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Subcellular localization of Ribonucleic Acid (RNA) molecules provide significant insights into the func-
tionality of RNAs and helps to explore their association with various diseases. Predominantly developed
single-compartment localization predictors (SCLPs) lack to demystify RNA association with diverse bio-
chemical and pathological processes mainly happen through RNA co-localization in multiple compart-
ments. Limited multi-compartment localization predictors (MCLPs) manage to produce decent
performance only for target RNA class of particular sub-type. Further, existing computational approaches
have limited practical significance and potential to optimize therapeutics due to the poor degree of model
explainability. The paper in hand presents an explainable Long Short-Term Memory (LSTM) network ‘‘EL-
RMLocNet”, predictive performance and interpretability of which are optimized using a novel
GeneticSeq2Vec statistical representation learning scheme and attention mechanism for accurate
multi-compartment localization prediction of different RNAs solely using raw RNA sequences.
GeneticSeq2Vec generates optimized statistical vectors of raw RNA sequences by capturing short and
long range relations of nucleotide k-mers. Using sequence vectors generated by GeneticSeq2Vec scheme,
Long Short Term Memory layers extract most informative features, weighting of which on the basis of
discriminative potential for accurate multi-compartment localization prediction is performed using
attention layer. Through reverse engineering, weights of statistical feature space are mapped to nucleo-
tide k-mers patterns to make multi-compartment localization prediction decision making transparent
and explainable for different RNA classes and species. Empirical evaluation indicates that EL-RMLocNet
outperforms state-of-the-art predictor for subcellular localization prediction of 4 different RNA classes
by an average accuracy figure of 8% for Homo Sapiens species and 6% for Mus Musculus species. EL-
RMLocNet is freely available as a web server at (https://sds_genetic_analysis.opendfki.de/subcellular_
loc/).
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biological functions of a variety of Ribonucleic Acid (RNAs) such
as messenger RNA (mRNAs) [1,2], microRNA (miRNAs) [3,4], small
nucleolar RNA (snoRNAs), long non-coding RNAs [5,6] rely on their
localization in various subcellular compartments such as nucleus,
cytoplasm, cytosol [7,8]. mRNAs localization in nucleus regulate
gene expression by eliminating defective RNAs from the cell and
tweaking the expression levels of various non protein coding
RNAs[9,10]. It provides quantitative as well as spatial control over
the production of proteins by localizing in cytoplasm [2]. mRNA
localization in cytosol helps to maintain cell membrane and con-
trol the use of nutrients for metabolism [11,12]. miRNAs localiza-
tion in nucleus play key role in cell division where each cell
divides into identical daughter cells with an objective to promote
organism growth and well being by replacing worn out cells [13].
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Further, miRNAs localization in cytoplasm causes gene silencing by
binding to mRNA molecules [13]. Small nucleolar RNAs (snRNAs)
play a key role in post-transcriptional regulation by guiding RNA
modifications of ribosomal RNAs (rRNA), transfer RNAs (tRNAs),
and small nuclear ribonucleic acid RNAs (snRNAs) molecules by
localizing in the nucleus [14]. Long non-coding RNAs (lncRNAs)
control gene expression through chromatin remodelling by localiz-
ing in nucleus [15]. In cytoplasm, lncRNAs avoid mRNAs degrada-
tion as well as repress miRNAs to reduce their regulatory effects on
mRNAs [16].

The subcellular localization of RNAs is an efficient and a wide-
spread strategy to target the gene products to a particular region
of various cells. Localization of various RNA molecules controls
the translation of mRNAs into proteins in a temporal and spatial
manner. It influences which type and number of proteins will be
produced within certain cell by regulating the production of mRNA
molecules and the amount of time they reside in the cytoplasm.
Likewise, the spatial distribution of the RNA molecules mainly
influences cellular concentration as well as location of its corre-
sponding proteins which impact the cell function and its aptitude
to interact with neighbouring cells or response to environmental
changes. Further, it has the potential to avoid toxicity of various
protein products, generate fast cellular responses, and determine
molecular interactions [17–19]. It provides the basis for spatial dif-
ferences in shape, structure, and function of a variety of cells in
order to ensure that each cell exhibits a unique form of polariza-
tion [20,21]. Characterizing RNA subcellular localization is essen-
tial for thorough categorization of different cell types and cell
states [22]. In addition to facilitating a deep understanding of
molecular and cellular biology, knowledge of RNA subcellular
localization is also beneficial for the development of heteroge-
neous biomedical applications [22]. Like subcellular localization
of messenger RNAs (mRNAs) assists to identify and treat Hunting-
ton’s disease by eliminating active mRNAs of disease specific gene
in nucleus and cytoplasm [23]. Also, mRNAs guide protein synthe-
sis by localizing in cytoplasm [2], paving way for the production of
most effective recombinant proteins [24]. Furthermore, consider-
ing the association between RNA expression levels in different sub-
cellular compartments with a variety of diseases such as Cancer
[23], accurately determining RNA subcellular localization can lar-
gely assist to demystify their roles in various disease as well as
to optimize therapeutics responsible to increase or decrease vari-
ous RNAs expression levels in the target subcellular compartment.

A number of wet-lab experimental techniques based on single-
molecule fluorescent in situ hybridization [25], epifluorescent [26],
and confocal microscopic approaches [26] have been used to deter-
mine the subcellular localization of RNAs. However, such
approaches are expensive, time consuming, and are not suitable
for large scale characterisation of subcellular localization of diverse
RNA classes across multiple species [22]. Considering the efficiency
and robustness of computational approaches shown in various
fields such as Natural Language Processing [27] and Bioinformatics
[28], to date, a number of Artificial Intelligence based RNA associ-
ated subcellular localization predictors have been developed which
are summarized in Table 1. The paradigms of existing approaches
can be broadly classified into 2 categories, single compartment
localization prediction (SCLP) [29–31–33], and multi-
compartment localization prediction (MCLP) [7]. To better illus-
trate SCLP and MCLP paradigms, consider a hypothetical collection
X of 5 RNA sequences represented as X ¼ X1;X2;X3;X4;X5 and a
collection of 5 subcellular compartments L represented as
L ¼ Nucleus;Cytoplasm;Mitochondria;Cytosol; Exosome. In SCLP,
each RNA sequence Xi belongs to exactly one subcellular compart-
ment Li, such as X1 belongs to Nucleus, X2 belongs to Cytoplasm,
and so on. Whereas, in MCLP, each RNA sequence Xi belongs to
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more than one subcellular compartment Li at the same time, such
as X1 belongs to {Nucleus, Exosome}, X2 belongs to {Mitochondria,
Cytosol, Cytoplasm}, and so on.

A critical analysis of existing computational approaches
(Table 1) reveals that, to our knowledge, up to date, 5 multi-
compartment localization predictors have been developed for
miRNA molecules and 2 predictors have been developed for the
mRNA molecule. A total of 6 single compartment localization pre-
dictors have been developed for mRNA and 11 have been devel-
oped for lncRNA biomolecule. It is evident from Table 1 that
predominant RNA associated subcellular localization predictors
[29–31,?,32,33] handle the problem of SCLP. However, these
approaches are not effective to decode RNA association with vari-
ous biochemical and pathological processes mainly happen
through RNA concurrent presence in multiple compartments [7].

Regardless of whether an existing approach addresses the prob-
lem of SCLP or MCLP, all existing approaches are not well general-
ized as they are designed to predict subcellular localization of one
particular RNA type. Due to sub-optimal feature extraction and
localization prediction paradigms, existing approaches are not
powerful enough to handle different kinds of RNAs which vary in
terms of sequence length, nucleotide k-mers composition, chemi-
cal structures and molecular interactions. Further, majority of the
approaches are based on deep neural networks which are black
boxes as they do not explain which features are important for
the accurate identification of which subcellular compartment of
particular RNA and species. The poor degree of model explainabil-
ity hinders the researchers to accurately estimate the effects of
diverse trade-offs in a model. To best of our knowledge, there is
only one generic multi-compartment localization predictor [7]
for multiple RNA types (mRNAs, snoRNAs, miRNAs, lncRNAs) and
species (Homo sapiens, Mus musculus). However, this approach
is computationally expensive and relies on manually curated fea-
tures which is why it lacks to produce promising performance
for the subcellular localization prediction of different types of RNAs
across multiple species. Building on the need of a robust and
explainable sequence based computational approach, the paper
in hand presents an end-to-end deep learning approach ‘‘EL-
RMLocNet” for multi-compartment localization prediction of 4 dif-
ferent RNAs (mRNAs, snoRNAs, miRNAs, lncRNAs) across 2 distinct
species (Homo sapiens, Mus musculus). This paper presents novel
approaches to optimize multi-compartment subcellular localiza-
tion predictive pipeline at different levels:

� It presents a novel GeneticSeq2vec approach that transforms
raw RNA sequences into graphical space where it captures com-
prehensive relations of nucleotides to generate effective statis-
tical vectors of nucleotides.

