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Abstract
Machine learning is one of the largest growing areas within technology, it has given computers the ability

to see patterns and make predictions that previously only humans could make. Machine learning has

already started sprinting away from our human minds in a lot of tasks. The different abilities of machine

learning algorithms are also used widely in big technology companies

Today in Sweden there are thousands of sensors used to check the state of train vehicles to detect

faults. Almost all these sensors get separate measurements for every axle on a train so if an error is

detected its location is defined by an axle number within a train. This axle number needs to be matched

with a certain vehicle to be able to easily locate it and remove or at least check the vehicle. It is, there-

fore, necessary to be able to break down trains into vehicles from timestamps readings. This project

explores the possibilities of using machine learning to classify the train vehicles based on timestamp

readings made by RFID detector setups.

Throughout the project, several algorithms were attempted with different structures and different ways

of using the timestamp data. In the end, the MLP-neural network structure was most promising and

a model that could predict 91% of the trains correctly was created. This model showed that machine

learning was a promising way to classify vehicles from axle timestamp readings. The model also worked

for some of the faulting sensors. It worked since it did not require the entire RFID detector setup to be

fully functional, which was an unexpected extra positive outcome of the project.
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1 Introduction

1.1 What is Machine Learning

Machine learning is a branch of artificial intelligence that focuses on using data and algorithms to solve

problems by mimicking the human concept of learning [1]. The name ”machine learning” was first coined

by the computer scientist Arthur Samuel, a pioneer in AI and computer gaming, in the year 1952 [2].

Artificial intelligence and machine learning have ever since been constantly improving and managing to

solve more advanced problems. Today machine learning has developed into being a useful tool for solving

a lot of different problems and one of the areas where machine learning excels is in classifying problems.

1.2 Machine Learning Today

Machine learning is one of the most current topics for companies and in general technological businesses.

Today machine learning models can be developed in previously unimaginable areas. These algorithms

are developed to do tasks that before were impossible or required a lot of human work. As machine

learning models are getting more complex it is nice to know that the basics of machine learning builds

on quite simple mathematics, allowing most engineers to understand them. This of course also means

that the area is growing quickly as it is possible for a lot of people to understand and contribute with

their own ideas of improvement within the machine learning area.

The simplicity of the basic neural networks is based on knowing some calculus, but in the end, it is

just the new ways of using already discovered mathematics that has led to the quick development of bet-

ter machine learning algorithms. The constant increase of processor power thanks to the development

of better graphics cards, a lot thanks to the gaming industry, also means that the often computational

heavy learning processes of machine learning algorithms are getting quicker. This quick development

and realization of the possibilities of using already existing information is what has put machine learning

into one of the most interesting and current areas within technology. It is therefore not surprising that

companies are investing time and money into researching the possibilities even more.

1.3 Machine Learning for classification problems

One of machine learning’s best areas is classification problems. These problems consist of getting input

to a model that then classifies the input to a certain class. The inputs can be images, numbers, names,

and so on and the output classes can be pretty much whatever you want. Machine learning is strong for

classification problems as it can learn to see patterns quicker than humans as well as see things that we

can not.

1.4 Problem Description

This report focuses on exploring the possibility of replacing old systems with faster and better ones

based on machine learning algorithms for Analysfabriken, which is part of the Swedish Transport Ad-

ministration or Trafikverket. The report focuses on a specific problem which is, Vehicle Breakdown Using

Machine Learning. At the moment there are so-called RFID detector setups placed throughout Sweden

on railways. The detector setups consist of two sensors and an RFID tag reader. The sensors register

every time a train axle passes the sensors and the RFID tag reader reads information about the train,
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such as the train company. The readings from an RFID detector setup thus consist of two-time stamps

for each train axle and a little general train information. This information can in turn be used to cal-

culate the train’s velocity, the direction of movement, and distances between train axles. These RFID

detector setups create the readings for all trains that pass a detector.

From the RFID data, it is possible to determine train compositions. The train composition is at the

moment determined by a rule-based model developed by brute force by a human. An example of how the

model works is by taking the RFID data for a train passage and then using the different axle readings

to determine the number of vehicles on the train as well as each vehicle’s axle count. The model can

for example tell that a train consists of three vehicles, a locomotive with for example six axles and two

passenger wagons each with four axles just from the axle readings. Today’s model is like mentioned

rule-based and has some drawbacks. Some of the drawbacks are that it has problems with inconsistent

velocity, not working if one of the two sensors break, and the most severe is the run time of the code

(around one minute per train).

So this problem could actually be split into two sub-problems, one where the RFID detector setup

is completely functional. For a completely functional setup, there exist two readings for every axle pas-

sage at different points which allows for the use of the length between axles to classify train compositions.

While a broken RFID detector setup might only have one timestamp sensor working which means that

there only is one reading for every axle passing and instead of length distance the time distance has to

be used to classify train compositions.

The purpose of this project is to make a machine learning model compare to the rule-based model

to see if the prediction time can be improved. The machine learning model’s accuracy is of course also

of importance. The old model only works for fully functional RFID detector setups and so, the second

part of the project is to try and make a machine learning model that can make the train composition

classification for detectors with just one timestamp sensor. For the second part of the project, the pre-

diction time and accuracy will also be of importance, but it will not be required to beat any old models

to be implemented in the railway infrastructure.

2 Background

2.1 Motivation

The major reason why vehicle breakdown is necessary is for the maintenance of vehicles. There are

different kinds of sensors placed throughout Sweden that use different measurements to find problems

or possible future problems with vehicles. The kind of sensors could be heat or noise sensors. Some

sensors can notice faults that are probable to happen in the future. It is therefore possible to tell what

parts should be changed before any breakage occurs. To be able to know where to change parts on

a vehicle it is required to know which vehicle the problem occurred to. Therefore there is a need for

train vehicle breakdown. Essentially the vehicle breakdown allows for axle sensor data to be matched to

specific vehicles.
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2.2 RFID-detector

Figure(1) shows a picture of a radio frequency identification(RFID) detector setup. In the figure there

are two small white boxes along the railway, these boxes are sensors that work based on the fact that

the electromagnetic field changes as a train axle passes over them. So every time a train axle passes

one of the sensors the electromagnetic field change is detected and the sensor sends out a timestamp for

the time of the electromagnetic anomaly. The pole with another white box on it is the RFID detector

or RFID tag reader. An RFID tag is something you can put on objects to give them a kind of serial

number which allows for the identification of the object if it passes an RFID detector. These RFID

tags are not present on all vehicles, but for the ones that exist, it allows for automatic identification

of the train vehicle. In other words, if all vehicles had RFID tags then the machine learning model in

this project would not be necessary as the identification of vehicles from RFID tags gives information

about the vehicles axle count along with other information as well. The two timestamp sensors allow for

Figure 1: A picture of a RFID detector setup consisting of two elctro-magnetic sensors along the rail to
measure timestamp readings and one RFID tag reader on the pole, close to Abisko Sweden.

the measurement of essentially three things. The first is what velocity the train is moving at since you

get two time readings for every axle and the distance between the two sensors is known. It also gives

information about what direction the train is moving on the railway. Finally, it gives the time between

axle passing’s which can be transformed into a length distance when the train velocity is known.

