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Introduction: Graph-based representations are becoming more common in the

medical domain, where each node defines a patient, and the edges signify

associations between patients, relating individuals with disease and symptoms

in a node classification task. In this study, a Graph Convolutional Networks

(GCN) model was utilized to capture di�erences in neurocognitive, genetic, and

brain atrophy patterns that can predict cognitive status, ranging from Normal

Cognition (NC) to Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD),

on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Elucidating

model predictions is vital in medical applications to promote clinical adoption

and establish physician trust. Therefore, we introduce a decomposition-based

explanation method for individual patient classification.

Methods: Our method involves analyzing the output variations resulting from

decomposing input values, which allows us to determine the degree of impact

on the prediction. Through this process, we gain insight into how each feature

from various modalities, both at the individual and group levels, contributes to

the diagnostic result. Given that graph data contains critical information in edges,

we studied relational data by silencing all the edges of a particular class, thereby

obtaining explanations at the neighborhood level.

Results: Our functional evaluation showed that the explanations remain stable

with minor changes in input values, specifically for edge weights exceeding 0.80.

Additionally, our comparative analysis against SHAP values yielded comparable

results with significantly reduced computational time. To further validate the

model’s explanations, we conducted a survey study with 11 domain experts. The

majority (71%) of the responses confirmed the correctness of the explanations,

with a rating of above six on a 10-point scale for the understandability of the

explanations.

Discussion: Strategies to overcome perceived limitations, such as the GCN’s

overreliance on demographic information, were discussed to facilitate future

adoption into clinical practice and gain clinicians’ trust as a diagnostic decision

support system.
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1 Introduction

Real-world data often comes in multiple modalities, such as
image, text, and numerical data. These data are often relational,
for example, patient medical records where various modalities
contribute to a single outcome in the medical field. Humans are
experts at multimodal thinking, able to effortlessly incorporate new
inputs into a knowledge space shaped by experience. However,
AI systems in the medical domain face a complex challenge
in the integration, fusion, and mapping of various distributed
and heterogeneous data in diagnostic modeling. It is essential to
consider that different features from diverse data types contribute
to an outcome. Graphs provide a way of information fusion for
multimodal data and enable an intuitive way of modeling patients
and associations between them (Holzinger et al., 2021).

Parallel to the previous research, our study involves working
with multimodal data, which we modeled as a graph. Each node
in the graph represents a set of patient data, and the pairwise
correlations between nodes are represented as edges. Similar
patients are embedded close to each other in an edge-weighted
graph approximating similarity in the network. This also reveals
the relationship between integrated modalities and disease. Unlike
previous studies (Parisot et al., 2018; Anirudh and Thiagarajan,
2019), which only looked at neuroimaging data, our study includes
genetic, cognitive, and neuropsychological test results in the nodal
features. Additionally, the functional connectivity matrices provide
information to establish the association between the patients’
feature vectors.

Although GCNs are highly effective at modeling a wide range of
complex and diverse data, they inherently lack transparency. While
accuracy is a critical factor in establishing trust, interpretability
is equally crucial for integrating these models into clinical
applications. Medical professionals are understandably hesitant
to rely solely on machine learning predictions and require
evidence and interpretation, especially in diagnosing disease. Our
work introduces a decomposition-based explanation method for
individual node classification, allowing for a clear understanding
of how various features from different modalities contribute to a
diagnostic result for a specific patient (see Figure 1).

Taken together, we investigate the potential utility of a GCN
model for multimodal data in a node classification task and provide
justifications for predictions made by the model. Furthermore, we
conducted a human subject study with domain experts to assess
whether it allows for a meaningful explanation in a way that
physicians can understand. Themain contributions of the proposed
work are:

• An extended semi-supervised GCN model for population
graph, integrating multimodal data in multiclass classification
problem.

• Introducing decomposition-based explanation method for
individual node, i.e., patient, classification.

• Objective and human-grounded evaluations to assess stability,
correctness, and comprehensibility of the explanation.

The rest of the paper is organized as follows: Section 2 discusses
the relevant work. Section 3 presents the methodology, describing

the feature selection, data preparation, the graph model, and the
explanation method. Section 4 provides details of the evaluation
method and results. The findings are discussed in Section 5, and
Section 6 concludes the paper.

2 Background

Multimodal data analysis is increasing in prevalence due to the
limitations of single modalities, resulting in increasingly complex
data sets. In recent years, there has been an increasing trend
in works proposing a combination of multiple modalities for
Alzehimer disease-related tasks, including diagnosis, conversion
prediction, and progression detection. For disease diagnosis tasks,
many proposed Random Forest and XGBoost models (El-Sappagh
et al., 2021; Bogdanovic et al., 2022; Lombardi et al., 2022), and
others proposed multimodal learning-based approaches using deep
learning to summarize features of all modalities (Kamal et al., 2021;
Ilias and Askounis, 2022; Mulyadi et al., 2022; Rahim et al., 2022)
(see Table 1 for details). Previous research has generally overlooked
the interactions and associations between subjects in a population.
modeling similarities between subjects can improve learned
representations of multimodal data and classification performance.
Graphs provide a natural way to represent the population data
and model complex interactions by combining features of different
modalities for disease analysis (Parisot et al., 2017; Anirudh and
Thiagarajan, 2019; Yao et al., 2019; Rakhimberdina et al., 2020).
The association among instances is critical where information from
neighboring patients in the graph provides information about a
subject’s status.

Researchers have recently employed graph convolutional
networks to study their advantage in population graphs. Each
subject is modeled as a node along with a set of features, and the
graph edges are defined based on the similarity between the features
of the subjects (Rakhimberdina et al., 2020). They have been shown
to be effective, specifically for brain disorder classification. Parisot
et al. (2017, 2018) proposed a spectral GCN model which
takes into account both the pairwise similarity between subjects
(phenotypic information) and information obtained from subject-
specific imaging features to classify individuals as healthy control or
patient (i.e., Autism Spectrum Disorder and Alzheimer’s Disease)
in a population. Rakhimberdina and Murata (2019) applied a
linear simple graph convolution (SGC) (Wu et al., 2019) using the
distance between phenotypic features of the subjects as weights of
the edges of the graph. In our work, we follow the similar efficient
practice proposed by previous works and advance it by fusing
features from cognitive, neuropsychological, and biomarker data,
which are highly relevant and critical to diagnosing Alzheimer’s
disease.

2.1 Explanation methods

Machine learning models have shown great potential in
diagnosing Alzheimer’s disease (AD), but the lack of explainability
poses a challenge for their clinical application (Zhang et al.,
2022). Researchers have been exploring explainability approaches
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FIGURE 1

Multimodal data—demographics, imaging, neurocognitive tests, biomarkers—are mapped into a population graph. Graph convolutional networks

learn from multimodal data taking the similarity structures of the graph into account. The explanation generation module presents the model’s

underlying rationale for individual node classification to a human counterpart.

to address the black-box nature of these methods. There are two
types of Explainable AI (XAI) approaches that have been adapted
into clinical applications: intrinsic and post-hoc. Intrinsic methods
allow us to understand the decision-making process or the basis of
a technique without external interpretation methods. In contrast,
post-hoc methods aim to retrospectively understand which part
of the input data accounts for the classification decision for any
classifier (Ghanvatkar and Rajan, 2022). Post-hoc explanation
methods including SHapley Additive exPlanations (SHAP) (Danso
et al., 2021; El-Sappagh et al., 2021; Lombardi et al., 2022), Local
Interpretable Model-agnostic Explanations (LIME) (Kamal et al.,
2021; Ilias and Askounis, 2022), time series grad-cam (Rahim
et al., 2022), feature importance (Velazquez et al., 2021), and
likelihood map estimation (Mulyadi et al., 2022) have been adapted
into models for AD diagnosis-related tasks. Interpretability for
graph-based deep learning is even more challenging than CNN or
Recurrent Neural Network (RNN) based models since graph nodes
and edges are often heavily interconnected. Model-specific and
model-agnostic post-hoc interpretability are the twomost common
approaches for GCNs. The former explainability approaches are
designed exclusively for specific graph models, constraining other
models from providing details about the uncovered relationships
(such as sparsity and modularity) (Ahmedt-Aristizabal et al.,
2021). The latter increases the generalizability of the explanation
method in applying to various graph-based learning algorithms.
Several XAI methods have been redesigned and applied to GNNs,
including layer-wise relevance propagation (LRP) (Baldassarre
and Azizpour, 2019; Schwarzenberg et al., 2019), excitation
backpropagation (Pope et al., 2019), graph pruning (Ying et al.,
2019), and gradient-based saliency (Chattopadhay et al., 2018).