� It develops a robust and precise classifier ‘‘EL-RMLocNet” which
makes use of Long Short Term Memory layers to extract infor-
mative features that are further optimized through attention
layer.

� It presents the very first deep learning based predictor that
highlights distribution patterns of nucleotides associated to
particular subcellular locations for 4 different RNA classes
(mRNA, snoRNA, miRNA, lncRNA) and 2 distinct species (Homo
Sapiens, Mus Musculus).

� A comprehensive performance comparison of proposed EL-
RMLocNet approach with state-of-the-art RNA subcellular
localization predictor reveals that EL-RMLocNet achieves an
average accuracy increment of 8% for Homo Sapiens and 6%
for Mus Musculus species.

� To enable the scientific community to infer RNA subcellular
localization on the go, it presents an interactive and user-
friendly web server which is publicly available at https://sds_
genetic_analysis.opendfki.de/subcellular_loc/.



Table 1
A summary of existing computational subcellular localization predictors for miRNA, lncRNA, and mRNA molecules.

Approach Subcellular Localization Cardinality Nucleotide Encoding Classifier

RNA Type: miRNA
L2S-MirLoc [34] Multi-Label Electronion Interaction PseudoPotentials (EIIP) Random Forest (RF)
miRNALoc [13] pseudo dinucleotide compositions Support Vector

and di-nucleotide properties Machine (SVM)
MirLocPredictor [35] positional and semantic Convolutional Neural

information of k-mers (kmerPR2Vec) Network (CNN)
MirGOFS [36] functional similarity based encoding matrix microRNA-based

similarity inference model
MiRLocator [37] K-mer embeddings using Word2vec

(RNA2Vec)
BiLSTM

encoder-decoder model

RNA Type: LncRNA

iLoc-LncRNA 2.0 7 Multi-Class fusing mutual information algorithm SVM
and incremental feature selection strategy

lncLocation [38] k-mer frequency, physicochemical properties, SVM, RF, Logistic
and secondary structure features Autoencoder regression, XGBoost,
and binomial distribution based feature selection lightGBM, DNN and CNN

Locate-R [39] K-mer composition and Pearson based
filtering

Deep SVM

lncLocator 2.0 [5] Glove embeddings CNN, BiLSTM, MLP
lncLocator [40] k-mer frequency and stacked autoencoder stacked ensemble classifier

(SVM, RF)
iLoc-lncRNA[41] binomial distribution-based feature selection, SVM

Pseudo K-tuple Nucleotide Composition
DeepLncLoc [16] subsequence embeddings CNN
lncLocPred k-mer, triplet, and PseDNC VarianceThreshold, Logistic Regression

binomial distribution, and F-score based feature selection
Yang et al. kmer nucleotide composition, Analysis Of SVM
LncRNAPred [42] Variance (ANOVA) based feature selection
DeepLncRNA [43] k-mer, RNA binding motifs Genomic loci feed-forward multi-layer

deep neural network
KD-KLNMF [44] k-mer and dinucleotide based SVM

spatial autocorrelation, KLD non-negative
matrix factorization based feature selection

RNA Type: mRNA

mLoc-mRNA [11] Multi-Label k-mer frequency and elastic-net based feature selection RF
DM3Loc [45] One-hot encoding Attention based CNN
Zhang mRNALoc

[12]
Multi-Class 9-mer, binomial distribution and one-way SVM

analysis of variance based features
RNATracker [46] One-hot encoding Hybrid (CNN + LSTM + Attention)
mRNAloc [9] psuedo k-tuple nucleotide composition SVM
mRNALocater [10] psuedo k-tuple nucleotide composition electron–ion

interaction pseudopotential, correlation coefficient
filtering

Ensemble(CatBoost+

LightGBM + XGBoost)
SubLocEP [47] Nucleotide physicochemical properties Weighted LightGBM
NN-RNALoc [48] k-mer frequency, distance-based sub-sequence Multi-Layer DNN

profiling and PCA for dimensionality reduction
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2. Materials and Methods

This section describes the proposed RNA associated multi-
compartment subcellular localization prediction approach, bench-
mark datasets, and evaluation measures used to assess the perfor-
mance of the proposed approach.

2.1. A K-hop Neighbourhood Relation based Statistical Representation
Scheme for RNA Sequences (GeneticSeq2Vec)

Machine and deep learning approaches require statistical repre-
sentation of RNA sequences to extract useful nucleotide k-mers
patterns for accurate target RNA multi-compartment subcellular
localization prediction. Evidently, the better the statistical repre-
sentation is, the better features are extracted which eventually
help the model to accurately predict various subcellular compart-
ments of target RNA type. Pre-dominantly, existing RNA subcellu-
lar localization predictors generate statistical representation by
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dividing the RNA sequences into nucleotide k-mers and capturing
different characteristics of nucleotide k-mers such as order, fre-
quency, and physicochemical properties [49]. However, these sta-
tistical representation learning approaches lack to capture a
comprehensive context of nucleotide k-mers at different granular-
ities, which negatively impacts the predictive performance and
generalizeability of existing RNA subcellular localization predic-
tors. Considering the effectiveness of graph based representation
learning approaches for a variety of Natural Language Processing
[50] and Bioinformatics tasks [28] mainly due to their ability to
capture comprehensive semantic information and translational
invariance of words. We present a novel graph based approach
GeneticSeq2Vec to generate a rich statistical representation of
RNA sequences, complete working paradigm of which is illustrated
in Fig. 2 and summarized by the pseudo-code 1.

Generation of statistical representation of raw RNA sequences
using the proposed GeneticSeq2Vec approach is mainly comprised
of four steps: 1) an un-directed k-mer graph generation, 2) k-hop



Fig. 1. Illustration of K-order (K-hop) Proximity Information, Red Dotted Circle
Represents First-Order proximity(A1), Green Dotted Circle Indicates Second-Order
Proximity (A2), Aqua Dotted Circle Represents Third-Order (A4) Proximity, and
Orange Dotted Circle Indicates Fourth-Order Proximity (A4).
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proximity matrices construction, 3) k-hop proximity matrices fac-
torization, 4) k-hop representation concatenation. In the 1st step,
sequences of particular RNA class (mRNA, snoRNA, miRNA,
lncRNA) and species (homo sapien, mus musculus) are divided into
nucleotide k-mers. Then, nucleotide k-mers of all the RNA
sequences are concatenated to generate a nucleotide k-mers list.
Using nucleotide k-mers list, unique nucleotide k-mer pairs are
generated by rotating a window of 2 with the stride size of 1. To
effectively model the correlations of nucleotide k-mers at different
granularity, an un-directed graph G ¼ ðV ; EÞ is generated where the
set of nucleotide k-mers are represented as vertices
V ¼ fv i;v j; :::;vzg and their interaction as edges E ¼ fei;j; . . . eo;pg
primarily treating nucleotide k-mer pairs collection as connection
reference. To perform computational analysis of V � V sized un-
directed graph G, a numerical representation of the graph G is gen-
erated through an adjacency matrix S 2 RjV j � jV j where Si;j = 1 as
well as Sj;i = 1 if there is an edge ei;j between vertex v i and vertex
v j. On the other hand, if there is no edge between vertex v i and ver-
tex v j then Si;j = 0 and Sj;i = 0, revealing each entry in adjacency
matrix indicates whether the pair of vertices have any association.

With an aim to capture proximity which measures diverse rela-
tional information and semantic closeness of one vertex to another

vertex, in 2nd step, it transforms adjacency matrix into proximity
matrix by performing multiple operations. Firstly, by computing
the summation of every row of adjacency matrix S, a normalized
adjacency matrix X 2 Rj1j � jV jis generated. To match the size of
adjacency matrix S, normalized adjacency matrix X is extended
to the size jV j � jV j by repeating its only row. Afterward, using
Eq. 1, transition probability of each vertex v i to its immediate
neighbouring vertex is computed to produce proximity matrix A,
where Ai;j is the transition probability from vertex v i to its imme-
diate neighbouring vertex v j.

A ¼ log
adjacency matrix ðSÞ

normalized adjacency matrix ðXÞ

� log
1

vertex vocabulary size ðbÞ ð1Þ

The proximity matrix A is multiplied by an identity matrix to

generate a first-order (1-hop) proximity matrix A1. The first-

order (1-hop) proximity matrix A1 models whether there exists a
direct connection between vertices by modeling the pairwise
closeness between vertices. In Fig. 1, analysis of the edges connect-
ing different vertices within the boundary of red dotted circle
reveals that first-order proximity (1-hop) captures two kind of
information: 1) vertex A1 is directly connected to vertex A2 as well
as vertex A3, 2) vertex A1 and vertex A2 has strong relation repre-
sented with thick line, and vertex A1 and vertex A3 has weak con-
nection represented with thin line.

