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“Better the model, bigger the problem.”
—Wyatt Woodsmall





Abstract

In recent years, growing concern regarding trust in algorithmic decision-making
has drawn attention to more transparent and interpretable models. Laws and
regulations are moving towards requiring this functionality from information
systems to prevent unintended side effects. Such as the European Union’s
General Data Protection Regulations (GDPR) set out the right to be informed
regarding machine-generated decisions. Individuals affected by these decisions
can question, confront and challenge the inferences automatically produced by
machine learning models. Consequently, such matters necessitate AI systems to
be transparent and explainable for various practical applications.

Furthermore, explanations help evaluate these systems’ strengths and lim-
itations, thereby fostering trustworthiness. As important as it is, existing
studies mainly focus on creating mathematically interpretable models or ex-
plaining black-box algorithms with intrinsically interpretable surrogate models.
In general, these explanations are intended for technical users to evaluate the
correctness of a model and are often hard to interpret by general users.

Given a critical need for methods that consider end-user requirements, this
thesis focuses on generating intelligible explanations for predictions made by
machine learning algorithms. As a starting point, we present the outcome
of a systematic literature review of the existing research on generating and
communicating explanations in goal-driven eXplainable AI (XAI), such as agents
and robots. These are known for their ability to communicate their decisions
in human understandable terms. Influenced by that, we discuss the design
and evaluation of our proposed explanation methods for black-box algorithms
in different machine learning applications, including image recognition, scene
classification, and disease prediction.

Taken together, the methods and tools presented in this thesis could be
used to explain machine learning predictions or as a baseline to compare to
other explanation techniques, enabling interpretation indicators for experts
and non-technical users. The findings would also be of interest to domains
using machine learning models for high-stake decision-making to investigate the
practical utility of proposed explanation methods.
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Chapter 1

Introduction

1.1 Overview

Artificial Intelligence (AI) has been at the center of many domains, achieving
and even surpassing human-level accuracy for various problems from image
recognition to language translation. Nowadays, there is an explicit agreement on
the importance of AI systems supported by learning, reasoning, and adaptation
capabilities [RN16]. These capabilities allow AI algorithms to solve increasingly
complicated computational tasks, making them central to personal and societal
use [Wes18]. Considering decisions based on such systems are ultimately affecting
individuals’ lives (e.g., job recruitment, banking, school admission, and law),
there is an emerging need to understand the underlying dependencies, causalities,
and internal model structures of these systems [GF17; Ang+21]. While the
first-ever AI systems in use were interpretable to a certain degree, the utility of
opaque decision-making systems, specifically Deep Neural Networks (DNNs),
has increased immensely in recent years. DNNs own their success to both the
efficient machine learning (ML) algorithms, and their massive parametric space
[LBH15]. It comprises hundreds of layers and millions of variables, making
DNNs complex black-box models.

As AI systems increasingly depend on these models to make predictions in
critical contexts, users’ demand for transparency is increasing [KSJ11]. There
is a risk in creating and using decisions that are not justifiable, fair, or fail
to provide detailed explanations of their decision. Given the growing need
for transparent and ethical AI, human users are reluctant to adopt techniques
that are not directly interpretable, tractable, and trustworthy [Zhu+18]. For
instance, in precision medicine, experts need more information from the model
than only a probability score to support their diagnosis [LKU21]. Supplying a
model’s output with explanations also relates to other safety-critical systems
such as transportation, hospital admission, and defense.

It is considered that the systems will be increasingly complex by focusing
just on performance, creating a trade-off between the performance of a model
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and its transparency [DBH18]. However, an improvement in understanding
how a system works can lead to correcting its deficiencies without increasing
model complexity further. Explainable AI (XAI) research proposes creating
algorithms, tools, and models without constraining the effectiveness of the
current generation of AI systems (see Figure 1.1). The research is directed
toward furnishing models with explainability capabilities while retaining a high
prediction accuracy, enabling humans to understand, appropriately trust, and
effectively handle the emerging generation of AI systems [Gun17].

Figure 1.1: XAI aims to develop explanation methods without constraining the
effectiveness of the current generation of AI models.

The research investigates explainability as an additional design feature to im-
prove ML model implementations for several reasons. Explainability is proposed
to ensure objectivity in decision-making, helping detect and correct bias in the
training dataset [KPB18; SLG21]. It also enables robustness by indicating likely
adversarial perturbations that could alter the prediction [OSF19]. Explainability
is utilized as a function to ensure that only relevant variables contribute to
the output by visualizing the model’s class discriminative features [Yeh+19;
Sel+17].

In light of the trend, this thesis aims to: (i) identify the research in pro-
viding human-understandable explanations in the context of machine learning
interpretability, (ii) develop algorithms to generate simple and understandable
explanations for the outcomes of black-box machine learning algorithms, and
(iii) apply to various models and datasets to test the feasibility and validity of
the proposed explanation methods. Altogether, the thesis contributes to knowl-
edge in generating human-understandable explanations for machine learning
algorithms within the research aims.
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1.2 Thesis Outline

The thesis continues by presenting definitions and concepts commonly used in
the XAI communities and introduces the properties of explanations in the XAI
context. Chapter 2 discusses the target audience and the aspects to consider
in AI explainability and elaborates on the various purposes when using XAI
techniques. This chapter also provides background on the explainability for
machine learning algorithms concerning different levels of transparency and
diverse approaches to post-hoc explainability. Chapter 3 summarizes the novel
contributions of this thesis to knowledge in generating human-understandable
explanations for machine learning algorithms. Chapter 4 defines research limita-
tions and opportunities identified throughout our study, specifically concerning
the concepts and metrics to design and evaluate the explainable ML models. It
also presents intriguing ideas around the explainability of AI models in adver-
sarial attacks and data privacy. And finally, the articles supporting this work
are provided at the end of the thesis.
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Chapter 2

Explainable AI: What, Why,
and How?

Nowadays, explanation capability is one of the impediments AI faces to its
practical implementation. The inability to fully understand and explain how
advanced ML algorithms reach their outcome is a problem that originates
from two different causes [Arr+20]. Primarily the gap between the research
community and industry, the complete adaptation of the newest ML models in
sectors such as banking, finances, security, and healthcare that have already
fallen behind the automation of their processes. This issue generally occurs in
strictly regulated sectors that are reluctant to implement techniques that may
compromise their assets.

The second is awareness. AI has contributed to research worldwide with
the help of inferring relations that were beyond human cognitive abilities. Any
domain which handles massive data has primarily benefited from adopting AI
and ML techniques. However, performance and accuracy are the metrics that
have appeared as the primary interest in research studies. While this might
be fair for specific fields, non-technical users and society generally are far from
being concerned just with performance.

The increasing trend of healthcare, criminal justice, and other regulated
domains using ML models for high-stakes decision-making has started impacting
human lives [GSM21]. The problem is further compounded due to assigning
critical decision-making tasks to a system that cannot explain itself and is not
understandable by humans, presenting an apparent risk [CPC19].

To address this issue of great relevance for society, industry, and the ML
community, XAI is creating tools and methods that produce more explainable
models while preserving high predictive performance. This chapter discusses
different aspects of understanding XAI to pave the way for further model
improvement and practical utility.
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2.1 What is Explainable AI?

Before proceeding further, it is reasonable to familiarize the readers with common
definitions and concepts often referenced in the context of XAI. This section
summarizes the differences and similarities among the most commonly used
terminology in the different XAI communities and introduces the characteristics
of explanations in the XAI settings.

2.1.1 Definition and Concepts in XAI

An early definition of the term ‘explainable AI’ suggested by DARPA (De-
fense Advanced Research Projects Agency), including two essential concepts
understanding and trust is given as [Gun17]:

“XAI will create a suite of machine learning techniques that enables
human users to understand, appropriately trust, and effectively
manage the emerging generation of artificially intelligent partners.”

However, this definition overlooks other needs for interpretable AI models
(confidence, fairness, causality, informativeness, etc.). Later, an alternative
definition of XAI is motivated by the formal definition of explanation given by
the Cambridge Dictionary:

“The details or reasons that someone gives to make something clear
or easy to understand.”

In the context of XAI, the details or the reasons used to explain entirely
depend on the intended audience. Thus, the suggested definition of XAI reflects
the dependence of the explainability of the model on the audience explicitly
[Arr+20]:

“Given an audience, an explainable Artificial Intelligence is one that
produces details or reasons to make its functioning clear or easy to
understand.”

