the standard deviation in small brackets. The choice of noiseless
models is to ensure a fair comparison between the new coefficients and the more established
measurements. The simulation is repeated 1000 times, each time 16 data sets are created for
every type of dependence included in the figure( 6). Every data set has n = 1000 observa-
tions with no variance except for the model(1), which represent the independence case. This
large number of simulations ensures the production of fair values for the measures and helps
avoid any bias. The dependence measures included are 11, they start with Pearson product-
moment correlation “ρ”, Spearman’s rank-order correlation “rs” and Distance Correlation
“D.C”. Moreover, mutual information “MI” and maximal information coefficient “MIC”
are the two other well-established measures. This thesis aims to investigate the performance
of the Wijayatunga coefficient; the four different functions listed in subsection 4.1 are in-
cluded. Those functions appear directly after the five measures mentioned above. Lastly,
two functions that represent the new approach to normalization of the mutual information
are included and they come as the last two columns in the table below.
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Model ρ rs D.C MI MIC W.D W.C.
H

W.C.
KDE

W.C.
KDE.2

NMI NMI.
2

Independen 0.001 0.001 0.056 0.031 0.133 0.142 0.100 0.155 0.055 0.037 0.037
-ce (0.031) (0.032) (0.011) (0.005) (0.008) (0.022) (0.008) (0.006) (0.006) (0.041) (0.041)

Linear 1.000 1.000 1.000 1.765 1.000 1.000 0.742 0.737 0.895 1.000 1.000
(0.000) (0.000) (0.000) (0.069) (0.000) (0.000) (0.011) (0.002) (0.004) (0.000) (0.000)

Cubic 0.934 1.000 0.981 0.777 1.000 0.823 0.492 0.747 0.789 0.922 0.922
(0.013) (0.000) (0.002) (0.130) (0.000) (0.060) (0.049) (0.002) (0.013) (0.073) (0.073)

Quadratic -0.002 0.000 0.542 0.597 1.000 0.687 0.511 0.647 0.583 0.817 0.817
(0.072) (0.042) (0.007) (0.111) (0.000) (0.087) (0.029) (0.002) (0.006) (0.175) (0.175)

Sinusoidal 0.071 0.163 0.385 0.619 1.000 0.674 0.482 0.560 0.550 0.849 0.849
(0.033) (0.036) (0.017) (0.059) (0.000) (0.030) (0.026) (0.006) (0.006) (0.073) (0.073)

Cross
Shaped

0.000 0.000 0.328 0.232 0.630 0.668 0.293 0.142 0.329 0.241 0.241

(0.033) (0.036) (0.017) (0.059) (0.000) (0.030) (0.026) (0.006) (0.006) (0.073) (0.073)

Circular 0.000 0.001 0.411 0.755 0.995 0.708 0.642 0.571 0.567 0.811 0.811
(0.034) (0.039) (0.011) (0.016) (0.009) (0.015) (0.004) (0.005) (0.003) (0.011) (0.011)

Two -0.176 -0.067 0.461 0.970 1.000 0..825 0.565 0.561 0.566 0.915 0.9157
Functions (0.026) (0.029) (0.018) (0.078) (0.000) (0.023) (0.024) (0.012) (0.008) (0.045) (0.045)

Checker- 0.058 0.226 0.281 0.239 0.573 0.456 0.272 0.477 0.358 0.688 0.688
board (0.040) (0.034) (0.018) (0.055) (0.032) (0.052) (0.044) (0.006) (0.007) (0.167) (0.167)

Exponential 0.904 1.000 0.971 0.863 1.000 0.823 0.527 0.722 0.792 0.911 0.911
Function (0.013) (0.000) (0.002) (0.145) (0.000) (0.069) (0.053) (0.003) (0.010) (0.092) (0.092)

Logarithmic 0.001 0.001 0.524 0.744 1.000 0.735 0.496 0.651 0.606 0.846 0.846
(0.032) (0.043) (0.006) (0.090) (0.000) (0.045) (0.037) (0.002) (0.003) (0.092) (0.092)

Non-Linear -0.391 -0.312 0.656 1.007 1.000 0.798 0.570 0.666 0.653 0.855 0.855
(0.047) (0.039) (0.019) (0.108) (0.000) (0.031) (0.022) (0.002) (0.004) (0.047) (0.047)