By extending this paradigm to all vertices pairs present in the
vocabulary, first-order (1-hop) proximity matrix captures the most
fundamental relation between vertices. Considering, the extraction
of information regarding whether two vertices are directly con-
nected to each other (1-hop) is not sufficient to capture heteroge-
neous relations of k-mer vertices. Hence, it is important to capture
higher-order (k-hop) proximity which can effectively model the
complex relationships of vertices. More specifically, the second-

order (2-hops) proximity information A2 captures the common
neighbours among two vertices, the more neighbours are shared
among vertices, the stronger the connection is. In Fig. 1, analysis
of the vertices connection within the boundary of green dotted cir-
cle indicates that, vertex A1 and A2 has 4 common neighbours (B1,
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B2, B3, B4), hence these vertices have a far more stronger connec-
tion as compared to A2 and A3 vertices which have only common
neighbour (B5). This paradigm is extended to all vertices pairs to
generate second-order (2-hops) proximity matrix. Clearly,
second-order (2-hops) proximity information is important to
determine the strength of vertices connection on the basis of num-
ber of common neighbours, extracting key nucleotide k-mers infor-
mation such as most frequently co-occurring nucleotide k-mers as
well as common contexts.

Further, the third-order (3-hops) proximity information A3 is
essential to measure the impact of common neighbours on the
strength of long range connection between vertices. In Fig. 1, anal-
ysis of the trajectory A1-B-C-A2 within the boundary of aqua color
dotted circle reveals that despite the strong connection among ver-
tex A1 and vertex B, the connection between vertex A1 and A2 can
be significantly weakened because of two weaker connections
between vertex B and vertex C as well as vertex C and vertex A2.
On the contrary, the trajectory A1-B-Ci indicates that the relation-
ship between vertex A1 and A2 remains very strong primarily due
to the decent number of common neighbors between vertex A2
and vertex B which greatly strengthens their relationship. Like-
wise, the fourth-order (4-hops) proximity information is also cru-
cial to capture global relations of vertices. In Fig. 1, analysis of
the vertices connection inside the boundary of orange dotted circle
reveals that the relation between vertex A1 and vertex A2 remains
very strong because their connection partners B1 and B2 have four
common neighbours D1-to-D4 which strengthen the relation of
vertex A1 and A2. On the other hand, vertex A1 and vertex A2
becomes totally unrelated if we only consider their relation with
vertex D5 and vertex D6 respectively, mainly because no path is
left which connects vertex A1 to vertex A2. By extending the para-
digms of third-order (3-hops) and fourth-order (4-hops) proximity
to all possible vertices trajectories, global relations of the vertices
can be captured in 3-hops and 4-hops proximity matrices which



Fig. 2. Workflow of Novel K-hop Neighbourhood Relation based Statistical Representation Learning Scheme for RNA Sequences.
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corresponds to long range contextual information of nucleotide k-
mers.

It is evident from a thorough analysis of high order (k-hops)
proximity modelling that each higher order (k-hop) proximity
matrix captures different kind of relations among k-mer vertices.
Therefore, instead of mapping heterogeneous nucleotide k-mer
relations in a common subspace, GeneticSeq2Vec generates k-
hop proximity matrices to retain heterogeneous relational infor-
mation in different subspaces. Considering sequences vary across
different RNA subtypes in terms of sequence length, nucleotide
k-mer distribution, the idea of generating different subspaces helps
to find optimal value of k-hop proximity for each RNA subtype as it
avoids the influence of higher order proximity modelling to lower
order proximity modelling. Building on, first order (1-hop) proxim-

ity matrix A1 is computed through the multiplication of proximity
matrix A to an identity matrix. Higher order (k-hop) proximity
3990
matrices Ak can be computed by multiplying the proximity matrix
A k-times to itself.

Ak ¼ A:A . . .Af gk ð2Þ
Where the proximity from the vertex v i to v j is mainly an entry

in i-th row and j-th column of k-order (k-hops) proximity matrix

Ak. The k-hop multiplications of proximity matrix A helps to cap-
ture diverse interactions and global relations of the vertices, indi-
cating higher order proximity matrices encode translational
invariance information of nucleotide k-mers by to generate hetero-
geneous context aware representations. More specifically, the 2nd
step produces k-hop representation matrices
Wb;Wc; . . .Wk 2 RjV j � jdj for the input graph G where the i-th
row of each Wi represents a continuous value vector of d dimen-
sion for the nucleotide k-mer vertex v i learned by modeling its
proximal k-hop relations with respect to all nucleotide k-mer ver-
tices present in the vocabulary.
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Algorithm1: A K-hop Neighbourhood Relation based
Statistical Representation Scheme for RNA Sequences

In 3rd step, proposed GeneticSeq2Vec factorizes proximity
matrices produced by different k-hops using Singular Value
Decomposition (SVD) approach in order to learn precise k-hops
representation matrices Wb;Wc; . . .Wk 2 RjV j � jdj. Using Eq. 3,
SVD decomposes each k-hops proximity matrix into the product
of three matrices, two of them U and V are orthogonal matrices
and

P
serves as a diagonal matrix which is comprised of an

ordered set of singular values.

Wk ¼ Uk
Xk

ðVkÞT ð3Þ

Finally, in 4th step, it combines the precise representation pro-
duced by different k-values to generate k-order (k-hops) relations
aware representations of all vertices, which can be expressed as
follows:

W ¼ ½W1;W2;W3; . . . . . . :Wk� ð4Þ
To facilitate the readers, complete GeneticSeq2Vec algorithm

working paradigm is described in terms of pseudo-code 1.

2.2. Explainable Deep Learning based RNA Associated Multi-
Compartment Localization Predictor

To accurately predict subcellular localization patterns of differ-
ent RNA classes in multiple species, we have developed an explain-
able deep learning classifier ‘‘EL-RMLocNet”. EL-RMLocNet
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leverages the stochastic embedding layer to optimize the embed-
ding matrix generated by the novel GeneticSeq2Vec approach. It
uses LSTM to find and retain most informative features as well
their long range dependencies from statistical vectors of RNA
sequences. Unlike a trivial recurrent neural network (RNN), LSTM
does not face the problem of vanishing gradients because it utilizes
a gating mechanism to regulate the flow of information. The length
of sequences and distribution of nucleotide k-mers vary across dif-
ferent RNA classes, indicating accurate subcellular localization of
target RNA class relies on certain set of nucleotide k-mers patterns.
EL-RMLocNet captures potential nucleotide k-mers patterns using
attention mechanism which weights the features on the basis of
their potential to accurately predict subcellular localization of tar-
get RNA class. By revealing potential nucleotide k-mers patterns
for different RNA classes and species, attention mechanism also
makes the decision making of deep learning model quite transpar-
ent. To significantly reduce the classification error, predictive
potential and generalizeability of proposed classifier are optimized
using multiple neural strategies such as normalization, dropout,
and learning rate decay. Considering, the performance of the deep
learning model is largely influenced by different hyperparameters
such as number of layers, learning rate, batch size, etc, we optimize
hyperparameters using grid search and facilitate optimal values of
different hyperparameters in Table 2. Architecture of proposed
deep learning model EL-RMLocNet is given in Fig. 3,4, and details
of various inherent layers is provided in following subsections.

2.2.1. Stochastic Embedding Layer
The process of predicting RNA associated subcellular localiza-

tion starts by dividing the RNA sequences into nucleotide k-
mers by sliding a window of size w with the stride size of s.
For every RNA sequence, statistical vector of each nucleotide
k-mer is retrieved at the embedding layer mainly using embed-
ding matrix of size vocabulary * vector dimensions produced by
novel graph based representation learning module, discussed in
Section 2.1. To optimize embedding matrix, 2 distinct embed-
ding dropout tricks are utilized in order to avoid model over-
fitting which happens due to over-specialization of only few fea-
tures. In k-mer embedding dropout, entire k-mer has the drop-
out probability of dp whereas in k-mer vector dimension
dropout, each k-mer vector dimension has the likelihood of dp
to be replaced by zero. Optimized d� dimensional statistical vec-
tors of RNA sequences are obtained by averaging the respective
k-mer statistical vectors. The d-dimensional RNA sequence vec-
tors are passed to LSTM network having ll layers, ld hidden
units which finds and retain most informative features along
with their dependencies.