2.3 The Importance of Data

An essential part of creating any good machine learning classifier model is the training, validating, and

testing data. This data is so important since the whole concept of the machine learning classifier model

is to create an algorithm that learns to recognize patterns, and then be able to classify future data. Thus

if the original training data is of substandard quality then the machine learning classifier model will also

be of substandard quality. This also means that a classifier model will never be better than what the
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training data allows it to be and so it should not be underestimated taking the necessary time to find

and/or create good data.

The next step is to be able to gather the right amount of data. It is always better to have too much than

too little data, as long as the quality stays adequate. This is especially true for deep learning models such

as neural networks. Neural networks get better with the amounts of data as these systems are complex

with a lot of connections between neurons that need to be finely tuned[3].

2.4 Scaling

For most machine learning algorithms scaling the features are important. Here a feature is the values

or categories that are input to the machine learning algorithms. An observation of the data is the set

of all features for one example or row in the data. Scaling is necessary is to keep the feature values

close to each other and decrease the value difference to outliers. This makes it easier for the machine

learning algorithm to recognize similar feature values as there won’t be the same gap between any two

values. Another way to think of this is to think that it is easier to see a likeness between 0.01, 0.015,

and 0.02, than 100, 150, and 200, and in a way, it works the same way for the machine learning. Scaling

also prevents certain features to be overweighted as the algorithm could think that features with large

values are more important. It also minimizes the problem of large unexpected feature outliers, it does

this since no matter how far away the outlier is it will be scaled down to the same degree as the rest of

the features in all observations. Two common scaling techniques are normalization and standardization.

Normalization is used to bound the feature values between two given boundaries and standardization is

for transforming the features to have zero mean and a variance of one[4].

2.5 Feature Engineering

With the right data is also important to be able to create good features. Feature engineering is well

explained in the words of Jason Brownlee, ”engineering is the process of transforming raw data into

features that better represent the underlying problem to the predictive models, resulting in improved model

accuracy on unseen data” [5]. A good example of the importance of feature engineering is the winners of

the 2010s KDD cup, which ”is the annual Data Mining and Knowledge Discovery competition organized

by ACM Special Interest Group on Knowledge Discovery and Data Mining”[6], which credited feature

engineering as a key method in winning. The paper ”Feature Engineering and Classifier Ensemble for

KDD Cup 2010” shows the use of being able to simplify data into simple features. In their case making

data into several binary features (one-hot encoded features) was one of the tools that helped them win

the competition[7]. There are a lot of different methods and techniques to try and create good features

but no matter what, it is important to preprocess and clean the data. Preprocessing the data removes all

”garbage” and in turn allows for the creation of clean and efficient features. Choosing the right feature

is something that requires work and is as mentioned something that can help improve machine learning

models.

2.6 Testing

Testing a machine learning model can be done by several methods. Perhaps the most useful tool to

visualize the results is to use a so-called confusion matrix that shows actual values versus predicted

values. A confusion matrix is a good tool for finding what the algorithm has problems predicting and

is, therefore, a good tool to look at before trying to improve the model. Figure(2.6) shows the confusion
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matrix for a binary problem with just two outcomes. The names true positive(TP), false positive(FP),

false negative(FN), and true negative(TF) are common machine learning terms and are often used for

judging a model. From the TP, FN, FP, and TN the recall and precision can be calculated. The recall

is the fraction of correctly predicted positive examples out of the total number of positive examples or

in equation form

Recall =
TP

TP + FN
.

The precision is the fraction of correctly labeled positives out of all the positive predictions or

Precision =
TP

TP + FP
.

Recall and precision also exist in multiclass problems and the only real difference is that every class has

its own recall and precision. They are calculated the same way for multiclass problems with TP being

the correct prediction for the specific class and the false values being the incorrect predictions in the

other classes[8]. Recall and precision are two good estimates for a model, but their importance differs

depending on the problem to be solved.

Possibly the most used metric for machine learning models is accuracy which is the percentage of cor-

rectly predicted classes out of all the predictions. In this report, there will be two types of accuracy, one

for axle predictions and one for train predictions.
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Figure 2: Shows the structure of a confusion matrix with the common terms that are involved in the
testing of machine learning classification.
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3 Theory

3.1 Data Manipulation

3.1.1 One-Hot Encoding

One-hot encoding data is a simple and efficient method to make categorical data into features of ones

and zeros. It works by creating a feature for every different category in the categorical data and assigning

one to the category the training observation belongs, the rest are classified to zero.

3.1.2 Repetition and SMOTE

To weigh up for the imbalance in the data set there are several methods. One of the simplest ones is

repetition. Repetition is to add the same underrepresented observation several times to the training

data. Another and often more efficient way is Synthetic Minority Over-Sampling Technique (SMOTE).

SMOTE works by creating synthetic examples by working in the so-called feature space. The under-

represented class is over-sampled by using each minority class example. It creates a new sample lying

on the lines or planes that connect the k nearest neighbors in the feature space to the selected minority

sample[9].

3.1.3 Under-Sampling

Under-sampling is one of the simplest strategies to handle imbalanced data. It simply randomly removes

some of the observations of the over-represented classes from the training data. It is a good way to even

out data sets, but at the same time, there is a loss of information[10]. Under-sampling is therefore useful

in combination with the SMOTE technique as it allows for less under-sampling which means less loss of

information[9]

3.2 Algorithms

This project is focused on two things. One is the learning and understanding of machine learning and

the different algorithms and the second part is using this knowledge to solve a classification problem.

The theory part will therefore go through several models where some are better and some worse for

the specific problem at hand. However, all are useful to understand to see the countless different ways

to implement machine learning. The algorithms tested in this project include Naive Bayes, K-Nearest

Neighbours, Decision Trees, Random Forrest, and Neural Network.

3.2.1 Naive Bayes

Naive Bayes is a simple and quick method for classifying problems, as the name Naive also suggests.

Its strengths lie in its simplicity and its fast prediction times. It works based on a simple probability

formula,

P (c|x) = P (x|c)P (c)

P (x)
. (1)

Where P (c|x) is the posterior probability, in this case, that class c will occur given the features x. P (x|c)
is the likelihood of having features x given that the class is c, P (x) is the prior probability that the features

will be x, and P (c) is the probability of having class c. The Naive Bayes algorithm computes the terms

on the right-hand side of equation(1) by using a set of training data and simply calculating probabilities
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and likelihood for all classes and features. With all the necessary probabilities and likelihoods estimated

the Naive Bayes algorithm is ready to classify. It classifies by calculating P (c|x) from equation(1) for

all possible classes given the features x and then the class with the highest probability value is the

algorithm’s predicted class. Naive Bayes is useful for multi-class prediction especially when the features

of the model are from categorical data. However, Naive Bayes simplicity comes with some big flaws, the

main one being that the model assumes the independence of all features. Since Naive Bayes works best

for categorical and independent features, the model is good for specific problems, such as text and email

classification[11].