The prior studies, specifically feature importance-based
explanation methods, generally focus on the impact of a feature
at the individual level and overlook the influence of features at
the group level, such as a whole modality. In our approach to
explanation, we incorporate relational information by focusing on
both the node features (individual and group) and edges, estimating

the impact of different patient groups (e.g., normal control, mild
cognitive) using edge weights. Another area for improvement is the
presentation of the explanations. It is important to tailor the design
of explanations to the intended goals and user groups, especially in
clinical settings. Clinicians have unique characteristics and needs
that differ from general users, and as such, explanations should be
constructed using domain-specific concepts and an appropriate
level of detail that corresponds to their background. Our work
focuses on providing interpretability that is specifically designed
for physicians in clinical contexts. We present explanations in a
visual format with textual descriptions to support comprehension.

2.2 Evaluation of the explanation methods

Medical AI research aims to build applications that use
AI technologies to assist doctors in making medical decisions.
Explanations for predictions made by ML models are necessary
for making high-stakes clinical decisions which can aid by
providing relevant and domain-aware information. While many
XAI techniques have been designed to generate explanations
for black-box model predictions, there are no rigorous metrics
to evaluate these explanations concerning their consistency and
comprehensibility to clinicians (Ghanvatkar and Rajan, 2022).
In general, there need to be common ground evaluation
strategies for assessing the usefulness of explanations in medical
applications.

The proposal of different explanation methods compelled
researchers to introduce various evaluation metrics to assess how
well the model fits in a certain aspect of explainability. Generally,
there are two main ways to evaluate explanation methods:
objective evaluations and human-grounded evaluations. Objective
evaluation includes objective metrics and automated approaches to
assessing the functional properties of the explanationmethods (e.g.,
fidelity, stability, explanatory power) (Doshi-Velez and Kim, 2017).
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TABLE 1 Recent works on multimodal data use in AD disease diagnosis-related tasks proposing explainable machine learning approaches.

Reference Modalities ML method Task Explainability
method

Evaluation

Model Explanation

Rahim et al. (2022) MRI, demographic,
cognitive test results

3D-CNN BRNN AD progression
detection

Time-series grad
cam

ACC., PRE., SEN.,
AUC

Literature comparison

El-Sappagh et al.
(2021)

MRI, demographic,
genetic, cognitive,
neuropsychology.
test results

Random Forest AD diagnosis and
progression

Shapley values
derivative

ACC. and F1 Case study and
comparison with shapley
values

Lombardi et al.
(2022)

Demographic,
clinical,
neuropsychology.
test results

Random Forest AD diagnosis Shapley values ACC., PRE., SEN.,
AUC

Longitudinal analysis
(stability)

Bogdanovic et al.
(2022)

Medical history,
cognitive test
results, and lifestyle

XGBoost AD diagnosis Shapley values ACC., PRE., recall,
SPE., F1

None

Mulyadi et al.
(2022)

MRI, demographic,
cognitive test
results, and stages

Deep Learning AD progression Likelihood map
estimation

ACC., AUC, F1 None

Kamal et al. (2021) MRI and gene
expression

SpinalNet CNN Dementia
classification (Mild,
moderate, very
moderate)

LIME ACC., pre., recall,
F1

None

Ilias and Askounis
(2022)

Demographic,
cognitive test
results, and text
(linguistic
responses)

MTL BERT Dementia
classification (Mild,
moderate, very
moderate)

LIME ACC., PRE., recall,
SPEC, F1

Self assessment

Danso et al. (2021) Demographic,
medical history,
lifestyle

Random forest and
XGBoost

Dementia risk
prediction

Shapley values ACC., AUC, SEN,
SPEC, p-value

Self assessment

Velazquez et al.
(2021)

Demographic, brain
volume, and
cognitive test results

Random Forest Conversion
prediction (MCI to
AD)

Feature importance ACC., PRE., recall,
F1, AUC, p value

Ablation study

Ours Demographic, MRI,
biomarker,
cognitive,
neuropsychology.
test results

GCN AD classification
(NC, MCI, AD)

Decomposition
based feature
importance

ACC., PRE., recall,
F1

User study, comparison
with SHAP, objective
evaluation (stability)

ACC., Accuracy; AUC, Area under the curve; PRE., Precision; SEN., Sensitivity; SPEC., Specificity.

Human-grounded evaluation develops methods with a human-
in-the-loop approach by utilizing end-users feedback and their
informed opinion, whether with experts or laypersons (novice
users) (Vilone and Longo, 2020). Human-centered studies with
domain experts are especially important for clinical applications
to gain informed judgment on the explanations produced by
the model and verify the consistency of the explanations with
the domain knowledge. Studies involving highly-trained domain
experts are more challenging due to the difficulty of accessing
and compensating for it, which therefore is omitted by many
studies.

While many works evaluate the model’s performance and
accuracy, there is a lack of both objective and clinical assessment of
the explanation module. Some of the studies presented case studies
(El-Sappagh et al., 2021), literature comparison (Rahim et al., 2022),
and assessing the stability of the explanations through longitudinal
analysis (Lombardi et al., 2022). In contrast to previous work, we
evaluate our results with experts in AD diagnostics to assess the

human agreement on the model’s prediction and rationale and the
quality of the explanations provided by the model.

3 Materials and methods

Our methodology consists of multiple steps, commencing
with data preparation and constructing graphs, followed by
training a graph convolutional network and generating post-hoc
explanations for node classification. We aim to incorporate the
most relevant clinical and imaging data in the ADNI database
to train the predictive model and explain how each feature
contributes to a predicted outcome. The techniques proposed in
this work are evaluated experimentally by measuring the property
of individual explanations and conducting a human-subject study
with experts on AD diagnostics. The following subsections describe
the methodology in detail.
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3.1 Feature selection and data preparation

Diagnosing Alzheimer’s disease benefits from thoroughmedical
evaluation with several tests and procedures, including an
MRI scan of the brain, neuropsychology tests of memory and
thinking, and positron emission tomography (PET) to identify
certain biomarkers. The Alzheimer’s Disease Neuroimaging
Initiative (ADNI)1 provides an extensive repository of clinical
and neuroimaging data to advance the understanding AD
pathophysiology and improve diagnostic methods for early AD
detection (Jack et al., 2008). The ADNI study has been tracking
the progression of the disease using biomarkers, together with
clinical measures, to assess the brain’s structure and function for
four disease states (AD, MCI, Late-MCI, Early-MCI). The study
enrolls participants between the ages of 55 and 90 at 57 sites in
the United States and Canada in four phases (ADNI GO, 1, 2, 3).
During these phases, participants are carried forward from previous
phases for continued monitoring, while new participants are added
with each phase to investigate the evolution of Alzheimer’s disease
further. In this work, we have gathered the phenotypic, clinical,
and imaging data under five categories for participants from all
four phases (i.e., demographics, cognitive tests, neuropsychology
tests, medical imaging, and biomarker/genetic data). We aim to

1 Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private

partnership led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and

clinical and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD).

include the most important aspects of AD diagnosis, where various
modalities contribute to a single outcome.