One issue among the XAI researchers is the interchangeable use of the termi-
nologies (i.e., interpretability-explainability, comprehensibility-understandability)
despite nuances among these notions. Here is a summary of the most commonly
used terminologies in XAI communities:

Explainability – Explainability is associated with the notion of explanation,
indicating any measure or process carried by a model to clarify or detail its
internal functions. Explainability can be regarded as an interface between
humans and a model characterized as an accurate representation of a
decision-making process that is comprehensible to humans [Ang+21].
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Interpretability – It refers to the ability to explain or provide meaning
in human-understandable terms. Interpretability is rather an intrinsic
characteristic of a model concerning the level at which a model makes
sense for a human observer [Lip18].

Transparency – A model is considered transparent if it is understandable by
itself, which signifies the opposite of black-box models. Transparency also
refers to what degree an explanation makes an outcome understandable for
not readily interpretable models. Transparency is usually a precondition
for accountability to explain how the system works when it behaves
unexpectedly [VL20]. It concerns what extent the responsibility for
the actionable outcome can be ascribed to an agent (e.g., governments,
companies, experts) legally or ethically, leading to a sense of control
and acceptance of ML applications. However, transparency may also
negatively affect privacy by creating possibilities for manipulation of data
processing or model training [RGH18].

Understandability – Also, dubbed intelligibility signifies the characteristic
of a model to make a human understand its function without explaining
its internal mechanism or the algorithmic procedures by which the model
processes internally [Gil+18].

Comprehensibility – It refers to the ability of a learning algorithm to repre-
sent its knowledge in a human-understandable way. For the representation
given by the XAI model to be comprehensible, it must be similar to those
a human expert might produce semantically and structurally by observing
the same instance [Gui+18].

Across all, understandability appears as the fundamental concept in XAI,
which relates to all the above definitions. Interpretability and transparency are
strongly connected to the concept of understandability. While transparency
refers to the characteristic of a model to be understandable in itself, inter-
pretability is the degree to which humans can make sense of the meaning a
model provides. Comprehensibility is also connected to understandability in
that it depends on the capacity of the audience to understand the knowledge
conveyed by the model.

2.1.2 Characteristics of Explanations

Based on findings in social sciences and human behavioral studies, XAI aims to
achieve certain characteristics toward generating more user-oriented explana-
tions. The literature discusses the following qualities as expected from an XAI
system.
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Contrastive and Counterfactual Explanations

People generally seek explanations with contrasting or counterfactual events
to assess a situation [VL20]. This characteristic of explanations has been
studied widely in the context of XAI. Contrastive explanations answer the
question of why-not (i.e., why this output instead of that), contrasting the
facts with an alternative event. Counterfactual explanations respond to the
what-if question, comparing to an event that has not happened. This type of
explanation addresses the question of what solutions would have been obtained
with a different set of inputs, specifically what would be the alternate output.

Selective Explanations

Humans usually do not expect an explanation to contain the complete list
of causes of a decision. Instead, they prefer the explanation to convey the
most critical information contributing to the decision. A sparse explanation,
which includes a minimal number of features sufficient to justify a prediction,
is desired [DLH19]. The caveat is that cognitive biases might influence the
selection process [VL20].

Case-based Explanations

Case-based explanations answer the question of “What other situations have
the same outcome?”, providing compelling support for the system’s conclusions.
It may involve analogical reasoning by assessing feature similarities between a
case and an alternative situation. This type of explanation must be consistent
with prior similar case(s) that had an explanation. The poor fidelity of an
explanation method to the original model could cause differences in explanation
for similar cases, or the machine learning model may not adopt correct pieces
of evidence to make decisions[Cha+20; DLH19].

Conversational Explanations

Explanations are part of a conversation between the explainer and the explana-
tion receiver (explainee), aiming at transferring knowledge from one to another.
The dialog is predicated on the beliefs of both the explainer and the explainee.
Therefore, it means we must consider the social context, that is, to whom an
explanation is provided, to determine the content and formats of explanations.
For instance, the form of an explanation is adjusted according to the user’s
background, and expertise [DLH19; VL20].

Contextual/Situational Explanations

It refers to information other than the input and output, such as details about
the user, situation, and broader environment that affected the computation.
This type of explanation is especially relevant in human-robot interaction, where
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broader information about a situation prompts an action [Anj+19]. Contextual
(situational) explanations may relate to hidden inputs (e.g., parameters, weights)
affecting the situation in the ML settings. Incorporating this information can
help produce an explanation with better insights.

Attention to the Anomalies

People often focus on abnormal causes to explain an event. Even though these
uncommon reasons may have a small probability of happening, eliminating
them may alter the outcome significantly [CPC19]. Relating to explainability
in ML, if one of the input values is an anomaly on some level and influences
the prediction outcome, it should be included in the explanation regardless of
other more frequent feature values’ effect on the prediction [Mol].

All these directions conform to a similar intention that an explanation
should inform users with relevant information in a concise and friendly manner,
revealing why a certain decision was made and what could be altered to receive
a different outcome. There is still a great deal of work to generate explanations
that facilitate user satisfaction. Thus, it appeared necessary for researchers from
different disciplines, including machine learning, human-computer interaction,
and social sciences, to cooperate closely in designing user-oriented and human-
friendly explanations.

2.2 Why: Desiderata of Explainable AI

XAI is intended for users affected by an AI system’s decisions, recommendations,
or actions. There could be many kinds of user groups with varying needs at
different points in the development and use of the system. An adequate
explanation will consider the target audience, who might diverge in their
background knowledge and need for explanations. Before discussing the goals
motivating the search for explainable AI, this section presents an analysis of
different interest groups involved in developing, deploying, and utilizing AI
systems.

2.2.1 Intended Users

In computing, a user is a person who utilizes a computer application or network
services. Users can exhibit different values and concerns; ethical concerns
[One16; Bha+20] such as fairness, objectivity, legality, autonomy, privacy, and
transparency, or functional values [Mur+19; MZR21] such as accuracy, usability,
efficiency, or predictability. These concerns raise questions about the system,
such as whether race influences the system’s outcome or how reliable the data
was.
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This section discusses intended users under two main categories: expert
users and AI novices. We note that there still could be overlap between the
user types described, such that a particular user may relate to another category.
Figure 2.1 illustrates the different user groups and the need for explainability
for ML models.

Figure 2.1: The need for explainability in ML models desired by different user
groups is illustrated. A particular need is not assigned to a specific type of user,
considering some needs may relate to both expert and novice users, for instance
understanding the model to foster trust. This thesis focus on explainability
approaches accessible to both expert and novice users.

Expert Users

This group involves the system designers, developers, and scientists that directly
influence the implementation of the model. Two kinds of experts can be:

AI experts – The ‘researchers’ who are involved in extending the field and
have detailed knowledge about the mathematical theories and principles of
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machine learning and explainability techniques. AI experts are interested
in the functional nature of explanations, particularly in assessing the effects
of various hyperparameters on the model’s performance or using them
for debugging [MZR21]. This group of experts also employs visualization
and visual analytics tools to interactively inspect internal model variables
to detect flaws and control the training process. AI experts may also be
‘developers’ who make software solutions for general users. Developers
use off-the-shelf algorithms, often re-training the models, tuning specific
hyperparameters, and integrating them with various software components,
resulting in a functional application. Developers are concerned with the
application’s overall goal, assessing whether the ML solution has fulfilled
it, improving the product’s efficiency, and adding new functionalities.
For this group, explanation methods allow understanding of the model’s
behavior in the integrated software application [DK17].

Domain experts (Data scientists) – This group utilizes machine learning
for analysis, decision-making, or research. Data scientists analyze data
in specialized forms and domains (e.g., cybersecurity, medicine, biology,
and satellite image analysis). These users might be experts in specific
domain areas or general areas of data science but may not have sufficient
experience in the technicalities of the machine learning algorithms. This
group of users often employ data analysis tools or visual analytics systems
to obtain insights from the data and gain scientific knowledge. Both
the data scientists and domain experts could use visual analytics tools;
however, the design goals and approaches may differ across research
domains [MZR21].

