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Abstract

The objective of this thesis is to consider some challenges that arise
when conducting causal inference based on observational data. High
dimensionality can occur when it is necessary to adjust for many covari-
ates, and flexible models must be used to meet convergence assumptions.
The latter may require the use of a novel machine learning estimator.
Estimating nonparametrically-defined causal estimands at parametric
rates and obtaining good-quality confidence intervals (with near nomi-
nal coverage) are the primary goals. Another challenge is providing a
sensitivity analysis that can be applied in high-dimensional scenarios as
a way of assessing the robustness of the results to missing confounders.

Four papers are included in the thesis. A common theme in all the
papers is covariate selection or nonparametric estimation of nuisance
models. To provide insight into the performance of the approaches pre-
sented, some theoretical results are provided. Additionally, simulation
studies are reported. In paper I, covariate selection is discussed as a
method for removing redundant variables. This approach is compared
to other strategies for variable selection that ensure reasonable confi-
dence interval coverage. Paper II integrates variable selection into a
sensitivity analysis, where the sensitivity parameter is the conditional
correlation of the outcome and treatment variables. The validity of the
analysis where the sensitivity parameter is small relative to the sample
size is shown theoretically. In simulation settings, however, the analysis
performs as expected, even for larger values of sensitivity parameters,
when using a correction of the estimator of the residual variance for
the outcome model. Paper IV extends the applicability of the sensi-
tivity analysis method through the use of a different residual variance
estimator and applies it to a real study of the effects of smoking dur-
ing pregnancy on child birth weight. A real data problem of analysing
the effect of early retirement on health outcomes is studied in Paper
III. Rather than using variable selection strategies, convolutional neural
networks are studied to fit the nuisance models.

Keywords. Causal inference, high dimension, sensitivity analysis, vari-
able selection, convolutional neural network, semiparametric efficiency
bound
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Sammanfattning (Summary in Swedish)

Syftet med denna avhandling är att överväga n̊agra utmaningar som
uppst̊ar när man drar kausala slutsatser baserat p̊a observationsdata.
Hög dimensionalitet kan uppst̊a när det är nödvändigt att justera för
m̊anga kovariater, och flexibla modeller m̊aste användas för att möta
konvergensantaganden. Det senare kan kräva användning av en ny
maskininlärningalgoritm. Att skatta icke-parametriskt definierade kausala
parametrar vid parametriska hastigheter och erh̊alla konfidensintervall
av god kvalitet (med nära nominell täckning) är de primära m̊alen.
En annan utmaning är att tillhandah̊alla en känslighetsanalys som kan
tillämpas i högdimensionella scenarier som ett sätt att bedöma resul-
tatens robusthet för ej observerade störfaktorer.

Fyra artiklar ing̊ar i avhandlingen. Ett gemensamt tema i dessa
artiklar är val av kovariat eller icke-parametrisk skattning av under-
liggande modeller. För att ge insikt i hur de utvecklade metoderna
fungerar ges n̊agra teoretiska resultat. Dessutom rapporteras simuler-
ingsstudier. I artikel I diskuteras kovariatselektion som en metod för att
ta bort onödiga variabler. Detta tillvägag̊angssätt jämförs med andra
strategier för variabelval som säkerställer rimlig täckning av konfidensin-
tervall. Paper II integrerar variabelval i en känslighetsanalys, där sensi-
tivitetsparametern är den betingade korrelationen mellan utfalls- och be-
handlingsvariablerna. Validiteten av analysen där känslighetsparametern
är liten i förh̊allande till stickprovsstorleken visas teoretiskt. I simuler-
ingstudien fungerar emellertid analysen som förväntat, även för större
värden p̊a känslighetsparametrar, när man använder en korrigering av
den skattade residualvariansen för utfallsmodellen. Paper IV utökar
användbarheten av känslighetsanalysmetoden genom att använda en an-
nan skattning av residualvariansen och tillämpar den p̊a en studie av
effekterna av rökning under graviditeten p̊a barnets födelsevikt. Reg-
isterdata används för att analysera effekten av förtidspensionering p̊a
hälsan i Paper III. Istället för att använda variabelval studeras konvo-
lutionella neurala nätverk för att anpassa underliggande modellerna.
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It is not simply the content of my thesis that I will take away from
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1. Introduction

The focus of this thesis is to make inferences about the causal effects
of interventions. It is common to conduct random experiments in order
to study causality. The randomization of treatments or interventions
is, however, not always feasible or ethical. Moreover, we cannot take
advantage of some large observational data sets that are available, such
as Swedish register data, by relying only on randomization.