Demographics include the patient’s age and gender
information. Although these attributes are not directly related
to detecting or classifying Alzheimer’s disease, they are the main
risk factors for developing AD (Vina and Lloret, 2010). Gender
differences have been observed in several studies suggesting that
the risk of developing certain subtypes of dementia differs (i.e., AD
vs vascular dementia) between females and males (Podcasy and
Epperson, 2022). Similarly, studies on brain structures of typical
aging and early Alzheimer’s disease pathology demonstrate varying
atrophy patterns (Raji et al., 2009).

Cognitive test results include the scores related to memory
(MEM), executive function (EXF), and language (LAN). These
values are in composite form as these domains are measured
to a different extent in the ADNI study. Memory is one of the
domains which is measured quite extensively. Earlier works show
that memory and executive function are highly predictive of disease
progression (Giorgio et al., 2020). Other neuropsychological test
includes Geriatric Depression Scale (GDS), Montreal Cognitive
Assessment (MoCA), and Mini-Mental State Examination score
(MMSE). GDS is an affective measure which shown to be predictive
of MCI conversion to AD in moderate to severe depressive
symptoms (i.e., GDS > 15) (Defrancesco et al., 2017). MoCA and
MMSE are other neuropsychological tests that are designed to
measure psychological functions (i.e., sensing, feeling, thinking,
intuition) linked to a particular brain structure (Boyle et al., 2012).
We note that MoCA and MMSE could be described as both
neuropsychological and cognitive tests.

Alzheimer’s is characterized by predominant damage to the
brain’s temporal lobe, and the extent of damage often extends to
other areas (Hill, 2022). Atrophy patterns of typical aging and early
Alzheimer’s disease pathology studied on brain structures show

TABLE 2 Feature analysis on the dataset for NC, MCI, and AD node classification task.

NC MCI AD P-value*

Sample size 754 1,095 363

Demographic Age 75.6.± 6.7 73.7 ± 7.5 75.1± 7.9 1.5215× 10-7

GEN (F/M) 399/355 458/637 160/203 2.5176× 10-58

Cognitive MEM 0.93± 0.41 0.33± 0.50 -0.84 ± 0.39 0

LAN 0.88± 0.36 0.56± 0.38 -0.24 ± 0.47 1.0955× 10-307

EXF 0.85± 0.41 0.53± 0.42 -0.41 ± 0.63 7.2301× 10-291

Neuropsychological GDS 7.1 ± 1.34 8.3± 2.09 9.2± 2.63 7.8077× 10-66

MoCA 26.3± 2.57 23.2± 3.36 14.8 ± 3.48 0

MMSE 29.1± 1.07 28.1± 1.76 22.4 ± 3.32 0

Medical imaging MCT(mm) 2.84± 0.10 2.78± 0.15 2.49 ± 0.19 1.9123× 10-252

THV(cm3) 6.54± 0.56 6.34± 0.70 5.42 ± 0.72 3.5133× 10-137

Biomarker/genetic Aβ± 441/313 493/602 31/332 2.5176× 10-58

Tau± 312/442 344/751 7/356 5.4999× 10-314

PHS 0.007± 0.49 0.29± 0.65 0.84 ± 0.64 1.4324× 10-93

Data is shown as mean ± SD. *To assess group differences, we used a one-way ANOVA test. Values in bold show the data group which has mean significantly different from the other two

groups.
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atrophy mainly in the anterior hippocampal/parahippocampal
regions and the precuneus in AD patients (Raji et al., 2009).
Hence, we have selected the mean cortical thickness of the
temporal lobe (including entorhinal, fusiform, superior temporal,
inferior temporal, middle temporal, parahippocampal, banks of the
superior temporal sulcus, temporal pole regions) combined with
mean precuneus cortical thickness and total hippocampus volume.
The data is derived from volumetric segmentation of longitudinal
T1 MR images through FreeSurfer (Fischl, 2012; Reuter et al.,
2012) (see Supplementary Figure S1 for visualization of the selected
regions).

Biomarkers data includes β-Amyloid (Aβ), tauopathy, and
Polygenic Hazard Score (PHS). Positivity for β-Amyloid (Aβ)
was based on positron emission tomography imaging, while tau
positivity was based on P-tau 181 measured in plasma, according
to standard cut-off values as provided in the ADNI dataset. PHS is
generated based on the combination of APOE and 31 other genetic
variants (Desikan et al., 2017). These are the hallmark pathologies
of AD, which in fact, appear before cognitive problems show up.
It helps identify asymptomatic individuals potentially at risk for a
future clinical disorder.

Data from the selected features are merged based on the
participants’ ID and visit code. In total, 2,212 samples were
available, with 363 individuals diagnosed with Alzheimer’s Disease
(AD), 1095 mild cognitive impairment (MCI), and 754 Normal
Controls (NC). The categories are based on the clinical diagnosis
of the patients given along with the cognitive test scores. We also
note that some patients have multiple data points in the resulting
data set.

The feature values outside the lower and upper percentile
threshold (outliers) (0.05–0.95) and missing values are replaced
with a moving mean using a window length of 8 within the class.
Statistical analysis of the dataset indicates that samples significantly
differ from one another in different groups (p = 0 | p < 0.05) (see
Table 2). As expected, AD has more differentiating feature values
(MEM = -0.84 ± 0.39, LAN = -0.24 ± 0.47, EXF = -0.41 ± 0.63)
than the other two classes, which is an advantage considering the
sample size of this group. MCI had overlapping features with the
NC group to some extent concerning neuropsychological (MMSE
29.1± 1.07 to 28.1± 1.76) and imaging features (MCT 2.84± 0.10
to 2.78± 0.15, THV 6.54± 0.56 to 6.34± 0.70).

3.2 Multimodal knowledge graph
construction and spectral graph
convolutions

The knowledge graph is constructed from non-structural data
where each subject with corresponding data and the pairwise
relationships between subjects are modeled as a population graph.
The two main points required to build a population graph are the
definition of the feature vector describing each graph node and
the connectivity (adjacency) matrix (i.e., edges) weighted based
on the similarity between subjects. Figure 2 illustrates the model
structure and processes in detail. In our graph, a node contains the
demographic, imaging, genetic, cognitive, and neuropsychological
test data, which comprises 13 features of a subject. The connectivity

matrix provides the information about which nodes are connected
and the weight of the connection. The following section describes
the computation of the connectivity matrix.

3.3 Functional connectivity (adjacency)
matrix

The functional connectivity matrix represents the correlation
between subjects without any underlying causal model. One way
to describe connectivity between subjects is to identify their
similarities in their vector space. This can be represented as a graph
with an N − by−N adjacency matrix consisting of zeros and ones,
where N is the number of nodes. If its element is zero, there is
no significant similarity between subjects, thereby no edge between
two nodes. If its element is 1, there is a high correlation between
nodes – node’s connection to itself is always zero. Furthermore,
the connection between nodes is weighted based on the degree of
similarity between subjects by assigning a value between zero and
one.

For this study, we have utilized the cognitive test data,
including memory, language, and executive function, to construct
the functional connectivity matrix. These particular features were
selected due to their significant role in the clinical diagnosis of
NCs, MCIs, and ADs. Prior research has demonstrated that the
connectivity matrix utilizing measures with known links to the
pathologies, as opposed to phenotypic information like age and
gender, results in better performance (Parisot et al., 2018).

Considering a set of cognitive test measurements (Mn), the
functional connectivity (adjacency) matrix A is defined as follows:

A(h,w) = S(h,w)
∑

n=1

(1− δ(Mn(h),Mn(w))) (1)

where S(h,w) is the edge weights computed by a measure of
similarity between subjects calculated from δ the Euclidean distance
between pairs of observations in cognitive test measures. The
distance is a positive scalar value, signifying how far apart the two
values are. A smaller distance between two points, Mn(h) and
Mn(w), indicates a greater similarity. This value is then subtracted
from one to represent it as an edge weight. Once this calculation is
performed for all measurements, including memory, language, and
executive function, we combine and normalize them to determine
the final edge weight. Thereby, similar patients are embedded close
to each other in an edge-weighted graph, approximating similarity
in the network. The objective is to utilize this information to define
a proper neighborhood system that optimizes the performance of
the graph convolutions.