2.2.2. Optimized Long Short Term Memory (LSTM) Layers
Contrary to the traditional recurrent neural network, LSTM con-

trols the information flow by making use of 3 distinct gates. Update
gate or Input gate or update gate, indicated as �Iu (Eq. 5) mainly reg-
ulates the flow of naive information in current time step. Forget
gate, indicated as �If (Eq. 6) decides whether memory information
of last time step shall be dropped to taken forward. Third gate
known as output gate is indicated by �Io (Eq. 7). It determines up
to what extent information from previous time step will be trans-
ferred to next time step by taking currently available information
into account. In these mathematical expressions,

[Wi;Wf ;Wo;Ui;Uf ;Uo] refer to weight matrices, bu; bf ; bo indicate
bias vectors, xt represents d-dimensional nucleotide k-mer vector
fed at particular time-step t; t þ 1 and t � 1 refer to next and previ-
ous time steps respectively, ht refers to current hidden state, ct
indicates memory cell state, and � represents element-wise
product.



Table 2
Optimal Parameter Values of Proposed EL-RMLocNet Approach for 8 Benchmark Datasets Belonging to 4 different RNA classes and 2 Species.

Benchmark
Dataset

K-
mer

Stride
Size (s)

Embedding
Dimension
(d)

Embedding
Dropout (ed)

LSTM
Layers
(ll)

LSTM
Hidden
Units (ld)

Attention
Dimension
(ad)

Dropout
(dp)

Learning
Rate (lr)

Learning
Rate Decay
(ld)

Batch
Size
(b)

Homo Sapien species
mRNA 3 2 200 0.005 1 200 50 0.01 0.05 0.001 32
miRNA 1 1 32 0.0025 1 32 60 0.005 0.06 0.1 32
snoRNA 2 2 64 0.0025 1 64 50 0.005 0.06 0.01 32
lncRNA 2 2 200 0.005 1 200 50 0.1 0.05 0.1 64

Mus Musculus species
mRNA 2 1 200 0.0025 4 64 90 0.05 0.06 0.1 32
miRNA 1 1 32 0.0025 1 32 60 0.005 0.06 0.1 32
snoRNA 2 2 16 0.0025 1 16 50 0.005 0.06 0.0001 32
lncRNA 3 2 200 0.0025 4 60 50 0.05 0.05 0.01 128

Fig. 3. Workflow of an Explainable Deep Learning Model for RNA Associated Multi-Compartment SubCellular Localization Prediction.

Fig. 4. Information Flow in Standard LSTM Cell.
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�Iu ¼ rðWi:xt þ Ui:ht�1 þ buÞ ð5Þ

�If ¼ rðWf :xt þ Uf :ht�1 þ bf Þ ð6Þ

�Io ¼ rðWo:xt þ Uo:ht�1 þ boÞ ð7Þ

cint ¼ tanhðWc:xt þ Uc:ht�1Þ ð8Þ

ct ¼ ð�Iu � cint þ�If � ct�1 ð9Þ

ht ¼ ð�Io � tanhðctÞÞ ð10Þ
These 3 different gates mainly get activated or de-activated on

the basis of corresponding weight matrices and behave on the
basis of the corresponding activation function (e.g sigmoid (r),
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tanh). In Eq. 6, weight matrix Wf controls the working of forget
gate. For example, if forget gate vector �If is completely zero, then
ct�1 content will not be considered at all, indicating all information
provided by the ct�1 will be discarded. Contrarily, if forget gate vec-
tor �If contains one, then the model preserve the information. These
3 different gates of LSTM perform a variety of operations to regu-
late nucleotide k-mers information represented as a floating point
vector falling in range of 0-to-1. Each cell of LSTM is comprised of
these three gates. To preserve long term information of nucleotide
k-mers, hidden state h of every cell is saved at each time step.

To regularize LSTM ll layers, considering, dropping hidden state
of LSTM layers can significantly hinder the aptitude of LSTM to
retain long term dependencies. We optimize LSTM layers by apply-

ing weight dropout on recurrent weight matrices [Ui;Uf ;Uo] as

well non-recurrent weight matrices [Wi;Wf ;Wo] of LSTM layers
where we randomly drop subset of weights in the network instead
of dropping subset of activations. While weight dropout on recur-
rent weights avoid overfitting on the recurrent connections of
LSTM layers, weight dropout on non-recurrent weight matrices
enhance the LSTM ability to extract important residue dependen-
cies. In this manner, LSTM layers produce d-dimensional feature
vectors for RNA sequences which are passed forward in the
network.

2.2.3. Attention Layer
One of the most important feature of the human perception is

its ability to focus on only most important parts of the input to
make sense of the information present in outside world. Similarly,
the significance of various nucleotide k-mers patterns for accurate
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RNA associated subcellular localization prediction varies across
RNA classes and species, some nucleotide k-mers patterns are
more discriminative while others are completely redundant. Con-
sidering, accurate multi-compartment subcellular localization pre-
diction of various RNA classes and species mainly depends on the
set of most relevant features. We utilize attention paradigm to
optimize input d-dimensional RNA sequence vectors by weighting
the features on the basis of their importance for hand on task.

The workflow of attention paradigm which involves the gener-
ation of attention weights and optimizing input features using
attention weights is summarized in the Fig. 5. First of all, we
map the input d-dimensional LSTM feature vectors represented
as xt to ht using Eq. 11, where f 1 refers to non-linear activation
function, and ht 2 Rs represents hidden state at the time step twith
size s.

ht ¼ f 1ðht�1; xtÞ ð11Þ
In order to avoid the issue of long-term dependencies which can

significantly derail multi-compartment subcellular localization
prediction performance, we utilize LSTM as non-linear activation
function f 1. Then attention mechanism is constructed using a
deterministic attention based deep learning model. For a particular

sequence xk ¼ xk1; x
k
2; . . . :x

k
m

�T 2 Rm, using previous hidden state rep-

resented as ht�1 as well as cell state ct�1 within LSTM cell, ak
t and bk

t

can be defined using Eq. 12 and Eq. 13 respectively:

ak
t ¼ vT tanhðW1 � ½ht�1;Ct�1� þW2xkÞ ð12Þ

bk
t ¼¼ softmaxðak

t Þ ¼
expðakt Þ

Xn

i¼1

expðakt Þ
ð13Þ
Fig. 5. Architecture of the Attention Model.
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In these equations, matrices W1;W2;W3; :.and v are hyperpa-
rameters of the attention model that can be learned through back-
propagation. The ak

t vector is of length m where i� th value

estimates the significance of kth given feature sequence for a partic-
ular time step t. These values are mainly normalized using softmax.
Whereas bk represents attention weight that contains a value indi-

cating the amount of attention should be placed on kth input fea-
ture sequences. Output produced by attention model can be
obtained at a particular time step t where the weighted and opti-
mized input feature sequence represented as zt will be equivalent
to (Eq. 14):

zt ¼ ðb1
t x

1
t ;b

2
t x

2
t ; . . . . . . :b

n
t x

n
t Þ

T ð14Þ
By replacing the normal d-dimensional LSTM feature vector xt

with zt and updating attention model, we manage to obtain opti-
mized attention based feature vectors for RNA sequences. Unlike
xt where all input features are treated equally, zt enables more
attention to specific features in order to extract most potential fea-
tures effectively by eliminating the impact of redundant features
for target RNA associated subcellular localization prediction. Opti-
mized ad dimensional attention based feature vectors are passed
forward in the network.

2.2.4. Bag of tricks for Optimizing the Training and Prediction of EL-
RMLocNet Approach

To optimize the training of deep learning model EL-RMLocNet, 3
distinct optimization tricks are utilized. The ad dimensional vec-
tors produced by attention layer are passed to the normalization
layer [51]. Normalization performs standardization of the input x̂i
to hidden layer for every batch b mainly by calculating mean ub

and variance Ob of each batch b. This ensures that input-to-
output mapping of proposed deep learning model does not overly
generalize certain part of input distribution which results faster
training, improve convergence, and generalizeability. By leveraging
normalized input x̂i; b and c hyperparameter, normalization layer
alleviates internal co-variance shift mainly by stabilizing hidden
distribution yi, mathematical expression of which is given in Eq.
19.

Yi ¼ BNc;bðxiÞ ð15Þ

ub ¼ 1=m
Xm
i¼1

ðxiÞ ð16Þ

Ob ¼ 1=m
Xm
i¼1

ðxi � uÞ2 ð17Þ

x̂i ¼ xi � ub=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

b þ �
q

ð18Þ

yi ¼ c � x̂i þ b ð19Þ
Further, we also apply traditional dropout to avoid model over-

fitting occurred due to neuron co-adaptation where neurons stop
operating independently and rely on other neurons to make deci-
sions. Through random sampling based on the Bernoulli distribu-
tion (Eq. 20), we apply traditional dropout on hidden neurons
where each hidden neuron has the likelihood of dp to be dropped.

y ¼ f ðWxÞ �m;mi � BernoulliðpÞ ð20Þ
Considering choosing an optimal learning rate lr for deep learn-

ing model is not a straightforward task, another optimization trick
used in proposed deep learning model EL-RMLocNet is learning
rate decay. Learning rate decay trick smartly updates the learning
rate in such a manner that global minima is computed and model
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converges to the best possible weights. By making use of adaptive
moment estimation based on weight decay (ADAMW) optimizer,
learning rate lr value is optimized using decay rate of ld during
weight update, which can be mathematically expressed as:

wiþ1 ¼ wi � 2kwi � h dL
dw

jwi
i ð21Þ

Using one-hot encoded actual subcellular localization compart-
ments, probability score si for each subcellular localization com-
partment present in benchmark dataset is computed through the
application of softmax f ðsiÞ before computing cross-entropy loss
CE, which can be mathematical expressed as:

f ðsiÞ ¼ esi
XC
j

esj

CE ¼ �
XC
i

tilogðf ðsiÞÞ ð22Þ

Using the batch size b, proposed EL-RMLocNet predictor accu-
rately infers the multi-compartment subcellular localization of
various RNAs across multiple species.