3.2.2 k-Nearest Neighbors

k-Nearest Neighbors or kNN is perhaps the most straightforward machine learning algorithm. kNN

works by storing all training examples in memory and then when a new example is to be predicted it is

classified based on the k-nearest neighbors. The trick however is to determine the k-nearest neighbors

and what weights each one should have on the prediction. A frequently used distance function is the

Euclidean one,

d(p,q) =

√√√√ n∑
i=1

(qi − pi)2,

where p and q are two points described by vectors in a n-dimensional space and i describes each of the

directions in the space. There are many other used and possible distance functions such as negative

cosine similarity, Chebychev distance, Mahalanobis distance, and Hamming distance. To implement

kNN, the hyperparameters that need to be tuned are how many neighbors should be taken into account,

how or if they should have weights based on for example closeness to the point of prediction, and what

distance function to use. The advantages of kNN are its simplicity, nonparametric architecture and it

requires no training time. kNN however, is memory intensive and slow for large sets of data[12].

3.2.3 Decision Tree

The decision tree is a model that works by setting up statements and then splitting the data into new

nodes depending on the results of the statement. The split data is again put into different statements

and split up again. This is repeated until the end node or leaf is reached. Figure(3) shows an example

of how a decision tree can look, the root node or top node in the picture shows the first statement

which is what train operator a train has, and then the arrows show what is split into new statements.

When decision trees are trained it is about finding the right statements for the right place in the tree to

split the data into their final classes. This can be done using several functions that measure how much

information the decision tree gains from a single statement. Some functions that are used for the training

of decision trees are Gini impurity and information gain[13]. Decision trees are good for classification

problems, since the whole structure of a decision tree builds on splitting data up into smaller subsets with

something in common. The decision tree model does have one flaw which is its inaccuracy in classifying

new observations. The algorithm, therefore, has a problem with overfitting the training data.

3.2.4 Random Forest

Random forest is an ensemble supervised learning algorithm for classification problems. The algorithm

builds on the decision tree model but attempts to solve the decision tree problem of inaccuracy for new

observations. A random forest is a setup of several decision trees created from so-called bootstrapped

data. Bootstrapped data is when you take the training data and randomly select an observation to
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Figure 3: A plot of the example structure of a decision tree.

put into a new data set, with a replacement which means that the same observation can occur several

times in the new data set. So in the random forest algorithm, every decision tree is trained on its own

bootstrapped data created from the training data. This means that there are now several similar yet

different decision trees. The random forest classification for a new observation is done by letting each

tree predict the class and then the random forest prediction is the most predicted class, this technique

is also called bagging[14].

3.2.5 Neural network

There are several different neural network algorithms. One of the simplest deep learning neural networks

is a feed-forward multi-layer perceptron neural network or MLP. An MLP neural network is a network

that consists of an input layer, then one or more hidden layers, and finally an output layer, an example

of a simple MLP structure can be seen in figure(4). The figure first shows the input layer with two

neurons. The value in each of these neurons will represent a feature value from an observation in the

data. These values will then via, connections drawn as lines, go to the next layer, which in this case is a

hidden layer with three neurons. The neuron value in a certain neuron in the hidden layer is determined

by the following expression,

aj = σ(

n∑
k=1

xjkwj + b)), (2)

where wjk describes the weights from neuron k in the first layer to neuron j in the second layer and bj

is the bias of the neuron, n is the number of neurons in the previous layer, σ is the so-called activation

function, which will be discussed in a later section, that is applied to get the final neuron activation

value aj . wjk can also be seen as one of the lines between the neurons in figure(4). By applying this
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method for every neuron in the hidden layer their values are determined. Then the same method can be

used to determine the output layer values, just that in this case the hidden layer is the previous layer

noted by index k. This also means that it is easy to add more hidden layers as it only requires you to do

more calculations to get to the output layer, but the mathematics stays the same. The training of the

neural network is the most important part and can be done with different techniques to update wjk and

bj . The output layer in figure(4) is where the final prediction of the algorithm is. In this case, there are

Figure 4: Shows a simple MLP neural network structure with three layers.

two neurons which means that it is a multi-class predictor. The made prediction is represented by the

neuron that has the greatest value. This is at least the case in this reports model but it depends on what

algorithm, loss function and problem that you are using/trying to solve. Let’s dive deeper into neural

networks to understand the mathematics behind a MLP network logistic regression is a good starting

point.

3.2.6 Binary Logistic Regression

Logistic regression is a supervised learning method for classification. The method is interesting since it is

an important building block in most neural networks. It is a discrete probability-based machine learning

algorithm. Logistic regression can be applied to both binary and multinomial classification problems.

The binary case is generally based on a so-called sigmoid function,

ŷ =
1

1 + e−z
, (3)

that can be seen in figure(5).

As can be seen from figure(5) the sigmoid function takes an input and limits it between the values 0

and 1. This is useful as it allows for classifying input variables based on if the sigmoid function gives

an output greater or lesser than 0.5, classified as 1 or 0 respectively. The output value ŷ of the sigmoid

function is of course dependent on the input z, but z in its turn should include all features in the machine

learning model for the model and thus

z = wx+ b. (4)

where w is the vector of weights, x is the input features and b is an added bias term. The way the

binary classification is made is by plugging z into the sigmoid function and the final output ŷ will give a

classification 0 or 1 depending on if ŷ < 0.5 or ŷ > 0.5[12]. Equation(4) is the vector or matrix version

of what is inside the sum of equation(2) and for binary logistic regression, the model could look like the

network in figure(6). This once again shows the likeness to the neural network. For the logistic regression

model to work it is important to have the right values for w and b. The first step in this process is to
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Figure 5: A plot of the sigmoid function, from equation(3).

Figure 6: Possible structure of binary logistic regression.

look at the loss function for logistic regression. The loss function is something that is defined to be

able to measure how close a machine learning algorithm is to making the correct prediction. Usually,

loss functions are defined to be zero for good predictions, so minimizing a loss function is the same as
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optimizing the parameters within a machine learning algorithm. For logistic regression Log Loss is a

widely used loss function,

LogLoss =
∑

(x,y)∈D

−ylog(ŷ)− (1− y)log(1− ŷ), (5)

where (x, y) ∈ D is the set of training data, x is the features, y is the label of the training data and ŷ

is the predicted output from using x as the features. To make the logistic regression model as good as

possible, the Log Loss function needs to be minimized and the most common way is to use stochastic

gradient descent. To understand stochastic gradient descent it is simplest to start with gradient descent.

3.2.7 Gradient Descent

Gradient descent is an iterative algorithm used to find the minimum/maximum of functions. Gradient

descent works by taking the gradient of a function which gives the direction of the steepest incline. This

means that if the parameters are moved towards the opposite direction of the gradient the function’s

solution will move towards a minimum. By repeating the process over and over again the solution of the

system will get closer and closer to the minimum.

In the case of logistic regression explained in previous section the parameters to optimize are w and

b. For w the derivative will have to be calculated for each separate wjk in w. So for example the

gradient of the Log Loss function is,

∂LogLoss

∂wjk
=

∂LogLoss

∂ŷ

∂ŷ

∂z

∂z

∂wjk
, (6)

∂LogLoss

∂b
=

∂LogLoss

∂ŷ

∂ŷ

∂z

∂z

∂b
. (7)

Equations(6)(7) show the example of the chain rule applied to get the gradient of a loss function, in this

case, the log loss function. This chain rule works for other loss functions as well and the interesting thing

is how these equations describe the incline of the loss function. To minimize the loss function the wjk

and b:s values should be changed in the opposite direction of the derivatives in equations(6)(7).