3.4 Spectral graph convolutions

The graph convolutions are computed in the spectral domain
(also known as Fourier domain) as themultiplication of anN−by−

i featurematrixX, whereN is the number of nodes of the graph, and
i is the number of features per node with an adjacencymatrixA that
represents the connections between nodes in the graph (Kipf and
Welling, 2016). The multiplication operations are weighted with
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FIGURE 2

Each subject’s feature vector and the pairwise relationships between subjects are modeled as a population graph. The GCN model takes the feature

vector and the normalized adjacency matrix and runs through a series of convolutional layers with updated network parameters, ReLU activation

function, and adding self-connections followed by a softmax function to output categorical predictions in the final layer.

learnable weights. The series of convolutional operations is defined
as:

Hl+1 = σl(D̂
−1/2ÂD̂−1/2HlWl)+ Hl (2)

where:

• σl is the relu activation function.
• Hl+1 is X.
• Wl is the learnable weight matrix for the multiplication.

The normalized adjacency matrix corresponds to:

D̂−1/2ÂD̂−1/2 (3)

where Â = A + IN is the adjacency matrix A of the graph added
with the identity matrix IN , and D̂ is the degree matrix of Â. The
GCN model takes an adjacency matrix A and a feature matrix X as
input and runs through convolutional layers with a ReLU activation
function, followed by a softmax function to output categorical
predictions in the final layer.

3.5 Training and performance of the model

The dataset is split into training, validation, and test partitions
containing 80%, 10%, and 10% of the data. The sets have been
split before the normalization of the data. We train for 100
epochs, set the learning rate for the Adam solver to 0.01, and
validate the network after every five epochs. The training loop

evaluates the model loss and gradients, updates the network
parameters, and validates the network by making predictions on
the validation set. The model trained on the ADNI dataset has
achieved 78% and 80% classification accuracy on validation and
test sets, respectively. The class-wise precision (column) and recall
(row) scores show that the AD class has the highest accuracy
on average (see Figure 3), as expected, since AD has the most
differentiating feature values. The model makes the most incorrect
predictions on MCI cases (35 out of 95), which is not surprising
as MCI has the most overlapping features among the other two
classes.2

As highlighted in Table 3, the overall performance of the
model when all modalities combined was a multiclass F1 (MCF)
score of 81.56% and an accuracy of 80.18%. MCF score is
considered a better indicator of the classifier’s performance
than the standard accuracy measure. Based on the results from
different combinations of modalities, we observed variations
in the performance between models. In general, the models
built without the biomarkers data performed poorly, and
these models (D+CT+NT and MRI+CT+NT) improved their
performance significantly when combined with the biomarkers
data. It has improved overall MCF by 31% and MCA by 27%,
particularly for MCI and AD cases. A minor improvement
(2% for MCF) was observed when demographic data were

2 The code for the model and the explanation method can be found

here: https://github.com/suletekkesinoglu/GCN_XAI_ADNI. The data can be

obtained from the corresponding author upon reasonable request, as long as

the data transfer complies with legal data protection requirements and data

use agreements.
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included in the model (MRI+CT+NT+BM). In addition, the
model trained with all modalities achieved the lowest variance
in performance compared to the model built without imaging
features. Numerically higher performance was achieved for
models where either cognitive or neuropsychological tests
were eliminated, but including these modalities did not
significantly reduce performance (p-value = 0.16). Cognitive
and neuropsychological tests are commonly considered in
clinical practice though factors such as poor sleep, previous
head injury, alcohol etc., might influence these scores. As
a caveat, note that these might add noise to the model’s
overall performance. The model’s performance results when
features are eliminated individually in each group are shown in
Supplementary Table S1.

FIGURE 3

Performance evaluation of the model on unseen data.

3.6 Explanation method for individual node
classification

Interpretability is critical as it can help in informed decision-
making during diagnosis and treatment planning. Many
methodological advances have been made for medical tasks,
such as graph learning, multiple graph scenarios, and graph
heterogeneity. GCNs are complex, opaque models which require
external means to interpret the model’s inner workings. In this
section, we describe the explanation method proposed in this work
to gain insight into the model’s inner workings.

This study adopted a decomposition-based approach
for computing the importance score of different input
features (Robnik-Šikonja and Kononenko, 2008). We observe
the relationship between the features and the predicted value
informed by the inner mechanism of the decision-making process.
In other words, we examine the output variations concerning
the changes in input values. By measuring such variations, we
determine the degree of impact on an outcome and reason about
the importance of each attribute value. We considered the input
features in three levels: individual node features, group-level node
features, and edge weights. The proposed method applies the same
principle on all three levels.

The model, as a function, maps unlabeled nodes into numerical
values f : x → f (x). For the node classification task, these numerical
values are the probabilities of the class values, y is the highest.
A node x has a known value for each attribute T. To measure
the effect of each input value, we observe the model’s prediction
for x without the knowledge of event Ti = tk, where tk is the
value of feature Ti for node x and the class value y. The value
of attribute Ti is replaced with an unknown (i.e., NaN) value
that does not contain Ti’s information. Typically, NaN values are
treated as invalid or masked elements and are not considered in
the computation. Certain libraries offer a NaN-aware operation
function (e.g., “omitnan” in MATLAB) to handle these values in
mathematical operations. By utilizing such functionality within the
convolutional computations, we obtained the probability for the

TABLE 3 Influence of each data group on classification results.

Precision % Recall % F1 %

Modalities NC MCI AD NC MCI AD NC MCI AD MCF % MCA %

All modalities 73.83 86.96 84.78 91.86 63.16 95.12 81.87 73.17 89.66 81.56 80.18

MRI+CT+NT 51.81 62.5 100 100 15.79 25.21 100 78.05 87.67 60.38 59.91

D+CT+NT 48.31 37.5 100 100 6.3 68.29 65.15 10.81 81.16 52.37 54.05

D+MRI+CT+NT 46.74 22.22 100 100 2.11 70.73 63.70 3.84 82.86 50.14 52.70

D+MRI 56.58 76.32 100 100 30.53 78.05 72.27 43.61 87.67 67.85 66.22

CT+NT+BM 55.13 64.1 100 100 26.32 65.85 71.07 37.31 79.41 62.6 62.16

MRI+CT+NT+BM 72.32 91.38 78.85 94.19 55.79 100 81.82 69.28 88.17 79.75 78.83

D+MRI+CT+BM 76.7 89.7 80.39 91.86 64.21 100 83.6 74.84 89.13 82.53 81.53

D+MRI+NT+BM 73.83 88.24 85.11 91.86 63.16 97.56 81.87 73.62 90.91 82.13 80.63

D+CT+NT+BM 71.93 92.98 80.39 95.35 55.79 100 82 69.74 89.13 80.29 79.28

D, Demographics; MRI, Magnetic resonance imaging; CT, Cognitive tests; NT, Neuropsychological tests; BM, Biomarkers and genetic data; MCF, Multiclass F1 score; MCA, Multiclass accuracy.
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new input set. We then evaluate the variation between probabilities
directly:

Vari(y|x) = p(y|x)− p(y|x \Ti) (4)

As a result of this, the decomposition of an input feature brings
forth explanations. If the variation between p(y|x) and p(y|x \Ti) is
high, Ti = tk has a significant influence on the model’s prediction;
if this variation is low, the influence of Ti = tk in the prediction
is small. Moreover, we consider the direction of the variation,
whether Ti = tk positively or negatively influences the prediction.
If the Vari(y|x) > 0, it indicates that the corresponding input
feature has a supporting effect on the prediction; if Vari(y|x) <

0, Ti = tk has a contrary influence. This direction is observed
simultaneously for the second most probable category to examine
the effects on the counterfactual case. If the p(y|x) decreases without
Ti = tk, it increases the likelihood of another class (or vice-versa),
knowing that the probability is distributed among classes. We then
present the factual and counterfactual explanations side by side to
compare and contrast which attributes contribute to each class (see
Figure 4B).

