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Abstract
The introduction of advancedmetering infrastructure (AMI) smartmeters has given rise to fine-grained electricity usage data at
different levels of time granularity. AMI collects high-frequency daily energy consumption data that enables utility companies
and data aggregators to perform a rich set of grid operations such as demand response, grid monitoring, load forecasting and
manymore. However, the privacy concerns associated with daily energy consumption data has been raised. Existing studies on
data anonymization for smart grid data focused on the direct application of perturbation algorithms, such as microaggregation,
to protect the privacy of consumers. In this paper, we empirically show that reliance onmicroaggregation alone is not sufficient
to protect smart grid data. Therefore, we propose DFTMicroagg algorithm that provides a dual level of perturbation to improve
privacy. The algorithm leverages the benefits of discrete Fourier transform (DFT) and microaggregation to provide additional
layer of protection. We evaluated our algorithm on two publicly available smart grid datasets with millions of smart meters
readings. Experimental results based on clustering analysis using k-Means, classification via k-nearest neighbor (kNN)
algorithm and mean hourly energy consumption forecast using Seasonal Auto-Regressive Integrated Moving Average with
eXogenous (SARIMAX) factors model further proved the applicability of the proposed method. Our approach provides utility
companies with more flexibility to control the level of protection for their published energy data.

Keywords Smart meters · Smart grid · Privacy preserving · Discrete Fourier transform · Microaggregation · Load forecasting

1 Introduction

Over the last few decades, the conventional electricity grid
has been in existence, which consist of power generation and
distribution systems. The conventional grid provides electric-
ity to consumers with monthly billing arrangements. This
type of grid is characterized by one-way communication and
there is lack of interaction between the customers and the util-
ity company. This leads to different issues that include loss of
energy and poor peak load management [1,2]. Nevertheless,
the advancement in technology over the years has brought
about the rollout of advanced metering infrastructure (AMI)

B Kayode S. Adewole
kadewole@cs.umu.se; adewole.ks@unilorin.edu.ng

Vicenç Torra
vtorra@cs.umu.se

1 Department of Computing Science, Umeå University, Umeå,
Sweden

2 Department of Computer Science, University of Ilorin, Ilorin,
Nigeria

smart meters that improved the traditional energy grid. AMI
offers advantages such as effective communication between
consumer and utility, increased reliability, resilience and bet-
ter control of demand response load management [3,4]. With
the advancement in smart grid technology, the collection of
fine-grained daily electricity usage data with different lev-
els of time granularity has rapidly grown. The fine-grained
electricity consumption data has enabled utility companies
to perform robust grid operations such as demand response,
gridmonitoring, consumer profiling, customer segmentation,
energy usage prediction, load forecasting and many more
[5,6].

Due to the benefits offered byAMI smartmeters, theEuro-
pean Union (EU) planned to install 225 million smart meters
for electricity and 51 million for gas in the year 2024. In this
year, it is expected that almost 77% of European consumers
of electricity will have access to smart meters [7]. Similarly,
theUKgovernment planned to install 53million smartmeters
while the USA plans to roll out 90 million smart meters as
of 2020 [1,3]. As part of additional benefits, smart grid also
enables consumers to activelymanage their energy usage and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00612-8&domain=pdf
http://orcid.org/0000-0002-0155-7949
http://orcid.org/0000-0002-0368-8037


1300 K. S. Adewole, V. Torra

control energy bills. Moreover, besides the use of electricity
consumption data by utility companies, these data may be
shared with third-party service providers and researchers to
provide more insights on electricity consumption. However,
fine-grained electricity consumption data has been character-
ized with privacy-sensitive consumer behaviors, which are
capable of revealing general habits and lifestyles of house-
holds [4,8]. Consequently, sharing of fine-grained electricity
usage data in its original form has been shown to violate the
security and privacy of electricity customers.

Fine-grained electricity usage data are valuable and can
be sought by many entities including attackers who want to
deduce the type of device or appliance that was in use at
any given time. There is a specific research field called non-
intrusive load monitoring for appliance (NILMA), which
relies on electricity consumption data to extract detailed
information of consumers based on their domestic appliance
usage patterns. The goal of NILMA research is to deduce the
types of appliances used in a house along with their energy
consumption based on a detailed analysis of the current and
voltage of the total load [9,10]. The information obtained
through this analysis is useful to third parties like marketers,
law enforcement, and criminals [11,12]. For instance, the
case of electricity blackout due to hacking has been reported
in Ukraine in 2015, 2016 and January 2017 where hackers
were able to shut down energy systems that supply heat and
light to millions of households [1,13].

As a countermeasure againstNILMAand re-identification
or de-pseudonymization attacks, different solutions have
been proposed, which include cryptographic approach, dif-
ferential privacy, rechargeable battery for obfuscation of
smart meter reading, data aggregation based on trusted
third-party (TTP), and data anonymization and perturbation
[1–3,6,10,12,14–16]. The cryptographic approach involves
the development of encryption protocols to encrypt smart
meter data at the point of generation so that it will be
difficult to determine the specific household consumption.
Cryptographic approach includes both the traditional and
homomorphic encryption schemes [17,18]. By traditional
encryption we refer to those encryption schemes that do not
allow computation on encrypted data. This method can pro-
vide high level of security and privacy before transmitting
the data to the utility company. However, it is not an effi-
cient method for publishing energy data that are needed for
research purposes and complex data analytics as no informa-
tion is released in the published data for complex statistical
analysis [19]. Differentially private (DP) algorithm has been
used to publish electricity consumption data [6]. However,
previous studies have observed that for high-dimensional
time series data, DP often adds too much noise that can lead
to unsatisfactory data utility [12,14].

Battery-based load hiding (BLH) has been proposed in
[2,20]. The goal of BLH approach is to mask smart meter

reading by utilizing a rechargeable battery. This approach has
been mainly theoretic and its successful real-world applica-
tion is yet to be developed [2]. Data aggregation based on
TTP was proposed in [10]. This method relies on TTP for
aggregation of smart meter reading. The aggregated reading
is then transmitted to utility company for workload balancing
and statistical analysis.However, as stated by the authors, this
approach traded security for privacy; hence, practical appli-
cation of data anonymization should be extended to improve
thismethod. To provide data anonymization and perturbation
of smart meter reading, [12,14] introduce PAD system. PAD
directly applied microaggregation using k-ward algorithm to
anonymize daily energy consumption data. However, in our
study, we empirically show that reliance on microaggrega-
tion alone is not sufficient to protect smart grid data against
disclosure risk.

In this paper, a dual-level anonymization algorithm, DFT-
Microagg, is proposed to reduce the disclosure risk of
microaggregation algorithm when used to protect energy
data. To achieve this goal, we first conducted an experiment
to ascertain the privacy value offered by microaggregation
algorithm when used to protect smart grid data. Based on
our findings, we extended this model by combining discrete
Fourier transform (DFT) and microaggregation to improve
privacy. We show that the proposed approach guarantees
promising data utility by experimentingwith threemajor data
mining tasks based on clustering analysis using k-Means,
classification via kNN algorithm and mean hourly load fore-
casting using SARIMAX model. In addition, we compute
information loss (IL) to understand how much information
is lost due to the dual-level perturbation process. To the best
of our knowledge, this is the first paper to extensively inves-
tigate the application of DFT and microaggregation to smart
grid data protection. Additionally, we investigate two record
linkage attacks based on distance-based record linkage and
interval disclosure risk on the protected smart grid data. Sum-
marily, the following are the contributions of this paper:

– Investigate the actual privacy value offered by microag-
gregation for protecting smart grid data.

– Propose a dual-level anonymization algorithm, which
combined DFT with microaggregation.

– Implement two adversarial models using distance-based
record linkage and interval disclosure risk. Specifically,
we propose distance-based record linkage algorithm
which does not only consider the nearest record to the
masked data being linked but also the second nearest
record.

– Conduct extensive experiments on smart grid data with
millions of smart meter readings.

The remaining parts of this paper are organized as fol-
lows: Section 2 discusses related works on smart grid data
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protection. Section 3 provides a detailed information on k-
Anonymity and attack model assumed in the previous work
for protecting smart grid data. Section4presents the proposed
approach in this paper as well as the adversarial models con-
sidered in our study. Section 5 focuses on experimental setup,
and Section 6 presents results and discussion. Finally, Sect. 7
concludes the paper and highlights future research direction.

2 Related work

The literature on privacy-preserving data publishing is vast
and different research domains have been extensively stud-
ied. [21] presented an algorithm to publish dynamic datasets
and compared their results with maximum distance to aver-
age vector (MDAV) microaggregation algorithm. Microag-
gregation procedure has also been extended to time series
data in [22] where the authors evaluated the performance
of two distance metrics: Euclidean distance and Short Time
Series (STS) distance. An empirical comparison of disclo-
sure risk control methods for microdata has been extensively
studied [19]. [23] presented the foundation, newdevelopment
and challenges of data privacy preserving. Nevertheless, in
the domain of smart grid, privacy-preserving energy data
has been studied from different dimensions. These include
methods based on cryptography, differential privacy, BLH,
data aggregation based on TTP, data compression, and data
anonymization and perturbation [1].

Cryptographic methods involved the development of
encryption protocols to encrypt smart meter data at the
point of generation so that it will be difficult to determine
the specific household consumption from the data. This
method can provide some level of security and privacy before
transmitting to the utility company. For instance, [16,17]
proposed similar approaches based on symmetric encryp-
tion algorithms and hashing. In these methods, lightweight
cryptographic protocols encrypt smart meter data before
transmission to the utility company. Similarly, cryptographic
approach that allows computation on encrypted data based
on homomorphic schemes have also been studied [18,24].
The major challenge with cryptographic methods when used
for privacy-preserving data publishing is that no information
is released in the published data for research purposes [19].
Therefore, it is not a suitable method for publishing smart
grid data that requires complex statistical analysis.