AI Novices

This type of user refers to those unfamiliar with ML models or how it integrates
with other software components in a final product. They do not – are not
required to – have knowledge about the underlying mathematical principles and
how the model works. Two of the novice users could be:

The end-user – The person who is consuming the output of an ML model or
making a decision based on the model output. The end-user uses the AI
applications as part of their profession or for personal use in daily life and
may have limited knowledge of machine learning systems. These include
end-users of intelligent applications like personalized agents (e.g., home
assistant devices), social media, and e-commerce websites. In professional
use, the end-user is the entity whose information is being processed
by the application (e.g., job recruitment, hospital admission, back loan
application) directly affected by the model’s output. The end-user is
mainly concerned with the ethical aspects resulting from the actionable
outcomes, e.g., justification of the prediction and verifying if it is a fair
decision [Bha+20; DK17; MZR21].
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Executive managers – This group includes people and organizations such
as regulatory entities, managers, and executive boards with no direct
connection to the application’s development, use, or outcome. However,
they often involve the ethical and legal concerns raised when AI’s use
contradicts associated values in any operation phase. Regulators may man-
date certain algorithmic decision-making systems to provide explanations
to affected populations or the regulators themselves. These individuals be-
lieve explainability is necessary to achieve an organization’s AI principles.
[Bha+20].

Another group of stakeholders is ‘an owner’ who acquires the application
for possible commercial, practical or personal use. An owner can be an
organization such as a hospital or a car manufacturer that purchases the
application for end-users (e.g., employees or customers). The owner may
need explainability to understand the application’s capabilities, such as
to what extent application malfunction can be attributed to the AI’s
component, aspects of accountability, and justification for its decisions
and predictions.

2.2.2 Explainability Needs

The demand for explainability is affected by the user type and use case, which
opens XAI to research opportunities in various application domains. Therefore,
it is most efficient to design an XAI system according to the target group and
to provide explanations that suit the user’s needs. The summary of the varying
reseasons demanding explainability is described as follows.

Explain to Foster Trust and Transparency

Trust and transparency are the primary aims of explainable AI systems. Trans-
parency is the capacity of a model to explain how the system works, specifically
when it produces unexpected outcomes [VL20]. Explanations enhance the trans-
parency of a model and its functioning, allow debugging, and identify potential
flaws. It helps determine the degree of trust to place in a model. Thus, trust
and transparency are closely connected. Trustworthiness also relates to the
confidence in a model and whether it will act as intended in a given situation
indicating the robustness and stability of the model. The stability of the model
is essential when extracting explanations from a model. Unstable models (ones
not behaving as expected) would not produce trustworthy explanations. How-
ever, concerning transparency, an explainable model could provide information
about (explain) its inner workings as an indicator of its robustness and stability
[Arr+20].
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Explain to Improve Model Accuracy

One of the purposes of explanations is to allow model debugging. Explanations
help developers improve the models’ accuracy and efficiency, enabling them
to make necessary technical adjustments to an underlying model [DLH19].
Explainability also provides accessibility and correctability for end-users to get
more involved in improving and developing ML models [VL20]. It seems clear
that explainable models will ease the burden felt by non-technical users when
dealing with algorithms that seem incomprehensible at first sight [Mil19].

Explain to Discover Causal Links

Another goal for explainability is to reason and explain the relationship between
input and output. Explainable models facilitate finding connections between
the involved variables allowing further discovery of strong causal links. Causal
reasoning certainly requires a broad frame of prior knowledge to prove that
observed effects are causal. However, causation involves correlation among the
data which an ML model discovers during training. Ultimately, an explainable
ML model could validate the results provided by inference techniques and
explain possible causal relationships among data variables. It may facilitate
discovering and extracting novel knowledge and finding new connections and
patterns [DLH19].

Explain to Justify Model’s Outcome

Explanations for the decisions made by an AI model help assess if they are
justifiable, fair, and ethical. One of the main objectives of XAI is to highlight
bias in the data [Arr+20]. An explainable ML model visualizes the features
and their relations influencing a result, allowing for assessment of how fair and
ethical the model is [DK17]. As the utility of AI models is growing fast in
various domains that involve human lives, explainability is needed to avoid the
unfair and harmful use of an algorithm’s outputs.

Explain to Engage with the Users

The ability of a model to interact with the end-user is listed amongst other
goals targeted by an explainable ML model. Interactivity and the capability to
engage are essential to domains in which the end-users hold critical importance.
For instance, in human-robot interaction and human-robot collaboration, the
interaction quality between the AI and user delivers success [Anj+19]. Inter-
active explainability requires the capacity of a system to reason about the
previous interaction both to interpret and answer users’ follow-up questions.
For collaborative tasks, explanations are crucial to increasing efficiency and
team performance.
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Explain to Enhance Decision-Support

Explanations could provide end-users with helpful information that supports
decision-making [Huy+11]. Ideally, explainable ML models are expected to
not only extract information from a model’s internal workings but also give
information about the problem at hand. For instance, rule extraction techniques
give a more straightforward understanding of what the model internally does,
expressing information in the simpler proxies while leaving out details. However,
one must consider that the problem solved by the model is not equal to the
problem faced by its human counterpart [Arr+20]. We might need to consider
a great deal of information to be able to relate the model’s suggestion to the
user’s decision.

2.3 How: Method, Design, and Evaluation of
XAI Systems

Now that we have discussed the users involved in XAI and various needs for
explainability, this section gives an overview of generating, presenting, and
evaluating explanations in the ML context.

2.3.1 Generating Explanations for ML Models

The process of generating explanations depends on the model’s capacity to
enable or incorporate interpretations. The literature makes a clear distinction
between intrinsically interpretable models and those explained externally by
employing explanation methods. This classification also represents the difference
between transparent models and model interpretability techniques (i.e., post-hoc
explainability).

Transparent Models

These models allow users to study and understand how inputs are mathematically
mapped to outputs, enabling the user to relate the properties of the inputs to
their output. The user can compile and comprehend with a certain level of
understanding of the technical details of the mapping. Support Vector Machines
(SVMs) and other linear classifiers are interpretable as the algorithm defines
data classes by their location relative to decision boundaries [DSB17]. Even
though these models are inherently interpretable, as the model becomes more
complex, it necessitates explanations along with model output.

The transparency among these models described by Lipton [Lip18] at three
levels: simulatability of the entire model, decomposability of individual compo-
nents, and algorithmic transparency.

Simulatability – It denotes the capacity of a model to allow a user to
understand its structure and functioning entirely. For a model to be
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completely understood, a human should be able to take the input data
with the model’s parameters and study every calculation required to
produce a prediction in a reasonable time. The simulatability depends on
the model’s total size and the computation required to perform inference.
For instance, for decision trees [Bre+17], the size of the model (i.e., the
total number of nodes) may grow much faster than the time to perform
inference (i.e., length of the pass from root to leaf). Given the limited
capacity of human computation, this might only last several orders. Thus,
high-dimensional linear models, bulky rule lists, and deep decision trees
are not readily interpretable and could be less transparent than compact
neural networks.

Decomposability – Decomposability indicates the degree to which a model
can be decomposed into its component (e.g., input, parameters, processes),
suggesting an intuitive approach to explainability [LCG12]. For instance,
each node in a decision tree could correspond to a text describing similar
nodes with the same feature value. Likewise, the parameters of a linear
model might represent the association between features and the label.
This type of transparency requires inputs to be individually interpretable;
highly engineered or anonymous features fall out of decomposability.

Algorithmic Transparency – It relates to the degree of confidence of an
algorithm to behave sensibly in unseen cases [Pre18]. For example, lin-
ear models are considered transparent because we can understand the
shape of the error surface and reason about it. It allows gaining some
confidence in the model to behave as expected in unknown circumstances.
Contrarily, current deep learning methods restrict this level of algorithmic
transparency because they cannot be fully observed. The primary con-
straint for algorithmic transparency for such models is that they require
mathematical analysis and methods to be observed.

Black-box/Opaque Models

In black-box models, the mapping mechanisms of inputs to outputs are hidden
from the user. It can be considered an oracle that makes predictions over an
input without indicating how it comes to a conclusion. Systems relying on
actual black-box models are also called opaque models. These models require
other means of inspection to gain insight into the system’s reasoning from inputs
to corresponding outputs. Such as, predictions made by deep neural networks
are not readily interpretable where input features are automatically learned
and transformed through non-linearities. Opaque systems could also emerge in
organizations where the licensor retains its AI system’s inner workings [DSB17].
Within the interpretability of opaque models, the literature points to different
post-hoc explainability methods.