Individual-level explanations are most desirable in the medical
field because they could help identify asymptomatic individuals
at risk for a future clinical disorder. However, group-level
explanations are essential for understanding the overall view of
how each modality contributes to the predicted value. Besides
generating explanations for each attribute’s individual impact, we
can also assess their complex complementary dependencies within
their data groups. To measure the influence of a combination
of input values, we observe the model’s prediction for x without
the input values for Ti=1,..a, where a is the number of attributes
in a specified group (see Equation 5). Then, the value of
attributes for Ti=1,..a is decomposed concurrently. The variation
between probabilities indicates the influence of each data group
calculated as:

GrpVari=1,..a(y|x) = p(y|x)− p(y|x \Ti=1,..a) (5)

Since we study multimodal data in five categories
(demographics, cognitive tests, neuropsychology tests, medical
imaging, and biomarker/genetic data), we decompose all attributes
in that category and measure the effects on the predicted value.
Hereby, we explain the influence of each modality where the
change in more than one attribute at once affects the predicted
value.

We also considered relational information as graph data
contains critical information in edges. To find the influence of
neighboring nodes belonging to a certain class c, the variation in
probability is observed by silencing the edges Ec connecting the
node of interest to other nodes. This involved assigning a zero
weight to the edges belonging to nodes within a certain class,
followed by calculating the variance from the initial prediction
value.

EdgVar(y|x) = p(y|x)− p(y|x \Ec) (6)

In other words, we derived neighborhood-based explanations
by methodically removing nodes of a specific class and estimating

the influence on the predictions. In medical diagnosis, such
explanations are particularly relevant as they provide a norm-
referenced evaluation for healthcare practitioners. By comparing a
subject to other patients or cases of a similar class, this assessment
method helps determine a subject’s status within the broader
context.

3.7 Explanation presentation

We present the results in visual and text form to provide clear
and detailed explanations for the end users. Figure 4 illustrates
a subject’s input values along with the model’s prediction and
explanations for individual features. The horizontal axis shows
the attributes’ estimated impact. Considering that the evaluation
of probabilities could have a higher cognitive load, we have
normalized the influence values to increase comprehensibility.
The vertical axis contains the names of attributes and their
values for the selected instance attached to the bar. The length
of the bars corresponds to the impact of the attribute values
in the model expressed as Equation 4. By comparing the bar
length, the user gains insight into the degree of impact of
each feature value. The attributes contributing to the actual
class are on the left-hand side, and the counterfactual case (i.e.,
the class with the second-highest probability) is on the right-
hand side. It is, in fact, possible to generate counterfactual
explanations for all other classes regardless of the probability
values.

The visual explanations are accompanied by text-based
reasoning, which describes why certain attributes contribute to an
outcome. These explanations are complementary to increase the
comprehensibility of the visual explanations. We discretized the
features in different categories to generate text-based explanations.
The general cut-offs are known for some features [e.g., GDS (0 <

normal < 9, 10 < mild depressive < 19, 20 < severe depressive),
MMSE (0 < severe dementia < 9, 10 < moderate dementia < 20,
21 < mild dementia < 24, 25 < normal cognition < 30)]. For the
remaining features, we grouped continuous data into the set of bins
(very low, low, nominal, not so high, high, and very high) based
on the distance from the mean, measured in standard deviations
considering all the categories (NC, MCI, and AD) together (see
Supplementary Figure S2 and Supplementary Table S2). Also, to
make the diagnostic procedure easier for a user in our human-
subject evaluations, we have calculated how these values deviate
from a healthy person of the same age and gender and present them
in parenthesis (Figure 4A). For cognitive test scores, they represent
the deviation from the expected value for someone of the same age,
gender, and education level.

Figure 5 shows group-level explanations and the impact of
patient groups based on feature similarity. Figure 5A visualizes
supporting and opposing data groups depending on the influence
on the predicted value. The pie chart provides a brief overview of
the relative proportions of supporting features within each class,
and color coding is incorporated to distinguish between factual
and counterfactual cases. An alternative visualization of this can be
found in Supplementary Figure S3. Figure 5B illustrates the impact
of patient groups based on the percentage of subjects with similar
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FIGURE 4

(A) The subject’s attribute values are presented based on data groups. The values in parenthesis indicate the deviations from a healthy person of the

same age and gender. (B) The model’s prediction and factual and counterfactual explanations. Counterfactual explanations are generated for the

second most probable category. While the graph provides a detailed visual representation of how each feature a�ects the prediction, the text-based

explanations describe the reasoning for the influence of each feature.

features connected in the graph. A higher percentage value means
the patient has critical attributes in common with those in that
group, impacting the decision-making.

4 Results

In order to evaluate the proposed explanation method, we first
measured a functional property of the explanation. Our evaluation
aims to demonstrate the stability of the explanations as to whether
it shows consistent results concerning neighborhood information
for subjects with similar attribute values. We also conducted a
comparative study with Shapely Addictive exPlanations (SHAP)
to assess how comparable the explanations generated by both
methods are. We then conducted a human subject study to assess
the correctness, predictability, and quality of the explanation and
whether it facilitates understandability and trust in the model.

4.1 Stability of the explanations

Stability compares explanations between similar cases for a
specified model. Higher stability indicates that subtle variations in
the feature values of an instance do not significantly change the
explanation unless these minor changes also alter the prediction.
To measure the stability, instead of slightly varying a feature value,
we identified the similar nodes using the edge weights, considering
that higher edge weights signify higher patient feature similarity. It
would give us slight variations in feature values for patients in the
same class. Also, identifying the samples this way would illustrate
the real-world similarities and variations in actual patient data.
As a result, we measure the stability of the explanations based on
neighborhood explanation similarity.

In this example, we choose a challenging MCI case since MCI
has the most overlapping feature values to both NC and AD classes.
Figure 6 compares explanation similarity for samples in a different
proximity. The first plot examines the nodes with edge weights e
> 0.96. This neighborhood contains five nodes, while the second
plot observes the nodes with edge weights e > 0.94, which includes
13 nodes belonging to the MCI class. Given that edge weights
fall between the spectrum of zero and one, these particular points
may be classified as residing in the same vicinity but may possess
greater differences in specific features. These points have been
chosen to demonstrate how node features vary within “the same
neighborhood” and how each attribute’s impact fluctuates in this
particular context.

For instance, when it comes to categorical values such as gender
or biomarker positivity (e.g., male-female, positive-negative), there
tend to be more discrepancies. Consequently, there are higher
fluctuations in the resulting feature importance values. However,
when examining the cognitive test features of nodes with e > 0.96,
we see that memory falls between 0.43-0.45, executive function
between 0.37–0.46, and language between 0.64–0.66. Similarly,
nodes with e > 0.94 show memory scores between 0.43-0.63,
executive function between 0.27–0.57, and language between 0.43–
0.69. Therefore, we can see that feature importance values tend to
fall within the same range (see Figure 6).

We can also assess how much feature importance varies by
looking at where it falls in the influence area. Feature importance
values located above zero are considered supporting, while those
below zero are opposing. Narrow boxes generally indicate stable
feature importance values. While data points with (e > 0.94)
demonstrate more outliers than those with (e > 0.96), generally,
they remain within the same influence area. Figure 6 reveals that
MMSE has consistent feature importance values, while age, THV,
GDS, and PHS exhibit proportional variation based on changes in
the input space.
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FIGURE 5

(A) The influence of each data group is represented for the factual and counterfactual cases. (B) Impact of patient groups indicates the similarity

between the case (i.e., the interest point) and patient groups.