Cubic Root 0.958 1.000 0.984 1.472 1.000 0.897 0.699 0.712 0.828 0.910 0.910
(0.003) (0.000) (0.001) (0.036) (0.000) (0.007) (0.005) (0.002) (0.003) (0.011) (0.011)

Hyperbolic -0.001 0.000 0.312 1.212 0.668 0.827 0.602 0.617 0.554 0.897 0.897
(0.047) (0.043) (0.008) (0.019) (0.011) (0.010) (0.006) (0.005) (0.003) (0.014) (0.014)

Step 0.923 0.968 0.938 1.040 1.000 0.829 0.707 0.648 0.705 0.900 0.900
(0.001) (0.000) (0.001) (0.000) (0.000) (0.031) (0.000) (0.001) (0.001) (0.048) (0.048)

cluster 0.000 0.001 0.016 0.009 0.132 0.343 0.060 0.022 0.032 0.385 0.385
(0.004) (0.021) (0.003) (0.003) (0.008) (0.247) (0.008) (0.004) (0.004) (0.349) (0.349)

Table 2: The results of the average and standard deviation values for all dependence measure
included in the thesis over 1000 iteration. The iteration is repeated over the 16 association
models included in the thesis. The standard deviation is reported in brackets.

4.3.1 Coefficients average performance.

The first observation to be spotted is the result of linear dependence. After discretization,
the discrete version of the Wijayatunga coefficient, as well as the normalized mutual in-
formation, performs perfectly. Additionally, the conventional measures work as suspected.
Unfortunately, the main functions, which deal with the continuous version of the Wijay-
atunga coefficient, don’t perform as well as the other functions.

The histogram and the initial kernel density estimation have their limitations in estimat-
ing the joint probability distributions. Whereas for the histogram-based function, the full
linear association is not entirely detected. Different numbers of bins are used prior to the
simulation to check if there is a possibility of observing this full association, the increase
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in the number of bins leads to overestimation rather than more accuracy. Moreover, this
function can detect the existence of association and the absence of the association in the case
of independence. It is worth noting that the highest values of the histogram-based function
are recorded for the two linear associations, which are ”linear” and “step function.”

In the case of the simple kernel function, the results have the same level of precision as the
histogram-based function; this is a result of simplifying the bandwidth selector. The simple
kernel-based function is incapable of detecting the full dependency. Moreover, this function
produces the highest value in the case of independence, in other words, it has the lowest ac-
curacy in reflecting the absence of any association among the measures included in the thesis.

As reported in table 2, the Wijayatunga coefficient function that employs kde function in the
ks package performs much better. Adding small noise in the case of full linear dependence
lowers the accuracy, yet it has better results than the other two continuous functions. The
superiority of the third continuous function persists in all of the results.

After data discretization, the discrete version of the Wijayatunga coefficient predicts the
correlation to the same level of accuracy as distance correlation and MIC. Furthermore,
the two normalized mutual information yield results with high accuracy. They outperform
distance correlation in most cases except for cross-shaped, cubic and cubic root and step
functions. The result for those two functions surpasses the MIC performance only for
checker-board and hyperbolic dependencies.

The results of applying D.C and MIC align with the findings of previous studies. The kernel-
based function, which employs kde function from ks package, matches the performance of
D.C function in most cases except for linear and monotonic relationships. MIC has the highest
values in case of dependencies, yet, it has been proven that MIC’s accuracy decreases very
fast when noise is introduced.
The results obtained in the table 2 are an outcome of a simulation study; dependencies
with such low noise don’t occur in real life. The noiseless simulation makes these results
unrealistic. The next step will be to add noise to the data to investigate how the noise would
impact the ability to detect associations using different measurements.

4.3.2 The variability of the coefficients.

Looking at the variability of Spearman’s and Pearson’s coefficient in table 2, we see a
similar trend across different association. It is worth-noting that for linear associations,
those functions has nominal or no variability at all. For non linear relationship, distance
correlation has much lower variability than Pearson’s and Spearman’s coefficients.
Looking at the various functions that represent Wijayatunga coefficient for continuous cases
shows that the measure has a very small and insignificant variability around its mean. Those
functions have a higher variability than the correlation coefficient only in case of linear and
monotonic associations.
The discrete measures, which include both Wijayatunga’s coefficient and the normalized
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mutual information, have higher level of variability.