2.3. Benchmark RNA-Associated SubCellular Localization Prediction
Datasets

RNAs are broadly segregated into two categories, coding RNA
and non-coding RNA. Coding RNAs like messenger RNAs (mRNAs)
play a vital role in transcription. Non-coding RNAs like long non-
coding RNA (lncRNA), microRNA (miRNA), small nucleolar RNA
(snoRNA) play a regulatory role in diverse biological processes
ranging from epigenetic modifications to gene expression. These
RNAs exist in multiple subcellular compartments illustrated in
Fig. 6 in order to perform various functions. Considering biological
functionalities of diverse RNAs are strongly associated to their sub-
cellular localization patterns, we collect 8 different RNA subcellular
localization datasets belonging to homo sapiens and mus musculus
species from literature [7]. Wang et al. [7] utilized a public
metathesaurus RNALocate [52] which contains subcellular local-
ization of more than 65 organisms (e.g musculus, homo sapiens,
saccharomyces cerevisiae), 9 RNA classes, and 42 subcellular com-
partments (e.g., nucleus, cytoplasm, ribosomes) to prepare RNA
associated multi-compartment subcellular localization datasets of
Fig. 6. Schematic Illustration of RNA Associated Mult
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4 different RNA classes (miRNAs, snoRNAs, lncRNAs, mRNAs) for
2 different species (homo sapiens, musculus). Using RNALocate
database [52], after downloading subcellular localization
sequences of 4 RNA classes, RNA classes which have sequences
more than defined threshold N=Nmax>1=30. are under-sampled
through CD-HIT tool using cut-of threshold of 80% to obtain miR-
NAs, snoRNAs, lncRNAs, and mRNAs datasets for homo sapiens
and mus musculus species.

For 8 benchmark datasets, statistical distribution of 4 different
RNAs in diverse subcellular compartments is provided in Fig. 7.
More specifically, 4 pie graphs in first row of the Fig. 7 indicate
the statistical distribution of mRNA, miRNA, snoRNA, and lncRNA
sequences in multiple subcellular compartments for homo sapien
species, whereas second row pie graphs reveal the statistical distri-
bution of 4 different RNAs in diverse cellular compartments. Fur-
ther, in order to analyze the variation in sequence length across
all 8 benchmark datasets, donut chart in Fig. 8 reports the mini-
mum, maximum, and average sequence length of 4 different RNA
subtypes datasets for homo sapien species represented as
HmRNA;HmiRNA;HsnoRNA;HlncRNA and for mus musculus species
represented as mRNA;miRNA; snoRNA; lncRNA.

For homo sapien species, HlncRNA dataset contains the most
lengthier sequences whose average length falls around 16,335
nucleotides. The HmRNA dataset contains the second most length-
ier sequences followed by HsnoRNA, and HmiRNA dataset with aver-
age length of 3,675, 111, and 43 nucleotides respectively. For mus
musculus species, lncRNA dataset contains longer sequences fol-
lowed by mRNA, snoRNA, and miRNA dataset with average
sequence length of 11,052, 3,547, 116, and 50 nucleotides respec-
tively. Comparing the variations in sequence length across all 8
benchmark datasets indicates that all 4 RNA subtypes datasets
have slightly longer sequences in homo sapien species as com-
pared to mus muscluss species.

2.4. Evaluation Measures

Following the evaluation criterion used by existing RNA subcel-
lular localization predictors [7], performance of proposed approach
is evaluated using 6 different evaluation measures including Accu-
racy, Average Precision, Coverage, Ranking Loss, One-error, and
area under receiver operating characteristic. Accuracy estimates
i-Compartment Subcellular Localization in Cells.



Fig. 7. Statistical Distribution of Benchmark RNA Associated Multi-Compartment Localization Prediction Datasets Belonging to Homo Sapien species (A-D) and Mus Musculus
species (E-H).

Fig. 8. A Comparison of Variations in Sequence Length across 8 Benchmark RNA Associated Multi-Compartment Subcellular Localization Datasets.
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performance of the model by dividing the number of sequences
where the target subcellular compartments are correctly predicted
with total number of sequences. Average precision indicates the
ability of the model to correctly predict positive sequences and
avoid miss-classification of negative sequences as positive
sequences. Coverage estimates up to what average number of steps
required by the model to cover all the true subcellular compart-
ments of sequences. Ranking loss measures how many times the
wrong subcellular compartment is ranked above the true subcellu-
lar compartment. One error monitors the performance of the
model by measuring number of sequences in which top-ranked
subcellular compartments given by the model are absent from
the true subcellular compartments set associated with the
sequences. In addition, to make sure that proposed deep learning
model EL-RMLocNet performance is neither biased towards major-
ity majority subcellular compartment nor minority subcellular
compartment, we analyze the model performance using AU-ROC.
AU-ROC deeply investigates the trade-off between true positive
rate and false positive rate by giving equivalently importance to
true positives and true negatives. The higher the accuracy, average
precision, and AU-ROC are, and the lower the coverage, ranking
loss, and one error values are, the better the model predictability
is for the hand-on task.

f ðxÞ ¼

Accuracy ¼ 1
jDj
XjDj

i¼1

Ŷ i\Yi

Ŷi[Yi

���
���

Average Precision ¼ 1
jDj
XjDj

i¼1

1
jYi j

X
yq2Yi

yp j�rðypÞ6�rðyqÞ;yp2Yif g
�rðyqÞ

Coverage ¼ 1
jDj
XjDj

i¼1

max
yp2Yi

r̂ðyp � 1Þ

Ranking Loss ¼ 1
jDj
XjDj

i¼1

j yp ;yqð ÞÞj�f ðypÞ6�f ðyqÞ;yp2Yi ;yq2�Yif gj
jYi j�j�Yi j

One Error ¼ 1
jDj
XjDj

i¼1

j argmaxf̂ ðypÞ: 2 Yi j

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ

In Eq. 23, j D j denotes number of RNA sequences, j D j refers to
number of subcellular localization compartments, �rðyÞ refers to the
rank of subcellular localization compartment y in all compart-
ments Y, f(y) denotes the score of y inferred by machine learning
classifier, Y refers to actual subcellular localization compartment
set, �Y denotes the predicted subcellular localization compartments
set which is the symmetric difference between actual and pre-
dicted subcellular localization compartment set.
3. Experimental Setup

Proposed methodology is implemented in Python using an open
source deep learning framework Pytorch [53]. In order to perform a
fair performance comparison of proposed approach with existing
state-of-the-art RNA multi-compartment localization predictor,
10-fold cross validation is performed. We use GridSearch [54] to
optimize a variety of hyperparameters. To capture hidden pattern
of nucleotides, considering RNA sequences are comprised of only
4 unique bases, we perform experimentation with 5 different k-
mers ranging from 1-to-5 generated using stride size of 1-to-3.
To capture comprehensive relations and positional in-variances
of nucleotide k-mers, novel k-hop neighbourhood based statistical
representation learning scheme performs experimentation with 2
to 7 hop based proximity matrices to generate rich d-
dimensional vectors for RNA sequences.

Proposed EL-RMLocNet classifier is trained by tweaking an
embedding dropout from 0.004 to 0.005, LSTM neurons from
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100-to-400, batch size from 32-to-128, adaptive moment estima-
tion based on weight decay (ADAMW) as an optimizer, learning
rate from 0.04-to-0.05, decay rate from 1e-05-to-1e-07, standard
dropout from 0.1-to-0.05, and categorical cross entropy as a loss
function. Model checkpoint which achieves lowest training error
is saved to make prediction on test sequences for the task of RNA
subcellular localization prediction. To ensure the reproduceability
of reported results, optimal values of different hyperparameters
are summarized in Table 2.
4. Results and Discussion

This section quantifies the impact of 6 different sequence fixed
length generation approaches over the performance of the pro-
posed EL-RMLocNet approach for RNA multi-compartment subcel-
lular localization prediction. Further, it performs a comprehensive
assessment of the predictive performance and generalizeability of
proposed EL-RMLocNet approach for RNA associated multi-
compartment subcellular localization prediction using a variety
of evaluation metrics. It compares the performance of proposed
EL-RMLocNet approach with state-of-the-art RNA associated
multi-compartment subcellular localization predictor using 8
benchmark datasets. It also performs intrinsic analysis of the key
nucleotide k-mers patterns found by proposed approach EL-
RMLocNet to accurately predict the subcellular localization of dif-
ferent RNA classes in distinct species.
4.1. Performance Assessment of EL-RMLocNet for Multi-Compartment
RNA Localization Prediction

It is evident from the donut chart 8 that in both homo sapien
and mus musculus species, sequence length of all 4 RNA subtypes
including mRNA, miRNA, snoRNA, and lncRNA significantly differ
from each other. Considering machine and deep learning classifiers
operate on fixed length genomic sequences, we perform experi-
mentation with 6 different settings based on copy padding,
sequence truncation and hybrid paradigms to fix the length of
RNA sequences across all 8 benchmark datasets of 2 distinct
species.

