
 

 

 

Department of Community Medicine and Rehabilitation 

Umeå University, Umeå 2022 

 

AN 

EPIDEMIOLOGICAL 

PERSPECTIVE ON 

HEART AND LUNG 

WEIGHT IN CARDIAC 

AND INTOXICATION 

DEATHS 

 

 

 
 

Torfinn Beer 

  



 

 

This work is protected by the Swedish Copyright Legislation (Act 1960:729) 

Dissertation for PhD 

ISBN: 978-91-7855-844-5 (print) 
ISBN: 978-91-7855-845-2 (pdf) 

ISSN: 0346-6612 

New Series No 2196 

Cover art: Study for "Autopsy at the Hôtel-Dieu", 1876 by Henri Gervex (1852-1929) 

Electronic version available at: http://umu.diva-portal.org/ 

Printed by: UmU Print Service, Umeå University 

Umeå, Sweden 2022 



 

 

Animated by truth, but lacking free will, a golem always 
does exactly what it is told. This is lucky, because a golem is 
incredibly powerful, able to withstand and accomplish more 
than its creators could. However, its obedience also brings 
danger, as careless instructions or unexpected events could 
turn the golem against its makers.  

 Richard McElreath, 2015 
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Abstract 

The main purpose of a medico-legal autopsy is to determine the cause 
and manner of death. A forensic pathologist makes assessments of this 
using several sources of information, one of which is the discrepancy 
between measured organ weight and reference values. Of particular 
interest is the heart weight in heart disease and the weight of the lungs in 
fatal intoxications.  

In this thesis, a linear model of lung weight was created, but the model 
could at best explain only 13% of the variation in combined lung weight 
(Paper I). Unsurprisingly, this meant that the model was a poor 
definition of “normal” lung weight and could not be used to identify 
intoxication cases (Paper II). A ratio of lung weight to heart weight 
(LWHW ratio) also failed to differentiate intoxication cases from 
controls. The poor performance of these methods could plausibly have 
been due to fatal intoxications with only some substances being 
associated with increased lung weight, but an analysis showed that many 
common intoxicants were associated with heavier lungs than hanging 
deaths (Paper III).  

To establish heart weight references more applicable in a medico-legal 
autopsy population, a model of heart weight accounting for undiagnosed 
cardiac hypertrophy was created (Paper IV). The model showed that for 
a decedent of average the evidence that a was hypertrophic reached, 
substantial support at around 470 g. 

In conclusion, a definition of “heavy lungs” remains elusive. However, it 
seems to be a finding compatible with fatal intoxications with many 
substances and the low predictive value found may be due to study 
design. The heart weight model presented allows pathologists to assess 
the evidence of cardiac hypertrophy more easily than previously 
published models. 
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Enkel sammanfattning på svenska 

Rättsmedicinska dödsfallsutredningar har som huvudsyfte att fastställa 
dödsorsaken och dödssättet för en viss avliden person. Utredningen 
innefattar bland annat information från sjukvården och polisen samt en 
rättsmedicinsk undersökning inklusive toxikologiska och mikroskopiska 
analyser. Vid obduktion vägs organ och dessa vikter värderas sedan av 
en läkare.  

Bland annat anses tunga lungor eller ett tungt hjärta vara tecken på 
dödlig förgiftning respektive hjärt-kärlsjukdom. Bedömningen av vad 
som är ett tungt hjärta baseras ofta på en värdering av uppmätt 
organvikt i relation till publicerade referensvärden. Det vetenskapliga 
underlaget för att använda organvikter på detta sätt är dock mycket 
begränsat.  

Problemen med tidigare publicerade referensvärden för organvikter är 
att de generellt sett är baserade på gamla data eller grupper som inte är 
representativa för ett rättsmedicinskt obduktionsmaterial och/eller att 
hänsyn inte har tagits till ålder, kön eller kroppsstorlek, vilka är faktorer 
som påverkar tolkningen av organvikterna.  

Syftet med denna avhandling var att förbättra det vetenskapliga 
underlaget för tolkning av organvikter genom att ta fram mer relevanta 
referensvärden och modeller till stöd för läkare i samband med 
obduktioner. Avhandlingen fokuserade på vikten av lungorna vid dödliga 
förgiftningar och vikten av hjärtat vid hjärt-relaterade dödsfall. 

I delarbete I modellerades lungvikt hos 24 056 vuxna personer som 
obducerats vid Rättsmedicinalverket. Den modell som visade sig bäst 
beskriva data använde längd, vikt och ålderskategori för att förutspå 
lungvikt. Även efter uteslutning av fall som kraftigt avvek från de initiala 
modellestimaten var den bästa modellen emellertid fortfarande befäst 
med stor osäkerhet. 