4.4 The noise effect

In this section, only W.C.KDE.2 will be included as representative for the continuous ver-
sion of the Wijayatunga coefficient. Moreover, mutual information is excluded as it is not
bounded in [0, 1] which makes mutual information incomparable with the other measures in
this study. Finally, only the simple normalized mutual information is included.
This section aims to investigate the effect of statistical noise on the performance of vari-
ous dependence measurements. The study calculates the mean of each quantity over 1000
simulated data sets; each data set is fixed to 1000 observations. This simulation process is
repeated for ten different levels of statistical noise σ, which increase incrementally starting
from a noiseless level σ = 0 to σ = 0.3.

The effect of adding noise to the linear relationship

Figure 7

As shown in the figure 7, a noiseless linear relationship is fully detected by all measurements
except for the new continuous measure. It has been mentioned earlier that kernels couldn’t
be obtained when full linear dependency occurs. Furthermore, the mean values of each
coefficient decrease as the number of noise increases. Moreover, it is worth noting that this
continuous function underperforms compared to all well-established measures that detect
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linearity. Only ”MIC” performs worse than this continuous function; this aligns with other
studies, which question the ”MIC” performance. (Kinney and Atwal, 2014) argues that
”MIC” under-performs when noise is introduced. The two discrete functions perform at
the same accuracy level as D.C and outperform the conventional correlation coefficients.

(a) Cubic relationship (b) Cubic root relationship

Figure 8: Noise effect on cubic relationships

Monotonic relationships are easily detected using the most established dependency measures;
for instance, the moment product correlation and rank correlation coefficient outperform all
other measures. As shown in the Figure 9a, the moment product cannot fully detect those
relations in noiseless settings, yet, it deteriorates slower compared to others when the white
noise is introduced. The continuous function underperforms corresponding to all other in-
cluded functions in detecting monotonic relationships.MIC value decrease very fast when
noise is introduced. Distance correlation neighbors Spearman coefficient throughout the
simulation for monotonic relationship. After discretization, the normalized mutual informa-
tion is more resilient to the white noise effect in the case of cubic relationship in comparison
to the rest of the measures. This normalized MI does not show the same level of resilience
in the case of cubic root, Figure 8b.
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(a) Hyperbolic relation (b) Circular relationship

Figure 9: Noise effect on different non-linear relationships

4.5 The effect of the sample size

This section focuses on the effect of the number of observations on the ability of dependency
detection. Two different types of association are included, circular and hyperbolic relation-
ships.Noise is added to all associations, where the standard deviation for noise added is
σ = 0.1. A thousand iterations for each sample size are created; after that, five different
dependency measures are included. The dependency measures included are distance cor-
relation, MIC, Wijayatunga coefficient for both continuous and discrete cases and finally,
the new normalized mutual information coefficient.The average of the thousand iterations
is calculated and reported in the tables below. For small sample sizes of 5 observations, the
discretization method has been altered to separate the data into five levels. This alteration
is done so the two discrete measures, the Wijayatunga coefficient and normalized mutual
information, could be calculated.

Circular relationship
Num of obs D.C MIC W.D W.C.KDE.2 NMI
5 0.7359240 0.5796736 0.6342231 0.3079195 0.7796115
10 0.5971371 0.4297120 0.3220150 0.2463312 0.1785608
20 0.5017117 0.7262464 0.2020629 0.2488002 0.0794335
30 0.4671186 0.6843075 0.4801920 0.2624249 0.4659884
100 0.3989970 0.7436398 0.5318263 0.3169643 0.6389582
200 0.3807809 0.7448565 0.5695902 0.3491187 0.7201879

Table 3: An illustration of the behaviour of five selected measure of dependence for different
number of observations with circular relationship reference and noise σ = 0.1

In table 3,for all included measures except W.C.KDE.2 , it is easy to detect the correla-
tion for a small sample size (5 observations). All values drop when increasing the number of
observations to 10, the least affected measure is W.C.KDE.2 and D.C . The W.C.KDE.2
starts to increase afterward; on the contrary, D.C keeps decreasing when the number of
observations increases. MIC’s value decreases initially, but when the sample size hits 100,
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enduring values could be observed. Both discrete measurements drop sharply at the be-
ginning; this results from the change in the number of bins when discretizing. When the
sample size reaches 30 observations, those two functions improve significantly, and this trend
persists afterward for bigger samples.