15



Post-hoc Explainability

When ML models do not meet the standards of transparency, a different method
must be devised and applied to the model to explain its decisions. This is the
purpose of post-hoc explainability techniques targeting models that are not
interpretable by design. These techniques resort to various means to provide
insights into the learned relationships without changing the underlying model.
Post-hoc methods are especially critical for settings where the collected data
is high-dimensional and complex, such as image and text data. The literature
distinguishes two types of post-hoc explainability methods, i.e., prediction-
level and dataset-level, most often referred to as local and global explanations
[Mur+19; Arr+20]. These can be further divided into model-agnostic and
model-specific methods (see Figure 2.2). Model-agnostic explanation methods
increase the generalizability of the explanation method in selecting a learning
algorithm.

Figure 2.2: Taxonomy of post-hoc explainability techniques in prediction-level
(local) and dataset-level (global). This thesis contributes to the work allied with
the model-agnostic local explanations focusing on feature importance.

Local Explanations

Local explanations target explaining an ‘individual prediction’ made by an ML
model, indicating what features and interactions led to the outcome [Mur+19].
The local explanations may be necessary when an end-user needs a justification
for a particular decision affecting their interests [DK17]. Local explanation
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methods typically attribute a model’s decision to its features through input
perturbations, hence also called attribution methods. Local explanations can
vary greatly depending on the intended use and the model. Explanations for
the individual predictions of an ML model can be approximated by generating
local surrogate models that are model-agnostic [RSG16]. Alternatively, model-
specific methods exclusively designed for a specific type of model identify the
contributions of each feature locally. We discuss the most commonly adopted
model-agnostic and model-specific explanation methods in the following.

Model-agnostic local explanations:

These techniques for local explanations apply to ML models of any kind re-
gardless of their internal processing or representations [Arr+20]. Some model-
agnostic methods propose simplification techniques that approximate a model
with a simpler model to reduce complexity and have traceable results. Sim-
plification techniques built a whole new system based on the trained model
to be explained. One of the most known contributions to this approach is
Local Interpretable Model-Agnostic Explanations (LIME) (and its variations),
generating explanations by creating interpretable surrogate models [RSG16;
RDP20; Gau+22]. LIME builds locally linear models around a prediction of
interest given a black-box model to keep the complexity of the interpretable
model low [Arr+20; Con+21].

Others rely on extracting knowledge directly from the models by measuring
the influence or importance of each feature for the predicted output [AFN19].
Feature importance methods aim to describe the inner functioning of a model
by computing a relevance score for its given variables. These scores quantify the
model’s sensitivity to a feature by manipulating input data and analyzing the
model’s output [MCB20]. A comparison of the scores among features reveals the
importance granted by the model to each variable when producing its output.
SHAP (SHapley Additive exPlanations) is one of the methods for calculating
an additive feature importance score by averaging a marginal contribution of
an instance when that instance is absent [Arr+20].

Model-specific local explanations:

Some local explainability approaches are designed exclusively for specific ML
models, which cannot be extrapolated to any other models. Contributions
dealing with model-specific explanation methods can be reviewed under the
shallow ML models and deep learning. Shallow models cover a diversity of
supervised learning models apart from layered structures of neural processing
units [DLH19]. Some shallow models are interpretable (transparent) to a certain
degree (e.g., KNN and Decision Trees), while others rely on more sophisticated
learning algorithms (e.g., tree ensembles and non-linear Support Vector Machines
(SVMs)) that require an additional explanation layer. In tree ensembles, the
combination of trees makes the interpretation of the overall ensemble more
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complex. Interpretation of non-linear SVMs could be even more complex than
tree ensembles. Many implementations of model-specific explanation methods,
including simplification and feature importance methods, are adapted to fit the
problem of explaining shallow models.

Deep learning models denote the family of neural networks and related
variants, such as Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), Graph Convolutional Networks (GCNs), and hybrids of
DNNs with transparent models. Some work proposed utilizing the deep rep-
resentations of the input to perform attribution [Du+18]. A guided feature
inversion framework is proposed considering that deep CNN representations
capture the high-level content of input images and encodes the location in-
formation of the target object. Decomposition is another way of identifying
the feature importance. For instance, an RNN prediction is decomposed into
the additive contribution of each word in the input text through modeling the
flow of the hidden layer representations [Du+19]. These methods extract the
most contributing information from the intermediate layers to the attribution,
consequently remaining faithful to the underlying model.

Global Explanations

Machine learning models automatically learn useful patterns from a vast amount
of training data and retain the learned knowledge in the model structures and
parameters. Global explanations focus on the global relationships the model has
learned and what visual patterns are present in general [Mur+19]. This group
of explanations highlights the key parameters and learned representations in an
intuitive way [DLH19]. Global explanations could be helpful for gaining scientific
understanding in a specific domain or detecting bias in a dataset [DK17]. Global
explanations can be reviewed under model-agnostic and model-specific methods.

Model-agnostic global explanations:

These explanation methods are used to provide an overall approximation of the
behavior of the black-box model, i.e., how the model typically behaves for a given
dataset. Methods in this group mainly rely on global feature importance and
feature effect, broadly applicable to various machine learning models. Global
feature importance positions each feature based on its relevance to a model.
Permutation feature importance is a commonly used measure that specifies
feature importance to the overall performance of a model by calculating how
the model prediction accuracy deviates after permuting the values of a feature
[FRD19; CMB18]. Some methods resort to removing features from the training
data and retraining the model to measure how that features affect overall model
performance [Lei+18]. Other most commonly used feature importance indicators
are partial dependence plots [Fri01], individual conditional expectation curves
[Gol+15], accumulated local effect plots [AZ20], and functional ANOVA [Hoo07].
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Model-specific global explanations:

There also exists global explanation methods designed just for specific ML
models. Model-specific methods usually extract explanations by examining
internal model structures and parameters to generate general representations.
Similar to the model-agnostic explanations, this group also relies on global
feature importance but is devised for specific ML algorithms. For instance, the
weights of a generalized linear model (GLM) directly relate to feature importance
[MN19]; thus, users can understand how the model works by checking the
weights and visualizing them. Nevertheless, the weights may not be reliable
when features are not properly normalized and vary in their measurement
scale. Some propose methods to measure the overall contribution of features
for tree-based ensemble models [Du+18]. One way is to calculate the accuracy
gained when a feature is used in tree branches. Alternatively, one can count
the number of times a feature is used to split the data. Other model-specific
methods proposed global explainability for DNNs by taking advantage of their
ability to learn representations from raw data and map from representation to
output. Even though the learned deep features are not easily interpretable, the
feature representations captured by the neurons at intermediate layers of DNNs
provide explainability to a certain degree.

2.3.2 Presenting and Communicating Explanations

Machine learning interpretability and explanation methods reveal new informa-
tion about the underlying system. They may not always elucidate exactly how
a model works, yet, they offer helpful information for both expert and novice
users. Besides the demand for justifying a model’s outcome, the research studied
other explainability purposes, specifically error detection, object localization,
and knowledge transfer [FV17; Ola+18]. Depending on the intended goals and
user groups, the explanation design could use various formats [YS18]. The most
common approaches to explanation presentation include verbal explanations,
visualizations of learned representations, rules, and trees. Explanations may
be presented by means of multiple modalities (e.g., visuals along with text
explanations) to support user understandability [Mye+06].

Verbal Explanations

One of the most intuitive ways of presenting explanations is the natural language
statements in spoken or written format. Verbal explanations describe the
model’s reasoning with words and phrases. This type of explanation is popular
in applications such as question-answering, decision lists, recommender systems
[BTC17], and robotics [RSV16].

A typical example of a verbal explanation could be a phrase generated for
an autonomous vehicle’s action: “Traffic light is not green on ego’s lane, so
ego stops” [Ome+22]. Often numeric values (e.g., feature importance, feature
influence) are translated into natural language phrases to generate textual

19



explanations [AOJ21]. Alternatively, a recurrent neural network is trained
individually to generate verbal explanations. Recent work on image captioning
where an RNN model supports a CNN to generate captions. The captions might
be considered as explanations accompanying classification results [Lip18].