3.2.8 Learning Rate

Then there is also the question of how big of a step you should take when changing model parameters.

This is decided by a so-called learning rate. A big learning rate will change the parameters more. This

learning rate is a hyperparameter that can be optimized, since its value is not predetermined in most

models. Usually, the parameters are updated by the following equation

θt+1 = θt − η
1

no

no∑
i

∂C(i)

∂θt
, (8)

where θ is a algorithm parameter, the C(i) is the notation of the loss function for observation i which

also can be called a cost function, η is the learning rate that is multiplied with the average of the sum of

the negative derivatives of the loss function for θ, no is the number of observations in the data. However,

there are optimization functions that are able to adapt and change the learning rate throughout the

training process.
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3.2.9 Stochastic Gradient Descent

Stochastic gradient descent works the same way as gradient descent except for the algorithm param-

eters are updated without running through them all. Stochastic gradient descent is also explained by

equation(8), but with the exception that no represents a subset of observations from the entire data set.

3.2.10 Multinomial Logistic Regression

The next step from binary logistic regression is to so-called multinomial logistic regression, which allows

for multiclass predictions. It often uses a softmax function as its classifier function. This softmax function

models the relationship between input variables and the probability of the input variables belonging to

different classes. So the softmax function is a way to get probabilities as a prediction for every class and

then simply select the highest probability class as your class prediction. The softmax function is

P (y|z(c)) = θ(z(c)) =
ez

(c)∑k
j=0 e

z
(c)
j

, (9)

where y is the class of the input observation (the label), k is the number of possible classes and c can

range from 0 to k and describes the probability of predicting class c. So really it says the probability of

y given the input function z(c). This is then done for all the neurons in the output layer represented by

the c, and the one with the highest probability is the predicted class. The multinomial logistic regression

can also be seen as a possible way of moving between multi-neuron layers within a neural network, as

these are just constructs of several multi-layers. In this case, the activation function was the softmax

function in equation(9), but this activation function can differ. If another layer was to be added, the

method would just be repeated.

3.2.11 Cross-Entropy Loss

To optimize the multinomial logistic regression, cross-entropy loss is often used as a loss function. The

idea behind cross-entropy loss begins with the maximum likelihood criterion,

P (Y |X) = Πno
i=1P (y(i)|x(i)). (10)

Equation(10) describes the product of the probability of the classifier being correct for every input

observation and is thus something that needs to be maximized to get a better classifier. The x represents

the input features and y labels so if the model is correct, the probability of predicting the right class

should be high. Here the no represents the set of training observations for a model so you want as many

of the examples to be classified right to maximize equation(10). However, maximizing equation(10) is

the same as minimizing,
n∑

i=1

−logP (y(i)|x(i)). (11)

In equation(11) y(i) can be represented by a one-hot encoded classification meaning it is a vector with

1 at the correct prediction and 0 at all the wrong predictions. If we assume y(i) consists of j classes

equation(11) can be written as
n∑

i=1

(

n∑
j=1

−logP (y
(i)
j |x(i))),
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and what we want to minimize can be simplified as just the inner sum

n∑
j=1

−logP (y
(i)
j |x(i)), (12)

for all the training observations. By using that

P (yj |x) = ŷ
yj

j (1− ŷ)1−y, (13)

where yj is either one or zero depending on if class j is the correct class to be predicted. ŷj is the

probability of it being class j which is calculated by some kind of activation function as in equation(9).

The i index that describes a certain training observation has been removed in equation(13) since the

cross-entropy loss function will only be defined for one observation. In equation(13), the (1 − ŷ)1−y

term is redundant as the ŷ
yj

j term will work alone as maximizing this term is essentially the same as

minimizing the (1− ŷ)1−y term. This leads to the so-called cross-entropy loss definition which is,

−
∑
j

yj logŷj (14)

This is one way of understanding the cross entropy loss. Another good way of testing it out is just

by plugging in values straight into equation(14) to see that it is a function that is minimum when the

multiclass classifier makes good predictions. Equation(14) assumes that y is one-hot encoded as well

which is important to remember[15].

3.3 Backpropagation

From multinomial logistic regression, stochastic gradient descent, and cross-entropy loss the step to an

MLP feed forward network is not too big. The only extra step is how to update parameters several layers

before the final layer and this is done by backpropagation. In neural networks, there are parameters for

each layer and each neuron. Updating these parameters is based on the principle of minimizing a loss

function with knowledge of how layers depend on each other. Backpropagation is a way to see how any

parameter within a neural network affects the algorithm’s loss function. As previously said gradient

descent is a common way to find the direction to move the parameter values and this is used within

backpropogation. Equations(6)(7) can with more general terms be written as

∂C

∂w
(l)
jk

=
∂C

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

∂z
(l)
j

∂w
(l)
jk

, (15)

∂C

∂b
(l)
j

=
∂C

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

∂z
(l)
j

∂b
(l)
j

, (16)

here C represents a loss function that is applied on the predictions of neural network, for example it

could be the cross entropy loss function. a
(l)
j describes the activation of neuron j in layer l mentioned in

equation(2), z
(l)
j is input to the neuron mentioned in equation(4), w

(l)
jk represents the weight parameter

to neuron j in layer l from neuron k in layer l − 1 and b
(l)
j is the bias parameter for neuron j in layer

l. So equations(15)(16) are also the gradient descent functions with different notations, but also at the

same time the first step towards backpropogation. The next step is to look at the general notation for
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z
(l)
j ,

z
(l)
j =

nl−1∑
k

w
(l)
jk a

(l−1)
k + b

(l)
j . (17)

The a
(l−1)
k in equation(17) shows how the layers connect in mathematical terms, as the input to a neuron

depends on the activation of the neurons in previous layer. If we now look at the derivative of the loss

function with respect to the activations in the second last layer in a neural network the following can be

shown,

∂C

∂a
(L−1)
k

=

nL∑
j

∂C

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

∂z
(L)
j

∂a
(L−1)
k

, (18)

where L is the final layer. Equation(18) can then be used iteratively for each layer so the third to last

layer uses same principle as the second to last one. The main problem with backpropagation is keeping

track of all the indices as the complexity grows with the amount layers. The final backpropagation

formula is equations(15)(16) just with

∂C

∂a
(l)
j

=

nl∑
j

∂C

∂al+1
j

∂zl+1
j

∂wl+1
jk

∂al+1
j

∂zl+1
j

. (19)

With the backpropagation, the key concepts for creating a simple neural network are described. As

a neural network is just layers using multinomial logistic regression, then a loss function to be used in

combination with backpropagation to update the layers. These concepts are the basics, and there are lots

of different activation functions, loss functions and optimization functions that are suitable for different

problems. A good way to understand backpropogation is to vizualize it, which the youtube channel

3Blue1Brown does really well[16].