In copy padding paradigm, first of all, maximum possible
sequence length is computed by comparing all the sequences of
particular dataset. Afterward, all the sequences whose lengths
are less than maximum threshold, are extended in order to justify
maximum length by inserting a specific constant at starting or end-
ing region of sequences. Another paradigm to fix the length of
sequences is sequence truncation where first of all minimum pos-
sible sequence length is computed. Then, nucleotides from starting
or ending region of all those sequences whose lengths are greater
than minimum threshold are truncated in order to reduce the
length up to minimum threshold. Considering copy padding para-
digm may create an unnecessary bias to fade out discriminative
sequence patterns and sequence truncation paradigm is vulnerable
to loose important nucleotide distribution information. Hybrid
paradigm first finds average sequence length and then utilize copy
padding trick to fix the length of those sequences whose lengths
are shorter than average length threshold and leverage sequence
truncation trick for sequences whose lengths are greater than aver-
age length threshold.

Considering accurate RNA subcellular localization prediction
relies on certain distributional patterns of nucleotides which can
be present in any region of the sequences. We perform experimen-
tation with all 3 sequence fixed length generation paradigms using
6 different settings. Table 3 quantifies the impact of 6 different
sequence fixed length generation settings over the performance
of proposed EL-RMLocNet approach in terms of average precision,



Table 3
Comparing the Impact of 6 Different Sequence Fixed Length Generation Approaches over the Performance of Proposed EL-RMLocNet Approach Produced for 8 Benchmark Datasets
of 2 different Species in terms of Average Precision

RNA Subtype Sequence Length Variation

Start_Max End_Max Start_Average End_Average Start_Min End_Min

Homo Sapien
mRNA 0.72 0.70 0.77 0.72 0.73 0.71
miRNA 0.85 0.86 0.85 0.84 0.77 0.77
lncRNA 0.83 0.84 0.83 0.84 0.82 0.85
snoRNA 0.77 0.83 0.80 0.78 0.80 0.80

Mus Musculus
mRNA 0.66 0.65 0.71 0.68 0.60 0.63
miRNA 0.86 0.87 0.86 0.86 0.84 0.83
lncRNA 0.73 0.70 0.77 0.73 0.72 0.69
snoRNA 0.82 0.81 0.82 0.81 0.80 0.81
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whereas the performance figures in terms of other most widely
used evaluation metrics are given in supplementary file-1. In
Table 3, 2 settings related to copy padding are represented as
start max; end max, sequence truncation settings are shown as
start min; end min, and hybrid paradigm settings are shown as
start average; endaverage, where the setting names reveal the
region of the sequences targeted for extension or truncation along
with length threshold criteria. As is evident from the Table 3, for
homo sapien species, from both copy padding settings, EL-
RMLocNet approach achieves better average precision with
end max setting across all RNA subtypes except H mRNA where
start max setting performs better. A similar performance trend
can be seen with sequence truncation settings where EL-
RMLocNet attains better average precision with end min as com-
pared to start min across most RNA subtypes. Unlike copy padding
and sequence truncation settings, from 2 hybrid paradigm settings,
EL-RMLocNet approach produces better average precision with
start average across all RNA subtypes except lncRNA where its
counterpart setting performs better. Overall, EL-RMLocNet
achieves peak performance with end max setting for miRNA and
snoRNA biomolecules, with start average for mRNA biomolecule,
and with end min for lncRNA biomolecule, obtaining the average
precision of 86%, 83%, 77%, and 85% respectively. This indicates that
all 3 sequence fixed length generation paradigms (copy padding,
sequence truncation, and hybrid) manage to achieve good perfor-
mance for one or the other RNA multi-compartment subcellular
localization prediction.

Analyzing the performance trends for mus musculus species
(Table 3) indicates that from 2 copy padding settings, EL-
RMLocNet approach achieves superior average precision using
start max for 3 RNA subtypes including mRNA, lncRNA, and
snoRNA and attains better performance using end max for miRNA
biomolecule. Whereas from 2 sequence truncation settings, EL-
RMLocNet approach produces good performance with start min
setting for miRNA and lncRNA bimolecules, and with end min for
mRNA and snoRNA bimolecules. Contrarily, from 2 hybrid para-
digm settings, EL-RMLocNet approach produces better average
precision with start average setting as compared to end average
setting across all 4 different RNA subtypes. Overall, EL-RMLocNet
approach achieves peak performance with start average setting
for mRNA, lncRNA biomolecules, with end max for miRNA biomo-
lecule, and with start max for snoRNA biomolecule, obtaining high-
est average precision of 71%, 77%, 87%, and 82% respectively.

Further, in order to describe the effectiveness of proposed EL-
RMLocNet approach for accurate multi-compartment subcellular
localization prediction of diverse RNA classes without being biased
towards the distribution of subcellular compartments, perfor-
mance of proposed EL-RMLocNet approach is analyzed in terms
of AU-ROC. Using one-versus-rest strategy, one particular subcellu-
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lar compartment of target RNA class is treated as positive and all
other subcellular compartments are treated as negative to com-
pute AU-ROC with respect to particular subcellular compartment.
By iteratively selecting one subcellular compartment as positive
and remaining ones as negative, multiple AU-ROCs are computed.
By averaging multiple AU-ROCs, AU-ROC for multi-compartment
localization prediction of target RNA class is computed.

ROC probability curves and AU-ROC scores produced by EL-
RMLocNet approach for mRNA, miRNA, snoRNA, and lncRNA
multi-compartment subcellular localization across 2 distinct spe-
cies including homo sapien and mus musculus are provided in
Fig. 9. As is shown by the Fig. 9, for homo sapien species, from
all 4 different RNAs, EL-RMLocNet approach achieves higher degree
of seperability for lncRNA multi-compartment subcellular localiza-
tion prediction, achieving the peak AU-ROC score of 77%. This is
primarily due to the characteristics shown in pie graphs 7 and
dount chart 8, lncRNA dataset contains most lengthier sequences
having average length around 16,335 nucleotides which expose a
greater probability to extract comprehensive nucleotide k-mers
patterns for proposed novel K-hop neighbourhood based represen-
tation learning scheme and precise deep neural network. For homo
sapien species, EL-RMLocNet achieves second best degree of sepa-
rability around 76% for snoRNAs followed by 65% of mRNA, and
62% of miRNA biomolecules. Among all biomolecules datasets
belonging to homo sapien species, miRNA dataset has highest sub-
cellular compartment cardinality. Also, each subcellular compart-
ment has limited number of sequences which are also the
shortest among all datasets with average length around 43 nucleo-
tides. These charateristics eventually lead to slightly lower the per-
formance of EL-RMLocNet approach for miRNA biomolecule.
Whereas, EL-RMLocNet approach manages to achieve decent per-
formance for snoRNA and mRNA biomolecules having sufficient
length sequences as well as sequence to label distribution.

On the other hand, for mus musculus species, EL-RMLocNet
approach produces best degree of separability for lncRNA biomole-
cules, achieving AU-ROC figure of 78%. As discussed for homo
sapien species, this is mainly due to the highest average sequence
length shown in donut chart 8 which allows novel representation
learning based deep learning classifier to extract more discrmina-
tive set of features for subcellular localization prediction. Further,
EL-RMLocNet approach achieves second best degree of separability
around 77% for mRNA followed by 73% for snoRNA, and 68% for
miRNA multi-compartment subcellular localization prediction.
Despite very high subcellular compartment cardinality in mRNA
dataset, EL-RMLocNet approach manages to achieve promising
performance due to good length and sufficient number of
sequences against every subcellular compartment. Among all bio-
molecules datasets belonging to mus musculs species, miRNA
dataset contains the shortest sequences with average length of just



Fig. 9. AU-ROC Produced by Proposed EL-RMLocNet Approach for Multi-Compartment Subcellular Localization of mRNA, miRNA, snoRNA, and lncRNA across 2 Species A.
Homo Sapien and B. Mus Musculus.
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50 nucleotides which leads to slightly lower the performance of EL-
RMLocNet approach. With the increase of average sequence length
up to 116 nucleotides for snoRNA biomolecule, performance of EL-
RMLocNet approach gets increased, a performance trend which is
quite evident and discussed for most RNA subtypes in homo sapien
species as well.