Hyperbolic relationship
Num of obs D.C MIC W.D W.C.KDE.2 NMI
5 0.7608308 0.5630077 0.4641561 0.3732210 0.2764109
10 0.6092997 0.3433368 0.2666443 0.2941028 0.1911236
20 0.4952303 0.4513325 0.1492087 0.2822829 0.0988859
30 0.4383867 0.3756586 0.5474716 0.2865735 0.6214799
100 0.3494959 0.6034477 0.4943629 0.3633926 0.5770431
200 0.3258794 0.6107865 0.6671640 0.4211862 0.7709294

Table 4: An illustration of the behaviour of five selected measure of dependence for different
number of observations with hyperbolic relationship reference and noise σ = 0.1

Similarly, in table 4, the correlation could be easily detected for the small sample size
(5 observations); only the normalized mutual information under-performs in this case.
W.C.KDE.2 and D.C behave exactly as they behave in the case of circular correlation.
MIC ’s values don’t pick up their high performance until the sample size reaches 100. Fi-
nally, the values of the discrete measurements move parallelly; moreover, the normalized
mutual information produces better results.

5 Feature Selection Method
In machine learning literature, the feature selection aims to identify relevant features from
a large set of them for prediction tasks, etc. by reducing the prediction error. The idea
is to find and eliminate irrelevant features that increase the prediction variance without
reducing the bias. In feature selection, redundant features have to be filtered out. There
is one main difference between feature selection and feature screening. The goal of feature
screening is to reduce the dimensions of the feature space to a smaller size while retaining
all relevant features; this is known as the sure screening property. This procedure does
not check for interdependency among the explanatory variables. The feature selection is
an essential tool even in the case of uncorrelated features. Two different feature selection
methods are discussed below. First is the so-called elastic net, then an introduction for
”minimal redundancy maximal relevance” feature selection is provided. This method could
be wrapped with either forward selection or backward elimination (Hanchuan Peng, Fuhui
Long and Ding, 2005).

5.1 Elastic Net Regularization

One of the most common practices in statistics is the least-square method for regression pa-
rameter estimation. When the covariates are correlated, the least-squares method, although
unbiased, suffers from inflated variance; this is because the covariance matrix is nearly sin-
gular. The inverse of that matrix is either ill-conditioned or non-existent in the case of a
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Figure 10: This figure shows the difference in estimating β’s for three different regularization
models

singular covariance matrix. Shrinkage methods are used to overcome this issue. There are
three different penalization models, ridge regression, Lasso regression and elastic net model.
Ridge regression shrinks the covariate coefficients that contribute the least to the model.
It introduces an additional term to the least-square objective function; this additional term
that is the penalty term, regularizes the value of the coefficients. The L2 norm penalty term
is used for ridge regression is:

(Y −Xβ)T (Y −Xβ) + λβTβ

where λ is the tuning parameter, when λ = 0 the model is the least-square, for any value
λ > 0 the ridge estimator produces bias, at the same time, it reduces the variance when the
covariance matrix is nearly singular. The choice of λ is crucial. The disadvantage of this
method is that it maintains all variables within the model.
Least Absolute Shrinkage and Selection Operator (lasso) was proposed by (Tibshirani, 1996).
This method shrinks the covariate coefficients to zero through regularizing the model with
penalty parameter of l1 norm. The lasso estimator minimize the objective function as follows:
Even though it is similar to the ridge estimator, it differs in a few aspects. The most
notable difference is the ability of the model to render the value of some coefficients to zero.
In this sense, the lasso can work as a feature selection method. Furthermore, It is a sparse
regression. Three disadvantages come with the lasso; first, in the case of p > n the lasso
selects at most n variables before it saturates. Secondly, lasso chooses only one variable
from any group of highly correlated variables. When p > n, if there are high correlations
between predictors, it has been empirically observed that the prediction performance of the
lasso is dominated by ridge regression. The elastic net combines both penalties L1 and
L2 to overcome the shortcomings of both models (Zou and Hastie, 2005). It combines the
advantages of shrinkage and sparsity. The function is defined as follows:

min
β

0

,β

(
1

2N
ΣN

i=1(yi − β0 −XT
i β)

2 + λPα(β)

)
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where

Pα(β) =
(1− α)

2
||β||22 + α||β||1 = ΣP

j=1

(
(1− α)

2
β2
j + α|βj |

)
N is the number of observations.
yi is the response at observation i.
Xi is data, a vector of p values at observation i.
λ is a positive regularization parameter corresponding to one value of Lambda.
The parameters β0 and β are an scalar and a p-vector respectively. Two R packages are
employed to run the elastic net regularization. Those packages are caret and glmnet.