Visual Explanations

Another common approach to post-hoc explainability is describing the reasoning
behind the machine learning models via visual aids. Heatmaps [Str+17], saliency
masks [AOJ21], graphs [Goo+18], and plots [AFN19] are widely used to visualize
explanations for ML interpretability. Heatmaps and saliency masks highlight
specific areas of an image or particular words of a text that influence the
inferential process the most [RSG16; AJF21]. Visual explanations also allow
researchers to review the inner functioning of a model, relations, and their
parameters in complex deep models. For instance, a graphical representation
can be employed to illustrate the internal structure of a model. Such as graphs
proposed in [Won+17], where each node is a layer of the network, and the edges
are the connections between layers. Some methods propose visualizing high-
dimensional distributed representations with t-SNE [VH08]. This technique
renders 2D visualizations in which the nearby data points are clustered together.

An additional popular approach is using plots and charts to generate ana-
lytical visual explanations. This type of explanation focuses on measuring the
contribution of an input variable (or a group of them) with quantitative met-
rics. For instance, the contextual importance method computes the functional
relationship between each observation and a predicted response by modifying a
feature’s value [AFN19; AKF]. The outputs are visualized in charts indicating
individual feature importance for an instance of interest.

Explanations as Rules and Trees

Rules can explain the inferences generated by models from data. Rules are
more structured than visual and verbal explanations but still can be intuitive
for humans. They usually are presented as ‘IF ... THEN’ statements with
AND/OR operators, which are handy for expressing combinations of input
features and their activation values [FSR05; BH17]. Typically, rules of these
type employ symbolic logic, a combination of a formalized system of characters
(e.g., ‘(Gender = Female) (25 < Age <= 35) ! (Salary > 100K)’). Several
post-hoc explainability methods proposed rule-based explanations by using
various rule-extraction techniques. Anchor selects the best IF-THEN rules from
a set of all the possible candidate rules which underline the features of an input
set that are sufficient for a classifier to make a prediction [RSG18]. Others
propose using genetic algorithms to extract logical formulas as decision trees
[JKN04; JNK04]. The trees can be analyzed with logical reasoning techniques
to extract information about the decision-making process. In fact, novice users
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can also explore the tree structure and determine whether the rules match their
prior knowledge.

2.3.3 Evaluating Explanation Methods

The proposal of different explanation methods compelled researchers to introduce
various evaluation metrics to assess how well the model fits in a certain aspect
of explainability. A thorough review of these studies revealed two main ways
to evaluate explanation methods: objective evaluations and human-grounded
evaluations [VL20; DK17; MZR21]. We further relate different qualities and
properties of explanations to be assessed under each group as shown in Figure
2.3).

Figure 2.3: Evaluation of explanation methods is reviewed under objective
evaluation metrics and human-grounded evaluations. These are accompanied
by relevant properties of explanations to be assessed under each category.
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Objective Evaluations

Objective evaluation, also called functionally-grounded evaluation [DK17], in-
cludes objective metrics and automated approaches to assess methods for
explainability. This type of evaluation uses certain properties of explainability
as a proxy for explanation quality. The objective experiments can be advan-
tageous, considering that even simple human-subject studies demand time,
funding, and approvals to perform, which may exceed the resources of an ML
researcher. The objective evaluations are ideal once one has a class of baseline
models that have already been validated, possibly through human experiments.
However, they may also be relevant when a method is in its early stage of
development or when human subject studies are inadmissible for ethical reasons
[DK17]. In such cases, the properties of explanation methods listed below can
be applied to compare different approaches and evaluate their strengths and
weaknesses [VL20; RB18].

Fidelity – It is associated with how well the interpretation method agrees with
the input-output mapping of the model and reflects the global relationships
learned by the model. Fidelity is one of the most critical properties of
an explanation model. An explanation with low fidelity means it is not
approximating well to the original model and cannot furnish valid reasons
given that the input-output mapping is incorrect.

High fidelity is always desirable regardless of the model accuracy. If
the model has high accuracy and the explanation has high fidelity, the
explanation hence has high accuracy. However, low explanation accuracy
is expected if the accuracy of the machine learning model is likewise low.
We also note that some explanation methods provide only local fidelity,
which the explanation only approximates well to the model prediction
around the instance of interest [CPC19; RGH18].

Consistency – It relates to the extent an explanation differs between two
different models trained on the same task with similar output predictions.
If the explanations indicate the same features in a similar degree of
importance, then the explanations are highly consistent. However, it is
important to note that this measurement is rather problematic, considering
that the two models could get similar predictions using different features
[CPC19]. It is described as the ‘Rashomon Effect’ in which an event
is given contradictory interpretations or descriptions by the observers
(models) involved [Bre01]. High consistency is not expected in cases
where the models use different aspects of the data for their inferences.
Therefore, explanations should reflect the relationships that the models
rely on. Thus, high consistency is relevant only for the models that use
similar relationships in data.

Stability – It represents the degree of similarity between explanations for
similar input values. Consistency compares explanations between different
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models, whereas stability compares explanations between similar instances
for a specified model. High stability means that slight modifications in
input feature values do not cause a significant change in the explanation
as long as these slight modifications change the prediction entirely. High
stability is always desirable; however, a lack of stability may originate
from non-deterministic elements of the explanation method (e.g., data
sampling and perturbation step) [CPC19].

Generalizability – It describes the range of ML models to which the expla-
nation method can be applied. Model-agnostic methods are the highest
in generalizability. The broad use of an explanation method among differ-
ent ML models increases the practicality, consequently allowing for the
possibility of assessing the consistency of explanations in a diverse group
of ML models [AFN19; RSG16].

Explanatory Power – This relates to how many different kinds of questions
the method can answer (e.g., why, why-not, what-if ) and in how many
different ways (e.g., visual, verbal, decision trees [RGH18]), taking the
user type and requirements into consideration. Thus, explanatory power
also links to expressiveness in the number of events that can explain and
the ways that can generate explanations, i.e., the language or structured
explanations. It also relates to the idea that the explainer should be able
to take both local and global perspectives, preferably explaining individual
predictions along with the model’s overall behavior if needed [RSG16].

Additionally, there are other indicators that could be relevant to include in
the assessment of methods, such as correctness, compactness, and algorithmic
complexity. Algorithmic complexity relates to computational complexity con-
sidering the feasibility when computation duration is a bottleneck in generating
explanations. Correctness is associated with the accuracy of the explanation in
comparison to ground-truth explanations. Compactness relates to the selectivity
of the explanation [CPC19].

Human-Grounded Evaluations

Human-grounded evaluation, also called human-centered evaluation [DK17],
designs evaluation methods with a human-in-the-loop approach by utilizing end-
users feedback and their informed opinion [VL20]. Human-grounded experiments
involve two types of individuals: the layperson, also known as novice users,
and domain experts. Studies involving laypeople are more appealing since it
requires no prior technical/domain knowledge, allowing for a bigger subject
pool. Human-centered studies may include domain experts when their informed
judgment on the explanations produced by the model is necessary to verify
the consistency of the explanations with the domain knowledge. Conducting
experiments with highly-trained domain experts could be more challenging due
to the difficulty of accessing and compensating it.
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Typically, human-centered studies involve subjects interacting with one
or more explanation tools and giving feedback by filling out questionnaires.
The questionnaires may include open-ended questions (i.e., a qualitative study)
aimed at achieving deeper insights into the user’s view or close-ended questions
(i.e., a quantitative study) that are analyzed statistically. Assessment of XAI
models involving human subjects can be reviewed under the following categories
[Hof+18].

Quality of Explanations

Looking across the literature on explanations, we observe a consensus on what
makes for a good quality explanation from the perspective of social sciences (e.g.,
comprehensibility, selection, and social perspectives) [Con+21; Mil19]. Thus,
one can examine a given explanation and judge whether it is good. Indeed,
the subjects who evaluate a particular XAI explanation would not be the ones
who created the XAI system in a valid experiment. Layperson or domain
experts would provide an independent, a priori evaluation of the goodness of
explanations that an XAI system generates. We discuss several sub-properties
of good quality explanations to be evaluated:

Comprehensibility – It is related to how well humans understand the
explanations. This property highly depends on the audience and the
context since comprehensibility is a subjective concept [Hof+18].

Clarity – The degree to which the resulting explanation is explicit. This prop-
erty is particularly relevant in safety-critical applications where ambiguity
must be avoided [RGH18].

Justifiability – The degree to which an expert can assess the explanations to
verify if the model is in line with the domain knowledge [BC17].

Selection – The ability of a method for explainability to focus only on the
possible causes that are critical and sufficient to explain the prediction
[VL20]. Explanations should not overwhelm the user with too much
information.