3.4 Hyperparameter Tuning

To optimize a neural network, or any machine learning model, it is important to improve the so-called

hyperparameters. Hyperparameters are the parameters that are decided before training the model such

as number of layers, number of neurons, activation function, optimization function, learning rate, batch

size, epochs and a lot more. These hyperparameters can all be optimized to improve the algorithm for a

neural network via using some different techniques. One of the simplest ones is grid search which simply

trains and validates the model for several different values of the hyperparameters, this works well but

can get computationally expensive for large data sets that require time to train. Another technique for

hyper tuning is Bayesian Optimization which attempts to automate and make the tuning more efficient

by using information from the previous sample[17].

3.4.1 Activation function

The activation function has already been mentioned and figure(5) shows an example of one possible

activation function. However there is another activation function that has shown great results through

the last few years, and this is the rectified linear activation function or ReLU[18]. ReLU is a simple

function that takes the input to a neuron and compares it to zero and then takes the max of these two.

The ReLU function is,

ReLU(z) = max(0, z),

where z is the neurons input.
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3.4.2 Optimizer Function

The optimizing function for a neural network is the function that updates the parameters within the

algorithm. So for the MLP network that would be all the w and b:s. These are usually based on back

propogation to see what parameters need to be changed and then you have some kind of learning rate

to determine by how much all the parameters should be changed. A quite new and efficient optimizer

function is called Adam.

3.4.3 Adam

Adam is a adaptive learning rate optimization algorithm. Its a way of using momentum in combination

with an adaptive learning rate to update neural network parameters. Momentum essentially means that

instead of updating parameters on just the latest results from the stochastic gradient descent, you use

the previous gradient as well. Momentum adds a term of the previous update to the parameter and the

equation to update a parameter using momentum is,

θt+1 = θt − η
∂C

∂θt
+ γvt,

where γ is a constant that describe how much the previous update to the parameter should be taken

into account and is usually set to be 0.9, vt describes the previous parameter update of θ and adds a

time element to the equation, also called temporal element. Momentum is useful as it makes the loss

function converge quicker towards a minima. Momentum also decreases the risks for the loss function to

get stuck in a local minimum instead of the global one.

The idea with adaptive learning is to start of with a relative high rate that decreases as you get closer

to the local minima of the loss function to make it quicker to converge and to avoid overshooting the

minima. The adaptive learning works based on the principal that the learning rate can use the gradient

and momentum to adapt the learning rate. Adam is one case of the combination of an adaptive learning

rate and momentum and is defined as,

θt+1 = θt −
ηm̂t√
v̂t + ϵ

, (20)

m̂t =
(1− γ1)gt + γ1mt−1

1− γt
1

, (21)

v̂t =
(1− γ2)g

2
t + γ2vt−1

1− γt
2

, (22)

where gt is the gradient of the loss function with respect to the parameter θt, γ1 = 0.9, γ2 = 0.999.

Equation(20) shows how the function uses a kind of momentum m̂t to stay on the right track for every

update of the parameters and the term v̂t to adapt the learning rate [19].

3.4.4 Batch Size

The batch size is a hyperparameter that has to do with how a neural network is trained, just like the

activation function. What the batch size says is how often the parameters within the model should be

updated. For example a batch size of 100 means that the model will go through 100 observations and

then update the parameters and then move on to the next 100 observations. The batch size is something

that should be balanced for several reasons, one is to counter overfitting and underfitting which can

occure if the batch size is to small or to large, another one is to decrease a models training time as
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updating model parameters can be computationally heavy.

3.4.5 Epochs

Epochs are, just like the batch size, also a training hyperparameter. The number of epochs describe how

many times the training data should be run through. Big numbers of epochs are therefore capable of

overfitting a model as it will begin to learn the training data to ”good”. At the same time, the possibility

of running through the training data several times gives the model a better opportunity to gather the

information within the training data.

3.4.6 Dropout Layers

Dropout layers are layers that are used to counter overfitting. Dropout layers randomly remove different

neurons from neural networks for each training iteration. So if a dropout layer is added it will for each

batch size of training data change the neurons in the dropout layer. The dropout layer simply sets the

input to zero for all the randomly selected neurons that should be removed for a training iteration and

scale the rest up to keep the overall neuron input sum the same over that layer. This means that no single

neuron will become dominant as different neurons will be used in every update of the neural network

parameters. This also means that a neural network with dropout is forced to depend more evenly on all

nodes and removes the problem of certain nodes becoming too dominant[20]. Dropout layers are only

applied for the training of the algorithm.

4 Method

4.1 The Basic Process of Machine Learning

This project has been split into different stages that are common for machine learning and they are:

• Preprocess Data: Collect enough data and clean the data

• Data manipulation: Repetition, SMOTE, and removing some common labels

• Feature engineering: Create suitable features for the given problem. Scale values and one-hot

encode categories.

• Algorithm: Create the machine learning algorithm and tune it.

• Test model: Evaluate and find possible improvements for the previous steps.

4.2 Data

The data for this project consisted of two files, one with detector readings from all active RFID-detectors

setups over the last two months (around January to February 2022) for the whole of Sweden and one with

labels for each vehicle that passed the sensor. The detector file consisted of approximately 37 million

axle observations, but since every detector has two sensors these 37 million examples really represent

18.5 million axles passing detectors. This massive set of examples was used to develop the final models,

for the first steps a smaller set of data was used from just one detector called Koler. The Koler data only

consisted of around 500 000 axle passings or 1 000 000 sensor readings. This Koler file was therefore a

good starting point to find common errors that had to be removed in the dataset.
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The main problem that was noticed in the Koler data was that the two sensors had not measured

the same amount of axle passages for trains, so for example a train that passed a detector could have 10

reading from the first sensor(sensor1) and then the second sensor(sensor2), which was around 5 meters

down the rail, would only have 9 reading. This meant that for some unknown reason sensor2 had missed

an axle passing and there was no way to tell which one it had missed. Sadly this meant that the axle

distances could not be calculated correctly for the train passage and all the data for that passing was

essentially trash. When all train passages with different sums of sensor readings were removed. It also

removed another problem within the data that some vehicles had been given labels Nan, and this was

probably created since the old model did not know what to do with different sums for the sensor readings.

An example of the untouched data from the RFID-detector setups can be seen in figure(7). The figure

shows how the raw data for one train passage can look with time stamps and some general information.

Figure 7: A plot of the raw RFID-detector setup data.

4.3 The First Features

The first problem with creating the model was to have the same amount of features no matter what kind

of train passed a detector. To do this the, idea of classifying axles instead of entire trains was created.