In order to quantify the similarity of the feature importance
values, we define the distance between the highest and the lowest
influence values for the nodes in different proximity. For instance,
for the MCI case (node), five neighboring nodes are connected by
edge weights e > 0.96. We evaluate the feature importance of each
node and determine the absolute value of the Euclidean distance
between the minimum and maximum feature importance values
for each attribute across these nodes. Table 4 shows how similar
the explanations are on different levels of edge weights, where
the smaller distance values suggest similar feature importance
values. It is worth noting that categorical values, Gen, Aβ±,
and Tau±, exhibit the greatest variation in feature importance
values. Additionally, as the edge weights decrease, the number of
neighboring nodes belonging to the same class increases twofold,
thereby expanding the feature space. This could be the reason for
the lower distance values observed for certain features, such as
MCT and THV, at lower edge weights.

4.2 Comparative evaluation with Shapely
Addictive exPlanations (SHAP)

In this section, we compare our explanation results with
the SHAP (Shapely Addictive exPlanations) by estimating the
contribution of individual features to a prediction at the specified
interest point (i.e., a particular patient data to be predicted). SHAP
is a local model-agnostic post-hoc explanationmethod based on the
Shapley value concept from game theory (Lundberg and Lee, 2017;
Lundberg et al., 2020). It is a widely adopted explanation method
in AD disease diagnosis-related tasks to evaluate the feature’s
influence on the prediction (see Table 1).

The Shapley value of a feature for an interest point explains
the deviation of prediction for the interest point from the mean
prediction when the values in the training set replace the current
feature values. Thus, for each interest point, the Shapley values
approximate the impact of the variation of the prediction from the
mean prediction. One of the limitations is that the computation
can be slow when the predictor has a high number of observations.
Although one might also choose to use a smaller sample of the
training set for faster computation, we used the entire training set
in our experiments.

Figure 7 shows the model’s prediction, and the estimated
impact of each feature on the prediction for three randomly selected
interest points, comparing our method and SHAP values. In the
plots, the direction of the bar indicates whether a feature has
a supporting or opposing effect on the prediction. The positive
values represent features that increase the prediction probability of
the class, while the negative values are features that decrease the
probability of the class. The bar length indicates the average degree
of impact of the feature value, and bar labels show the feature value.

Generally, both explanation methods agree on the direction
of impact of each feature with slight variations in the value of
feature importance for given scenarios. For the NC case, both
explanation methods show Gender (Ours = 1.3 vs. SHAP = 1.18)
and MoCA (Ours = 1.3 vs. SHAP = 1.17) as the most contributing
features and TAU (Ours = -2.23 vs. SHAP = -1.74) as the highest
opposing feature, which is not surprising given that its status is
positive. Besides, both show Aβ , MMSE, GDS, and memory as
positive influences for the prediction; Aβ is negative, and all other
features are within the normal range for the healthy group. The
imaging data negatively influences the prediction, as shown by
both methods. There is a main disagreement on the Polygenic
Hazard Score (PHS) in which SHAP indicates it as a contributing
feature though it is “not so high” for the NC class (can be seen in

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2023.1334613
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tekkesinoglu and Pudas 10.3389/frai.2023.1334613

FIGURE 6

Neighborhood explanation similarity. Box labels show the highest and lowest attribute values within that neighborhood identified based on the edge

weight.

TABLE 4 Explanation similarity measured by the Euclidean distance between minimum and maximal influence values.

Age Gen MCT THV Mem Exf Lan GDS MoCA MMSE Aβ± Tau± PHS

e > 0.96 0.01 0.89 0.22 0.42 0.04 0 0.03 0.71 0.22 0.07 0.31 0.39 1.0

e > 0.94 0 1.0 0.17 0.59 0.11 0.07 0.14 0.26 0.29 0.21 0.94 .42 0.85

e > 0.90 0.04 0.93 0.01 0.24 0 0.11 0.12 0.04 0.14 0.07 0.87 1.0 0.85

e > 0.85 0.08 0.91 0 0.19 0.05 0.06 0.17 0.47 0.18 0.06 0.76 1.0 0.57

e > 0.80 0.19 0.89 0 0.29 0.07 0.05 0.22 0.66 0.15 0.04 0.77 1.0 0.37

The smaller distance values suggest similar feature importance values for that particular feature.

Supplementary Table S2). This difference seems to persist in other
scenarios as well.

For the MCI case, both methods show that the model mainly
relies on age (Ours = 0.94 vs. SHAP = 0.99), memory (Ours
= 1.11 vs. SHAP = 0.97), language (Ours = 1.32 vs. SHAP =
1.30) and MoCA (Ours = 0.55 vs. SHAP = 0.79) to make the
prediction. The imaging data is also shown as contributing features,
as the feature values are “not so high” for a healthy person
of the same age and gender. In contrast to SHAP, our method
shows PHS as a contributing feature, given that this feature is
“high”. Both methods show Aβ and TAU as opposing features,
as expected since both are negative. Besides, MMSE and EXF are
given as negatively influencing the prediction class MCI, which
is predictable considering both are within the normal cognition
range.

Concerning the AD case, both explanation methods show that
THV (Ours = 2.05 vs. SHAP = 2.23), MoCA (Ours = 0.93 vs. SHAP
= 1.12), and MMSE (Ours = 0.76 vs. SHAP = 0.95) values play
a significant role in making the prediction. Aβ (Ours = 0.6 vs.

SHAP = 0.17) is also shown as a positively influencing feature since
its value is positive. For this given scenario, it appears that EXF,
memory, and PHS have less impact on the probability of the class,
regardless of the direction of the influence. Surprisingly, SHAP
indicates TAU(+) as an opposing feature for the predicted class AD
with a low estimated impact.

Figure 8 compares decomposition-based explanations and
SHAP value estimated impact across the test set. Overall,
the explanation results obtained from the decomposition-based
method are comparable to the SHAP explanations, given that the
correlation coefficients between pairs of feature importance reveal
high correlations (NC = 0.919, MCI = 0.938, and AD = 0.939).
The figure shows that both explanation methods agreed that as
the feature values for imaging data, cognitive test results, and the
MMSE and MoCA scores grow, the positive influence of these
features increases for the NC class. The opposite effect is observed
for MCI and AD cases where lower feature values contribute to
these classes. Similarly, the lower polygenic hazard score with
negative Aβ and TAU has a favorable influence on the NC class and
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FIGURE 7

Comparison between decomposition-based explanations and SHAP value estimated impact. The bar length indicates the average degree of impact

of the feature value, and bar labels show the feature value. Aβ&TAU: Positive (1), Negative (-1), Gender: Male (1), Female (2).

a reverse effect on AD andMCI classes. Both methods show similar
patterns for age and gender as well across all samples. While the
female gender appears as a supporting feature for NC cases, it has
the opposite effect on MCI. For AD cases, the female has a higher
negative impact on the predictions than the male, as demonstrated
by both methods.

A class-wise comparison shows both explanation methods
captured the distinct effect of features on NC and AD cases more
explicitly than on MCI cases. In feature-wise evaluation, slight
differences between estimated feature importance might be due to
the variations between observations affecting the overall estimated
impact (mean) for SHAP values. Compared to SHAP, one advantage
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FIGURE 8

Comparison between decomposition-based explanations and SHAP value estimated impact over all test set.

of our approach is that it is computationally more efficient. On
average, the computation time to generate explanations for an
instance with the decomposition method is 2.41s, whereas SHAP
performed a mean of 52.3s to produce explanations for the same
examples. Although both methods are model agnostic, making
them widely applicable across various machine learning models,
SHAP explanations tend to be more complex mathematically due
to their consideration of feature interactions. On the other hand,
the decomposition method is more straightforward and intuitive.
Yet, the decomposition-based method can also be computed for
more than one feature, as shown in group-level explanations.
This offers a way of understanding how multiple features interact
to influence predictions, particularly in complex models. Both
approaches have their strengths and are suitable for different

contexts where one method may be more effective than the other in
providing insightful explanations. Ultimately, the choice of method
depends on the interpretability needs and the complexity of feature
interactions.