5.2 Minimal Redundancy Maximal Relevance

Starting with the concept of Max-Dependency, let’s denote X1,…., Xp as the set of possible
features used to predict an outcome variable Y . A dependency measure D(., .) quantifies
the correlation between any two random variables. The Max-Dependency system for fea-
ture selection involves finding a subset m of the features Xi

1

,…., Xi
m

, which jointly have the
largest dependency with Y ; in other words, the subset is obtained by solving the following
optimization problem

max
{i

1

,...,i
m

}⊂{1,...,p}
D({Xi

1

, ..., Xi
m

}, Y )

Solving this optimization problem is infeasible in the case of high dimensional data; the
near-optimal solutions are obtained by iterative procedures, where variables are added one
at a time. The mentioned algorithm is known as the forward selection. The dependency
measure ought to be robust, which is hard to achieve when the sample size is less than the
number of features m. alternatively, marginal computations which only include D(Xk, Y )

are desired. Those marginals serve as a proxy to Max-Dependency; those marginals are
called the Max-Relevance criterion. The optimization problem is written as follows

max
{i

1

,...,i
m

}⊂{1,...,p}

1

m
Σm

k=1D(Xi
k

, Y )

Finally, when the features are dependent, the above criteria will likely select redundantly
features. To mitigate the effect of collinearity, an extra condition could be added, (Hanchuan
Peng, Fuhui Long and Ding, 2005) considers the Min-Redundancy condition

min
{i

1

,...,i
m

}⊂{1,...,p}

1

m2
Σm

k,l=1D(Xi
k

, Xi
l

)

Combining both optimization conditions produces what is called “Minimal Redundancy
Maximal Relevance”

max
{i

1

,...,i
m

}⊂{1,...,p}

1

m
Σm

k=1D(Xi
k

, Y )− 1

m2
Σm

k,l=1D(Xi
k

, Xi
l

)

Forward and backward procedures could be applied to this function.Backward elimination
starts with all candidate variables; it tests the deletion of each variable using a chosen model
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fit criterion. After each step, it deletes the variable whose loss gives the most statistically
insignificant deterioration of the model fit. The algorithm repeats this process until no fur-
ther variables can be deleted without a statistically significant loss of fit. Forward selection
starts with no variables in the model; it tests how the addition of each variable gives the
most statistically significant improvement of the model fitness; the process repeats until
none improves the model to a statistically significant extent(Da Veiga, 2014).
In the following subsection, W.C.KDE.2is used as measure of distance in “mRMR”.

5.3 Real Life Data Sets

Two data sets are included in this thesis, the first data set is a biological data set, while the
second one touches upon urban planning, crime, and economics. The data set are ordered
below according to the number of features in the data-sets.
The first data-set is the ”Prostate” data, it is obtained from R package ”lasso2”; the data
was originally used in (Stamey et al., 1989). It examines the correlation between the level of
prostate-specific antigen and a number of clinical measures in men who were about to receive
radical prostatectomy. It consists of 9 features and 97 observations. The target variable is
log“cancer volume.”. The table below provides a glimpse of the data.

variable abbreviation Description
lcavol log(cancer volume)
lweight log(prostate weight)
age age
lbph log(benign prostatic hyperplasia amount)
svi seminal vesicle invasion
lcp log(capsular penetration)
gleason Gleason score
pgg45 percentage Gleason scores 4 or 5
lpsa log(prostate specific antigen)