Since an axle reading is just a time reading it is something that stays the same no matter what train that

passes a detector. So in reality what the neural network classifies is what vehicle a certain axle belongs

to. The way this was done was by creating a set of features for every axle within a train passage. For

example, a train with a hundred axles would need the machine learning algorithm to classify a hundred

observations. To classify an axle it was necessary to create axle features. An axle feature here means

something that is specific for every axle. The axle features could consist of lots of different information,

but as often is the case within machine learning it is good to start off with the simplest features and work

from there. The first model to predict axle vehicle classes therefore only used what will be called axle

distances. An axle distance could either be a time distance or a length distance, and it really means the

distance from the axle the model wants to predict to a certain neighboring axle. The neighboring axle

could also differ as to which neighbor it would be, for example, if the neighbor was in front or behind

the predicted axle and how far away the neighbor would be in terms of other axles. An axle with the
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feature of neighbor 3f would for example mean it was the distance to the third neighboring axle forward

in the train. The distance for axles without any neighbors was set to zero. For example, the first axle

within a train would not have any neighbors in front of it so feature 1f would be set to zero. Of course,

an axle could have several features for different neighbors. The very first model just used these kinds of

neighbors as features. The axle distance features were also scaled to have a standard deviation of 1 and

mean 0 before training to not add extra weight to any specific feature. An example of the feature data

can be seen in the figure(8).

Figure 8: A plot of some of the numeric features in the training data, where the extra d in fd means
that it is a length distance feature.

4.4 The First Model

At this stage, it was possible to train the first model. The first model showed an accuracy of around

80% which proved straight away that this challenge was suitable for a machine learning algorithm. The

first model was built using the python library scikit-learn[21]. The first model was a simple multi-layer

perceptron(MLP) neural network, and from here the next step was to test several other models for two

reasons, to learn what model is good for what kind of problem and to find the best fit for this specific

problem.

4.5 Testing different algorithms

When the first model had showed hope for the project the implementation of K-Nearest Neighbours,

Logistic Regression, Naive Bayes, Decision Tree, Random Forest, and MLP neural network were done

using the scikit-learn python library. Here the Random Forrest and MLP network showed the best results

and it was chosen to continue the project with the MLP neural network as it showed a better prediction

time than the Random Forest.

4.6 Feature development

However, just using axle distances as a feature was good, but not good enough. Another set of features

to add to every axle was categorical features. All categorical features in the different stages were added

using one-hot encoding. The first categorical feature added was the detector names. Detector names

essentially tell the model where the readings were done, but this information did not add much value to

the model. So instead the category train operators were added. Operators describe which train company
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the readings for a train belonged to. For example, a common passenger train company would be SJ and

a common cargo company would be Green Cargo. The operator category added information that let

the model recognize vehicles easier as companies often used the same types of vehicles, or at least that

was the hope by adding the category. The operator feature proved to be strong and was therefore used

in the model. The final model actually only used vehicle distances and the operator categories as the

features, but with the possibility of adding more features. An example of categorical features can be

seen in figure(9) and this was used with the numeric features in figure(8)

Figure 9: A plot of some of the one-hot encoded categorical features in the training data.

4.7 MLP Model

With the desired features the next step was to build and train a new machine learning algorithm. The

neural network model was created with the open-source library Tensorflow[22]. Tensorflow allowed the

model to be easily manipulated, to change hyperparameters and to have better control over the training

of the model. With the new model created in Tensorflow, it was all about finding new ways to improve

the model.

At this stage of the project, the data was split into training, validating, and testing sets. The training

set consisted of 60% of the data and was as the name suggests used to train the model. The validation

set consisted of 20% of the data and was used to optimize the hyperparameters. By testing for differ-

ent features and running Bayesian Optimization the activation function, neuron counts in each layer,

optimizer function, learning rate, batch size, epochs, dropout and amount of layers could be optimized.

The validation set was also used to test the model for different ways of manipulating the data such as

SMOTE and under-sampling. Finally, with the hyperparameters tuned, the testing data could be used

to check the end result of the model.

To continue the improvement of the model the next step was to test the axle prediction accuracy for

different features and use confusion matrices to determine where the errors occurred. At this stage, it was

clear to see that the model had problems with classifying a few underrepresented classes. Therefore it

was decided to go back and have a closer look at the training data to remove the most underrepresented

classes in the data. This was done since the classes could be determined simpler and more efficiently
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using a rule-based code before letting the neural network predict the classes for axles. This rule-based

code meant the underrepresented vehicles, which were 5,7, and 9 could be removed from the training

and validation data, but still kept in the testing data. Of the other vehicles, 2,3,4,6, and 8, there were

still an imbalance in the number of observations for each class, but still possible to work with. The un-

derrepresented classes were kept in the testing case since the testing was based on the model’s capability

of classifying entire trains correctly, while the neural network was only used to predict which vehicle a

certain axle belonged to. The validation data was also used only to tune the hyperparameters within

the neural network which of course meant it did not require data from vehicles the neural network was

not going to see.

4.8 Going from Axle Predictions to Train Compositions

When the data and tuning had been done the next step was to use the axle predictions to predict the

vehicle composition of trains. This was done by taking all the axle readings for a certain train passage.

The first check that was done was to check the length of the train. If a length of a train was either

5,7 or 9 it would be classified as one vehicle. The reason for this was that the special cases 5,7, and 9

were railway maintenance vehicles which meant they would have only one vehicle. If the train length

was not a special case, features for every axle were created based on the time stamps for axle passages

and RFID-detector data such as the train operator. When every axle in a train had its features the

neural network predicted a class for every axle which could be 2,3,4,6 or 8. This meant that a train

passage with a hundred axles would return a list of a hundred predictions of which vehicle class a specific

axle belonged. The predictions could for example for a shorter train look like [6,6,6,6,6,6,4,4,4,4]. This

would mean a train with a locomotive with 6 axles and some kind of vehicle with 4 axles. This kind

of classification from the list of axle predictions to a list of predicted vehicles in a train was done by a

rule-based function. This function worked by looking at the first value or class in the axle prediction list,

it took the value of the first prediction, then took that value and looked at the number of predictions

behind the first prediction that were represented by the first prediction value. So for example, if the first

prediction was 4 then the function would look at the first four predictions and make sure the majority

of them were 4 and if that was the case the first vehicle of the train would be classified as a 4. After

being labeled as a 4 vehicle the first four predictions would be removed from the axle prediction list.

This would be repeated until the axle prediction list was empty or too many wrong readings occurred.

If there were too many wrong axle predictions or rather too many outlaying predictions the train would

be set as a failed reading. This function made it possible to translate the axle predictions to different

train structures which allowed for testing the model against train passages as well.

4.9 Testing the Final Models

At this stage, with the right data, features, and MLP model it was all about tuning and testing different

types of models. This stage was really just about running and testing a lot of different models with

different data manipulations, features, and neural network setups. Since all vehicle types had different

amounts of observations within the training data it also made it worth trying to train models on SMOTE

and under-sampling data. The thought behind creating the best model in the project was to first run

several models for different ways to manipulate the training data with the same neural network. Then

select the best one and use Bayesian optimization to create as good of a neural network as possible.

This was done for both the problem with only time features and the problem with length features.

In the result section, the final models were run using ReLU and Adam this was decided from earlier

runs where these proved to be the most consistent and accurate activation and optimization functions.
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The other tested optimization functions are stochastic gradient descent, RMSprop, Adadelta, Adagrad,

Adamax, and Nadam. The other activation functions are sigmoid, softplus, softsign, tanh, selu, elu, and

LeakyReLU. The final models also used the cross-entropy loss function.