Differentially private (DP) algorithms have been studied
for smart grid data [6,9]. However, previous studies have
observed that for high-dimensional time series data, DP often
adds too much noise that can lead to unsatisfactory data util-
ity [12,14]. BLH has been proposed in [2,20]. The goal of
BLH is to install a battery at the consumer end, which can
be charged or discharged to make the electricity meter inca-
pable of precisely obtaining the consumption data of electric

appliances and to obfuscate the actual consumption of the
electric appliances [25]. This masking method is mainly the-
oretic and its empirical validation for real-world application
is still a major concern [2].

[10] proposed data aggregation method that relies on TTP
aggregation of smart meter reading. This approach assumed
that utility companies only need to protect data that is col-
lected at high-frequency (HF) without attributing to specific
consumers while the low-frequency (LF) smart meter data
are transmitted to TTP for aggregation. However, as stated
by the authors, this approach traded security for privacy;
hence, practical application of data anonymization should
be extended to improve this method. A similar assumption
was made to evaluate the performance of de-anonymization
algorithms in [8,26].

Data compression of smart meter reading has been inves-
tigated. The idea is that storage requirement and transmission
overhead can be greatly reduced using data compression
algorithms. [27] conducted an extensive study of the effect
of applying different compression algorithms on smart meter
data. The algorithms investigated are wavelet transform,
symbolic aggregate approximation (SAX), principal compo-
nent analysis (PCA), singular value decomposition (SVD),
dimensionality reduction via linear regression, Huffman cod-
ing and Lempel–Ziv (LZ) algorithm. Nevertheless, this study
established that finding an appropriate balance between effi-
ciency and loss ratio is not a trivial issue when applying
compression algorithms on smart meter data. Similar find-
ings have also been presented in [28,29] based on smartmeter
data compression.

Generative adversarial network (GAN) and additive cor-
related noise have been studied to protect smart meter
consumption data [30,31]. One of the benefits of GAN is its
ability to model the uncertainties of original data and based
on this model a new data is generated, which can be used for
grid operations such as planning and scheduling. Two deep
neural networks are usually trained: one to capture the dis-
tribution of the data and the other to estimate the probability
that the input originates from the real data. This approach is
promising to protect energy consumption data; however, its
capability to prevent disclosure risk attacks is missing in the
literature.

Smart grid and building occupancy data publishing sys-
tem (PAD) was proposed in [12,14]. This approach follows
k-anonymity, which is assumed to guarantee some level of
privacy. K-anonymity has received a wide range of attention
as one of the suitable conditions that data protection algo-
rithms must satisfy to prevent record linkage. In PAD [14],
a linear distance metric was learned to determine data user’s
specific task. A modified version of this approach was pre-
sented in [12] where a nonlinear distancemetric learningwas
formulated based on a deep neural network. The goal of PAD
is to learn user’s specific task by asking data analyst to manu-
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ally annotate energy data to determine the specific data utility
that satisfies the data analyst objective. The annotated data
are then passed to k-ward microaggregation algorithm for
privacy protection. However, asking data users to manually
annotate large time series energy data is not a trivial task. In
this study, we show that reliance on microaggregation alone
is not sufficient to protect daily energy consumption data
against disclosure risk.

3 k-anonymity and attackmodel assumption

In this section, we briefly present the concept of k-anonymity
as well as the attack model that was assumed in the previous
work [12] for protecting energy data, which forms the basis
for conducting our investigative study.

3.1 k-anonymity andmicroaggregation

k-anonymity is not a protection method on its own but a
condition that protected data should satisfy to guarantee the
privacy of the individual in the masked data. k-anonymity
concept was originally proposed in the context of privacy
protection for relational databases [32–34]. The goal of k-
anonymity is to ensure that each individual in a protected
data cannot be identified within a set of k individuals. This
means that the dataset is partitioned into a set of at least k
indistinguishable records. One way to enforce k-anonymity
on the protected data is to use microaggregation algorithm
[35].

Generally, microaggregation protects dataset using two
steps: k-partition and aggregation. Suppose X represents the
input data to be protected and X̂ is the protected data after
applying microaggregation. The two steps are described as
follows:
Step 1 (k-partition): All records in X are partitioned into
different clusters, say g, with each consisting of k or more
records.
Step 2 (aggregation): Compute a representative (i.e., cen-
troid) for each of the clusters in g and use this centroid to
replace the original records in the cluster. This means that all
the k records in the cluster are replaced with the same value;
hence, k-anonymity is guaranteed.

At the k-partitioning step, it is important to ensure that the
in-group distance between cluster element and its centroid
is minimized. This is to enforce homogeneity to minimize
information loss. To achieve this, the sum of squared error
(SSE) criterion in Eq. (1) is minimized. Formally, let ui j
describes the clustering of records in X such that ui j = 1,
if record j is assigned to the ith cluster. Suppose vi is the

centroid of the ith cluster, then homogeneity is enforced by,

Minimize SSE =
g∑

i=1

n∑

j=1

ui j (d(x j , vi ))
2 (1)

Subject to:
g∑

i=1

ui j = 1 ∀ j = 1, 2, . . . , n

2k ≥
n∑

j=1

ui j ≥ k ∀ i = 1, 2, . . . , g

ui j ∈ {0, 1}

If X is numerical, Euclidean distance is mostly chosen
to estimate the distance metric d(x, v) in Eq. (1). Several
versions of microaggregation algorithm have been studied
in the literature, which includes maximum distance (MD),
maximum distance to average vector (MDAV), variable-size
maximum distance to average vector (V-MDAV) and k-ward
[12,35–37]. In this study, we implemented MDAV as addi-
tional layer to DFT due to its performance and wide adoption
in the literature [36]. MDAV is described in Algorithm 1 as
adapted from [37].

3.2 Attackmodel assumption

This section presents the attack model assumed in the pre-
vious study [12] for protecting energy data. This forms the
basis for conducting our investigative study to ascertain the
actual privacy value offered by k-anonymity and microag-
gregation when used to protect energy data. For the sake
of clarity, suppose we have energy data where each record
(row) is daily energy consumption of a particular household
or consumer that has been sampled at a specific time interval
(e.g., 1 second, 5 minutes, 1 hour, etc.). Each column depicts
the timestamp of the day when the energy was consumed.
A household will have multiple records depending on the
coverage of the dataset under consideration. As earlier dis-
cussed, this data is capable of revealing general habits and
lifestyles of a household if published in its original form. By
assumption, applying k-anonymity to this data will guaran-
tee indistinguishability of k household with stronger privacy.
This attack scenario is presented in Fig. 1. In Fig. 1a, an
attacker can infer the privacy of each household by simply
studying the unprotected data because the consumption pat-
tern of an individual in the data is different. Whereas in Fig.
1b, where 2-anonymity is applied to protect the data, it will
be difficult for an attacker to easily distinguish the consump-
tion traces since we can find two households with the same
traces in the protected data.

However, the same household can have very similar
energy consumption traces per day,making the 2-anonymous
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Fig. 1 Illustrating privacy value of k-anonymity for protecting daily
energy consumption data [12]

traces in Fig. 1b point to the same household, thereby leading
to successful record linkage. Therefore, it is worth research-
ing the actual privacy value offers by k-anonymity and
microaggregation for protecting this type of data. In our
study, we empirically show the actual privacy value provided
by this protection procedure by considering two types of dis-
closure risk attacks using distance-based record linkage and
interval disclosure. Our findings show that the disclosure risk
of k-anonymous energy consumption data with direct appli-
cation of microaggregation is high and this can be reduced
further using the proposed approach in this paper without
compromising the utility of the data for research and analyt-
ical purposes.

4 Proposed approach

As show in Fig. 2, this paper presents two ways in which
energy data can be protected. The time series data are first
converted to the form described in Sect. 3.2. This form is
termed interval-based representation in Fig. 2 for standard
representation. The first protection method directly applied
microaggregation on the data to produce the masked data.
The second approach first applied DFT on the data before
microaggregation algorithm. For each case of the protection
procedures,we check the utility and privacy values offered by
these methods. Based on the outcomes, the utility company
decides to publish the protected data for research and ana-
lytical purposes. Section 4.2 presents an overview of MDAV
algorithm and Sect. 4.3 highlights the detail components of
the proposed DFTMicroagg algorithm. In Sect. 6, we show
how the proposed DFTMicroagg algorithm reduces disclo-
sure risk while maintaining a high level of data utility.

4.1 Discrete Fourier transform

Discrete Fourier transform (DFT) converts a finite sequence
of equally spaced samples of a function into the same length
sequence of equally spaced samples coefficients of a finite
combination of complex sinusoids, which is a complex-
valued function of frequency [38,39]. This property of DFT
enables us to efficiently determine the loss and gain of DFT

Fig. 2 Proposed framework for publishing energy data

approach by comparing the microaggregated version of DFT
anonymized data with the original input data.

An inverse DFT (IDFT) is a Fourier series that uses
the DFT samples as coefficients of complex sinusoids at
the corresponding DFT frequencies. To provide additional
level of masking, instead of producing the original input
sequence through IDFT, wemodified the coefficients of DFT
as described in Sect. 4.3. A fast algorithm for implementing
DFT is fast Fourier transform (FFT), which has been widely
used in different domains [38]. In this study, we implemented
FFTas additional layer tomicroaggregation algorithm to pro-
vide dual-level masking of the energy data.