Table 5: The names of the covariates in the Prostate data-set

Table 6 provides the results of running elastic net regression on this data set; the results
suggest that “svi” variable contributes nothing to the model. The Minimal Redundancy
Maximal Relevance optimization “mRMR” method produces a different model using back-
ward elimination; with seven predictors, the suggested model excludes ”pgg45” instead. The
value of “mRMR” for this specific model is 0.1396489. The comparison of R2 is done between
the two least square regressions, wherein each, we remove the most redundant variable ac-
cording to the two feature selection methods. It is shown that the elastic net model produces
a higher R2 = 0.6973 value in comparison to “mRMR” where R2 = 0.6668

26



variable importance%
lpsa 100
lcp 61.73

gleason 33.50
lbph 14.28

lweight 5.5
age 3.7

pgg45 0.86
svi 0

Table 6: The variables importance according to the elastic regression for the Prostate data-
set

(Harrison and Rubinfeld, 1978) introduces ”Boston Housing” data set. This dataset
contains information collected by the U.S Census Service concerning housing in the Boston
Standard Metropolitan Statistical Area (SMSA) in 1970. The goal is to estimate the willing-
ness to pay for clean air. It contains 506 observations and 14 different variables. The target
variable is the median value of owner-occupied homes. Moreover, The independent variables
range between structural attributes, neighborhood variables, accessibility variables, and one
air pollution variable.

According to (Boston Dataset, 2022), ”medv” seems to be censored at 50.00 (corresponding
to a median price of 50,000$); Censoring is suggested by the fact that the highest median
price of exactly 50,000$ is reported in 16 cases, while 15 cases have prices between 40,000$
and 50,000$, with prices rounded to the nearest hundred. (Harrison and Rubinfeld, 1978)
does not mention any censoring. The data set is retrieved from ”mlbench” package in R.

variable abbreviation Description
crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft.
indus proportion of non-retail business acres per town.
chas Charles River dummy variable (1 if tract bounds river; 0 otherwise)
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner and occupied units built prior to 1940
dis weighted distances to five Boston employment centres
rad index of accessibility to radial highways
tax full and value property-tax rate per $10,000
ptratio pupil-teacher ratio by town
b 1000(Bk − 0.63)2 where bk is the proportion of blacks by town
lstat % lower status of the population
medv Median value of owner-occupied homes in $1000’s

Table 7: The names of the covariates in the Boston Housing data-set

It’s worth mentioning that the data suffers from some ethical issues, which is mentioned
by (The Census users’ Guide, 2022) as it states that some of the terminology might be
considered inappropriate.
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variable importance%
nox 100
rm 33.65

chas 24.32
dis 9.36

ptratio 7.15
lstat 3.94
rad 1.26
crim 0.7
indus 0.29

zn 0.24
b 0.04

tax 0.016
age 0

Table 8: The variables importance according to the elastic regression for the Boston Housing
data-set

Similarly, table 8 provides the results of running elastic net regression on the second data set;
the results suggest that the “age” variable does not contribute to the model. The Minimal
Redundancy Maximal Relevance optimization “mRMR” method produces a different model
using backward elimination; with thirteen predictors, the suggested model excludes ”rad”
instead. The value of “mRMR” for this specific model is 0.1534865. The comparison of R2 is
done between the two least square regressions, wherein each, we remove the most redundant
variable according to the two feature selection methods. It is shown that the elastic net
model produces a higher R2 = 0.7406 value in comparison to “mRMR” where the value of
R2 = 0.7294

6 Conclusion
This paper investigates various measures of dependence for their suitability of measuring
the dependence and application of feature selection in regression modelling. Those measures
include Pearson’s, Spearman’s and distance correlation coefficients, the mutual information
and the maximal information coefficient (MIC), and two new dependence measures, namely
Wijayatunga’s coefficient and normalized mutual information. The investigation is done
using simulated data sets. Moreover, a proof of concept for feature selection is conducted
using two real-life data sets.

All the conventional dependence measures perform as expected. Pearson’s correlation is
the best choice for studying linear dependence, given that the variables follow the normal
distribution. In case of these assumptions are violated, Spearman’s coefficient might be a
better choice because it recognizes monotonic dependence. However, even for a nonlinear,
monotonic relationship, Pearson’s correlation coefficient can be used to check the associa-
tion direction. Moreover, when adding white noise, the two measures resist more than other
measures across all reported relationships. Although, for more complex relationships, those
two measures are not affected by the noise because they don’t initially detect the relation-
ship; they perceive these relationships as independent variables. Another well-established
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measure is mutual information. This measure is incomparable to the other measure as it
is not bounded in[0, 1], yet, it performs as suspected in noiseless simulations. Its value is
negligible only when the variables are independent. Furthermore, it is noteworthy that the
cluster association value is smaller than the value of independence for the three measures
mentioned above.