I delarbete II användes i stort sett samma population som i delarbete I 
för att undersöka om modellen i det första delarbetet kunde användas 
för att identifiera dödliga förgiftningar. Det visade sig emellertid inte 
vara möjligt. Det uppställdes en hypotes om att det vore bättre att 
använda lungvikt i proportion till uppmätt hjärtvikt för att ge ett 
tydligare mått på när lungorna är ”tunga” och således kunna förutspå 
dödlig förgiftning. En hög kvot mellan lung- och hjärtvikt kunde 
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emellertid endast med låg säkerhet förutspå dödlig förgiftning. Om 
kvoten var låg kunde förgiftning sannolikt uteslutas. 

I delarbete III analyserades vilka ämnen som var förknippade med 
eventuell förändring av lungvikt och hjärnvikt. Studien jämförde 
lungvikt och hjärnvikt i en kontrollgrupp av 101 hängningsdödsfall med 
696 dödsfall till följd av förgiftning med ett enstaka ämne. 
Förgiftningsdödsfall oavsett ämne hade tyngre lungor och lägre hjärnvikt 
än hängningsdödsfall. 

I delarbete IV modellerades hjärtvikt hos 11 715 vuxna personer som 
obducerats vid Rättsmedicinalverket. Modellen valideras sedan mot 
unga individer som dött till följd av hängning. Den modellerade 
skillnaden mellan förstorad och normal hjärtvikt var 141 g och 
bevisvärdet till stöd för individ skulle vara hjärtförstorad ökade kraftigt 
efter en uppmätt hjärtvikt på ungefär 430 g. Hjärtviktmodellen kan 
användas för att beräkna hur starkt stöd en uppmätt hjärtvikt hos en 
specifik individ ger för att diagnosticera hjärtförstoring. 

Avseende lungvikt vid förgiftningsdödsfall visar avhandlingen att ”tunga 
lungor” visserligen är ett fynd som kan ses vid förgiftningar med många 
olika ämnen, men att en strikt definition av fyndet är svårfångad. Således 
finns i dagsläget inget tillfredsställande sätt att använda lungvikten i 
diagnostiskt syfte. 

Avseende hjärtvikt visar avhandlingen att hjärtförstoring är ett mycket 
vanligt förekommande fynd och att förstorad hjärtvikt i stor utsträckning 
överlappar med normal hjärtvikt. Hjärtviktsmodellen ökar möjligheten 
till tolkning i direkt samband med obduktionen. 

De modeller som presenteras i avhandlingen är mer vetenskapligt 
underbyggda än de som tidigare har publicerats, vilket får ses som ett 
steg i riktning mot mer evidensbaserade rättsmedicinska bedömningar. 
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Introduction 

Background 

All cases of obvious and suspected unnatural death should prompt a 
medico-legal death investigation (1, 2). This generally includes a medico-
legal autopsy. Medico-legal autopsies are multifaceted investigations of a 
decedent, with the main purpose to determine the cause and manner of 
death. A forensic pathologist makes assessments of this based on a 
combination of several sources of information, such as case history, 
gross and microscopic findings, and toxicological analyses. One readily 
accessible objective source of information that might be of importance 
for diagnosing disease states and/or cause of death is the weight2 of 
internal organs.  

Generally, pathologists compare the set of measured organ weights to 
reference values and interpret discrepancies as possible signs of 
pathological changes.  

There is cause to question the validity of this approach for several 
reasons. First, deviation from a reference value might be caused by many 
factors, such as body size, sex, or state of decomposition. Second, there is 
no clear guidance on interpretation in such cases. What is the 
importance of, e.g., a measured heart weight 40 g heavier than the mean 
of the reference population? How much more pathologic would an 80 g 
difference be? Previous studies do not answer these questions. Also, 
most known reference values are of questionable validity since they are 
either old (3, 4), based on data from traumatic deaths only (5–11), or 
based on very young decedents or decedents without any pathological 
findings (6–9, 11–15). Taken together, these factors mean there is little 
evidence for utilizing current methods in the predominantly middle-aged 

 
2 In this thesis I will use the term “weight” to refer what is technically the 
“mass” (the amount of matter in an object as measured in the SI unit 
kilogram [kg]). The technical definition of weight is an object’s mass 
times the gravitational pull experienced by the object and is measured in 
Newtons. However, in the literature and in common parlance, “weight” 
more commonly refers to mass. 
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males with various co-morbidities who constitute the medico-legal 
autopsy population. 

The weight of the lungs in intoxication deaths 

Interpretation of toxicological results and diagnosing intoxication 
requires correlation with both case history and autopsy findings (16, 17). 
Typically, autopsy findings in intoxication deaths are sparse and non-
specific. However, a “triad” of cerebral oedema, pulmonary oedema, and 
urinary retention has been suggested as indicative of opioid intoxication 
(18, 19).  