Formally, a one-dimensional DFT converts a sequence of
N complex numbers {xn} = x0, x1, x2, . . . , xN−1 to another
sequence of complex numbers ˆ{xk} = x̂0, x̂1, x̂2, . . . , x̂N−1

such that,

x̂k =
N−1∑

n=0

xn .e
− i2π

N kn (2)

The transformation to the complex-valued function of
frequency is also denoted as x̂ = F(x). The inverse of one-
dimensional DFT for a sequence of N complex numbers is
given by,

xn = 1

N

N−1∑

k=0

x̂k .e
i2π
N kn (3)

Suppose n is split into even and odd indexed terms such
that n = 2r for even and n = 2r + 1 for odd, where r =
0, 1, . . . , N

2 −1. Then Eq. (2) can be computed concurrently
in terms of even and odd terms such that,

x̂k =
N
2 −1∑

r=0

x(2r).e
− i2π

N k(2r) +
N
2 −1∑

r=0

x[2r+1].e− i2π
N k(2r+1)

(4)
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x̂k =
N
2 −1∑

r=0

x(2r).e
− i2π

N k(2r) + e− i2π
N k

N
2 −1∑

r=0

x[2r+1].e− i2π
N k(2r)

(5)

x̂k =
N
2 −1∑

r=0

x(2r).e
− i2π

N/2 k(r) + e− i2π
N k

N
2 −1∑

r=0

x[2r+1].e− i2π
N/2 k(r)

(6)

Similarly, a two-dimensional DFT of discrete sequence
f (x, y) of size M × N is given by,

F(u, v) = 1

MN

M−1∑

x=0

N−1∑

y=0

f (x, y).e−i2π(ux/M+vy/N ) (7)

where F(u, v) is the frequency component of the discrete
function f (x, y), u and v are the frequency variables in DFT,
and x and y are the spatial variables in the input space. The
inverse of Eq. (7) is given by,

f (x, y) =
M−1∑

u=0

N−1∑

v=0

F(u, v).ei2π(ux/M+vy/N ) (8)

4.2 MDAVmicroaggregation

As discussed in Sect. 3, there are several algorithms for
microaggregation. However, this study has adapted MDAV
[37] as additional layer to DFT due to its performance and
wide adoption in the literature [36]. Algorithm 1 describes
the stages involved in MDAV.

4.3 DFTMicroagg

4.3.1 Overview of DFTMicroagg

In this study, we propose DFTMicroagg (see Algorithm 2) to
improve privacy guarantees of microaggregation algorithm
without violating the utility of the protected data. The pro-
posed algorithm aims to improve the privacy value offered
by the protection method presented in Fig. 1b. The algo-
rithm takes as input the original energy data X to be masked,
an integer number representing the anonymity level and the
desired coefficient value which is computed according to Eq.
(9). X is amatrix representing daily energy consumption time
series data as described in Sect. 3.2. The algorithm produces
as output the masked dataset with k-anonymity guaranteed.
The parameter coeff in the algorithm controls the degree
of compression. The proposed algorithm applies a low-pass
filtering as an anonymization step before the microaggrega-
tion algorithm (see Algorithm 2). This provides a two-level
anonymization for the protected energy data and stronger
privacy guarantees.

Algorithm 1: MDAV Microaggregation
Input: X :- original dataset to protect, k: integer, representing

anonymity level
Output: X̂ :- the protected dataset with k-anonymity
begin

C = ∅;
while |X | ≥ 3k do

x̃ ← average record of all records in X ;
xr ← most distant record from x̃ ;
xs ← most distant record from xr ;
Cr ← cluster around xr (with xr and the k − 1 closest
records to xr );
Cs ← cluster around xs (with xs and the k − 1 closest
records to xs );
Remove records in Cr and Cs from X ;
C = C ∪ {Cr ,Cs};

end
if |X | ≥ 2k then

x̃ ← average record of all records in X ;
xr ← most distant record from x̃ ;
Cr ← cluster around xr (with xr and the k − 1 closest
records to xr );
Cs ← X \ Cr (form another cluster with the rest of
the records);
C = C ∪ {Cr ,Cs};

else
C = C ∪ {X};

end
return (C);

end

First, the variable no timestamps in the algorithm repre-
sents the total number of columns which corresponds to the
timestamps of the day when the energy was consumed. The
algorithm tests if the parameter coeff is even or odd. Based on
the outcome of the test, the indices for the real and imaginary
components to be used during FFT are then computed using
the function sequence. This function takes three parameters.
The first parameter is the start position of the sequence to
be generated, the second is the stop position which signifies
the end of the interval. The third parameter is the step value
which indicates the spacing between values in the generated
sequence. So, the function sequence can be seen as equivalent
to numpy.arange() function in Python. The generated real and
imaginary indices are used for the FFT computation. Inverse
FFT takes as input the computed DFT and the no timestamps
to produce the transformed data. This is passed as input to
MDAV along with the value of k to generate the final masked
dataset X̂ .

4.3.2 Use case of the proposed approach

Suppose we have a time series dataset D = {SMcid ,

t imestamp, value} that was collected from AMI smart
meters daily by the utility company. In this dataset, SMcid

denotes the identifier of households basedon the smartmeters
used. The high-frequency (HF) data (i.e., value) from the
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smart meters denotes the energy consumption of the house-
holds at a particular timestamp of the day. As discussed
earlier, the HF data can reveal the consumption patterns of
the households and this can be explored by attackers even
if SMcid is pseudonymized. Utility company wants to pro-
tect the privacy of the households in this data so that it will
be difficult for an attacker to re-identify a particular house-
hold record. At the same time, the protected data should be
useful for research and analytical purposes. To protect D via
microaggregation, first, the data need to be converted to what
we termed interval − based representation or standard
format X where t1, t2, . . . , tn ∈ T represent the number of
attributes (t imestamps) in X along with attributes Date and
SMcid . Each row in X denotes the time series daily energy
consumption data recorded as SMcid ,Date, and T . Each
ti ∈ T is a numeric attribute corresponding to the actual
energy consumption value at a time ti and its value needs
to be masked to protect the privacy of the households in
X . In addition, SMcid is pseudonymized before publishing
the data by the utility company to hide the true identities
of the households. Each ti ∈ T is a quasi − identi f ier
and combination of ti can be used to re-identify a specific
household. It is assumed that a specific ti or a subset of
ti which is in the possession of an attacker is considered
as con f idential attribute(s). Therefore, before publishing
X , each ti ∈ T must be masked to avoid privacy leak-
age.

To achieve this goal, as stated in Sect. 4, we provide two
ways in which X can be protected. The first is to directly
apply microaggregation on X to obtain the masked data X̂ .
The second approach is to apply the proposed DFTMicroagg
algorithm to protect X . For the sake of clarity, the number of
coefficients used for each test case of DFTMicroagg is given
by,

coeff = T

i
(9)

where T is the total number of timestamps in X and i is
a constant that is to be chosen by the utility company for
privacy control. We evaluated with different values of i as
presented in Sect. 5.2.5. The motivation is that instead of
continuously increasing the value of k to a large number
during microaggregation, which can lead to significant infor-
mation loss, we provide additional layer to microaggregation
that offers suitable masking with specific consideration on
the shape of the time series. We empirically show that this
approach reduces disclosure risk without compromising the
data utility of the protected data for research and analytical
purposes.

Algorithm 2: DFTMicroagg
Input: X :- original dataset to protect, k: integer, representing

anonymity level,
coe f f : integer, representing the number of DFT

coefficients to keep.
Output: X̂ :- the protected dataset with k-anonymity
begin

no-timestamps ← number of timestamps in X ;
if is-even(coe f f ) then

Re-index = sequence(1, coe f f , 2);
Im-index = sequence(2, coe f f , 2);
d f t- f f t ← compute DFT on X using Re-index and
Im-index ;

else
Re-index = sequence(1, coe f f , 2);
Im-index = sequence(2, coe f f + 1, 2);
d f t- f f t ← compute DFT on X using Re-index and
Im-index ;

end
X -trans f orm ← compute inverse FFT using d f t- f f t
and no-timestamps;

X̂ ← MDAV (X -trans f orm, k);

return (X̂);
end

4.4 Adversarial model

In this paper, we consider an adversary whose goal is to
launch two types of record linkage attacks (distance-based
record linkage and interval disclosure) to link the records in
the masked dataset with an external data that the intruder
has obtained through an external knowledge. The external
data usually contain the key attributes such as the one in
the masked data. When testing a record linkage model, the
original dataset is used to represent the intruder external data.
For each case of the attackmodel,we check the privacyvalues
ofmicroaggregation andDFTMicroagg for protecting energy
data.

4.4.1 Distance-based record linkage

The goal of an attacker with distance-based record link-
age is to use a distance metric to link each record in the
masked dataset with its corresponding record in the original.
[19] gives a brief description of how a robust distance-based
record linkage algorithm for a typical case of microaggrega-
tion protection should be developed. For each record in the
masked dataset, the distance to every record in the original
dataset is computed. Thereafter, the ‘closest’ and ‘second
closest’ records in the original dataset are considered. A
record in the masked dataset is labeled as ‘linked’ when the
closest record in the original dataset is the corresponding
original record. Similarly, a record in the masked dataset is
labeled as ‘linked to 2nd closest’ when the second closest
record in the original dataset turns out to be the correspond-
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ing original record. In all other cases, a record in the masked
dataset is labeled as ‘not linked.’ The percentage of dis-
closure risk is computed based on the number of ‘linked’
and ‘linked to 2nd closest’ records to the overall records in
the masked dataset. Based on this description, we propose a
robust distance-based record linkage algorithm in Algorithm
3, which does not only consider the closest record but also
the second closest to the masked record being linked. This
algorithm can also be generalized to evaluate the privacy
value of other anonymization methods. Algorithm 3 uses a
list comprehension method to compute the distances from
each record in the masked dataset to every records in the
original dataset. Note also how the closest and second clos-
est distances were computed after the distance computation.
The algorithm assumed the maximum knowledge attacker
could have regarding the original data.