Deriving causal inferences from an observational study involves ad-
dressing different challenges. The researcher typically must adjust for a
set of pretreatment covariates in order to avoid biased estimation due
to non-comparability between treated and control groups. This set of
variables is used to model the potential outcomes of different treatment
levels and/or the probability of treatment. It is often assumed that the
potential outcomes are independent of treatment given the covariates
(i.e., given an assumption of no unobserved confounding). However,
the size of the set of covariates might be larger than the sample size
(high dimensionality). Moreover, to get consistent regression fits, many
higher-order terms might be used. In such high-dimensional cases, vari-
able selection is unavoidable. Variable selection as a step in estimation
of a causal parameter is discussed in Paper I.

In Papers II and IV, we use a sensitivity analysis to analyze the effect
of violation of the assumption of no unobserved confounders. In a sensi-
tivity model, conditional correlations between outcomes and treatment
are used to quantify deviations from unconfoundedness. The possibility
of weakening some parametric modelling assumptions, previously con-
sidered in the sensitivity model, is investigated under some regularity
conditions.

A real data problem of analyzing the effect of early retirement on
health outcomes is studied in Paper III. To ensure unconfoundedness,
we account for several pretreatment covariates, such as ten-year mea-
surements of both hospitalization and outpatient health care, annual
income from work and pension, and annual income from unemployment
programs. In order to detect time-invariant patterns in the data, con-
volutional neural networks are used.

The introductory part of the thesis is organized as follows. A brief
introduction to causal inference and estimators is given in Section 2.
In Section 3, efficiency considerations are discussed. In Sections 4 and
5, variable selection and other complexities are addressed. In Section
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6, sensitivity analysis is discussed, and, in Section 7, the papers are
summarized.

2. Causal inference

Correlation was introduced in the 19th century (e.g. Stigler, 1989)
and has been the subject of a great deal of debate regarding its inter-
pretation in relation to causality. It is possible to interpret correlation
in an unsatisfactory manner, as illustrated by the Simpson paradox, in
which correlation between two random variables has the opposite sign
in sub-populations compared to the whole population. The fact that
correlation does not always imply causation is well known today. For
this reason, and in order to achieve valid causal inferences, random-
ization and inference based on randomization were advocated by Fisher
(Fisher, 1992). Randomization ensures that those who receive treatment
and those who do not represent the same population. When treatment
is not randomized, differences in pretreatment covariates could account
for the difference in the outcome between treated and control groups.
In this regard, Fisher speculated that an observed association between
smoking and lung cancer might be explained by an unobserved genetic
variant (Fisher, 1958). For this example, a counter-argument was pre-
sented by Cornfield et al. (1959). In order for Fisher’s speculation to
be valid, the genetic factor would have to be a confounder that is 10
times more prevalent in smokers than non-smokers and those with the
confounder would have to have a 10 times greater risk of developing lung
cancer. The existence of such a genetic confounder seemed unlikely.

As a formal method for discussing causality in observational studies,
Rubin (1974) used the language of potential outcomes. This was in-
troduced by Neyman (1923) in the context of randomized experiments.
With binary treatment assignments, 𝑌 (1) and 𝑌 (0) are the potential
outcomes under each level of treatment. The average treatment effect
(ATE) is then defined as the expectation of the difference between those
two variables, ATE = 𝐸 (𝑌 (1)− 𝑌 (0)). Identification of this parameter
can be shown using a set of assumptions. A typical set of identifiability
assumptions includes (i) the result of one treatment level is observed for
each individual, (ii) every individual has a positive probability of receiv-
ing each of the treatments and (iii) there are no unobserved confounders
of the relationship between treatment and outcome. When identifiability
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holds, the estimation becomes a pure statistical problem. The outcome
regression (OR) estimator of the average treatment effect requires esti-
mations of the potential outcome models 𝑚𝑡(𝑋) = 𝐸 (𝑌 (𝑡) |𝑋) and is
based on the following estimating equation:

𝐸 (ΨOR (𝑂,𝑚1 (𝑋) ,𝑚0 (𝑋)))−ATE = 0,

where 𝑂 = (𝑋,𝑌, 𝑇 ), 𝑋 is a set of covariates, 𝑌 is the observed outcome,
𝑇 is the treatment and ΨOR = 𝑚1 (𝑋) − 𝑚0 (𝑋). Typically, when
drawing an inference from this estimator, it is assumed that parametric
outcome models are correctly specified. Paper I, however, investigates
the performance of this estimator in a high-dimensional situation.

