
EVALUATION OF THE
PERFORMANCE OF WEBGPU IN A

CLUSTER OF WEB-BROWSERS
FOR SCIENTIFIC COMPUTING

Abdulsalam Aldahir

Bachelor Thesis, 15 hp/credits
Bachelor Of Science Programme in Computing Science

2022

1

Abdulsalam Aldahir June 16, 2022

Abstract

The development and widespread of Internet browsers and technologies make
them a tool that can be used for many scientific problems. This raises the ques-
tion of whether Internet browsers, together with WebGPU and WebRTC, can be
used to do scalable computing in a distributed cluster. This thesis answers the
question by implementing a peer-to-peer cluster and testing it with two prob-
lems, Matrix multiplication and Mandelbrot sets generation. The experimental
results show that computing embarrassingly parallel problems are scalable with
more than 75% efficiency.

i

Abdulsalam Aldahir June 16, 2022

Acknowledgements

I am extremely grateful to my parents for all the support.

Many thanks to Mustafa Aldaher and Mohammed Msheleh for their comments on the thesis.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 1
1.3 Thesis Outline . 1

2 Related Work 2

3 Theoretical Background 3
3.1 Speedup and Efficiency . 3
3.2 WebGPU . 3
3.3 The Mandelbrot Set . 3
3.4 The Power Method . 4
3.5 Compressed Sparse Row . 4
3.6 WebRTC & Communication . 5

4 Method 6
4.1 Experiments . 6

5 Results and Analysis 9
5.1 Size one cluster - WebGPU vs CUDA . 9
5.2 Fixed size problem - Scalability . 9

6 Discussion 10

7 Conclusion 10

8 Future Work 11

iii

Abdulsalam Aldahir June 16, 2022

1 Introduction

Science domains are generating a massive amount of data that sometimes exceeds the com-
putational power available in today’s computers, making it difficult to handle and process.
For some problems, it is common to use a Graphics Processing Unit (GPU), which is a proces-
sor initially designed for graphics rendering. Over the past 15 years, GPUs got a noticeable
increase in performance and have become used widely as an accelerator for general-purpose
high-performance computing, which is usually called general-purpose GPU (GPGPU).

Another way of doing high-performance computing is to use supercomputers or a cluster
of computers and GPUs. Recently, theWorld Wide Web Consortium (W3C) started developing
a new Application Programming Interface (API) called WebGPU to be the new standard for
GPU access on the web. Given that it allows GPGPU raises the question of whether it would
be scalable to use it on a cluster of web browsers, using WebRTC for communication.

1.1 Motivation

Today’s computers, web browsers, and modern GPUs are available almost everywhere.
Building a cluster of web browsers could, for example, enable people to donate their computer
power to science through a simpleweb page. Given that there aremore than 3.2 billion users of
web-browsers, this could turn the internet into a distributed computer for research purposes,
and would significantly impact the development of many scientific fields, such as Machine
learning [4] which depends on GPUs and parallel programming.

Access to a reliable GPU API from the browser is also essential for the limited-scale prob-
lems. It also would be necessary for computer science classes that teach GPU and parallel
programming, which need to have a consistent, scalable, and friendly development infras-
tructure to rely on [5].

Dedicated GPUs would make building GPU clusters on web browsers easier. Usually,
GPU APIs such as Compute Unified Device Architecture (CUDA) and even WebGL make re-
searchers ambivalent of using them or building complex supercomputers/clusters to do time-
intensive computing. Because they are often cumbersome and platform dependent [9] which
also requires time and some technical skills. WebGPU tries to do such abstraction to solve
such problems by providing direct access to the GPU hardware making GPU access more
portable.

1.2 Research Questions

This report investigates ifWebGPU has less run-time than CUDA on a singlemachine, and
tries to answer if a cluster of web browsers, using WebGPU and WebRTC is scalable or not.
More specifically, does the speedup increase as more nodes(web-browsers) join the cluster?

1.3 Thesis Outline

The rest of the thesis is as follows, Chapter 2 talks about some related works on the sub-
ject and some similar libraries and APIs. Then, Chapter 3 explains some theories about the
algorithms and the tools that were used. In Chapters 4 the method and the experiments for
the evaluation are presented. At the end, in Chapters 5 and 6 the results and a discussion is
presented.