5 Result

The results will be presented for eight different models with different ways to manipulate data and with

either time distance or length distance as features. The models are run using no data manipulation,

SMOTE, under-sampling, or both. The results are based on training data that consist of 208768 trains,

validation data of 69590 trains, and testing data of 69589 trains. For all the models the activation function

used was ReLU and the optimizer function was ADAM. The MLP neural networks are constructed of

hidden layers with the same amount of neurons and between every hidden layer, a random dropout layer

is applied. The confusion matrix, recall, and sensitivity for each model can be seen in the appendix(7.2).

The models were created using the hyperparameters in the table(5). All models are trained on the

same training data and then tested on the same testing data. The optimized models in the section

Optimized models have been optimized using a separate set of validation data and the optimizing runs

can be seen in the appendix(7.3). The number of training observation classes for the SMOTE and under-

sampling models can be seen in the appendix(7.1). The SMOTE method is configured using the two

nearest neighbors to a random observation to create a new observation. The under-sampling is done by

randomly removing observations.
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Batch size 200

Epochs 30

Learning rate 0.1

Layers 4

Neurons 30

Dropout 0.0

Table 1: MLP neural network hyperparameters for
the eight models.

5.1 Length Distance Features

Training time 1319 s

Prediction time 7895 s

Prediction time per train 0.113 s

Axle accuracy 96.9%

Train accuracy 91.5%

Table 2: Metrics for the no SMOTE or under-
sampling time features model.

Training time 1394 s

Prediction time 7977 s

Prediction time per train 0.114 s

Axle accuracy 97.0%

Train accuracy 90.9%

Table 3: Metrics for the SMOTE time features
model.

Training time 1540 s

Prediction time 9221 s

Prediction time per train 0.13 s

Axle accuracy 96.8%

Train accuracy 91.4%

Table 4: Metrics for the SMOTE and under-
sampling time features model.

Training time 1990 s

Prediction time 9099 s

Prediction time per train 0.13 s

Axle accuracy 96.7%

Train accuracy 90.6%

Table 5: Metrics for the under-sampling time fea-
tures model.

5.2 Time Distance Features

These are the results of the runs with time distance

features.

Training time 1405 s

Prediction time 7833 s

Prediction time per train 0.11 s

Axle accuracy 89.4%

Train accuracy 91.2%

Table 6: Metrics for the no SMOTE or under-
sampling time features model.

Training time 1357 s

Prediction time 7766 s

Prediction time per train 0.11 s

Axle accuracy 97.3%

Train accuracy 92.1%

Table 7: Metrics for the SMOTE time features
model.

Training time 1347 s

Prediction time 7709 s

Prediction time per train 0.11 s

Axle accuracy 97.3%

Train accuracy 91.9%

Table 8: Metrics for the SMOTE and under-
sampling time features model.

Training time 1990 s

Prediction time 9099 s

Prediction time per train 0.13 s

Axle accuracy 96.7%

Train accuracy 90.6%

Table 9: Metrics for the under-sampling time fea-
tures model.

5.3 Optimized Models

The models with best accuracy in previous part

optimized using Bayesian optimization and once

more tested. The Bayesian optimization is run us-

ing the axle accuracy as the measurement to max-

imize. The recall, precision and confusion matrices

can once more be seen in the appendix(7.2). The

Bayesian optimisation runs can be seen in the ap-

pendix(7.3).

5.3.1 Length Distance Features
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Batch size 253

Epochs 50

Learning rate 0.03

Layers 4

Neurons 50

Dropout 0.04

Table 10: MLP neural network hyperparameters
for the optimized length distance feature model.

Training time 5334 s

Prediction time 7706 s

Prediction time per train 0.11 s

Axle accuracy 97.3%

Train accuracy 91.8%

Table 11: Metrics for the optimized length distance
feature model.

5.3.2 Time Distance Features

Batch size 606

Epochs 50

Learning rate 0.06

Layers 3

Neurons 50

Dropout 0.0

Table 12: MLP neural network hyperparameters
for the optimized time distance feature model.

Training time 2954 s

Prediction time 7951 s

Prediction time per train 0.11 s

Axle accuracy 97.1%

Train accuracy 91.8%

Table 13: Metrics for the optimized time distance
feature model.
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6 Discussion

6.1 Discussion

The results in the tables show that the data manipulation did not have a massive effect. The main

difference that could be noticed from the SMOTE is in the figures(11)(15) in the appendix(7.2), which

shows that these are the only models that managed to classify some of the 3 vehicles correctly whereas

all other models ignored the 3 predictions completely. This shows that it probably would be beneficial

to have more 3 vehicles in the training data to increase the overall accuracy. All the models showed an

accuracy between 97-98% when it came to axle prediction which was good as it was not always easy to

differ between 2 axle and 4 axle vehicles. It was interesting to see that it did not matter what features

were used. It was expected that the length distance features were going to outperform the time distance

features as they involve more information about the distances between axles. The reason I suspect why

both feature models were so similar, is from the scaling of them as this removes the units of the values

and instead, they just describe the patterns for certain vehicle passings. It would be interesting to try a

model where the scaling is not necessary to see if this would change the result between the two different

feature models. For example, the random forest model or similar models could be tested with the final

data. In this project, the random forest development was stopped at the smaller data set testing because

of the slower prediction time. With more processor power it could be possible that the random forest

model could reach as good or better results than the neural network.

Another interesting part to see in the results was that the Bayesian optimized models, did not in-

crease the overall train accuracy. For example, the model described in the table(7) outperformed both

of the optimized models when it came to the train and axle accuracy. One possible reason could be that

the optimized models are optimized for the validation data and loss accuracy on the testing data and

therefore do not out perform the previous models. The optimized models are quite close in complexity

to the previous models, so it might also be the case that the first models are close enough to a opti-

mum accuracy that the optimization did not give the system that much more information to work with.

The randomness that takes place when training the neural networks plays a bigger difference then the

optimization in this case. So even though the optimized time features model reached an axle accuracy

over 98% on the validation data, see appendix(7.3) , it still did not outperform the previous model on

the testing data. This also means that there is a probable bottleneck in the data as the structure of the

neural network does not play a big part in the models accuracy. It is therefore possible that no mat-

ter what model you use it will not achieve perfect classification as the data still could have some flaws in it.

The results therefore really show that it is a difference between the best train accuracy and axle ac-

curacy and that the Bayesian optimizations should be run with the train accuracy instead of the axle

accuracy as its measurement. This however is something that requires more computer power as it re-

quires extra steps like the axle to vehicle function to run for every train in the validation data. I however

think that the train classification accuracy could be improved if the models can handle 3 axle vehicles

as well as run the optimization for train accuracy.

6.2 Future work

There are a lot of possibilities to improve the existing model. Some possible improvements could be to:

• Make several models depending on what train company runs the train. For example to create one
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model for all shipping companies and one for all passenger trains. This would allow for the model

to recognize fewer vehicles and thus be more specified. This is kind of implemented with the train

operator feature but could be better with two separate models.

• Another idea similar to the first one could be to assume that the same types of trains pass each

detector and thus each detector could have its own model. This, however, is probably not a good

option as it would most likely be a bit too overspecified and the upkeep of several hundred models

would require more work with little gain.