There are other estimators of the average treatment effect that re-
quire estimation of the probability of receiving the treatment 𝑝 (𝑋) =
𝐸 (𝑇 |𝑋) (See e.g. Kang and Schafer, 2007). One example is the dou-
ble robust (DR) estimator, which is based on the following estimating
equation:

𝐸 (ΨDR (𝑂,𝑚1 (𝑋) ,𝑚0 (𝑋) , 𝑝(𝑋)))−ATE = 0,

where

ΨDR = ΨOR +
𝑇

𝑝(𝑋)
(𝑌 −𝑚1 (𝑋))− 1− 𝑇

1− 𝑝(𝑋)
(𝑌 −𝑚0 (𝑋)) .

This estimator is considered in this thesis because of the availability of√
𝑛-inference under weak conditions and for efficiency considerations.

This is discussed in the following sections.

3. Efficiency and superefficiency

The well-known Cramer Rao bound provides an efficiency bound
for an estimator, but only for unbiased estimators. The asymptotic
variance bound for consistent estimators is nontrivial if we do not restrict
ourselves to specific estimators. Dropping the unbiasedness assumption,
we have the following example of the Hodge estimator (Le Cam, 1953),
which can be considered an alternative to the mean of a sample of size
𝑛 (𝑋̄𝑛) as an estimator of the expectation 𝜇 = 𝐸(𝑋):

𝜇̂𝑛 =

{︃
𝑋̄𝑛, if

⃒⃒
𝑋̄𝑛

⃒⃒
≥ 𝑛−1/4

0, if
⃒⃒
𝑋̄𝑛

⃒⃒
< 𝑛−1/4

.
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The asymptotic variance is equal to zero for this estimator when the
true parameter 𝜇 is zero, but it behaves erratically when 𝜇 is close to
zero. In other words, this superefficiency is gained at the expense of
poor estimation in a neighborhood. This is unsatisfactory, considering
that the true value of the parameter is not known (Tsiatis, 2006, Section
3.1).

For the parametric case, when the parameters indexing the model are
finite-dimensional, the convolution theorem (Hájek, 1970) suggests that
the Cramer Rao bound holds if we limit ourselves to regular estimators
(roughly, those whose convergence to their asymptotic distribution holds
in a uniform sense and not only pointwise), under some other regularity
conditions (Van der Vaart, 2000, Theorem 8.8).

Discussing efficiency is more complicated in the nonparametric (semi-
parametric) setting, where the model consists of an infinite dimensional
nuisance parameter (and a low-dimensional nuisance parameter). How-
ever, even in such a case, by limiting ourselves to regular asymptotic
linear estimators, we can characterize the variance bound. An asymp-
totic linear estimator 𝜃 of a parameter 𝜃 is such that

√
𝑛(𝜃 − 𝜃) =

1√
𝑛
Σ𝑛
𝑖=1Φ(𝑂𝑖, 𝜂) + 𝑜𝑃 (1), (1)

where Φ is a mean zero finite variance function of an observation 𝑂𝑖 and
a (possibly infinite-dimensional) nuisance parameter 𝜂 and the last term
converges to zero in probability. Influence functions of 𝜃 are Φ functions
that satisfy the above presentation for an estimator of 𝜃. The semi-
parametric efficiency bound is the 1/𝑛-scaled variance of the “efficient”
influence functions – that is, the influence function with the smallest
variance.

The efficient influence function of ATE is of the form Ψ𝐷𝑅 −ATE.
Under 𝐸(𝑌 (𝑡)|𝑋) = 𝐸(𝑌 (𝑡)|𝑈), only 𝑈 ⊂ 𝑋 is required for identifi-
cation of the average treatment effect, i.e., it is not necessary to use
the entire set 𝑋 (De Luna et al., 2011). This information (called the
exclusion restriction in the outcome relationship in Hahn (2004)) re-
sults in a smaller or equal variance bound for the parameter. In other
words, omitting variables known to be instrumental variables can reduce
the variance of our estimator. In the absence of such prior knowledge,
attempting to achieve this lower variance results in superefficiency. A
superefficient estimator is constructed by selecting out instrumental vari-
ables using a variable selection strategy or through using probability of
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treatment conditional on conditional (on covariates) mean outcome in-
stead of probability of treatment conditional on the covariates (Benkeser
et al., 2020; Moosavi et al., 2021).