Algorithm 3: Distance-based Record Linkage

Input: X :- original dataset, X̂ :- masked dataset
Output: disclosure risk percentage
linkCount ← 0;
begin

for i, row-i in X̂ .rows() do
d ←
[Euclidean-dist(row-i, row- j)for j, row- j inX .rows()];

//compute the closest and second closest;
f irst-closest-dist ← system.maxintsi ze();
f irst-closest-index ← system.maxintsi ze();
second-closest-dist ← system.maxintsi ze();
second-closest-index ← system.maxintsi ze();
for index,val in enumerate(d) do

if val < f irst-closest-dist then
second-closest-dist ←
f irst-closest-dist ;
second-closest-index ←
f irst-closest-index ;
f irst-closest-dist ← val;
f irst-closest-index ← index ;

end
else if val < second-closest-dist and val �=
f irst-closest-dist then

second-closest-dist ← val;
second-closest-index ← index ;

end
end
//increament linkCount based on closest status;
if f irst-closest-index =
i or second-closest-index = i then

linkCount ← linkCount + 1;
end

end
return (linkCount/len(X̂) × 100);

end
Euclidean-dist(vector1, vector2)
return sqrt(sum((vector1 − vector2)2));

4.4.2 Interval disclosure risk

The second adversarial model considered in this study is
interval disclosure risk [19], which is an attribute inference
attack that tries to infer the smart meter values. Formally,
for each record r in the masked dataset X̂ , an attacker com-
putes rank interval based on the following procedures. First,
each attribute in X̂ is ranked independently to define a rank
interval around the value the attribute takes on each record.
Second, the ranks of values within the interval for an attribute
around record r should differ less than p percent of the total
number of records and the rank in the center of the interval
should correspond to the value of the attribute in record r . If
true, the proportion of original values that fall into the inter-
val centered around their corresponding masked value is a
disclosure risk measure. A 100 percent proportion indicates
that an attacker is completely certain that the original value
falls in the interval around the masked value. This leads to
interval disclosure of the record in the original data. In the
case of the daily energy consumption dataset, each attribute
is taken as a particular t imestamp of the day. A quantitative
measure is then computed to quantify the interval disclo-
sure risk for the protected data X̂ . We implemented interval
disclosure via sdcMicro package. Algorithm 4 provides the
procedural steps to achieve this goal. In this algorithm, n is
the total number of records in X̂ and the parameter p can be
used to enlarge or down scale the interval.

5 Experimental setup

All experiments have been implemented in Python program-
ming language on a Dell Laptop computer runningWindows
operating system with 1TB HDD and 32GB RAM. As stated
in Sect. 4.4.2, we implemented interval disclosure risk using
sdcMicro. sdcMicro is a statistical disclosure control meth-
ods for anonymization of data and risk estimation package
in R. However, we use rpy2 package in Python to access
sdcMicro.

5.1 Datasets description

We evaluated the efficacy of the proposed approach based on
two publicly available datasets. The first dataset ‘EnerNOC
GreenButton Data,’ hereafter refers to as Dataset 1, is a time
series energy usage data collected at 5-minute resolution for
100 commercial/industrial sites in the year 2012. The data
is available for download at https://open-enernoc-data.s3.
amazonaws.com/anon/index.html. The second dataset ‘Low
Carbon London Electric Vehicle Load Profiles Data,’ here-
after refers to asDataset 2, is a time series data relating to load
profiles for electric vehicle charging. This is part of the Low
Carbon London (LCL) project delivered by UK Power Net-
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Algorithm 4: Interval Disclosure Risk

Input: X :- original dataset, X̂ :- masked dataset, n :- total
records in X̂ , p :- percentage of the deviation

Output: disclosure risk percentage
linkCount ← 0;
begin

for row I ndex in X̂ .rows() do
for attrib in X̂ .columns() do

rank Interval ← rank attribute attrib by
computing rank interval;
for rankValue in rank Interval do

if rankValue < p/100 ∗ n then
midRank ← median(rank Interval);

if midRank ← X̂ [row I ndex, attrib]
then

if
X [row I ndex, attrib]inrank Interval
then

linkCount ← linkCount + 1;
break;

end
end

end
end

end
end
return (linkCount/si ze(X̂) × 100);

end

works.Thedataset spans twoyears from2013 to2014with 53
commercial and 70 residential trials. The data is available for
download at https://data.london.gov.uk/dataset/low-carbon-
london-electric-vehicle- load-profiles. Table 1 summarizes
the datasets.

5.2 Utility measures

This section discusses the various ways inwhich the utility of
the proposed approach has been validated. This is to ascer-
tain the usefulness of the protected data for different grid
operations such as consumer clustering, consumer profiling,
customer segmentation, household daily usage classifica-
tion, time series forecasting and so on. To capture different
tasks and application domains that would be beneficial to
data analysts, we conducted clustering analysis using k-
Means algorithm, classification basedonkNNand time series
forecasting using SARIMAX model. In addition, we imple-
mented information loss as described in Sect. 5.2.1 to check
the loss of the proposed approach.

5.2.1 Information loss

Measuring information loss (IL) is a crucial step to evaluate
a protection procedure in terms of utility–privacy trade-off.
IL defines loss of data utility and the goal of the protection

procedure is to minimize this loss while reducing the risk of
disclosure to an acceptable level. In this study, IL metric that
computes the distance between the original dataset X and the
masked dataset X̂ is implemented as,

I L(X , X̂) = 1

T N

T∑

j=1

N∑

i=1

|xi j − x̂i j |√
2σ j

(10)

where T is the total number of t imestamps; N is the
number of daily energy profiles in the dataset; xi j and x̂i j
are the values before and after perturbation for t imestamp j
and profile i , respectively; σ j is the standard deviation of
t imestamp j in X [43]. The higher the value of I L , the
higher the information loss.

5.2.2 Clustering analysis

To test the utility of the protected data in terms of clustering
of daily energy profile, we implemented k-Means algo-
rithmwith k-Means++ heuristic algorithm for initializing the
clusters’ centroids [44]. k-Means is a popular clustering algo-
rithm that partitions data into k clusters around the nearest
centroids (mean of the cluster centers). To avoid confusing
the k hyperparameter in k-Means algorithmwithmicroaggre-
gation, we represent k in k-Means as c, where c is the number
of clusters to generate from the data. To measure clustering
quality, we use Silhouette score as a cluster validity measure
that checks how similar a daily energy profile is to its cluster
(cohesion) compared to the daily energy profile in another
clusters (separation). Silhouette is defined as a method of
interpretation and validation of consistency within clusters
of data. The silhouette value measures how similar an object
is to its own cluster compared to other clusters. Silhouette
score ranges from −1 to +1, where a high score indicates
that the daily energy profile is well grouped to its cluster. −1
indicates poor clustering and 0 indicates overlapping clus-
ters.

5.2.3 kNN classification

To further test the utility of the protected data, we conducted
a classification taskwhere each daily energy profile is catego-
rized based on the household or consumer type. For Dataset
1, the classes are 1, 2, 3 and 4 representing the commercial
property, education, food sales and storage, and light indus-
trial buildings, respectively, as described in the dataset. There
are two classes in Dataset 2 where 1 is used for residen-
tial consumers and 2 for commercial consumers. We train
kNN algorithm to classify the profile in both the original
and masked datasets. kNN is a supervised machine learn-
ing algorithm, which can be used for both classification and
regression tasks. During the classification stage, an unlabeled
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Table 1 Datasets description

Name Date Size Attribute Resolution Data owner

EnerNOC Green-
Button Data

2012 100 commer-
cial/industrial
sites. 10,531,288
readings (after
merging) (Mean:
49.83, Std:
79.13).

Timestamp,
dttm_uct, value
(kW), estimated,
anomaly, lat,
long.

5-minute EnerNOC

LowCarbon Lon-
donElectricVehi-
cle Load Profiles
Data

2013-2014 123 customers,
53 commercial
and 70 residential
trials. 4,472,919
readings (after
merging) (Mean:
0.57, Std: 2.45).

Energy (kWh)
for different
measurement.

10-minute UK Power Net-
works

test sample is classified by assigning the class which is most
frequent among the k training samples nearest to that test
sample. For a similar reason, as stated in Sect. 5.2.2, we
use c to represent the number of nearest neighbors for kNN.
To evaluate the classification performance of kNN, accuracy
and F1-score were used. Accuracy measures the percentage
of the correct predictions for the test samples while F1-score
is calculated from recall and precision.

5.2.4 Forecasting model

The most common task on time series data is forecasting
and to test the usefulness of the protected data based on
the proposed approach, we developed SARIMAX model to
perform mean hourly energy consumption forecast. SARI-
MAX is an extension of Auto-regressive Integrated Moving
Average (ARIMA) model that comprises two parts: auto-
regressive part (AR) and the moving average (AR) part. The
Integrated (I) component of ARIMA is for differencing pur-
poses. ARIMA model has been widely used for time series
forecasting as it provides promising models on time series
data. However, the main issue with ARIMA is that it cannot
handle seasonality. SeasonalARIMA (SARIMA) is provided
to handle this drawback. SARIMA component is given by
SARI MA(p, d, q)(P, D, Q)m , where p is the non-seasonal
AR order; d is the non-seasonal differencing; q is the non-
seasonal MA order; P is the seasonal AR order; D is the
seasonal differencing; Q is the seasonal MA order, and m is
the length of repeating seasonal pattern. Using the seasonal
components, SARIMA solves the problem of seasonality.
SARIMAX extends this model by providing the capability to
handle exogenous attributes. For further reading on ARIMA
model, the reader is referred to [45]. To efficiently determine
the values of the SARIMAXmodel parameters, we perform a
grid search method to obtain the optimal values for modeling
SARIMAX.

The performance of the forecast model is evaluated using
Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE) metrics. MSE is defined in Eq. (11). RMSE is the
square root of MSE.

MSE = 1

N

N∑

i=1

(Yi − Ŷi )
2 (11)

where N is the total number of data points; Yi is the
observed value for data i in the time series data; and Ŷi is
the equivalent forecasted value.

5.2.5 Hyperparameter settings

The different parameter settings for each of the methods dis-
cussed in the previous sections are summarized in Table 2.

6 Results and discussion

In this section,we discuss the results obtained from the differ-
ent experiments conducted in this study to test the efficacy
of the proposed method. This section is divided into two.
The first section shows the results obtained when applying
microaggregation as the protection mechanism. The second
section presents the results of microaggregation alongside
DFTMicroagg results. The two sections focus on utility and
privacy results computed for the two datasets that we have
considered in this study.

6.1 Microaggregation results

This section presents the results of applying microaggrega-
tion (see Algorithm 1) as a privacy protection mechanism
on Dataset 1 and Dataset 2. Each daily profile in Dataset 1
was sampled at an equal time interval of 5 minutes, so, there
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Table 2 Hyperparameters
settings

Algorithm/Model Hyperparameter Value

MDAV k k = 2, 3, 4, 5.