• The neural network structure is also something that can be experimented with. In this project all

hidden layers had the same number of neurons to make the Bayesian optimization run smoothly,

every layer also used the same activation function and the same dropout layer. So essentially there

are countless of ways to test for new hyperparameters to improve the neural network.

• There is always a possibility of adding more new features, this could possibly include data for what

time of the day a train passes a sensor the total length of a train, and so on. The train length

features were tried as well in this project and did not increase the model’s accuracy, but the use

of train length could be discussed and tested if the models are more specified as mentioned in the

previous two items or to be used for more special case rules. Really the process of creating features

was kept as simple as possible in this project to easily compare different models, but at the same

time, it allows for easily creating and adding new features to train the model.

• I would also suggest making more use of rules before using the machine learning model. What I

mean here is to first set up a few simple rules that will detect more of the special case trains and

then after these rules use a neural network for the model. It could also be a further idea to create

a new machine-learning algorithm for all special case vehicles which in this report was trains with

axle counts of 5,7 and 9. In the rules of the model, these were directly classified as 5,7, and 9

vehicles, but actually, some of the 9-axle count trains consisted of 2 and 3-axle vehicles, and there

were other special cases as well. This can be seen in the confusion matrices in the appendix(7.2)

as there are a lot more predictions of vehicles with 9 axles than there should be. This comes from

the fact that the special case rules at the moment classify all 9 axle count trains into one 9 axle

vehicle, thus classifying some trains with configurations of 3 and 2 axle vehicles to 9 axle vehicles.

In other words, the special case rules could be improved.

• The function that goes from axle classifications to train classifications could also be improved.

There are probably several other ways to do this and a problem, for now, is that this function will

underestimate vehicles with 2 axles. It requires two 2 predictions in a row to classify a vehicle as

2, and thus requires the predictions for 2 axle vehicles to be more precise than for any other. This

leads to a lot of the 2 axle vehicles to be classified as 4 axle vehicles by the function that takes axle

predictions to train compositions. This effect is enhanced since the neural network has problems

with classifying 2 axle vehicles as 4 axle vehicles. see appendix(7.2) for the confusion matrix.

• Another improvement for the model could be to try to get more data for the 3,5,7 and 9 axle

vehicles that are underrepresented in the data set. This could allow for these vehicles to perhaps

be added within the prediction of the neural network and decrease the importance of the special

case rules as well as removing the need to test under and over-sampling methods for the training

data.

• All the models also had big problems predicting vehicles with 3 axles and to improve this it would

require more readings or have an even closer look to see if there is a possible way to add all trains
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with 3 axle vehicles into the special case rules. The 3 axle vehicles have already been looked into

and no obvious pattern was seen so I would suggest the attempt to get more 3 axle readings, but

it still might be possible to find a special case rule.

• The Random Forest model could also be something to be looked into a bit more. The neural network

models were mainly used in this report, but this does not remove the possibility of creating strong

Random Forest algorithms or attempting to use other algorithms. This should not be too hard to

do since a lot of algorithms already exist in python libraries and with the right data, it should be

possible to just implement these other models straight from python libraries.

• All the previous items describe ways to possibly improve the classifying model, but the very best

thing would be to put RFID tags on every train vehicle and thus making this model obsolete and

removing the need for classifying trains depending on axle readings. This is not too expensive, but

since there are a lot of train companies it is hard to get them all to pay for the RFID tags and get

them all to use the same system.

• The need for more processing power is also something that can always be useful. The use of more

power would allow for faster training and being able to test and optimize more models to compare

to each other.

6.3 Future use of Machine Learning Within Analysfabriken

This project has however shown that the use of machine learning is quite useful for Analysfabriken as

they have a lot of different types of sensor data that allow for the use of machine learning algorithms.

As machine learning algorithms also have uses in image recognition and anomaly detection they are

defiantly useful in maintaining the railways by detecting railway errors. Machine learning also allows for

new ways to gather information from data and therefore there are a lot of possibilities to use it for all

kinds of things, especially when the already required data exists.

6.4 Upkeep of the Model

To keep the machine learning algorithms up to date they will have to be retrained if there are new kinds

of vehicles. The algorithms can also be updated by starting training using the weights and biases within

an already existing network and then just updating them based on the new data.

6.5 Conclusion

The length distance feature model showed the strengths of using machine learning. It showed a quick

prediction time and the simplicity of creating the model using already existing algorithms. However, it

is not certain that this model will be able to replace the old model as the accuracy of around 91% is not

as good as desired. The model also had problems classifying the underrepresented classes 3,5,7,9 and

thus it will probably not outperform the current model at the moment.

The time feature model which performed very similarly to the length feature model is however a success.

Even though the time model has the same flaws as the length model its accuracy of around 91% is really

good as this will help classify a lot of trains and to use the data for the faulting detector in a much more

efficient way. The time feature model also shows the real strength of machine learning and its ability to

see patterns that would be complicated for a human mind to see.
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Finally to move on with the project I would suggest trying a neural network model with different neuron

counts in the hidden layers and to get more 3 axle vehicle readings to work with. This could also be done

with the SMOTE method to allow for the maximum gain of information from the under represented

vehicles.
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7 Appendix

7.1 SMOTE and Under Sampling Data Tables

Class Before After

2 571100 2*571100

3 975 975*1000

4 5083696 5083696

6 1081668 1081668

8 830192 830192

Table 14: The number of training observations for the SMOTE models classes before and after manipu-
lation.

Class Before After

2 571100 571100

3 975 975

4 5083696 5083696/2

6 1081668 1081668

8 830192 830192

Table 15: The number of training observations for the classes in the under-sampling models before and
after manipulation.
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Class Before After

2 571100 2*571100

3 975 975*1000

4 5083696 5083696/2

6 1081668 1081668

8 830192 830192

Table 16: The number of training observations for the classes in the SMOTE and under-sampling models
before and after manipulation.

7.2 Confusion matrices, Precision, and Recall for the Models

In this section all the rows of the the confusion matrices are the predictions and the columns are the

true values. The confusion matrices are ordered with 2,3,4,5,6,7,8,9 as the classes in that specific order.

Figure 10: The confusion matrix and metrics for the no SMOTE and no under-sampling model, using
length distances as features.
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Figure 11: The confusion matrix and metrics for the SMOTE model, using length distances as features.

Figure 12: The confusion matrix and metrics for the under-sampling model, using length distances as
features.
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Figure 13: The confusion matrix and metrics for the SMOTE and under-sampling model, using length
distances as features.

Figure 14: The confusion matrix and metrics for the no SMOTE and no under-sampling model, using
length distances as features.
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Figure 15: The confusion matrix and metrics for the SMOTE model, using time distances as features.

Figure 16: The confusion matrix and metrics for the under-sampling model, using time distances as
features.
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Figure 17: The confusion matrix and metrics for the SMOTE and under-sampling model, using time
distances as features.

Figure 18: The confusion matrix and metrics for the optimized length distance feature model.
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Figure 19: The confusion matrix and metrics for the optimized time distance feature model.
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7.3 Bayesian Optimization Runs for the Models

Figure 20: The Bayesian optimization run outputs for the optimized length distance feature model.

Figure 21: The Bayesian optimization run outputs for the optimized time distance feature model.
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