4. Low-dimensional setting

Here, we consider the case where the set of covariates 𝑋 is low-
dimensional and the nuisance models are indexed using low-dimensional
parameters (parametric modelling). If m-estimators are used to estimate
nuisance models in OR and DR, these estimators are asymptotic linear.
Asymptotic distributions of these estimators can be found using a vec-
tor form of the Taylor expansion where the vector is found by stacking
the estimation equation functions of the nuisance and main parameters
(Stefanski and Boos, 2002; Vermeulen and Vansteelandt, 2015). While
OR has a lower variance than DR, DR has the advantage of being consis-
tent when only one nuisance model is specified correctly (double robust
property).

It is possible to interpret double robustness differently when it comes
to inference and asymptotic distribution. For DR, if both models are
correctly specified, the first-order asymptotic is not affected by nuisance
parameter estimation, meaning it is asymptotic linear with influence
function ΨDR − ATE. For OR, however, the first-order asymptotic is
affected by the fact that the nuisance parameter is being estimated, so
the influence function is ΨOR−ATE + extra term, where the extra
term is a mean zero term.

5. High-dimensional and complex settings

High dimensionality can occur for two reasons. It may be because
many covariates are considered during the analysis in order to ensure
that there are no unobserved confounders. The second reason could be
that we may need to consider increasing numbers of basis functions or
higher-order terms in order to accomplish a consistent nonparametric
estimation of the nuisance models. This may be more than the sample
size, resulting in high dimensionality.
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5.1. More covariates than the sample size

Data cannot be used to test the assumption that no unobserved con-
founders are present, so one may select a large number of pre-treatment
covariates, sometimes greater than the sample size, to ensure the as-
sumption is valid. A post-variable-selection method is sometimes used
when only a low-dimensional set of variables among the initial set is
thought to be relevant for outcome models. When the variable selec-
tion consistently finds the true subset, this estimator performs as well
as an oracle estimate based on the true low-dimensional subset. Infer-
ence based on this property implies ignoring the finite sample bias and
variation caused by variable selection. Although asymptotic results hold
(at least pointwise asymptotic), post-selection estimators may simply be
variations of Hodge’s estimators, which means that the coverage of confi-
dence intervals in finite samples may be quite low when the post-selection
estimator is used (Leeb and Pötscher, 2005). As a way to mitigate this
issue, it is possible to perform double selection, which means not just
selecting variables that are highly associated with the outcome, but also
selecting those variables that are highly associated with the treatment
variable (Moosavi et al., 2021; Belloni et al., 2014).

5.2. Nonparametric estimation of nuisance models

The high dimensionality may be due to the inclusion of a large num-
ber of basis functions in the model. The task of performing

√
𝑛-inference

is challenging in this case and other cases where nuisance models are es-
timated nonparametrically, which requires estimating causal parameters
at a parametric rate. It is possible to use the DR estimator for this pur-
pose, which can be viewed as a debiased version of the OR estimator. A
valid

√
𝑛-inference for the DR estimate requires the nonparametric esti-

mators of nuisance parameters to perform well enough, which is achieved
by appropriate estimators under different regularity conditions such as
sparsity or smoothness (Farrell, 2015; Chernozhukov et al., 2018; Farrell
et al., 2021).

5.2..1 Approximate sparsity and Lasso

Whenever the number of parameters exceeds the sample size, it is
impossible to fit regressions by minimizing the usual loss functions (least
square/negative log-likelihood). In spite of this, the lasso fit, which
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is conducted by adding an extra term 𝜆Σ𝑝
𝑖=1|𝛽𝑖| to the loss function

(Tibshirani, 1996), with 𝜆 as a hyperparameter, makes it possible to
solve the optimization problem in a unique way. A sparsity assumption
must be made to derive desirable properties for this estimator. The
exact sparsity assumption indicates that there are only a small number
of parameters with non-zero values. Approximate sparsity, arguably
more suitable for nonparametric estimation, requires that there is a low-
dimensional number among 𝑝 terms of covariates/basis functions (where
𝑝 can be larger than sample size and grows in size with 𝑛) that can
approximate regression functions relatively well (Belloni et al., 2014;
Farrell, 2015; Moosavi et al., 2021).