1

Abdulsalam Aldahir June 16, 2022

2 Related Work

Several studies investigated if web browsers can be used in distributed clusters. R. Cushing
et al. presented the paper Distributed Computing on an Ensemble of Browsers [1] about using
web-browsers as cluster to compute thousands of bio-informatics tasks. In their results, they
demonstrate that computing on browsers is possible, although it is less efficient than native
solutions, but it is a trade-off to get portability across all platforms.

In their paper JSDoop and TensorFlow.js: Volunteer Distributed Web Browser-Based Neu-
ral Network Training [7] J. Á. Morell et al. presented a distributed neural network on web
browsers. They tested the cluster with up to 32 volunteers, and their results show that having
such a system feasible with high scalability. Their implementation was based on WebGL, and
it uses the STOMP protocol for communications.

T. Koskela and some others presented a RADE: Resource-aware distributed browser-to-
browser 3D graphics delivery in the web [6] that evaluate to evaluate the load, response time,
and cost of service of 3D asset delivery in web-browsers. They used WebRTC in almost the
same way used in this thesis for communication.

SinceWebGPU is still in the working draft, there is almost no research on it yet. However,
there is much research on GPU and GPGPU on web browsers. Before WebGPU, several tries
were made to abstract the dependency and create a more friendly API. However, almost all of
them are an extension of WebGL or are directly based on it.

Multiple Javascript libraries tried to do the abstraction WebGPU is doing. Sapuan et al.
presented an API for Javascript called gpu.js [9]. They attempt to solve the problems of
complicated GPUAPIs bymaking the library easier to use. For example, it compiles/transpiles
Javascript functions into the shader language, making it friendly. The library was inspired by
different other libraries that try to solve the same problem, such as WebCLGL [9]. More
recent libraries that try to do the same the thing are turbo.js and WebMonkeys. These
libraries aim at lower level compared to gpu.js by using a simplified GLSL as a shader
language. This allows programmers to take more advantage of the GPU, which also grant
better performance. Nevertheless, all of the libraries mentioned above use WebGL behind the
scenes. But, because it was not designed for doing computing, there are some issues with
transporting data between the CPU and the GPU [9].

2

Abdulsalam Aldahir June 16, 2022

3 Theoretical Background

This section describes the algorithms and the tools used to evaluate the API and answers the
research questions.

3.1 Speedup and Efficiency

The Speedup 𝑆 is defined as the speed improvement gained by executing the same task
on multiple nodes. Both the Efficiency 𝐸 and speedup 𝑆 can be calculated by the following
formulas

𝑆 =
𝑇𝑠

𝑇𝑝
, 𝐸 =

𝑆

𝑝
,

Where 𝑇𝑠 is the time of the sequential algorithm (one node) and 𝑇𝑝 is the time of the
parallel algorithm(multiple nodes) and 𝑝 is the number of parallel nodes.

3.2 WebGPU

WebGL is a well-known low-level 3D graphics API for GPU on web browsers. It is based
on OpenGL ES via HTML and is designed to only do graphics rendering, and no direct GPGPU
is possible. WebGPU on the other hand, is also an API used to access the GPU through web
browsers. It is maintained by the W3C to be the successor of WebGL. It is based on Vulkan,
Metal, and Direct3D meaning that it is not a direct port of any existing native API like the
case with WebGL. As seen in Figure 1 the API uses other APIs exposed by the OS.

Figure 1: The architecture of WebGPU

Like most other GPU APIs, WebGPU uses Shaders (sometimes called kernels), which are
a general kind of program code that runs on the GPU. WebGPU Shading Language (WGSL)
is the default shading language, yet other languages are also supported, such as the OpenGL
Shading Language (GLSL). WGSL has two kinds of shaders, render shaders, which is used
for graphics rendering, and compute shaders to do GPGPU. This paper focuses only on the
compute shaders.

3.3 The Mandelbrot Set

A fractal is a mathematical set that shows infinitely complex patterns that are self-similar
across different scales. TheMandelbrot set, seen in Figure 2 is such a fractal set, which consists

3

Abdulsalam Aldahir June 16, 2022

of an infinite sequence of numbers defined by the formula below.

𝑧𝑛+1 = 𝑧2𝑛 + 𝑐

Where 𝑐 is a constant and 𝑧 is a variable calculated recursively by the formula.
Generating the set is considered an embarrassingly parallel (also called perfectly parallel)

problem, meaning that each number can be computed independently which also means little
or no communication between nodes/cores.