Simplicity/Parsimony – This refers to the complexity of the resulting
explanation. A parsimonious explanation is a simple explanation. The
optimal degree of parsimony might depend on the user [RGH18].

Interactivity – It refers to the capacity of an explanation method to reason
about prior interactions to interpret and respond to users’ follow-up
questions [Mad+03].

Informativeness – This is related to the ability of an explanation method to
provide relevant information to an end-user [Lip18].
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Explanation Satisfaction

Even though an explanation might be considered ‘good’ in the way described
above, it may at the same time not be adequate or satisfying to users in a
given context. Explanation satisfaction is the degree to which users feel the
ease of use and usefulness of an AI system or process. The critical attributes of
satisfactory explanations include but are not limited to:

Completeness – This relates to the ability of an explanation method to
describe the underlying inferential system sufficiently [Kul+13]. Oversim-
plification of statements may be detrimental to users’ trust.

Effectiveness – It is about the capacity of an explanation method to support
good user decision-making [TM15].

Efficiency – It is the ability to an explanation method to support prompt
decision-making [TM15].

Actionability/Persuasiveness – It is related to the capacity of an expla-
nation method to transfer convincing knowledge to end-users that the
system’s decisions are actionable [Kul+13].

Assessing Trust

Scales designed to assess human trust in automation focus on two main ques-
tions: “Do you trust the machine’s outputs?” and “Would you follow the
machine’s advice?”. Trust assessment in the XAI context must consider the
negative trusting states and whether the user’s trust and reliance on the AI
are appropriate. Explanations should allow users to know whether, when, and
why to trust, distrust, or rely on. The initially skeptical user may benefit from
a good explanation and move into a place of justified trust. However, the
subsequent use of the XAI system may result in an unexpected outcome that
humans would never draw. This surprising event might move the user into a
position of unjustified mistrust, in which the user is skeptical of any outcome
the model gives. However, the XAI system may provide further explanations,
allowing the user to explore the system and converge in a state of appropriate
trust and reliance [Hof+18; AOJ21].

Trusting in XAI systems will always be experimental, so trust–reliance rela-
tionships should maintain an appropriate, context-dependent state rather than
aiming to achieve and maintain a single stable condition [Ome+21]. Exploration
of trust would involve:

- Enabling the user to understand circumstances in which the model’s
outcome will not be trustworthy and should not be followed even though
they seem trustworthy.

- Enabling the user to mitigate unjustified trusting and mistrusting situa-
tions through explanations.
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- Enabling the user to explore indicators that would mitigate the impacts
and risks of unnecessary reliance or rejection of outcomes.

- Verifying the reasons to take the model’s outcome as true.

Testing Performance

Performance assessment aims to determine the degree of success achieved at
conducting a task through the human-XAI interaction. The evaluation of an
XAI system’s performance depends on assessing the user’s and human-XAI
system’s performance [Hof+18]. Two critical views related to the performance
measurement are:

- User’s performance depends on the qualities of their mental model (e.g.,
correctness, completeness) so that human-XAI performance will improve
as a result of being given satisfying explanations.

- User’s performance may be affected by their level of trust. Their reliance
will be appropriate to the degree that the user can explore the XAI
system’s competence.

The user’s performance can be measured by the correctness of the user’s
predictions of what the XAI would do. For this aspect of performance, one
can measure response speed and correctness (hits and misses) on the user’s
predictions of the model’s output. The correctness and completeness of the
user’s explanation of the machine’s output can also be measured for unusual
and rare cases.

The quality of the performance concerning an XAI system is reflected
when the measure of explanation satisfaction correlates highly with evaluations
of the users’ mental models. Concerning former medical diagnostic systems,
Van Lent et al. stated [VFM04], “Early on, the developers of these systems
realized that doctors weren’t willing to accept the expert system’s diagnosis
on faith.”, which brought forth the first explainable AI systems. In medical
XAI, even the most detailed explanations might not satisfy the practitioners,
while simple explanations may fulfill the need in a different context. Hence, the
most straightforward way of evaluating the performance of an XAI system is to
assess how easy or difficult it is to get users to adopt the XAI system.
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Chapter 3

Summary of Contributions

This chapter outlines the contributions of the papers included in this thesis and
relates them to the context presented in Chapter 2. As a point of departure, we
presented a review of explainable agents and robots. Thereafter, we introduced
the design and evaluation of our proposed explanation methods for various
machine learning applications. Figure 3.1 gives an overview of the contributions
of the papers included in this thesis.

Figure 3.1: Overview of the thesis contributions to the XAI research.
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Paper I: Explainable Agents and Robots: Results from a
Systematic Literature Review

Motivated by a growing need for explainable AI systems, this paper presents
a Systematic Literature Review (SLR), providing a comprehensive overview
of current works on explainable robots and intelligent agents. Though several
reviews have been conducted in the field, most focus on research related to the
data-driven XAI, dealing with explainability for black-box algorithms intended
for experts and technical users. This paper reviewed the literature on goal-driven
XAI in the last ten years to clarify, map, and analyze the explainability in the
human-agent interaction context.

The review results suggest that most papers propose conceptual studies
that address relatively simple scenarios with toy examples and lack evaluations.
Almost all the studied articles deal with robots/agents explaining their behavior
to human users, and very few works addressed inter-robot (inter-agent) explain-
ability. The results also show that providing explanations to non-expert users
has been outlined as a necessity, and only a few works referred to the issues of
personalization and context-awareness.

Furthermore, connected to the information elicited by this study, we have
proposed a roadmap to consolidate and guide new researchers who would
like to tackle this field. The envisioned research roadmap progress in three
phases; explanation generation, explanation communication, and explanation
reception. Concerning the explanation generation, agent and robot architectures
(e.g., cognitive and BDI architecture) have elaborate decision loops similar to
transparent models in machine learning; however, most of them do not support
explainability functions. The explanation generation module is a crucial step to
pushing the research of explainable agency further. Moreover, there is a need
for dynamic mechanisms allowing the identification of relevant elements for an
explanation (context), identifying its rationales, and integrating these elements
into a sound explanation (personalize). The explanation communication module
deals with the communicative act of explaining, sending the explanations to
the end-user or another agent. Explanation communication must consider
the different environments the system will be deployed in. For this reason,
the multi-modal explanation presentation (e.g., visual, audio, expressive) is a
promising communication approach. The agent/robots must be able to choose
the communication channel and the representation in such settings.

Finally, the explanation reception phase ensures that the receiver accurately
understands the sender’s State of Mind (SoM). We suggest devising metrics
(e.g., relevancy, clarification) to assess how efficient the explanation is and how
the user reacts to it. It is also advised that the agent/robot keep track of a
model of the user knowledge. The updated model will reflect the evolution of
the user expertise and how the user views the SoM of the agent/robot.
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Paper II: Explanations of Black-Box Model Predictions by
Contextual Importance and Utility

This paper introduces the Contextual Importance and Utility (CIU) method
to provide explanations for black-box model predictions that are easily under-
standable by experts and novice users. The importance of a feature depends
on the other feature values so that a feature that is important in one context
(i.e., context is the set of input values being tested) might be irrelevant in
another. CIU explains a machine learning model’s prediction for a given data
point by investigating the Contextual Importance (CI) and Contextual Utility
(CU) of individual features to a prediction. CI corresponds to the ratio of the
observed output range to the maximum possible output range (i.e., 0 and 1 for
classification problem). The observed output range is the difference between the
highest (Cmax) and lowest (Cmin) prediction values when a specific feature
value is perturbed through random sampling (i.e., generating an input vector
with random values for a specified feature within a range). If CI is greater for
one feature than another, then the former is more important. Contextual utility
expresses the position of the output value within the possible output range. It
indicates how good the current input value is for the prediction. The high CI
means that perturbation in that feature value results in the greatest changes in
the prediction value. High importance (CI) with a high utility (CU) suggests
that the feature significantly contributes to the prediction. Most works focus
on only feature importance; however, the utility of a feature is also worthwhile,
for instance, to know how a specific feature value is far from a value that would
produce the desired output.

CIU is a model agnostic method that increases the generalizability of the
explanation method to different learning algorithms. This paper demonstrates
the utilization of the CIU for linear and non-linear models. Moreover, most
explanation methods provide explanations that respond to only why the model
makes a certain decision or prediction. Humans usually expect explanations
with contrasting cases to view the explanations in a broader context. This
study presents examples of complete (factual) and contrastive explanations
to justify the predicted outcomes. We show the utility of explanations in a
car selection dataset for linear regression and Iris flower classification on a
neural network model, presenting explanations for an instance of interest and
contrastive instances.