5.2..2 Smoothness and neural network

There are several areas where neural networks are widely used, be-
cause they can be applied to analyze information as diverse as text,
image, voice, and other kinds of data. While the first mathematical
models were introduced in 1994, their usefulness was only realized later
on, as more and more large data sets were collected and computers were
able to handle heavier computations. A great deal of progress has been
made in the field of applications since then, but the theory is still far
behind. Nevertheless, there also has been a growing body of literature
devoted to finding theoretical explanations for the success of these esti-
mators. For example, the idea of universal approximation is concerned
with estimating a continuous function based on neural network estima-
tion. Moreover, a Sobolev smoothness condition is typically used to find
the rate of convergence for this estimator.

Figure 1 illustrates a simple feed-forward network. Computation
nodes (in black), which are nodes in the output (last) layer or hidden
layers (layers between the input and output nodes), are calculated by
using nodes from a previous layer:

𝑓 = 𝜎(Σ3
𝑖=1𝑤𝑖𝑥𝑖 + 𝑏).

In the first step, the incoming nodes (𝑥𝑖) are multiplied by the
weights (𝑤𝑖), illustrated as connection arrows, and then a bias term
(𝑏) is added. A nonlinear function (𝜎) is then applied to the result.
Among the most popular nonlinear functions are rectified linear unit,
tanh, sigmoid, and softmax. Binary (multinomial) logistic regression is
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equivalent to a network with one layer of a sigmoid (softmax) compu-
tation unit. There is, however, a need to have multiple hidden layers
(deep networks) to ensure that the neural networks perform at their best
– that is, they can produce more flexible functions and, consequently,
achieve more accurate predictions through the use of multiple hidden
layers. There have been several families of deep neural networks intro-
duced for different applications. The convolutional neural network is a
successful one that can efficiently discover local-time invariant features
(Goodfellow et al., 2016).

Figure 1. An illustration of a computation unit in a neural network

6. Sensitivity analysis

The assumption of no unobserved confounders cannot be empirically
tested, yet the results may be highly sensitive to this assumption. It is
therefore essential to have a mechanism in place to assess how sensitive
results may be to unobserved confounders. Sensitivity parameters are
used to quantify deviations from this assumption. According to some
proposed methodologies, a given value of a sensitivity parameter can
be used to provide a point estimation of the causal parameter. This
can be used to assess how robust the results are to different values of
the sensitivity parameter or to obtain interval estimation using a range
of plausible sensitivity parameter values. An uncertainty interval is a
method of conducting sensitivity analysis that takes into account the
sampling variability in addition to the uncertainty around the value
of the sensitivity parameter (Vansteelandt et al., 2006; Genbäck and
de Luna, 2019).

An early example of sensitivity analysis is Cornfield et al. (1959),
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which explores conditions for an unobserved confounder to explain away
the observed smoking-lung cancer relationship (see Section 2). They do
not, however, account for any observed confounders. Another example
of sensitivity analysis is presented in Rosenbaum et al. (2010). The
odds ratio for receiving treatment (conditional on observed covariates)
parameterizes the unobserved confounding (an odds ratio different than
1 means the assumption is violated). If a bound is given on the odds
ratio, an interval of p-values is provided instead of a single p-value for
the causal parameter. Our approach however, is based on Genbäck
and de Luna (2019), where the sensitivity parameter is a conditional
correlation between outcome and treatment (𝜌). For a given value of the
correlation parameter, an estimate of the confounding bias can be found
(𝑏̂(𝜌)). The bias estimate is then subtracted from the lower and upper
bounds of the naive (based on the unconfoundedness assumption) 95%
confidence interval. A sensitivity analysis based on a range of plausible
𝜌 values (𝒫) is performed by taking the union of corrected confidence
intervals (called the uncertainty interval), as below

UI =
⋃︁
𝜌∈𝒫

{Naivlower − 𝑏̂(𝜌); Naivupper − 𝑏̂(𝜌)}.

Other sensitivity analysis approaches have been proposed; see, e.g.,
Scharfstein et al. (2021) for a review.