Figure 2: Mandelbrot set example

3.4 The Power Method

The power method (also called Von Mises iteration or The Power iteration) is used to
compute the dominant eigenvector (the eigenvector corresponding to the largest eigenvalue),
which has many usages. For example, Google uses the so-called PageRank as one factor to
determine its search ranking [8]. It is also fundamental in AI for problems such as facial
recognition [10] and in physics and chemistry for solving differential equations [2].

The method is described by the recurrence relation in the equation below, where 𝐴 is the
input matrix, and 𝑥 is the approximated vector. Its time complexity is 𝑂 (𝑘𝑛2), where 𝑛 is the
size of the matrix, and 𝑘 is the number of iterations.

𝑥𝑘+1 ←
𝐴𝑥𝑘

∥𝐴𝑥𝑘 ∥

3.5 Compressed Sparse Row

Compressed sparse row (CSR) is a data structure used to represent matrices containing
many zeros. As Figure 3 shows, it consists of three lists. The rowptr list contains the indices
that indicate the start and the end of each row, the colind list, which contains the column
indices of the non zero values of each row, and the val list, which consists of the actual values.
Compared to a normal matrix (2D array), CSRmatrices have a more efficient space complexity
but less efficient time complexity for the insert/update and delete operations. Which makes
CSR perfect for problems that involve matrix multiplication, such as the power method, since
the matrix is not updated but loaded to memory when the program starts.

4

Abdulsalam Aldahir June 16, 2022

Figure 3: CSR matrix storage format [3]

3.6 WebRTC & Communication

Web Real Time Communication (WebRTC) is an open-source real-time communication
API over the web. It allows sending video/audio and data between peers. The way webRTC
works is that there is no server in the middle. Peers communicate with each other directly.
However, peers still need to send their information, such as IP address and port, to other
peers to make a connection. WebRTC uses a protocol called ICE that let peers know how to
connect. Sending ICEs between peers is called signaling and is usually done using a another
way of communication such as WebSockets or chat services.

5

Abdulsalam Aldahir June 16, 2022

4 Method

To evaluate the performance of WebGPU and the scalability of it in a cluster of web-browsers
two experiments were conducted. A peer-to-peer system was built using WebRTC data chan-
nels, and test programs were implemented (for each problem). The WebGPU programs are
written Typescript (CPU) andWGSL(GPU), and the CUDA program is written in C++.

Setup
pipeline

Submit to
GPU

Load input
data

Read GPU
Result

GPU
Compute

Figure 4: The process of computing on a GPU

Load input
data Distrbute Compute Gather results

WebRTC
connection
establish

Figure 5: Peer-to-peer process of computing

4.1 Experiments

Three experiments were used to answer the research question. Matrix Multiplication,
the Power Method and the Mandelbrot set. The first two, use CSR to store the matrices and
a 2𝐷 array for the last one. All experiments are conducted on the same computer, and its
specifications are seen in Table 1. For each problem size, the test program runs 100 times and
the average time is the one that is collected.

Table 1: System Specifications

OS Windows 10Software Browser Chrome Canary
CPU Intel i7-4790 (8) @ 4.000GHz
GPU NVIDIA GeForce GT 730Hardware
RAM 32 GB

Table 2: Statistics about the input matrices

Matrix Dimension Nonzeros Diagonal Average nonzero/row
BCSSTK01 48 224 48 8.3
BCSSTK20 485 1810 485 6.5
BCSSTK16 4884 147631 4884 59
FIDAP011 16614 1091362 16614 66
S3DKT3M2 90449 1921955 90449 21.24
S3DKQ4M2 90449 2455670 90449 27.14

6

Abdulsalam Aldahir June 16, 2022

WebGPU Test

The first test was designed to compare the performance of WebGPU and CUDA. The test
conducts two experiments, first, computing the largest eigenvector using the power method,
and second, computing a Mandelbrot set. The purpose of the experiment is to investigate if
theWebGPUwould impact the performance on its own. This experiment was run on one node
with an increasing problem size. Therefore, no network communication was involved, and
multiple matrix sizes and grid sizes were used. Table 2 shows statistics about the matrices1
used in the power method. The most important thing here is their size. However, for the
Mandelbrot, the four grid sizes, 10242, 20482, 40962 and 81922 were used.