DFTMicroagg k, coeff k = 2, 3, 4, 5 and coeff is based on Eq. (9), where i = 2, 3, 4, 5, 6.

k-Means c c = 2, 3, 4.

kNN c c = 2, 3.

SARIMAX (p, d, q)(P, D, Q)m Optimal value using grid search. (1, 0, 1)(1, 1, 1, 12).

are a total of 288 timestamps per day (12 * 24h = 288 sam-
ples). It is important to mention that there is a total of 36,401
records in Dataset 1 and 29,597 records in Dataset 2 after
merging and preprocessing based on interval representation
format. The unit of measurement of the two datasets varies
and The level of sparsity of Dataset 2 is higher than Dataset
1 as shown in 4. Similarly, Dataset 2 has a total timestamps
of 144 per day, which was sampled at 10-minute resolution
(i.e., 6 * 24h = 144 samples).

Figure 3 shows the result of applying micrpaggregation
on Dataset 1. It can be seen that microaggregation algorithm
computes the mean of the similar daily profiles that were
clustered alongside the first time series investigated in these
plots. The series in the figure represent a full day consump-
tion. It can be seen that at around 12:50pm to 7:00pm (i.e.,
timestamps 150-228), the consumers experience a signifi-
cant increase in energy usage for that day, which is similar to
the usage pattern of the first time series investigated. This is
usually due to the use of energy-hungry appliances that con-
sume a significant amount of energy for that period. Figures
show that different consumers have very similar daily energy
usage patterns. Similarly, Fig. 4 shows the application of
microaggregation algorithm to protect the records in Dataset
2. The figures demonstrate similar usage patterns in energy
consumption of the consumers in the dataset when charging
their electric vehicles. The series in the figures represent a
full day consumption. It can be seen that at some periods of
the day, the energy usage of some consumers increases for a
longer period. This shows the consumption habit of the con-
sumers in the dataset when charging their electric vehicles.
Microaggregation aims to protect this consumption habit by
generating k-anonymous records that are indistinguishable.

As discussed earlier, k-anonymity is one way to provide
privacy protection at individual level, as microaggregation
is an algorithm that produces data that is compliant with
the k-anonymity privacy model. Using microaggregation on
the daily energy profile data, we can provide k-anonymous
profiles. For instance, when k = 2, there will be at least 2 daily
energy profiles with exactly the same values (i.e., the output
of the algorithm will be two exact copies of the same time
series generated from two different, but similar, individual
time series).

Fig. 3 Microaggregation on Interval-based daily energy consumption
data for the first time series in Dataset 1. a k = 2; b k = 3; c k = 4 and d
k = 5

Fig. 4 Microaggregation on Interval-based daily energy consumption
data for the first time series in Dataset 2. a k = 2; b k = 3; c k = 4 and d
k = 5

6.1.1 Utility

Information Loss: Table 3 and Table 4 show the information
loss (IL) of applying microaggregation directly on Dataset
1 and Dataset 2, respectively. As expected, the higher the
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Table 3 Information loss for each level of k for interval-based repre-
sentation on Dataset 1

k-Anonymity Level Information Loss (IL)

k = 2 0.1171

k = 3 0.1421

k = 4 0.1784

k = 5 0.1992

Table 4 Information loss for each level of k for interval-based repre-
sentation on Dataset 2

k-Anonymity level Information loss (IL)

k = 2 0.0440

k = 3 0.0634

k = 4 0.0759

k = 5 0.0824

value of k, the higher the information loss. Therefore, we
check the utility of the microaggregated masked data when
use for different data analyses.
Clustering analysis: Tables 5 and 6 show the result of apply-
ing k-Means clustering on the original and microaggregated
interval-based data using Dataset 1 and Dataset 2, respec-
tively. The results obtained show that the microaggregated
data is very useful for clustering tasks. Most importantly, the
clustering process of microaggregation affects the k-Means
clustering step as it can be seen clearly when the number
of clusters from k-Means is 4 in Dataset 1. This produces
more divergence on the clustering analysis. For each case
of clustering on the microaggregated data based on Dataset
1, Silhouette score was above 0.7 and higher than the result
obtained with the original data, which shows the quality of
the clusters formed.

Similarly for Dataset 2, for each case of the clustering on
the microaggregated data, Silhouette score was above 0.6,
which shows the quality of the clusters formed.
Classification: Recall that in Sect. 5.2.3, we stated that there
are four classes in Dataset 1 representing the commercial
property, education, food sales and storage, and light indus-
trial buildings, respectively, as described in the dataset. In
this section, we check the performance of the microaggre-
gated data for classification of these consumers type based
on their daily energy consumption. As shown in Table 7,
microaggregated data achieved close results in terms of accu-
racy and F1-score when compare with the original data. The
accuracy and F1-score of the microaggregation dropped to
79.18% when two nearest neighbors were used with k = 5.
For three nearest neighbors, the accuracy and F1-score main-
tained 80.41% with k = 5. This result confirmed the utility
of the microaggregated data for classification of consumers’
daily consumption profiles on Dataset 1.

Fig. 5 Utility based on mean hourly time series forecasting on original
data for consumer 6

For Dataset 2, as shown in Table 8, microaggregation
achieved close results in terms of accuracy and F1-score
when compared with the original data. The accuracy and
F1-score of the microaggregation were above 80% for
each value of k. This results confirmed the usefulness of
microaggregated data for classification of consumers energy
consumption in Dataset 2 as either residential or commercial
profile.
Time series forecasting:We conducted mean hourly time
series forecasting on the original and microaggregated data
using the two datasets. The procedure to achieve this using
Dataset 1 as an example is as follows. First, in order to
align with the specific time series data requirement format
for SARIMAX model, we converted the interval-based data
to the form discussed earlier in Sect. 4.3. This conversion
generated over 10 million samples (see Sect. 5.1). Second,
we generated mean hourly load data, which was used to
develop the forecast model. The goal of SARIMAX model
is to predict the value of hourly energy consumption for a
particular consumer and timestamp. This aligned with the
demand response service that can be rendered by the utility
company.We use data from September 1, 2012, to December
31, 2012, as the test data to validate the SARIMAX model
based on Dataset 1. Recall that Dataset 1 covers a period
between January 2012 and December 2012. Due to the space
constraint, Figs. 5 and 6 showed the visualizations of mean
hourly forecasting on original and microaggregated data for
consumer with identity 6 in Dataset 1, respectively.

Table 9 shows the MSE and RMSE results of the forecast
model for both the original and microaggregated data for
Dataset 1. For Dataset 1, we noticed that theMSE and RMSE
of forecasting for the microaggregated data reduced than the
original data. It can also be seenwhen the value of k increases.

Similarly, Table 10 presents the MSE and RMSE of mean
hourly load forecasting onDataset 2. As discussed earlier, the
level of sparsity of Dataset 2 is higher that Dataset 1. This
may account for the reduction inMSEwhen comparewith the
results obtained with Dataset 1. However, microaggregation
maintained a consistent results across the two datasets when
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Table 5 Utility based on clustering analysis on original and microaggregated interval-based representation on Dataset 1

Silhouette score (c = 2) Silhouette score (c = 3) Silhouette score (c = 4)

Original 0.7963 0.7567 0.6120

Microaggregation (k = 2) 0.7970 0.7584 0.7171

Microaggregation (k = 3) 0.7970 0.7591 0.7186

Microaggregation (k = 4) 0.7979 0.7595 0.7192

Microaggregation (k = 5) 0.7984 0.7599 0.7197

Table 6 Utility based on clustering analysis on original and microaggregated interval-based representation on Dataset 2

Silhouette score (c = 2) Silhouette score (c = 3) Silhouette score (c = 4)

Original 0.6685 0.6760 0.6772

Microaggregation (k = 2) 0.6683 0.6729 0.6818

Microaggregation (k = 3) 0.6712 0.6745 0.6878

Microaggregation (k = 4) 0.6503 0.6719 0.6853

Microaggregation (k = 5) 0.6723 0.6725 0.6850

Table 7 Utility based on kNN
classification on original and
microaggregated interval-based
representation for Dataset 1

kNN (c = 2) kNN (c = 3)
Acc F1-Score Acc F1-Score

Original 0.8290 0.8290 0.8247 0.8247

Microaggregation (k = 2) 0.8151 0.8151 0.8144 0.8144

Microaggregation (k = 3) 0.8111 0.8111 0.8152 0.8152

Microaggregation (k = 4) 0.8000 0.8000 0.8079 0.8079

Microaggregation (k = 5) 0.7918 0.7918 0.8041 0.8041

Fig. 6 Utility based onmean hourly time series forecasting onmicroag-
gregated data for consumer 6

Table 9 Utility based on mean hourly load forecasting on original and
microaggregated data for Dataset 1

MSE RMSE

Original 56.9108 7.5439

Microaggregation (k = 2) 50.3921 7.0987

Microaggregation (k = 3) 48.3414 6.9528

Microaggregation (k = 4) 44.3132 6.6568

Microaggregation (k = 5) 41.5235 6.4439

compared with the original for each level of k. This shows
the applicability of the masked data for forecasting energy
load.

Table 8 Utility based on kNN
classification on original and
microaggregated interval-based
representation for Dataset 2

kNN (c = 2) kNN (c = 3)
Acc F1-Score Acc F1-Score

Original 0.8796 0.8796 0.8708 0.8708

Microaggregation (k = 2) 0.8599 0.8599 0.8607 0.8607

Microaggregation (k = 3) 0.8453 0.8453 0.8474 0.8474

Microaggregation (k = 4) 0.8305 0.8305 0.8282 0.8282

Microaggregation (k = 5) 0.8227 0.8227 0.8220 0.8220
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Table 10 Utility based onmean hourly load forecasting on original and
microaggregated data for Dataset 2

MSE RMSE

Original 2.5402 1.5938

Microaggregation (k = 2) 2.3918 1.5465

Microaggregation (k = 3) 2.2890 1.5129

Microaggregation (k = 4) 2.1946 1.4814

Microaggregation (k = 5) 2.1264 1.4582

6.1.2 Disclosure risk

This section discusses the privacy value of microaggregation
when used to protect Dataset 1 and Dataset 2. Table 11 shows
the results obtained using the proposed distance-based record
linkage algorithm (see Algorithm 3) and interval disclosure
risk based on Dataset 1. To provide a detailed analysis on
record linkage, we evaluated two scenarios. The first being
the case when the masked record was linked to the closest
record in the original dataset and the second scenario was
when the masked record was linked to both the closest and
second closest records (see Algorithm 3 description). The
results based on the second scenario were presented inside
the parentheses. The one without parentheses represents the
results of the first scenario. For interval disclosure, we passed
both the original and masked datasets to the disclosure risk
measure of sdcMicro. The result of this experiment was also
shown in Table 11. Recall that we have a total of 36,401 and
29,597 records in Dataset 1 and Dataset 2, respectively, after
merging and preprocessing based on interval representation
format.