4.3 Human-grounded evaluation with
domain experts

We conducted a survey to evaluate the domain expert’s
agreement on the model’s prediction and rationale, the
predictability of the model, and the quality of explanations
for justifying a model’s prediction. Eleven experts who work and
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research in the Alzheimer’s disease-related domain in Sweden
participated in the survey. The survey includes four sections:
demographics, diagnostic study, predictability, and general
questions.3 The details of each section and a summary of the results
are as follows:

4.3.1 Demographics
This section explores the participants’ backgrounds, including

age group, occupation, and years of expertise. 42% of the
participants are over 54 years old with more than 11 years
of experience in the domain. They indicated their profession
as geriatricians, psychogeriatricians, general practitioners,
neuroradiologists, neuropsychologists, and researchers working on
brain aging, Alzheimer’s disease, and dementia.

4.3.2 Diagnostic Study
We selected five correctly predicted scenarios (two ADs, two

MCIs, and an NC) and generated explanations for each case.
Participants were presented with attribute values in the format
shown in Figure 4A and asked to predict the person’s diagnosis
and indicate their confidence level on a 10-point Likert scale from
one (not confident) to ten (very confident). The next task for
the participant was to judge the AI’s prediction and rationale, as
presented in Figure 4B. They were asked to rate their agreement
with the AI’s prediction and rationale and explain their rating–why
they agreed or disagreed with it.

Concerning the first question, the ratio of correct predictions
to wrong predictions made by participants was 43 to 12.
While all the participants correctly predicted the AD patients,
most were mistaken for the MCI subjects with AD and NC.
Supplementary Table S3 shows the confusionmatrix on the domain
expert’s prediction.

The following question investigates whether the model’s
prediction and explanation are acceptable to domain experts
(see Figure 9A). 71% of the responses indicated that the AI’s
prediction and rationale are correct, 14% of answers suggested
that the prediction is correct, but the underlying reasons are
incorrect, and 15% of the responses considered the model’s
prediction incorrect.

We compared the confidence of the individual participants
against their degree of agreement with the justification provided
by the model. Figure 9B shows scores in intervals devoted to
each participant, showing their responses for each instance.
Most participants gave a confidence score above six on
the 10-point scale, indicating a high degree of certainty in
their judgment of the case. Eight out of the participants’ 12
incorrect predictions rated “AI’s prediction is incorrect”. The
comparison with the agreement scores shows that overall they
conform with the model’s rationale when the model’s prediction
and rationale match theirs; participants disagree with the
model’s prediction when their prediction does not match the
model’s prediction.

3 Link to survey: https://forms.gle/rreCnBCgEeiqQeaP7.

In some instances, participants gave a higher score on
agreement than their confidence level. A couple of responses in
regard to a higher agreement score given by the participants:

“I agree with MCI because we cannot ignore MoCA of

22."—P6
“My idea almost got along with the AI rationale."—P8
“Agree because of the statistics is in favor of MCI from my

clinical point of view."—P10
“I agree and find the result to be supporting when making a

clinical judgment."—P11

Where the participants disagreed with the AI’s prediction and
rationale, they commented that:

“Age is not so much important to differ MCI from AD."—P5
“I think it’s AD since all biomarkers are positive and MoCA

is very low. MMSE is probably just about to follow, but I believe

it’s the early stage of a rapid AD."—P6
“It is MCI because the gender is male? I do not understand

the AI’s rationale."—P9

4.3.3 Predictability
After the participants had engaged with the AI’s prediction

and rationale and gotten an understanding of how it reached
a decision, we investigated whether participants could anticipate
what the model would predict for a particular set of attribute
values. We presented participants with five new cases (two ADs,
two MCIs, and an NC) and asked their opinion on how the AI
might diagnose the case. Then, they were asked to indicate in a
free text which top features AI might rely on and their agreement
with this rationale on a scale from one (strongly disagree) to ten
(strongly agree).

The ratio of correct to wrong presumption was 35 to 20. Again,
AD has the highest correct prediction rate, while MCI and NC
cases are oftenmistaken for each other (see Supplementary Table S4
for confusion matrix on the domain expert’s presumption of the
prediction).

Next, we analyzed how well the domain expert’s mental model
of the system matches the actual rationale of the AI model. We
carried out this analysis on where the participants were right
about their assumption of the model’s prediction (35 responses).
Table 5 summarizes the comparison between feature groups the
AI model relies on and the domain expert’s estimation of the
AI’s rationale. Since the responses were in free text form, we
counted the number of participants who indicated a certain data
group (or a feature from that group) supporting or opposing the
model’s prediction. Overall, there is a high consensus for AD cases
where neuropsychological tests and biomarkers are presumed to
be the supporting feature groups in which the participants were
right. One of the participants’ responses shows that they recognize
the model weighs higher on the demographic data at times. The
participants who provided demographics as contributing feature
group expressed that:

“AI might rely on age and GDS."—P8
“AI may mainly use gender and tau."—P8
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FIGURE 9

(A) Domain expert’s judgement on the AI model’s prediction and rationale. (B) Instance-wise comparison between the participants’ (Prt.) confidence

and their degree of agreement on the model’s rationale.

TABLE 5 Comparison between feature groups the AI model relies on and the expert’s estimation of the AI’s rationale.

Case 1 (MCI) Case 2 (MCI) Case 3 (AD) Case 4 (AD) Case 5 (NC)

Actual Presumed Actual Presumed Actual Presumed Actual Presumed Actual Presumed

Demographic (+) 21% (+) 1 (+) <1% (+) 1 (−) 29% 0 (−) 34% (−) 1 (+) 12% (+) 1

Medical Imaging: (−) 4% (−) 1 (+) 23% 0 (−) 21% (+) 2 (−) 8% (+) 2 (−) 25% (+) 1

Cognitive Test: (−) 11% (+) 2 (+) 27% (+) 2 (+) <1% (+) 4 (−) 8% (+) 3 (+) 1% (+) 1

NT: (−) 35% (+) 2 (−) 29% (+) 1 (+) 31% (+) 5 (+) 20% (+) 7 (+) 37% (+) 3

Biomarker: (+) 29% (+) 4 (−) 21% (−) 1 (+) 18% (+) 7 (+) 30% (+) 8 (−) 25% (−) 2

Supporting (+) and opposing (−) feature groups for the prediction are given along with the estimated impact (in percentage), signifying the degree of influence of the feature group for the

actual model. For the presumed section, values show the number of participants who indicated that the feature(s) the AI model might take into account positively (+) or negatively (−).

It is also interesting to see that two participants indicated
neuropsychological tests as contributing to MCI (Case 1), while the
model does not count for any of the features in this group. Similarly,
in Cases 3, 4, and 5, participants’ responses suggest that participants
might think that AI relies too often on medical imaging data in
general.

We also asked them to rate their agreement on the hypothetical
rationale they projected onto the AI model to assess whether
the participant’s mental model of the system matches their
judgment of the case. Participants gave a score between 5 (Neutral)
and 10 (strongly agree) on the 10-point Likert scale, which
shows general agreement on their assumptions, as shown in
Figure 10A.

4.3.4 General questions
This section analyses several self-reported subjective measures

regarding trust, quality of explanations, and explanation
satisfaction (see Figure 10B). Regarding the first question
(Q1-“I would trust this AI system’s judgment and rationale.”),
the responses were rather diverse and polarized at times (median

= 5). With respect to understandability, most participants would
agree that the explanations allow them to understand how
the AI system reaches a decision (median = 8). It is also in
line with the results that participants believed that “Q4-The

explanations are understandable.” (median = 7). The picture

remains undecided and even shows an element of polarization

concerning Q3 (“The explanations are sufficiently detailed.”)

(median = 6). They were also divided with their responses

when asked whether other stakeholders could understand the

AI explanations (e.g., patient, patient’s family, other caretakers)

(median = 7).
Overall the self-assessment results suggest that explanations

are clear and help the participants to understand the

model; however, the explanations could use more popular

science terminology to make them more accessible to

other stakeholders.