Figure 4 shows the process of computing, which is split into five phases. First, it loads the
input data, which involves parsing the transferring to the GPU device. Then, set up a pipeline
that tells the GPU what buffer data are mapped to, how to compute, and what shader to use.
Phase three submits the pipeline to GPU and decides how many cores will run in parallel.
Phase four is just the GPU running the computation, and finally, in phase five, the results are
transferred back to the CPU. Note that all phases run on CPU except the fourth one, which
runs on GPU. Also, except for the syntax differences, the process is the same onWebGPU and
CUDA.

The run-time of the first two phases are not considered as part of the experiment. There-
fore the time is recorded before submitting.

Scalability Test

The second test investigate the scalability of a peer-to-peer system using the Mandelbrot and
matrix multiplication. The experiment aims to investigate if speedup increases as increasing
the size of the cluster. The 81922 size was used for theMandelbrot, and thematrixFIDAP011
was for matrix multiplication. The process of the experiment is seen in Figure 5 which also
has five phases. First, establishing connections between the nodes using WebRTC. For that,
each node signals its ICE through a service called PubNub, which is a simple communication
service. One of the nodes acts as a master node and the other are only workers. The master
is responsible for phase two, and three, parsing the CSR matrix and distributes it row-wise to
workers as seen in Figure 6. Once a worker get a its share of the matrix, it starts computing
and report results back to master once done.

Master

Worker
1

Worker
2

Worker
3

W1

W1

W2

W2

W3

W3

M

Matrix

Solution Vector

Figure 6: Distributing flow of a matrix between four nodes

1Theses matrices were downloaded from The Matrix Market https://math.nist.gov/MatrixMarket/

7

Abdulsalam Aldahir June 16, 2022

Figure 7: Distbution process of the Mandelbrot set over four nodes

In the case of Mandelbrot, the master sends only the coordinates to each worker. i.e., the
𝑥 and 𝑦 coordinates of their loacl computation part, see Figure 7 shows an example of that.
However, they still need to report the results back to the master node.

For both problems, the time was recorded after the second phase, where the time of net-
work communication is included.

8

Abdulsalam Aldahir June 16, 2022

5 Results and Analysis

This section presents the results of the problems with some analysis to each one of them.

5.1 Size one cluster - WebGPU vs CUDA

As seen in Figure 8 CUDA has a better performance almost all the time. Although the
performance difference gets much worse as the size of problem increase, WebGPU is a little
better at the beginning with the Mandelbrot set.

Matrix

Ti
m

e
in

 s
ec

on
ds

0

20

40

60

80

BCSSTK01 BCSSTK20 BCSSTK16 FIDAP011 S3DKQ4M2 S3DKT3M2

WebGPU CUDA

(a) Power method

Grid size

Ti
m

e
in

 s
ec

on
ds

0

2

4

6

1024² 2048² 4096² 8192²

CUDA WebGPU

(b) Mandelbrot

Figure 8: WebGPU vs CUDA on Power Method and Mandelbrot

5.2 Fixed size problem - Scalability

Figure 9 and 10 show the results of speedup and efficiency of generating a Mandelbrot set
and multiplying two matrices.

Number of nodes

S
pe

ed
up

0

2

4

6

8

2 4 6 8

Linear speedup WebGPU Cluster

(a) Speedup

Number of nodes

E
ffi

ci
en

cy

0%

25%

50%

75%

100%

2 4 6 8

(b) Efficiency

Figure 9: Matrix Multiplication - FIDAP011

9

Abdulsalam Aldahir June 16, 2022

Number of nodes

S
pe

ed
up

0

2

4

6

8

2 4 6 8

Linear speedup WebGPU Cluster

(a) Speedup

Number of nodes

E
ffi

ci
en

cy

0%

25%

50%

75%

100%

2 4 6 8

(b) Efficiency

Figure 10: Mandelbrot - 81922

The experiments have very similar speedup at the beginning. The speedup increases as the
number of nodes increases. compared to mandelbrot, both speedup and efficiency of matrix
multiplication gets a little worse with six and eight nodes. The efficiency of the mandelbrot
stays constant after two nodes.