From the results obtained, it can be seen that the disclosure
risk of microaggregation for protecting Dataset 1 is on the
high side. For instance,when k = 2, 48.67%was linked to the
closest records while 87.26% was linked to both the closest
and second closest records in the original with distance-
based record linkage. For interval disclosure, an attacker
was 71.86% sure that the original value lies in the interval
constructed around the masked value. The lowest disclosure
risk when k = 5 produced 17.35% and 34.04% for the two
scenarios of distance-based record linkage, respectively, and
47.87% for interval disclosure. The goal of DFTMicroagg is
to further reduce this disclosure risk to a certain extent while
still maintaining high level of data utility with minimal loss
without the need to increase the value of k. In Sect. 6.2, we
empirically show that this is achievable with the application
of DFTMicroagg.

Similarly, Table 12 shows the disclosure risk of applying
microaggregation as a protection procedure for Dataset 2. As
mentioned earlier, the goal of DFTMicroagg is to lower the
disclosure risk while ensuring the usability of the masked
data for research and analytic purposes.

Fig. 7 k-anonymity satisfaction via DFTMicroagg algorithm (coeff =
144) for the first time series in Dataset 1. a k = 2; b k = 3; c k = 4 and
d k = 5

6.2 Microaggregation and DFTMicroagg

In this section, we discuss the results obtained when DFT-
Microagg was applied as a protection method. Due to the
space constraint, we present the results of the upper and
lower value of the coefficients that were used by DFTMi-
croagg algorithm. The upper value corresponds to 144 while
the lower value is 48 for Dataset 1 (see Eq. (9)). These are
equivalent to 72 and 24, respectively, for Dataset 2. These
two values will vary according to the dataset as earlier dis-
cussed. In addition, for simplicity and clear comparison, we
present microaggregation results alongside DFTMicroagg in
this section. Despite the fact that the two datasets were col-
lected using different units ofmeasurement, microagregation
andDFTMicroagg produced consistent results across the two
datasets as will be seen in the results obtained.

Figures 7 and 8 show the outcome of applying DFTMi-
croagg with 144 and 48 coefficients values, respectively,
on Dataset 1. It can be seen from the figures that DFT-
Microagg algorithm maintained the consumption patterns
similar to what was obtained when microaggregation was
directly applied (see Fig. 3). The patterns of households with
similar energy consumption have been preserved and through
the application of microaggregation as additional layer, k-
anonymity was enforced on the data for privacy protection.

Figures 9 and 10 show the outcome of applying DFTMi-
croagg with 72 and 24 coefficients values, respectively, on
Dataset 2. Similarly,DFTMicroaggmaintained the consump-
tion patterns similar to what was obtained when microag-
gregation was directly applied (see Fig. 4). The patterns of
households with similar energy consumption have been pro-
tected based on k-anonymity. The consumption values of all
the similar energy profiles including that of the first time
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Table 11 Disclosure risk for
each level of k based on
microaggregated data for
Dataset 1

Disclosure Risk (%)
Distance-based record linkage Interval disclosure

Microaggregation (k = 2) 48.67 (87.26) 71.86

Microaggregation (k = 3) 31.61 (62.59) 61.54

Microaggregation (k = 4) 22.91 (44.87) 51.61

Microaggregation (k = 5) 17.35 (34.04) 47.87

Table 12 Disclosure risk for
each level of k based on
microaggregated data for
Dataset 2

Disclosure Risk (%)
Distance-based record linkage Interval disclosure

Microaggregation (k = 2) 47.30 (80.85) 41.02

Microaggregation (k = 3) 28.83 (54.97) 34.93

Microaggregation (k = 4) 19.14 (35.66) 31.31

Microaggregation (k = 5) 14.05 (26.11) 28.98

Fig. 8 k-anonymity satisfaction via DFTMicroagg algorithm (coeff =
48) for the first time series in Dataset 1. a k = 2; b k = 3; c k = 4 and d
k = 5

series investigated in the plots have been replaced with the
centroid that was computed using microaggregation layer.
The subsequent sections present the utility and disclosure
risk of applying DFTMicroagg to protect the two datasets.

6.2.1 Utility

Information Loss: Table 13 shows the information loss of
applying DFTMicroagg with the IL of microaggregation
based on Dataset 1. It was observed that the higher the value
of coefficient, the lower the information loss. The subse-
quent sections show the benefits of incurring this loss as a
good trade-off for privacy preserving of individual house-
hold consumption. It can also be seen in the subsequent
sections that despite this loss, DFTMicroagg maintained a
high level of data utility for research and analytic purposes.

Fig. 9 k-anonymity satisfaction via DFTMicroagg algorithm (coeff =
72) for the first time series in Dataset 2. a k = 2; b k = 3; c k = 4 and d
k = 5

Therefore, utility company has the flexible option of choos-
ing the actual coefficient value that suits their data publication
policy. Similarly, for Dataset 2, Table 14 shows the IL of both
microaggregation and DFTMicroagg.
Clustering analysis: Tables 15 and 16 further confirmed the
applicability of the proposed DFTMicroagg for clustering
analysis on Dataset 1 and Dataset 2, respectively. For Dataset
1, the clustering result of DFTMicroagg, even when k = 5,
was above the result of the direct application of microag-
gregation algorithm and the original. Nevertheless, for each
value of k, DFTMicroagg maintained Silhouette score that
was above 0.7. For Dataset 2, similar to the result obtained
when microaggregation was applied, DFTMicroagg main-
tained a high level of utility for clustering analysis. In all
cases, the algorithm produced results that slightly improved
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Table 13 Information loss (IL) of microaggregation and DFTMicroagg on Dataset 1

k-Anonymity Level IL(Microagg) IL(DFTMicroagg Coeff = 144) IL(DFTMicroagg Coeff = 48)

k = 2 0.1171 0.1388 0.1628

k = 3 0.1421 0.1592 0.1807

k = 4 0.1784 0.1882 0.2016

k = 5 0.1992 0.2056 0.2152

Table 14 Information loss of microaggregation and DFTMicroagg on Dataset 2

k-Anonymity Level IL(Microagg) IL(DFTMicroagg Coeff = 72) IL(DFTMicroagg Coeff = 24)

k = 2 0.0440 0.0732 0.1169

k = 3 0.0634 0.0849 0.1230

k = 4 0.0759 0.0932 0.1274

k = 5 0.0824 0.0995 0.1307

Table 15 Utility based on
clustering analysis on original,
microaggregation and
DFTMicroagg using Dataset 1

Silhouette score
(c = 2)

Silhouette score
(c = 2, Coeff =
144)

Silhouette score
(c = 2, Coeff = 48)

Original 0.7963 – –

Microaggregation
(k = 2)

0.7970 – –

DFTMicroagg (k
= 2)

– 0.7973 0.7976

DFTMicroagg (k
= 3)

– 0.7973 0.7979

DFTMicroagg (k
= 4)

– 0.7981 0.7982

DFTMicroagg (k
= 5)

– 0.7985 0.7987

over the original and microaggregation datasets based on
Dataset 2.
Classification: Tables 17 and 18 further confirmed the appli-
cability of the proposed DFTMicroagg for classification task
on Dataset 1 and Dataset 2, respectively. For Dataset 1,
the accuracy of DFTMicroagg when k = 2 was close to
the original and slightly higher than the accuracy result of
microaggregation algorithm. When the coefficient was 48
and k = 2, we noticed a slight increase in the accuracy

value when compared with the result of the original data
(see Table 17). Similarly for Dataset 2, the accuracy of DFT-
Microagg during classification when k = 2 was also close
to the microaggregation result. In all cases, DFTMicroagg
produced an accuracy that was above 80% on Dataset 2.
Time series forecasting: The patterns of results obtained
in the previous section can also be seen in Table 19 where
we notice a reduction in MSE and RMSE of DFTMicroagg
for mean hourly load forecasting on Dataset 1. Similarly,

Table 16 Utility based on clustering analysis on original, microaggregation and DFTMicroagg using Dataset 2

Silhouette score (c = 2) Silhouette score (c = 2, Coeff = 72) Silhouette score (c = 2, Coeff = 24)

Original 0.6685 – –

Microaggregation (k = 2) 0.6683 – –

DFTMicroagg (k = 2) – 0.6729 0.6840

DFTMicroagg (k = 3) – 0.6719 0.6827

DFTMicroagg (k = 4) – 0.6564 0.6836

DFTMicroagg (k = 5) – 0.6763 0.6852
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Table 17 Utility based on kNN
classification of daily energy
consumption profiles on
original, microaggregation and
DFTMicroagg using Dataset 1

kNN (c = 2) kNN (c = 2, Coeff = 144) kNN (c = 2, Coeff = 48)

Original 0.8290 – –

Microaggregation (k = 2) 0.8151 – –

DFTMicroagg (k = 2) – 0.8221 0.8310

DFTMicroagg (k = 3) – 0.8119 0.8244

DFTMicroagg (k = 4) – 0.8089 0.8149

DFTMicroagg (k = 5) – 0.8039 0.8046

Table 18 Utility based on kNN
classification of daily energy
consumption profiles on
original, microaggregation and
DFTMicroagg using Dataset 2

kNN (c = 2) kNN (c = 2, Coeff = 72) kNN (c = 2, Coeff = 24)

Original 0.8796 – –

Microaggregation (k = 2) 0.8599 – –

DFTMicroagg (k = 2) – 0.8569 0.8393

DFTMicroagg (k = 3) – 0.8362 0.8242

DFTMicroagg (k = 4) – 0.8312 0.8197

DFTMicroagg (k = 5) – 0.8276 0.8134

Fig. 10 k-anonymity satisfaction via DFTMicroagg algorithm (coeff =
24) for the first time series in Dataset 2. a k = 2; b k = 3; c k = 4 and d
k = 5

as shown in Table 20, we notice a reduction in MSE and
RMSE as compared with the original and microaggregated
data based on Dataset 2. This also confirmed the consistency
of the proposed approach as a protection method with gen-
eralization feature.