Next, both distance correlation and MIC’s results support the findings of previous studies.
First, distance correlation in noiseless simulations identifies all relationships; furthermore,
adding noise affects DC too little compared to the other measures. For linear and mono-
tonic relationships, DC pairs with Pearson’s and Spearman’s coefficients; the fact that DC
generalizes the correlation for all distributions can explain this pairing. When the noise is
added to more complex relationships, even though DC matches up the ρ in trend, it has
a higher value.The small number of observations does not affect the value of this measure
compared to the other measures; in fact, DC surpasses all other measures for small samples.

MIC performs as anticipated across the simulations; this measure surpasses all other mea-
sures in soundless simulations. Yet, adding noise deteriorates the value of MIC the most
compared to the other measures; this aligns with previous discoveries.

Moving on to the goal of this paper, two different main dependence measures are studied.
First, two different approaches to the Wijayatunga coefficient are presented; the first deals
with discrete variables, while the second manages the case of continuous variables. The
discrete version of Wijayatunga shows good potential in detecting the distance between
probability distributions, i.e., the level of dependence among the variables; it produces a
high coefficient value for non-monotonic relationships. Moreover, the discrete version of
Wijayatunga recovers from the introduction of noise in the case of linear association very
fast. It surpasses MIC for higher levels of noise in the linear case. The Wijayatunga co-
efficient continues to endure the effect of the noise in both monotonic and non-monotonic
relationships.

The continuous version of the Wijayatunga coefficient is inspected using three different func-
tions; the first function utilizes the concept of histograms to estimate the distance between
the distributions. This function cannot detect perfect linear association; furthermore, the
function is sensitive to the number of bins included in the 2D histogram. The second func-
tion could be considered a proof-of-principle for the continuous version of the Wijayatunga
coefficient using the kernel estimation; this prototype displays the measure’s potential; yet,
it suffers from accuracy issues as it cannot estimate a proper kernel estimation.

The last of the continuous version of the Wijayatunga coefficient employs the kernel density
estimation function in ks R package; this function has much potential, yet, it suffers from
two disadvantages. The first drawback of this function is the speed of the function; it takes
on average 16 times more in comparison to the previous function; the second drawback is
the inability of such kernels to detect full dependencies. This function otherwise detects
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all types of associations provided in this study. The noise effect on the value of this coef-
ficient in the monotonic relationships is monotonous; the value decreases proportionally to
the increase in the noise amount. This trend changes in the complex relationship case; this
function detects the association in hyperbolic and circular cases and resists the noise effect
with a higher value than DC. Furthermore, this function is invariant to the number of bins
applied. Lastly, this function works for small samples, but its value grows exponentially
when the number of observations increases.

Normalized mutual information concludes the simulation section; the function shows con-
siderable potential in detecting associations. It performs well throughout the noiseless simu-
lations; furthermore, it works well in cases of noisy linear and monotonic associations. This
function surpasses all other functions when detecting hyperbolic and circular relationships.
Lastly, the value of this function is affected by the number of observations.

The last part of the thesis touch upon the feature selection methods; two different meth-
ods are included. First comes elastic net regression, which is compared with the “mRMR”
method. “mRMR” method in this thesis employs the Wijayatunga coefficient as a measure
of dependence. The purpose here is to establish a proof of concept of using this coefficient
to eliminate the redundant variables. The attempt here failed to show the effectiveness of
this coefficient. The results show that the elastic net performs better than the new coefficient.

To conclude this thesis, two new coefficients are investigated. The first coefficient could be
used to evaluate the association between discrete variables; also, an extended version could
be used to evaluate the association between continuous variables. This new coefficient shows
considerable potential in detecting associations. The second coefficient is a normalization
of mutual information; the results suggest that the coefficient can detect various types of
associations. Lastly, a minor experiment is done to show the possibility of incorporating the
Wijayatunga coefficient in feature selection processes. The results are preliminary and need
more investigation.
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