6 Discussion

The results show that WebGPU take longer run-time than CUDA. However this still expected
and seems to be logical, given that WebGPU is new and not stable. It is also accessed through
Javascript, which usually cost some performance. Also, CUDA is designed specifically for
computing with Nvidias GPUs.

The results of the scalability seems to be more positive. The speedup decreases a little
as the size of the cluster increases with almost constant efficiency. The reason why speedup
decreases is probably because of communication overhead. As more nodes connects to each
other, the data to be sent from each peer get bigger and might exceed the bandwidth. Another
reason could be that the extra computation that runs on the CPU have a huge impact on
the results. Such computation could be data parsing and preparing. One more thing worth
noticing, as seen in Figure 9. is that the speedup and efficiency of the Mandelbrot is slightly
better than matrix multiplication although both problems are of the same type and they have
almost the same process. However, the reason for that is possibly the input data. In the case
of matrix multiplication, each node needs to copy the matrices form CPU to GPU, which is
very expensive in terms of time. This does not happen in the case of mandelbrot where the
input data is only coordinates (3 bytes).

7 Conclusion

According to the results, WebGPU has close performance to CUDA. The results also show that
building cluster of web browsers using WebGPU and WebRTC is very scalable with a more
than 75% efficiency. This makes building a cluster for GPU scientific purposes very promising.
However, this is limited to the cases used in this study. Such a cluster might not be as scalable
in other test cases.

10

Abdulsalam Aldahir June 16, 2022

8 Future Work

There are multiple areas one could extend this research in. Since this research was limited to
three test problems, it would be important to investigate further cases.

Another interesting thing worth investigation is memory usage/utilization and memory
transferring between CPU and GPU. This is very important because memory allocation can
be very expensive and impact the performance in a negative way.

It would be important to the environment to study if WebGPU and WebRTC have any
impact on the energy efficiency. This is especially important for mobiles and laptops since
they rely on batteries.

11

Abdulsalam Aldahir June 16, 2022

References

[1] Reginald Cushing, Ganeshwara Herawan Hananda Putra, Spiros Koulouzis, Adam Bel-
loum, Marian Bubak, and Cees de Laat. Distributed computing on an ensemble of
browsers. IEEE Internet Computing, 17(5):54–61, 2013.

[2] Judi J. McDonald David C. Lay, Steven R. Lay. Linear Algebra and Its Applications, 5th
ed. Pearson, Boston, NY, 2015.

[3] Athena Elafrou, Georgios Goumas, and Nectarios Koziris. A lightweight optimization
selection method for sparse matrix-vector multiplication. ArXiv, 2015.

[4] Masatoshi Hidaka, Yuichiro Kikura, Yoshitaka Ushiku, and Tatsuya Harada. Webdnn:
Fastest dnn execution framework on web browser. Proceedings of the 25th ACM interna-
tional conference on Multimedia, 2017.

[5] Abdul Dakkak; Carl Pearson; Wen-Mei Hwu. Webgpu: A scalable online development
platform for gpu programming courses. IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2016.

[6] Timo Koskela, Arto Heikkinen, Erkki Harjula, Mikko Levanto, andMika Ylianttila. Rade:
Resource-aware distributed browser-to-browser 3d graphics delivery in the web. In 2015
IEEE 11th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 500–508, 2015.

[7] José Á. Morell, Andrés Camero, and Enrique Alba. Jsdoop and tensorflow.js: Volunteer
distributed web browser-based neural network training. IEEE Access, 7:158671–158684,
2019.

[8] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank ci-
tation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab,
November 1999.

[9] Fazli Sapuan, Matthew Saw, and Eugene Cheah. General-purpose computation on gpus
in the browser using gpu.js. Computing in Science Engineering, 20(1):33–42, 2018.

[10] Matthew Turk and Alex Pentland. Eigenfaces for Recognition. Journal of Cognitive
Neuroscience, 3(1):71–86, 01 1991.

12

Abdulsalam Aldahir June 16, 2022

13

	Introduction
	Motivation
	Research Questions
	Thesis Outline

	Related Work
	Theoretical Background
	Speedup and Efficiency
	WebGPU
	The Mandelbrot Set
	The Power Method
	Compressed Sparse Row
	WebRTC & Communication

	Method
	Experiments

	Results and Analysis
	Size one cluster - WebGPU vs CUDA
	Fixed size problem - Scalability

	Discussion
	Conclusion
	Future Work