6.2.2 Disclosure risk

This section discusses the privacy value ofDFTMicroagg and
compares it with microaggregation result on both datasets.
For Dataset 1, Table 21 presents the disclosure risk of DFT-
Microagg alongside the result of microaggregation in terms
of distance-based record linkage.As shown in the table,when

k = 2 and Coeff = 144, DFTMicroagg prevented approxi-
mately additional 6,541 records in themasked dataset against
record linkage attack by considering the closest recordswhen
compare with microaggregation result while it was 7,265
records for the second scenario of distance-based record
linkage. Similarly, the result based on coefficient value of
48 prevented 8,295 records for the first case and 8,761
records for the second scenario. For both first and second
scenarios of record linkage attack, and for each level of
k-anonymity, DFTMicroagg outperformed the direct appli-
cation of microaggregation algorithm for privacy protection
of energy consumption data using Dataset 1. This gives the
utility company a flexible option to control the privacy level
of energy data to be published by adjusting the coefficient
value of DFTMicroagg while still maintaining a high level
of data utility without increasing the value of k to avoid sig-
nificant information loss.

Similarly, for Dataset 2, Table 22 shows the disclosure risk
ofDFTMicroaggwith the result ofmicroaggregation in terms
of distance-based record linkage. According to the results in
this table, when k = 2 and Coeff = 72, DFTMicroagg pre-
vented approximately additional 7,950 records in themasked
dataset against record linkage attack by considering the clos-
est recordswhencomparewithmicroaggregation resultwhile
it was 13,869 records for the second scenario of record link-
age. Recall that Dataset 2 has a total of 29,597 records after
merging and preprocessing based on interval representation
format. Similarly, the result based on coefficient value of 24
and k = 2 prevented 11,131 records for the first scenario and
19,220 records basedon the second scenario of record linkage
attack when compared with microaggregation results. For
both first and second scenarios of record linkage attack and
for each level of k-anonymity, DFTMicroagg outperformed
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Table 19 Utility based on time series forecasting on original, microag-
gregation and DFTMicroagg using Dataset 1

MSE RMSE

Original 56.9108 7.5439

Microaggregation (k = 2) 50.3921 7.0987

Microaggregation (k = 3) 48.3414 6.9528

Microaggregation (k = 4) 44.3132 6.6568

Microaggregation (k = 5) 41.5235 6.4439

DFTMicroagg (k = 2, Coeff = 144) 50.3821 7.0980

DFTMicroagg (k = 3, Coeff = 144) 48.2224 6.9442

DFTMicroagg (k = 4, Coeff = 144) 44.5270 6.6729

DFTMicroagg (k = 5, Coeff = 144) 41.2078 6.4193

DFTMicroagg (k = 2, Coeff = 48) 50.0428 7.0741

DFTMicroagg (k = 3, Coeff = 48) 47.0064 6.8561

DFTMicroagg (k = 4, Coeff = 48) 43.2996 6.5802

DFTMicroagg (k = 5, Coeff = 48) 40.2921 6.3476

Table 20 Utility based on time series forecasting on original, microag-
gregation and DFTMicroagg using Dataset 2

MSE RMSE

Original 2.5402 1.5938

Microaggregation (k = 2) 2.3918 1.5465

Microaggregation (k = 3) 2.2890 1.5129

Microaggregation (k = 4) 2.1946 1.4814

Microaggregation (k = 5) 2.1264 1.4582

DFTMicroagg (k = 2, Coeff = 72) 2.3709 1.5398

DFTMicroagg (k = 3, Coeff = 72) 2.2655 1.5052

DFTMicroagg (k = 4, Coeff = 72) 2.1773 1.4756

DFTMicroagg (k = 5, Coeff = 72) 2.1226 1.4569

DFTMicroagg (k = 2, Coeff = 24) 2.0949 1.4474

DFTMicroagg (k = 3, Coeff = 24) 2.0034 1.4154

DFTMicroagg (k = 4, Coeff = 24) 1.9359 1.3914

DFTMicroagg (k = 5, Coeff = 24) 1.8893 1.3745

the direct application of microaggregation algorithm for pri-
vacy protection of energy consumption data. The algorithm
also maintained a high level of data utility when compared
with the original and direct application of microaggregation.

For Dataset 1, Table 23 also confirmed the applicability of
the proposed approach by lowing the chances of an attacker
to accurately construct the interval value around the masked
value in the dataset. DFTMicroagg reduced the disclosure
risk while keeping the k-anonymity level in the range of 2 to
5. For instance, when k = 2, the proposed approach reduced
disclosure risk from 71.86% to 58.43% when the coefficient
value was 144. This can go as low as 48.31% when the coef-
ficient value is 48 and k = 2. The results presented for both
cases of the disclosure risk show that 2-anonymous daily
energy profile is susceptible to disclosure risk as against the

attack model assumption in [12]. For each level of k, DFT-
Microagg reduced the disclosure risk.

Similarly, for Dataset 2, Table 24 also confirmed the appli-
cability of the proposed approach based on the results of the
interval disclosure risk. DFTMicroagg lower the percentage
of correctly predicting the interval value around the masked
value in the protected dataset.

6.3 Order of households and sampling rate

In this section, we provide the results obtained based on the
order of households of rows in matrix X as well as using a
different sampling rate.

6.3.1 Order of households

In the previous results, the rows of matrix X were arranged
in chronological order based on the consumption day
for individual households. Therefore, for each day (e.g.,
01/02/2012), the first row contains energy consumption for
household 1, the second row contains energy consumption
for household 2 and so on. This pattern was used for another
day’s consumption (e.g., 02/02/2012). The columns ofmatrix
X are the actual time of the day in which the consumptions
were recorded. In this section, we check the impact of sort-
ing matrix X in ascending and descending order based on
household’s number.
Utility: In this section, we check the utility of the proposed
approach based on order of households using information
loss and clustering analysis. The goal is to ascertain the
impact of ordering households before applying microaggre-
gation and DFTMicroagg algorithms.
Ascending and Descending order of households: We
obtained the same result as those presented in Sect. 6.2.1
for information loss (IL) measure for both microaggregation
and DFTMicroagg algorithms when the datasets were sorted
in ascending and descending order (see Tables 13 and 14).
This shows that the proposed approach does not depend on
the order of households in terms of the IL metric used. How-
ever, there is a slight change in the clustering results for both
Dataset 1 and Dataset 2, respectively. This can be attributed
to the random selection of initial cluster centroids in k-Means
algorithm since the ordering of the records in both datasets
has changed. Nevertheless, microaggregation and DFTMi-
croagg produced consistent results and guaranteed utility of
the protected data. Silhouette score based on ascending and
descending order of households is not less than 70% and
60% for both Dataset 1 and Dataset 2, respectively, which
is similar to the result obtained for the original data with-
out the application of privacy protection mechanisms. For
instance, considering Dataset 1 in ascending order, the Sil-
houette score for the original dataset when k = 2 is 0.7408
and formicroaggregation is 0.7394. However, DFTMicroagg
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Table 21 Distance-based record
linkage disclosure risk for each
level of k based on
microaggregation and
DFTMicroagg for Dataset 1

Disclosure risk (%)
Methods k = 2 k = 3 k = 4 k = 5

Microaggregation 48.67 (87.26) 31.61 (62.59) 22.91 (44.87) 17.35 (34.04)

DFTMicroagg (Coeff = 144) 30.70 (67.30) 20.55 (49.30) 11.79 (32.19) 9.50 (24.92)

DFTMicroagg (Coeff = 48) 25.88 (63.19) 18.44 (43.40) 10.15 (28.11) 6.39 (20.46)

Table 22 Distance-based record
linkage disclosure risk for each
level of k based on
microaggregation and
DFTMicroagg for Dataset 2

Disclosure risk (%)
Methods k = 2 k = 3 k = 4 k = 5

Microaggregation 47.30 (80.85) 28.83 (54.97) 19.14 (35.66) 14.05 (26.11)

DFTMicroagg (Coeff = 72) 20.44 (33.99) 12.67 (22.23) 8.92 (15.81) 6.86 (12.44)

DFTMicroagg (Coeff = 24) 9.69 (15.91) 6.60 (11.44) 4.98 (8.83) 4.11 (7.39)

Table 23 Interval disclosure risk of microaggregation and DFTMicroagg on Dataset 1

Interval disclosure risk (%)
k-Anonymity Level Microaggregation DFTMicroagg Coeff = 144 DFTMicroagg Coeff = 48

k = 2 71.86 58.43 48.31

k = 3 61.54 51.11 45.00

k = 4 51.61 47.66 43.19

k = 5 47.87 45.24 41.52

produced 0.7399 and 0.7412 for coefficient of 144 and 48,
respectively. For descending order, Silhouette score for the
original dataset is 0.7142 and for microaggregation is 0.7174
while DFTMicroagg produced 0.7177 and 0.7183 for coef-
ficient of 144 and 48, respectively.

When considering Dataset 2 in ascending order, the Sil-
houette score for the original dataset when k = 2 is 0.6550
and formicroaggregation is 0.6593. However, DFTMicroagg
produced 0.6615 and 0.6712 for coefficient of 72 and 24,
respectively. For descending order, Silhouette score for the
original dataset is 0.6926 and formicroaggregation is 0.6890.
DFTMicroagg produced 0.6942 and 0.6940 for coefficient of
72 and 24, respectively. In all cases of the clustering analy-
sis, the proposed approach slightly outperformed the direct
application of microaggregation algorithm based on the Sil-
houette scores obtained.
Privacy: Similarly, we obtained the same results (see Tables
21, 22, 23 and 24) as discussed in Sect. 6.2.2 for both record

linkage and interval disclosure risks when both datasets were
sorted in ascending and descending order. These results con-
firmed that sorting the datasets in ascending or descending
order of households does not have any impact on the privacy
results of the proposed approach as presented in the previous
section.