“It would be good to use different terminology for the

different features (more appropriate and clearer for lay persons

e.g., abnormal instead of positive amyloid, explain/rephrase

terms like polygenic hazard score)."—P7
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FIGURE 10

(A) Domain experts’ level of agreement on the rationale ascribed to the AI model. (B) Domain experts’ responses to self-assessment questions.

5 Discussion

In this work, we presented a GCN model for multimodal
data in a node classification task for AD diagnosis and provided
a decomposition-based method to explain predictions made by
the model. Although GCNs have been proposed for AD-related
diagnosis tasks from disease diagnosis to detection (Zhou et al.,
2022; Lei et al., 2023), this is the first study considering explanations
for the model’s prediction for clinicians. Studies have presented
explanation methods for other machine learning models for AD-
related tasks (Kamal et al., 2021; Bogdanovic et al., 2022; Mulyadi
et al., 2022), as shown in related work. In contrast to these works,
we presented feature importance not only at the individual level but
also at the group level and the neighborhood level, which provided
additional information to support the classification of each case.
Furthermore, we presented individual and group-level explanations
in factual and counterfactual pairs. Counterfactual explanations
give insight into what would have been the explanation if the
case was other than the predicted class, indicating which features
contribute to the contrasting class. The visual explanations are
followed by descriptive text indicating why specific attributes
contribute to an outcome. These explanations complement graphic
plots by verbalizing which range a feature value falls.

In contrast to prior research, we introduced a comprehensive
assessment approach incorporating both objective and human-
centered evaluations. Our analysis revealed the explanations’
stability, with consistent outcomes concerning minor changes
in input values. In a comparative investigation with the SHAP
explanation technique, we observed similar patterns in resulting
explanations; nevertheless, our decomposition-based methodology
exhibited significantly faster computational speed.

We conducted a thorough evaluation of user-XAI interaction,
examining key factors such as explanation accuracy, model
predictability, trustworthiness, and explanation quality. Through

analyzing their responses to the model’s predictions and the
underlying reasoning, we found that the explanations provided
by the model for accurate predictions were confirmed by domain
experts. In fact, 71% of responses verified the model’s predictions
and rationale as correct. We acknowledge that this percentage
might have been different if participants had also seen explanations
for incorrectly classified cases. This assessment mainly focuses on
measuring the accuracy of explanations for correctly classified cases
through expert opinion to verify the consistency of the explanations
with the domain knowledge. There is a risk of misleading the
user since explanations for the misclassified cases might still
look rational. Although it would be beneficial to investigate the
potential deceiving qualities of explanations for both correct and
misclassified cases, this is beyond the scope of our current work.

Regarding the features used, it’s possible that they may
not provide enough information for clinicians to differentiate
between MCI with AD and NC cases. In the clinical diagnostic
procedures, they may rely on other findings such as information
about a person’s ADL (Activities of Daily Living), data from an
informant (e.g., spouse, relative, friend), education, comorbidity,
and medication, such classification can be challenging even in
in-person assessment in clinical practice. It might be the reason
for the misclassifications, specifically in MCI cases made by the
experts. It resulted in a certain level of disagreement on the model’s
prediction and rationale. Some participants disagreed with the
model’s rationale when age, gender, and imaging data are shown
as high influencing factors, as commented:

“AD is a clinical diagnosis and cannot be established

by neuroradiology alone. The AI estimates rely too much on

THV."—P9

On another note, the proposed framework could benefit from
different graph construction strategies where these features are
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weighted in the model appropriately to overcome this limitation.
One possible way could be incorporating them as edge features
proposed by Parisot et al. (2018). The weights could be derived by
asking experts how much they would regard each data type in their
diagnostic procedures. That way, e.g., demographic information
might be down-weighted. The results could potentially increase
the trustworthiness for the clinicians. We also acknowledge that
the classification results from the model are likely driven by the
specifics of the dataset, and more generalizable results might be
obtained if the model was trained on several, more diverse data sets.
For instance, in our dataset, MCI were younger on average, which
may contribute to the classification, whereas that is not a given that
would be the case in every sample.

Concerning the model’s predictability, the participant’s
beliefs about the model’s over-reliance on demographics and
neuroimaging data are reflected in their responses. While it was
correct for the demographic data concerning the imaging data,
it showed a faulty model belief where the model did not account
as strongly for imaging features as anticipated for the given
examples. In this part of the study, we have only assessed their
agreement with their assumption of the model. One could also
consider further investigating the participants’ reaction to actual
explanations generated by the model and if it leads to updating
the user’s mental model of the system. Considering that some
participants ranked rather low in trusting the AI model’s judgment
and rationale, updating the user’s mental model might help build
more appropriate trust in the model. It might also increase decision
supportiveness, and human accuracy as the user would be more
certain about the model’s strengths and limitations.

The results from the self-assessment questions show that
the explanations provided made the audience understand the
reasoning behind a prediction. There was no consensus on
the presentation of the explanations being sufficiently detailed,
pointing to the subjectivity of the matter. It highlights the need
to adapt the explanation to the audience and the capability
to provide detailed explanations in response to a request.
For more comprehensive explanations, further studies might
consider clinical workflow integration (i.e., history, symptom
duration, and development) and investigate how a clinical
expert could refine a model decision. A human-in-the-loop
process is necessary to increase the usability of such systems by
clinicians to support decision-making. Future work could consider
extending the model to a more clinically realistic situation by,
e.g., incorporating additional dementia types (such as vascular
dementia, frontotemporal dementia, Lewy Body Dementia, etc.) or
other reasons for cognitive impairment (e.g., strokes, medication
side effects, substance abuse, vitamin deficiency, etc.). That would,
indeed, require additional pieces of information (features) to be
incorporated into the model. Nonetheless, high-quality open-
access datasets with that level of detail are not easily available,
and the current work used ADNI as a first step to develop
the methodology used. However, as the next validation step, the
transferability of the current results could be tested in other
similar AD databases [e.g., The Australian Imaging, Biomarker and
Lifestyle Flagship Study of Aging (AIBL)].

Finally, it is worth noting the unique advantages and challenges
that come with GCN models. While they excel in modeling

complex, multimodal data, their optimal performance often
necessitates substantial amounts of graph-structured data. In
contrast, traditional models like XGBoost might perform better
in scenarios with smaller datasets or lacking explicit graph
structures. Moreover, GCN models typically require fine-tuning
hyperparameters related to graph structures and neighborhood
sampling, rendering them more sensitive to hyperparameter
choices. Nevertheless, the efficacy of GCNs lies in their ability
to incorporate information from neighborhood nodes and
leverage local connectivity patterns within the graph. Mitigating
hyperparameter sensitivity in GCNs can be approached through
strategies such as sensitivity analysis, transfer learning, and
leveraging domain-specific knowledge.

6 Conclusion

We presented a decomposition-based explanation method
for the GCN model trained on the ADNI dataset, including
various aspects of diagnostic procedures. Explanations show how
each feature from different modalities contributes to a diagnostic
result in multiple levels of detail. Functional evaluation of the
proposed explanation method analyzing the stability of the
explanations suggests that the similarity of explanation generated
in neighboring nodes depends on the degree of edge weights.
The nodes with higher edge weights produced higher similarity
in explanations. Evaluating the explanations in a user study
with domain experts, we observed that participants agreed that
the explanations presented were clear and helped to understand
the model’s predictions. The feedback we have received suggests
that an explainable AI model for diagnosing AD could be
a valuable instrument to summarize an individual’s clinical
findings and participate in the process of making a diagnosis.
However, the model needs potential improvements to incorporate
before adoption into clinical practice, such as weighting different
types of data, informed by domain experts and incorporating
additional features, such as activities of daily living and informant
questionnaires, which might also promote clinicians’ trust in the
model. Nevertheless, the features included in our model are similar
to previous approaches in the literature, and our explanation
method is comparable to SHAP values with significantly reduced
computational time.
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