The expressive power of an explanation method increases the comprehensibil-
ity of the explanations for end-users. CI and CU are numerical values that can
be represented to the user in different formats and levels of detail. In this paper,
CIU values are represented in two modalities: visuals and natural language,
presenting the effect of each feature on an individual prediction. Finally, CIU
offers a post-hoc explainability approach that examines each feature’s influence
on a local point of interest without opening the black-box model or transforming
it into an interpretable one. This explainability approach could provide useful
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information for end-users interested in instance-specific explanations rather
than understanding the internal working of the whole model.

Paper III: Visual Explanations for DNNs with Contextual
Importance

This paper introduces contextual importance for image classification tasks
to make DNN results more explainable. The method can be applied to any
CNN-based network regardless of the model architecture. The contextual
importance method was proposed for a tabular data type in Paper II. This
work investigates adapting the concept of contextual importance for image
explanations. Given the predicted class and the prediction score, we produce
explanations for individual classifications by perturbing an input image through
over-segmentation and evaluating the effect on a prediction score. We utilized
SLIC over-segmentation method to segment the image into subcomponents
instead of randomly fragmenting it into pieces. Over-segmentation increases the
chances of extracting boundaries of importance, resulting in more interpretable
regions (i.e., features). We measure the CI by first masking each subcomponent
at a time and getting the probability value for each perturbed sample. Then CI
value is calculated as the ratio of the observed output range to the maximum
possible output range. The difference from the formulation expressed in Paper
II is that the observed output range corresponds to the difference between the
initial prediction value and when a segmented region is masked out. We find
the most important features by observing how the prediction score drops for
each region when it is absent.

The regions with CI values higher than the threshold are rendered in color
to highlight the most contributing features as visual evidence for a prediction.
Results are compared with two explanation methods: mask perturbation and
LIME. The explanations for the MNIST hand-written digit dataset produced
by the three methods show that CI provides a better visual explainability. The
results also demonstrate that the regions with high importance give a class
score close to the initial prediction score when they are present concurrently,
and the rest is masked out. It suggests that the proposed method is able to
extract the most relevant features for the prediction to justify an outcome.

Furthermore, we present contrastive explanations highlighting class discrimi-
nating features for multiple class predictions. It is expected that different classes
should produce different explanations. The results visualize the existent and
missing features to identify and distinguish the two classes from each other.
Even though our comparisons with LIME show varying explanation results,
LIME often produces the same explanations for the actual and the contrastive
cases. The idea is further extended by explaining incorrect predictions (with
high confidence) and comparing them with the correct class to identify features
contributing to misclassification. The result does not directly explain why a
model makes a wrong prediction. Still, it helps to understand the features
learned by a model, ultimately allowing for improving the dataset and correct-

30



ing the model. Moreover, we show examples of visual explanations for visibly
distorted and noisy images. Despite the noise and distortion, the samples tested
were correctly classified by the model with high confidence, and contextual
importance provided robust explanations under the partial distortions.

Paper IV: Context-Based Image Explanations for Deep
Neural Networks

This paper experiments further with the context-based explanations presented
in Paper III in a scene classification task, detailing how visual evidence is
compatible with a classifier’s output. Context provides critical information
about a particular scene, such as objects in an image, their arrangement,
relative physical size to other objects, and location. Contextual information
gives important indications for a model to learn during training and make
a correct prediction accordingly. While some features influence the outcome
more than others, each component’s influence also depends on other parts.
Therefore, in this work, the contextual importance is calculated as the position
of the current output value within the possible output range (i.e., the difference
between the highest and lowest prediction values) when a specific region is
absent.

We initially implemented partial masking on segmented components to
identify the contextual importance of each segment in a scene. As an alterna-
tive to the SLIC superpixel method, we demonstrate contextual importance
using AMR (Adaptive Morphological Reconstruction) segmentation. AMR
seems better aligned with object boundaries, resulting in more precise visual
explanations. Still, it is challenging to identify coherent regions due to the
broad diversity and ambiguity of visual patterns in images. Generally, semantic
segmentation methods try to address this issue, aiming to capture fine-grained
details of an object while localizing it in an image. We then experimented with
semantic segmentation, allowing more detailed explanations using semantic
categories. The idea is to map all the components to a semantic space based on
their contextual importance. Once we know the contextual importance of each
semantic category in an image, this can be presented in several possible ways.

We demonstrate our explanation approach using manual annotation on
PASCAL VOC 2010 and automated segmentation through DeepLabV3+. We
generated visual and text-based explanations using saliency maps, a color bar
graph, and descriptive phrases listing the components and their importance.

To evaluate the proposed explanation method, we conducted a human subject
study (N=50) and assessed the quality of different explanation methods. The
study evaluated the main idea of whether explanations based on coherent region
identification are more acceptable than other methods for general users. We
assessed whether these explanations influence an end user’s confidence in a model.
Moreover, we investigated the human perception of model predictions and their
preference for different explanation presentation forms. Finally, through a
similarity study, we assess the effectiveness of proposed explanations on the
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automatically segmented image. The results from the user study show that
our proposed explanation method visually outperformed existing gradient and
occlusion-based methods.

Paper V: Explaining Graph Convolutional Network Pre-
dictions for Clinicians – An Explainable AI Approach to
Alzheimer’s Disease Classification

This paper introduces a decomposition-based explanation method for a Graph
Convolutional Network (GCN) model trained on the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset, including various aspects of Alzheimer’s
diagnostic procedures. Graph representations allow for incorporating the wealth
of multimodal data for individual subjects and relating them with disease and
symptoms in a node classification task. The multimodal data is modeled as
a graph where each node stands for patient data, and pairwise correlations
between nodes are represented as edges. Similar patients are embedded close
to each other in an edge-weighted graph approximating similarity in the net-
work. While nodal features contain the neuroimaging, genetic, cognitive, and
neuropsychological test results, functional connectivity matrices contain the
cognitive test data, which provides information to establish the association
between the patient’s feature vector. The model has achieved 80% classification
accuracy on the test set.

While the accuracy of a model is an essential measure of trust, interpretabil-
ity is also a requirement to integrate it into clinical applications and ensure
that only relevant variables contribute to the output. Decomposition-based
explanation method for individual node classification measures the output vari-
ations concerning the changes in input values. By examining such variations,
we determine the degree of impact of input values on the prediction and reason
about the importance of each attribute value. We considered the input features
in three levels: individual node features, group-level node features, and edge
weights, applying the same principle on all three levels. To measure the effect of
each input value, we observe the model’s probability for a predicted class with-
out the knowledge of an event (i.e., node feature(s), edge weights) by replacing
it with an unknown (i.e., NaN) value and omitting them from the computation.
Then the variation between probabilities brings forth explanations, showing
how each feature from different data groups contributes to a diagnostic result.

Evaluation of the proposed work explores objective and human-grounded
metrics by analyzing the stability of the explanations and the domain experts’
opinions on the generated explanations. To measure the stability, we identified
the similar nodes using the edge weights, considering that higher edge weights
signify higher patient feature similarity. It gives us slight variations in feature
values for patients in the same class. Our analysis suggests that the similarity
of explanation generated in neighboring nodes depends on the degree of edge
weights. The nodes with higher edge weights produced higher similarity in
explanations.
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Given that the explanations provided were intended for physicians in the
clinical context, we evaluated our results with experts in AD diagnostics. We
assessed the human agreement on the model’s prediction and rationale, pre-
dictability of the model, and the quality of the explanations for justifying a
model’s prediction. Our human-grounded evaluation (N=11) confirmed the
validity of the explanations provided by the model as 71% of the responses
agreed on the correctness of the explanations. The results from the survey show
that the explanations presented were deemed clear, allowing the participants to
understand how the model reaches an outcome. The feedback we have received
suggests that an explainable AI model for diagnosing AD could be a valuable
instrument to summarize an individual’s clinical findings and participate in
making a diagnosis. We discussed potential improvements to incorporate before
adoption into clinical practice and attain clinicians’ trust as a diagnostic decision
support system.
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Chapter 4

XAI-ML: Limitations and
Opportunities

The works relating to this thesis are continuously evolving along with the
development of new XAI tools. While recent developments are creating new
challenges, fundamental concerns linked to the explanation method design and
evaluation still need further investigation. In the following, we outline several
open issues concerning the concepts and metrics specific to our work and related
to the XAI-ML domain in general.