7. Summary of papers

7.1. Paper I

Our first study aims to investigate the problem of conducting causal
inference in the scenario where the corresponding covariates are chosen
using a data-adaptive method, for example, a lasso regression method.
There are different purposes for variable selection. These methods can
help identify variables that do not contribute to bias but amplify vari-
ance within analyses, so that redundant variables can be omitted. An-
other reason is to select important terms from a potentially high-dimensional
set of basis functions.

Naive strategies based on preliminary model selection for nuisance
models have finite sample distributions that are poorly approximated by
their asymptotic distributions. Recent literature has proposed estima-
tors that converge uniformly over a class of data-generating processes in
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order to solve this problem. An overview of the literature on uniformly
valid causal inference is presented in this paper. However, there may
be a price to pay for uniformly valid procedures in terms of inflated
variability. In that regard, we present a double-selection outcome re-
gression estimator that is uniformly asymptotically unbiased. Sparsity
conditions are considered for the nuisance models. A double robustness
property applies, allowing one nuisance model to be more sparse while
the other is less sparse. Unlike the naive single-selection outcome re-
gression estimator, this estimator does not have a large bias, which is
seen by comparing the coverage of their confidence intervals.

7.2. Paper II

This paper investigates a sensitivity analysis using double robust es-
timators of the average causal effect. Under unconfoundedness, it is
possible to obtain good confidence intervals using the double robust es-
timator, even when the variables to be included in the nuisance models
have been chosen through a variable selection process. This holds even
when the variable selection has not been taken into account when con-
structing the confidence intervals. The reason is that this estimator has
uniform convergence over a class of data-generating processes; our nui-
sance estimators, such as maximum likelihood refit using an estimated
set of covariates, are well-suited to this situation.

To address the possible violation of the assumption of no unobserved
confounders, this paper employs an expression of confounding bias of a
double robust estimator that is valid under weak modelling assumptions.
In this model, the sensitivity parameter is the correlation between error
terms of nuisance models. An estimate of the confounding bias can be
subtracted from the double robust estimator. In this case, valid inference
can be obtained if the sensitivity parameter is small enough that the
finite sample bias and the variance of the estimation of confounding
bias are negligible. Additionally, an existing formula is used to improve
the estimation of the error variance of the outcome model as part of
the confounding bias estimation. Originally proposed for a parametric
setting, the formula performs well when a doubly selected set of variables
is considered.
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7.3. Paper III

This paper presents a bound on the approximation error associated
with a class of functions generated by a multichannel convolutional neu-
ral network structure. Basically, approximation error measures the dis-
tance between a goal function and the best candidate in a function space.
It is assumed that the goal function belongs to a Sobolev space. It is pos-
sible to use the bound on approximation error to calculate a bound for
the estimation error, which, instead of the best candidate, corresponds
to a fitted function that minimizes loss across a data set. Following
this, it is shown that a well-chosen number of channels and layers for
the convolutional neural network architecture (more precisely, a specific
growth rate) can yield the rate of convergence 𝑜𝑃 (𝑛

−1/4) for both lin-
ear and logistic models. In this case, we can construct valid confidence
intervals for causal parameters of interest using a double robust estima-
tor. We then use this methodology to estimate the causal effect of early
retirement on health outcomes for those who retire early, using Swedish
register data.

7.4. Paper IV

When the outcome of a linear regression is missing not at random,
the variance of its error term cannot be consistently estimated using
the mean squared residual of the ordinary least square fit. Previously,
a bias correction has been proposed for this estimator assuming linear
models. This paper presents a new correction formula that does not
require linearity and shows that it yields a consistent estimate using a
nonparametric consistent regression fit. This new correction is then used
for performing sensitivity analysis as described in paper II. A R package
is provided online for this purpose, and a simulation setting from paper
II is re-examined. Finally, the code is used to study the effect of smoking
during pregnancy on child birth weight.

8. Further research

Many causal effect estimation procedures are based on strong para-
metric models. A causal analysis under weaker modelling assumptions
has been explored in this thesis. As theories suggest, the efficient in-
fluence functions can be used for obtaining

√
𝑛 estimators under weak
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modelling assumptions. Further research could investigate the possi-
bility of applying similar theories to new estimands, such as direct and
indirect effects of treatment. Another possibility is to study whether the
variance estimator in paper IV may allow weaker conditions (e.g., on the
sensitivity parameter) for the sensitivity analysis in paper II. Finally, we
have plans to merge hdm.ui and ui into a single package.
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