6.3.2 Sampling rate

Recall that Dataset 1 and Dataset 2 were originally sampled
at 5 and 10 minutes resolutions, respectively (see Table 1). In
this section, we check the impact of re-sampling the datasets
on utility and privacy using a different sampling rate. For
Dataset 1, we re-sampled the energy consumptions of the
individual households using 10 minutes sampling rate while
20 minutes was used for Dataset 2. Based on this sampling
rate, the total columns of matrix X for Dataset 1 becomes
144 while that of Dataset 2 is 72. The upper and lower values

Table 24 Interval disclosure risk of microaggregation and DFTMicroagg on Dataset 2

Interval disclosure risk (%)
k-Anonymity Level Microaggregation DFTMicroagg Coeff = 72 DFTMicroagg Coeff = 24

k = 2 41.02 29.69 19.13

k = 3 34.93 27.38 18.50

k = 4 31.31 25.88 18.07

k = 5 28.98 24.98 17.88
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of coefficients used for Dataset 1 based on 10 minutes re-
sampling are 72 and 24, respectively, while that of Dataset 2
based on 20 minutes re-sampling are 36 and 12, respectively.
We conducted utility and privacy check based on the newly
re-sampled datasets. The results obtained are summarized as
follows.
Utility: As presented in Tables 25 and 26, both microag-
gregation and DFTMicroagg algorithms provided consistent
results similar to those obtained in Sect. 6.2.1 for IL met-
ric despite the fact that the original datasets have been
re-sampled. Similarly, the proposed approach demonstrated
consistent results with high level of data utility based on the
clustering analysis for the re-sampled datasets. Again, the
silhouette scores obtained is not less than 70% and 60% for
the re-sampled Dataset 1 and Dataset 2, respectively.

For instance, considering Dataset 1 based on 10 minutes
sampling rate, the Silhouette score for the original dataset
when k = 2 is 0.7963 and for microaggregation is 0.7969.
However, DFTMicroagg produced 0.7974 and 0.7982 for
coefficient of 72 and 24, respectively. For Dataset 2 based
on 20 minutes sampling rate, the Silhouette score for the
original dataset when k = 2 is 0.6702 and for microaggrega-
tion is 0.6682. However, DFTMicroagg produced 0.6756 and
0.6947 for coefficient of 36 and 12, respectively. In all cases
of the clustering analysis, the proposed approach outper-
formed the direct application of microaggregation algorithm
based on the Silhouette scores. These results also confirmed
the consistency of the proposed approach as a promising pri-
vacy protection mechanism.
Privacy: Again, Tables 27 and 28 further shows the effect
of DFT introduced as additional layer for privacy protec-
tion. It can be seen that for each value of k, DFTMicroagg
provides improved privacy guarantees over the direct appli-
cation of microaggregation algorithm as a privacy protection
mechanism. Similar to the results obtained in Sect. 6.2.2,
DFTMicroagg algorithm prevents a significant amount of
records from being linked based on the two scenarios inves-
tigated for the distance-based record linkage algorithm. The
results of the privacy protection based on the re-sampled
datasets improved over the previous results. For instance,
as shown in Table 27, for the re-sampled Dataset 1, when
k = 2 and Coeff = 72, DFTMicroagg prevented approxi-
mately additional 6,843 records in themasked dataset against
record linkage attack based on the closest records when com-
pare with direct application of microaggregation algorithm.
For the second scenario of the distance-based record linkage
attack, DFTMicroagg prevented additional 7,990 records.
Similarly, when k = 2 and Coeff = 24, DFTMicroagg pre-
vented additional 9,911 records based on the first scenario of
the distance-based record linkage and 10,297 based on the
second scenario. For both first and second scenarios of the
distance-based record linkage attack and for each level of

k-anonymity, DFTMicroagg outperformed the direct appli-
cation of microaggregation algorithm.

Similarly, for the re-sampled Dataset 2, when k = 2 and
Coeff = 36, DFTMicroagg prevented approximately addi-
tional 7,669 records in the masked dataset against record
linkage attack based on the closest records when com-
pare with direct application of microaggregation algorithm
and 14,357 records based on the second scenario. Also,
when k = 2 and Coeff = 12, DFTMicroagg prevented
11,513 records for the first scenario of the distance-based
record linkage attack and 20,445 records for the second
scenario. For each scenario of the distance-based record
linkage attack and for each level of k-anonymity, the pro-
posed approach outperformed microaggregation algorithm
by preventing a significant number of records from being
linked. These results show that DFTMicroagg algorithm
can provide promising privacy guarantee as an effective
privacy-preserving method over the direct application of
microaggregation algorithm.

Based on interval disclosure risk attack, DFTMicroagg
produced consistent results similar to those obtained earlier.
We observed that the higher the value of k, the lower the
disclosure risk based on this attack. Also, the lower the coef-
ficient, the lower the disclosure risk. For both the re-sampled
datasets 1 and 2, DFTMicroagg produced an improved result
over the direct application of microaggregation algorithm
(see Tables 29 and 30). The results based on interval disclo-
sure risk using the re-sampled datasets also further confirmed
the applicability of the proposed approach as a promising
privacy-preserving mechanism for smart grid data.

7 Conclusion

In this paper, we demonstrate the possibility of estimating the
utility–privacy trade-off of microaggregation and the pro-
posed DFTMicroagg algorithm that is based on DFT and
microaggregation to provide additional layer of privacy for
protecting smart grid data. We evaluated the privacy values
offered bymicroaggregation algorithmandbased onour find-
ings, we propose a dual-level anonymization method, which
leverages the capability of DFT and microaggregation to
enforce k-anonymity protection on time series daily energy
consumption profiles.We analytically show that the proposed
approachmaintains a high level of utility withminimal infor-
mation loss. The applicability of the proposed approach for
different data mining tasks, such as clustering analysis, clas-
sification and energy load forecasting on the protected data
have been discussed. We show that the proposed approach
can provide the utility company with a more flexible option
for dual-level masking of the energy data to be published. To
ascertain the privacy improvement of the proposed approach
over direct application of microaggregation algorithm, we
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Table 25 Information loss (IL) of microaggregation and DFTMicroagg on Dataset 1 based on 10 minutes sampling rate

k-Anonymity Level IL(Microagg) IL(DFTMicroagg Coeff = 72) IL(DFTMicroagg Coeff = 24)

k = 2 0.1163 0.1479 0.1848

k = 3 0.1424 0.1682 0.2005

k = 4 0.1781 0.1930 0.2168

k = 5 0.1994 0.2088 0.2282

Table 26 Information loss of microaggregation and DFTMicroagg on Dataset 2 based on 20 minutes sampling rate

k-Anonymity Level IL(Microagg) IL(DFTMicroagg Coeff = 36) IL(DFTMicroagg Coeff = 12)

k = 2 0.0405 0.0929 0.1714

k = 3 0.0587 0.1014 0.1741

k = 4 0.0705 0.1076 0.1760

k = 5 0.0797 0.1120 0.1773

Table 27 Distance-based record
linkage disclosure risk for each
level of k based on
microaggregation and
DFTMicroagg for Dataset 1
based on 10 minutes sampling
rate

Disclosure risk (%)
Methods k = 2 k = 3 k = 4 k = 5

Microaggregation 48.63 (88.62) 31.56 (62.45) 22.89 (44.78) 17.40 (33.97)

DFTMicroagg (Coeff = 72) 29.83 (66.67) 20.29 (48.51) 11.51 (31.49) 9.35 (23.57)

DFTMicroagg (Coeff = 24) 21.40 (60.33) 15.45 (41.04) 9.87 (24.03) 5.16 (17.68)

Table 28 Distance-based record
linkage disclosure risk for each
level of k based on
microaggregation and
DFTMicroagg for Dataset 2
based on 20 minutes sampling
rate

Disclosure risk (%)
Methods k = 2 k = 3 k = 4 k = 5

Microaggregation 44.41 (77.80) 27.17 (51.23) 18.41 (34.12) 14.04 (26.06)

DFTMicroagg (Coeff = 36) 18.50 (29.29) 11.71 (19.96) 8.49 (14.96) 6.71 (12.04)

DFTMicroagg (Coeff = 12) 5.51 (8.72) 4.01 (6.71) 3.24 (5.62) 2.77 (4.86)

Table 29 Interval disclosure
risk of microaggregation and
DFTMicroagg on Dataset 1
based on 10 minutes sampling
rate

Interval disclosure risk (%)
k-Anonymity Level Microagg DFTMicroagg Coeff = 72 DFTMicroagg Coeff = 24

k = 2 73.81 56.79 47.37

k = 3 63.97 51.69 45.02

k = 4 54.81 49.05 43.53

k = 5 50.96 46.89 42.50

Table 30 Interval disclosure
risk of microaggregation and
DFTMicroagg on Dataset 2
based on 20 minutes sampling
rate

Interval disclosure risk (%)
k-Anonymity Level Microagg DFTMicroagg Coeff = 36 DFTMicroagg Coeff = 12

k = 2 52.60 42.21 33.29

k = 3 47.39 40.57 32.97

k = 4 44.48 39.63 32.72

k = 5 42.66 38.83 32.60
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implement two attack models using distance-based record
linkage and interval disclosure. The results obtain further
confirm the efficacy of the proposed method. In future, we
plan to investigate a suitable protection framework to protect
smart grid data with multi-level smart meter readings, such
as a dataset from utility company that has the total consump-
tion aggregate as well as the consumption for each appliance
used by the consumers at different levels of resolutions. In
addition, we would like to investigate the case where DFT
is applied after MDAVmicroaggregation algorithm to check
the impact on the results both in terms of the utility and pri-
vacy guarantee.
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right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
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