Limitations Concerning Our Work

In this thesis, we have introduced explanation methods employing different
perturbation approaches (e.g., random sampling, masking, and decomposition)
that provide numerical values usable as interpretation indicators for experts
and non-technical users. The advantages of these approaches are numerous: the
convenience of using numerical values (i.e., assimilated to ‘scores’ to increase com-
prehensibility); the simple computation as opposed to more complex methods;
the possibility of contrastive and counterfactual explanations; and the possibil-
ity of translating the results to human-friendly visualizations/representations.
Notwithstanding these advantages, several limitations of our study need further
work to confirm that claimed intuitions translate into a practical methodology
for explainable AI. We discuss some of the main limitations below.

Explanation Method Design

This limitation relates to the method design, which builds upon post-hoc
explanation approaches. An explanation method is bound to reflect the model
behavior under normal operating conditions and must be faithful to the agency
of the underlying model. The explanation methods proposed in this thesis
approximate the model’s behavior through input perturbations. At times, the
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approximation may differ under different input sampling, and the explanation
may fail to reflect the underlying model precisely. Such as, an explanation
method may provide an explanation satisfying to humans, while the machine
learning model works in a different way [DLH19]. Hence, it is necessary to study
further the calculation of the Cmax and Cmin components of the CI and CU ,
ensuring that it approximates adequately and explanations are representative
of the model without oversimplifying its critical features [Arr+20].

Use Cases and Evaluation of the Earlier Work

In Paper II, we aimed to provide a straightforward implementation of CIU, which
could be used directly to explain machine learning predictions or as a baseline
to compare to other explanation techniques. While it presents illustrative
use cases showing how the CI and CU concepts apply in a practical way, its
absence of benchmarking with the different tools and methods mentioned in the
literature concerning functional and presentation level qualities. Even though
we indicated that most explainability methods disregard end-user requirements,
we have not shown how user requirements could be addressed using CI and
CU . Intuitively, one can see that the generated explanations can be adapted to
user needs; however, only using relatively simple examples would not be enough
to validate the approach fully. It is required to perform further user studies
demonstrating this state.

Concerning the expressiveness of the explanations, we provide both visual and
textual presentation (which potentially improves comprehensibility); however,
we have not considered how different types of presentations should be combined
and presented to the audience in an appealing and satisfying way. There is a
need to study such explanations and evaluate the effectiveness and the adequacy
of the provided explanation in relevant use cases. Such a study would require
a systematic methodology to confirm the usefulness and importance of the
explainability results.

Limitations Related to Image Explanations

Paper III presents contextual importance as a visual explanation method for
DNNs, reporting a visual comparison with the output of other existing methods
(i.e., mask perturbation and LIME) to highlight the advantages of the proposed
approach. One of the limitations of the work is that the degree of contextual
importance of each region is not reflected in the image; all the subcomponents
that influence the outcome are highlighted to the same degree. We use a single
threshold to decide whether a subcomponent was significant or not based on its
CI value. In general, it is a missed opportunity not to include some variation
in the visualization to reflect the magnitude of the CI values.

The following work (Paper IV) explored the visual explanations in a scene
classification task. The image regions are identified by an image segmentation
algorithm and human annotations. We presented justifications in three different
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forms based on the influence of each region on the prediction of the DNN
model, i.e., a saliency map, textual justifications, and a visual map with a
graph. The last two explanations require either human annotations or semantic
segmentation, which limits the applicability of the proposed method. Also, the
examples used are not those in which explanations are critical. Future research
could experiment with the proposed method in which explanations are critical
and conduct a more extensive evaluation with varying settings.

Limitations Concerning XAI-ML Domain

Despite the progress made in recent years in interpretable machine learning, there
are still some critical challenges and general principles to consider, especially in
method design and evaluation. This section presents an incomplete overview of
challenges, research opportunities, and possible paths for the XAI-ML domain.

A Holistic View of the Process

Literature suggests a more dynamic and global view of the whole process, from
data collection to the prediction’s final use [RGH18]. The more comprehensive
view must include contextual factors, potential impacts, and domain-specific
needs to be considered when devising an interpretability approach [Mol]. It
will take a more thorough understanding of the AI model’s purpose, and the
complexity of explanations needed by the audience [Arr+20]. Achieving this
global vision invites the collaboration of multiple fields, such as human-computer
interaction, psychology, and sociology. The research community in XAI is called
to reach out across other domains while reflecting on the research in statistics
and computer science [MHS17].

Need for a Common Taxonomy

While explanations in machine learning are often related to interpretability,
there is still no consensus on what interpretability means and how to measure
interpretability [DLH19]. The literature asks for a shared language around
various factors to properly evaluate, reference, and compare the related work.
For the field to succeed, it is critical to establish a common ground upon which
the community is eased to contribute new techniques and methods. It should
propose a standard structure for every XAI system [Arr+20]. As suggested
by [DK17], each contribution to the field could start with describing factors:
i) how is the explanation necessary and appropriate, ii) at what level is the
evaluation being performed (function-grounded, human-grounded), ii) what
are task-related elements? (e.g., global vs. local, the purpose, level of user
expertise), iii) what are method-related elements? (e.g., a form of explanations,
number of modalities, contrastive, situational) and refining these elements as
these categories evolve. These considerations would move the field toward
classifying contributions by a standard set of terms.
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Explanation Method Evaluation

The following limitation involves the need for adequate and objective evaluation
protocols and metrics. The evaluation metrics we have discussed (functionally-
grounded, human-grounded) are complementary and bring their strengths and
weaknesses, considering the degree of feasibility and the cost to perform them.
The type of metrics to adopt heavily depends on the research contribution, so
the research claim should match the assessment type to make more informed
evaluations.

A contribution focused on better optimizing a model for some definition of
explainability should be expected to be evaluated with objective metrics [DK17].
For instance, while the existing studies on the post-hoc explanation methods
are usually evaluated for their interpretability, they often omit the evaluation
of the faithfulness of the explanation to the original model. It is hard to tell
whether the unexpected explanation is due to the limitation of the explanation
method or caused by the model [DLH19]. Therefore, better metrics to measure
explanations’ faithfulness are needed to complement existing evaluation metrics.
The degree of fidelity can determine the degree of confidence one can place in
an explanation. However, the design of the proper faithfulness metric remains
an open issue and needs further investigation.

Likewise, a contribution focused on a specific application should be expected
to be evaluated in the context of that application on a human experiment
with a closely-related task (human-grounded evaluation). The most common
human-grounded assessment use questionnaires that the participants fill out
as part of or after an experiment, evaluating different explanation aspects
(e.g., understandability or persuasiveness). Although the questionnaire is a
well-established research instrument, there are no standardized study designs
or lists of questionnaire items in the field of XAI yet [NJ17].

Taken together, researchers must develop standardized evaluation protocols
to measure specific aspects of explanations. These protocols should rely on both
objective measures and subjective statements.

Explanations in AI Security

The recent work reveals the need for further study on the development of
XAI tools by taking the model’s confidentiality into account [Arr+20]. In
principle, XAI should be able to explain the knowledge within an AI model
and reason about the model’s execution. However, the information revealed
by XAI techniques can be used to generate more effective adversarial attacks
aiming to confuse the model. Adversarial attacks manipulate an algorithm
by feeding specific input to the system to direct it to produce the desired
output. For instance, malicious attacks in a classification model try to discover
the minimum changes that should be applied to the input data to generate a
different classification (i.e., art stickers cause misclassifying a turn right sign as
a stop sign) [Eyk+18]. While XAI techniques can be used for more effective
adversarial attacks or to disclose confidential elements of the model, future
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studies might also consider utilizing XAI tools to better protect against private
content exposure using such information.

Recent contributions have taken advantage of the possibilities of Generative
Adversarial Networks (GANs) and other generative models for explainability.
Once trained, generative models can produce instances of what they have
learned that can be interpreted as a latent data representation. By using the
perturbation-based explanation methods on the latent representation, it is
possible to draw insights and discover specific patterns related to the class to be
predicted. Given that, there is a potential for generative models to take their
part in explaining machine learning predictions [Arr+20].
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