To summarize, proposed EL-RMLocNet approach achieves
slightly better degree of seperability for mus musculus species
where it attains better peak performance for most RNA classes.
Further, unlike most predictive approaches whose performances
significantly plunge on account of different sized dataset or spe-
cies, proposed EL-RMLocNet approach shows quite consistent per-
formance and robustness across multiple datasets and species
mainly due to its aptitude to capture comprehensive relations of
nucleotide k-mers as well as to select most relevant features for
target RNA class and species.

Further, to analyze up to what extent EL-RMLocNet approach
manages to correctly predict various combinations of subcellular
compartmens on account of heterogeneous subcellular compart-
ment cardinality across 8 different benchmark datasets, multi-
Fig. 10. Multi-Compartment Localization Prediction Performance Produced by EL-RMLoc
Corresponding to Unique Sequence-Compartment Distribution.

3998
compartment confusion matrices along with sequence-to-
compartment distributions bar graphs for homo sapien species
and mus musculus species are given in Fig. 10 and Fig. 11 respec-
tively. We leverage one-versus-rest strategy in order to generate
confusion matrices across all 8 benchmark datasets where false
negatives (fn), false positives (fp), true negatives (tn), and true pos-
itives (tp) are computed by considering one subcellular compart-
ment as positive and other subcellular compartments as
negative. By averaging fn, fp, tn,and tp using total number of avail-
able subcellular compartments, confusion matrix for target RNA
associated subcellular localization dataset is computed. This is pri-
marily to assess the robustness of EL-RMLocNet when positive sub-
cellular compartment has few number of RNA sequences and
negative subcellular compartment has large number of RNA
sequences.

From accuracy confusion matrices (Fig. 10) produced by pro-
posed EL-RMLocNet approach for homo sapien species, perfor-
mance analysis for mRNA multi-compartment localization
prediction indicates that, from 3,858 uni-compartment RNA
sequences, subcellular localization of 3,413 sequences are correctly
Net on 4 Benchmark Homo Spaien Datasets of mRNA, miRNA, snoRNA, and lncRNA



Fig. 11. Multi-Compartment Localization Prediction Performance Produced by EL-RMLocNet on 4 Benchmark Mus Musculus Datasets of mRNA, miRNA, snoRNA, and lncRNA
Corresponding to Unique Sequence-Compartment Distribution.
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predicted by proposed EL-RMLocNet approach, indicating over 88%
uni-compartment RNA sequences are correctly predicted. From
3,144 bi-compartments RNA sequences, 2,442 RNA sequences are
correctly classified into 2 cellular compartments, making it to
78% of total bi-compartment sequences. For tri-compartment and
tetra-compartment cardinalities, almost 54% and 43% RNA
sequences of respective cardinalities are correctly classified in
appropriate subcellular compartments. For homo sapien miRNA
subcellular localization, 63% of total uni-compartment, 33% of total
bi-compartment, and 15% of total tri-compartment RNA sequences
are accurately categorized in respective subcellular localization
compartments by EL-RMLocNet approach. For homo sapien
snoRNA subcellular localization prediction, EL-RMLocNet approach
accurately categorizes 83% of uni-compartment 63% of bi-
compartment, 58% of tri-compartment, and 60% of tetra-
compartment RNA sequences. Further, for lncRNA multi-
compartment subcellular localization prediction, 66% of uni-
compartment, and 82% of bi-compartment RNA sequences are cor-
rectly predicted. Whereas, no tri-compartment or tetra-
compartment RNA sequence is correctly classified in respective
subcellular compartment by EL-RMLocNet approach.

It is evident that a significant number of genomic sequences
having different subcellular compartment cardinalities are accu-
rately predicted by EL-RMLocNet approach across different RNA
classes. Overall, for homo sapien species, EL-RMLocNet achieves
better performance on mRNA followed by snoRNA, lncRNA, and
miRNA biomolecules. It manages to correctly predict 88% of mRNA
uni-compartment, 82% of lncRNA bi-compartment, 58% of snoRNA
tri-compartment, and 60% of snoRNA tetra-compartment RNA
sequences. Unlike existing RNA associated multi-compartment
localization predictors whose performance significantly drops on
account of different sized dataset as well as with the increase of
subcellular compartment cardinality, proposed EL-RMLocNet
approach shows promising performance across muliple datasets
and shows robustness for different subcellular compartment
cardinalities.

Turning towards the accuracy confusion matrices produced by
proposed EL-RMLocNet approach for 4 different RNAs belonging
to mus musculus species, performance analysis of mRNA multi-
3999
compartment localization prediction indicates that from 8,695
uni-compartment RNA sequences, 5,244 are correctly predicted
which makes up to 60% of uni-compartment sequences. Further,
28% of bi-compartment, 32% of tri-compartment, and 17% of
tetra-compartment RNA sequences are accurately inferred in
respective cellular compartments. For miRNA subcellular localiza-
tion, decent percentages of uni-compartment, bi-compartment,
and tri-compartment RNA sequences are accurately predicted
which falls around 71%, 33%, and 11% respectively. For snoRNA
subcellular localization prediction, 82% of uni-compartment, 86%
of bi-compartment, 79% of tri-compartment, and 80% of tetra-
compartment RNA sequences are corrected predicted by EL-
RMLocNet approach. Similarly for lncRNA subcellular localization
prediction, 77% of uni-compartment and 86% of bi-compartment
RNA sequences are accurately predicted into respective localiza-
tion compartments. To summarize accuracy confusion matrices
performance across both species, it is easy to understand that
unlike existing computational approaches whose performance
decline on account of different species, proposed EL-RMLocNet
achieves promising performance across all 4 different RNA classes.
Contrary to homo sapien species, for mus musculus species, EL-
RMLocNet achieves better performance on snoRNA followed by
lncRNA, mRNA, and miRNA biomolecules. It manages to accurately
predict 82% of snoRNA uni-compartment, 86% of snoRNA and
lncRNA bi-compartment, 79% of snoRNA tri-compartment, and
88% of snoRNA tetra-compartment RNA sequences, revealing once
again a promising robustness towards different subcellular com-
partment cadinalities.

In a nutshell, a comprehensive and multi-dimensional assess-
ment indicates that proposed EL-RMLocNet approach marks
promising performance for multi-compartment subcellular local-
ization of 4 different RNAs across 2 different species. It achieves
higher performance figures for mus musculus species for most
RNA classes. While the novel approach based on the idea of using
RNA-As-Graphs assists to capture comprehensive semantic and
structural information of nucleotide k-mers. The gating mecha-
nism of LSTM helps to find and retain long range dependencies
of the features, and attention mechanism assists to find most rele-
vant features for target RNA class and species. By optimizing fea-
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ture extraction and target specific subcellular localization predic-
tion, proposed EL-RMLocNet manages to achieve promising perfor-
mance over multiple different sized benchmark datasets for RNA
associated multi-compartment subcellular localization prediction.

4.2. Comparison of EL-RMLocNet with Existing Multi-Compartment
RNA Localization Predictors

Considering the significance of determining co-localization of
biomolecules in multiple subcellular compartments for deep
understanding of cellular biology and to develop diverse biochem-
ical applications [55], Wang et al. [7] developed the state-of-the-
art multi-compartment localization predictor for 4 different RNA
classes of 2 distinct species. They utilized 6 different nucleotide
composition and statistics based sequence encoding schemes
including nucleotide property composition, nucleotide k-mers
composition, reverse compliment k-mer, nucleic acid composition,
di-nucleotide composition, tri-nucleotide composition, and com-
position of k-spaced nucleic acid pairs to adequately represent
the nucleotide information present in RNA sequences. By fusing
multivariate information using Hilbert–Schmidt independence cri-
terion based multiple kernel learning, they found an optimal com-
bined kernel for SVM classifier for multi-compartment localization
prediction of mRNAs, miRNAs, snoRNAs, and lncRNAs for home
sapiens and mus musculus species.

Table 4 compares the performance produced by proposed EL-
RMLocNet approach with stat-of-the-art approach [7] for the sub-
cellular localization of 4 different RNAs (mRNAs, miRNAs, snoRNAs,
and lncRNAs) for home sapien species. As is indicated by the
Table 4, proposed approach EL-RMLocNet outperforms state-of-
the-art approach [7] across all 4 benchmark datasets belonging
to different RNAs in terms of 5 different evaluation measures. EL-
RMLocNet achieves the average precision increment of 7%, 1%,
1%, and 10% as compared to state-of-the-art [7] performance for
miRNA, mRNA, snoRNA, and lncRNA multi-compartment localiza-
tion prediction. EL-RMLocNet improves state-of-the-art accuracy
by 11%, 5%, 1%, and 13% for miRNA, mRNA, snoRNA, and lncRNA
multi-compartment localization prediction. Performance analysis
in terms of coverage, ranking loss, and one-error where lower
value indicates better predictive performance, EL-RMLocNet sur-
passes the previous best performance by a decent margin for all
4 RNAs across all evaluation metrics.

Furthermore, performance comparison of proposed EL-
RMLocNet approach with stat-of-the-art approach [7] for the sub-
cellular localization of 4 different RNAs (mRNAs, miRNAs, snoRNAs,
and lncRNAs) for Mus Musculus species (Table 4) indicates that
proposed EL-RMLocNet approach once again outperforms previous
best performance across all 4 benchmark datasets in terms of five
different evaluation metrics. EL-RMLocNet outperforms state-of-
the-art average precision by 8%, 1%, 2%, and 1% for miRNA, mRNA,
snoRNA, and lncRNA multi-compartment subcellular localization.
Table 4
Performance Comparison of Proposed EL-RMLocNet Approach with State-of-the-art Appr
lncRNA using 8 Benchmark Datasets of Homo Sapiens (Human) and Mus Musculus (Mous

Average Precision Accuracy

Species Datasets State-of-the-
art [7]

EL-
RMLocNet

State-of-the-
art [7]

EL-
RMLocNet

State-o
art [7]

Human miRNA 0.79 0.86 0.52 0.63 1.46
mRNA 0.76 0.77 0.41 0.46 1.69
snoRNA 0.82 0.83 0.54 0.55 1.54
lncRNA 0.75 0.85 0.42 0.55 1.18

Mouse miRNA 0.79 0.87 0.58 0.69 1.31
mRNA 0.70 0.71 0.34 0.37 1.71
snoRNA 0.80 0.82 0.52 0.56 1.59
lncRNA 0.76 0.77 0.43 0.47 0.95

4000
In terms of accuracy, EL-RMLocNet outperforms previous best per-
formance by 11%, 3%, 4%, and 4% for all 4 miRNA, mRNA, snoRNA,
lncRNA multi-compartment localization prediction. Similarly, per-
formance analysis in terms of coverage, ranking loss, and one-error
reveals that EL-RMLocNet achieves lower error values across most
evaluation metrics for all 4 different RNA classes.

To sum up, proposed EL-RMLocNet approach achieves better
performance across most datasets from 8 benchmark datasets
belonging to 4 different RNAs and 2 species. Overall EL-
RMLocNet achieves higher performance increment for homo sapi-
ens species as compared to Mus musculus. It outperforms stat-of-
the-art approach [7] by an average accuracy figure of 8% for homo
sapiens species and 6& for Mus musculus species. Unlike tradi-
tional nucleotide frequency and physico-chemical properties based
sequence encoding schemes used by stat-of-the-art approach [7]
which lack to capture comprehensive relations of nucleotides. EL-
RMLocNet uses a novel weighted graph based statistical represen-
tation learning schemes which treats nucleotide k-mers as nodes
and their interactions as edges to better characterize nucleotide
k-mers relations. Further, unlike machine learning based stat-of-
the-art approach [7], proposed EL-RMLocNet makes use of a pre-
cisely deep neural network which utilizes gating mechanism to
retain informative features and their dependencies, and attention
mechanism to find RNA class and species specific discriminative
distribution of features to accurately predict target species RNA
subcellular localization.

4.3. Visualization of Most Informative Nucleotide k-mers Patterns

Proposed EL-RMLocNet approach effectively predicts the sub-
cellular localization of various RNAs mainly by finding the most
discriminative features with the help of attention mechanism.
The mapping of statistical feature space having certain attention
weights to their corresponding nucleotides k-mers is essential to
elaborate which nucleotide k-mer distribution is most informative
to accurately predict various subcellular compartments of target
RNA subtype of particular species. The acquisition and interactive
visualization of such information effectively interpret and explain
the decision making of deep learning model, actualize the general-
izeability and practical significance of the model to facilitate
biomedical researchers and practitioners. Considering, sequence
length largely fluctuates across different RNA subtypes and species
ranging from few hundreds nucleotides to thousands of nucleo-
tides. We visualize the importance given by attention mechanism
of proposed EL-RMLocNet approach to nucleotide k-mer distribu-
tion within the range of 100 nucleotides across all 8 benchmark
datasets of 4 different RNAs (mRNA, miRNA, snoRNA, and lncRNA)
and 2 species (Homo Sapien, Mus Musculus) to avoid repetition of
information and improve readability.

Considering, attention mechanism can even assign different
weights to same nucleotide k-mer and same weight to different
oach for Multi-Compartment Localization Prediction of miRNA, mRNA, snoRNA, and
e) Species.

Coverage Ranking Loss One error

f-the- EL-
RMLocNet

State-of-the-
art [7]

EL-
RMLocNet

State-of-the-
art [7]

EL-
RMLocNet

0.70 0.17 0.11 0.29 0.26
0.68 0.24 0.23 0.37 0.35
0.45 0.18 0.17 0.24 0.20
0.45 0.22 0.17 0.37 0.20
0.50 0.18 0.10 0.31 0.28
0.87 0.14 0.13 0.44 0.40
0.29 0.21 0.20 0.25 0.20
0.60 0.19 0.18 0.40 0.36



Fig. 12. Most Informative and Least Informative Nucleotide K-mers Patterns for 4 different RNAs belonging to Homo Sapien and Musculus Species Identified by Attention
Layer of Proposed EL-RMLocNet Approach.
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nucleotide k-mers depending on the short and long range contex-
tual information. Fig. 12 highlights nucleotide k-mer distribution
of 4 different RNAs across 2 species on a gradient scale from light
to darker shade of a specific color, and size scale from shorter to
larger fonts, indicating more darker and standout nucleotide k-
mers are most informative for target RNA subtype. For instance,
for homo sapien lncRNA multi-compartment subcellular localiza-
tion prediction, nucleotide bi-mer ‘‘CG” is most informative across
different distributions of nucleotides. For Mus Musculus miRNA
multi-compartment subcellular localization prediction, nucleotide
bi-mers CC,GC, AG, GG are most informative followed by AA, and
TT within certain nucleotide distributions. Similarly for other
RNA subtypes across both species, most informative and least
informative nucleotide k-mers and their different nucleotide distri-
butions (unique color shaded) are evident in the Fig. 12. We believe
that an interactive intrinsic analysis of various RNAs helps to iden-
tify the most appropriate degree of nucleotide k-mer (e.g bi-mer,
tri-mer), identify region containing most useful nucleotide k-mer
distribution, providing a direction to optimize the performance
and generalizeability of various other RNA sequence analysis tasks.
5. An Interactive and User-Friendly EL-RMLocNet Web Server

In order to facilitate scientific community, proposed EL-
RMLocNet approach is deployed as a public RNA subcellular local-
ization prediction platform. This interactive and user-friendly web
server can be used to infer subcellular localization and to validate
experimentally identified subcellular localization of distinct RNA
classes for multiple species. Contrary to other web server, this
web server allows the researchers to train and optimize deep neu-
ral network from scratch, analyze the impact of different hyperpa-
rameters over the quality of sequence vectors generated by graph
based representation and generalizeability of deep neural network.
It can also be used to perform subcellular localization prediction
over novel RNA sequences of various classes on the go for Homo
Sapiens, Mus Musculus, and many other species.
6. Conclusion

In this study, we establish an effective multi-compartment
localization prediction landscape for 4 different RNA classes and
2 distinct species to better understand the functional dynamics
of RNAs. Unlike existing computational approaches which lack to
capture context of residues at different granularity while generat-
ing statistical representation of RNA sequences as well as potential
residue patterns important for accurate multi-compartment local-
ization prediction. Our proposed approach EL-RMLocNet generates
4001
a comprehensive local and global residue contextual information
aware statistical vectors of RNA sequences by treating RNA-As-
Graph captures. It makes use of LSTM network to extract features,
short and long range dependencies, and attention mechanism to
assign the weights to the features on the basis of their importance
for accurate multi-compartment localization of target RNA class.
Visualization of important higher order residue patterns using X
technique can assist researchers to draw important insights while
comparing sequences of homogeneous or heterogeneous RNA
classes. A comprehensive comparison of proposed EL-RMLocNet
approach with state-of-the-art approach using 8 benchmark data-
sets of 4 different RNA classes and 2 distinct species proves that EL-
RMLocNet is the first most effective generic yet explainable model
for RNA multi-compartment localization prediction. We expect
public availability of EL-RMLocNet will prove a valuable asset for
subcellular localization prediction of various RNAs across multiple
species, as well as an additional tool for the classification and local-
ization prediction of other biomolecules.
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