Opioids cause urinary retention due to inhibition of the parasympathetic 
nervous system and concurrent stimulation of the sympathetic nervous 
system, decreasing the sensation of bladder fullness and increasing the 
urethral sphincter tonus (20), but the cause of the other findings is not 
known. There are many hypotheses regarding the finding of pulmonary 
oedema, including — among others — hypersensitivity, aspiration of 
gastric contents, and respiratory depression causing pulmonary 
hypertension and increased capillary permeability (18, 21, 22).  

There is some evidence that at least “heavy lungs” is a finding not unique 
to opioid deaths, but also seen in intoxication with non-opioid agents 
(23, 24). 

Additionally, there is evidence that survival time plays a role in post-
mortem lung weight (25). However, the authors of the referenced study 
did not find a significant effect of survival time on lung weight in the 
intoxicant group (25) but did not discuss this in any detail. One 
possibility is that the effect of survival time varies with the cause of 
death, i.e., pulmonary oedema secondary to respiratory depression 
induced by intoxication could develop at a different rate than in 
respiration depression in, e.g., a traumatic death.  

Presumably at least some extended survival time is needed to cause the 
“triad” of findings. The fact that time is needed for urine to be produced 
so that a distended bladder develops — regardless of whether there is an 
increased urethral sphincter tonus — shows that death was at least not 
sudden. 

Previous studies regarding “heavy lungs” in fatal intoxications are 
limited by the fact that the authors did not use any control group (26, 
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27), described unspecified pulmonary oedema or did not define “heavy 
lungs” (22, 26–28), or compared only mean weights across groups (23), 
meaning that the weights cannot be applied to estimate the probability of 
intoxication in a given case.  

Two studies (18, 19) did attempt to calculate the predictive value of the 
“triad,” but they both included only opioid deaths and found only 
moderate predictive values (Table 1). 

Table 1. Study design, sensitivity, and specificity in published studies of 
cerebral and pulmonary oedema and bladder distention for predicting 
fatal intoxication.  

Study Study design Sensitivity Specificity 

Molina et 
al. (18) 

Retrospective analysis 
of autopsy findings in 
83 opioid deaths 
compared with findings 
in 82 cardiovascular 
and 81 traumatic motor 
vehicle deaths 

65%† 73%† 

Winklhofer 
et al. (19) 

Retrospective analysis 
post-mortem computed 
tomography findings of 
55 opioid deaths 
compared with age- 
and sex-matched 
controls with mixed 
causes of death 

26% 100% 

 † Using cardiovascular deaths as controls and not utilizing brain weight. 
 
The literature leaves two pressing questions. First, what is the predictive 
power of the “triad” or “heavy lungs” in non-opioid intoxications? 
Second, is the triad or any one or two of its components unique to opioid 
deaths, or can the triad components result from any other cause of death 
with a long agonal respiratory depression period? These are relevant 
questions as even though opioids are the most common single fatal 
intoxicant agent in Sweden, most intoxications are due to a combination 
of multiple agents (internal National Board of Forensic Medicine 
(NBFM) data). 
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The weight of the heart in cardiovascular disease 

A “heavy” heart or “cardiac hypertrophy”3 is seen as an indirect sign of 
cardiac disease and an increased heart weight or cardiac hypertrophy is 
associated with, among other things, coronary artery disease and overall 
mortality (29–32). However, there is no consensus on what constitutes 
“cardiac hypertrophy” and many — some incompatible — definitions 
have been published (Table 2). 

Table 2. Examples of different definitions of, or cut-off values for, 
“cardiac hypertrophy.” 

Study Definition of cardiac hypertrophy 

Akosa (33) Heart weight ≥ 400 g 

Basso et al. (29) 
Heart weight “above reference values” or 
≥ 500 g in males and ≥ 400 g in females 

Schoppen et al. 
(32) 

Heart weight “above reference values” or 
> 350 g in males and > 300 g in females or 
> 400 g in males and > 350 g in females or 
> 400 g overall or 
> 500 g overall or 
> 5 g/kg of body weight overall or in males or 
> 4.5 g/kg of body weight in males or 
> 4 g/kg of body weight in females or 
> 2 times measured body weight (in lb) in g 

Tracy (30) 
Heart weight ≥ 450 g in males and ≥ 400 g in 
females 

 

Both Schoppen et al. and the position paper written by Basso et al. place 
heavy emphasis on using “reference values” as guidelines for evaluating 
a given heart weight (29, 32). However, though there are many 
published heart weight models and reference weights, they are mostly 
old, based on unnatural deaths, and/or free of disease cases and 
therefore may lack validity for a medico-legal autopsy material (Table 3).  

 
3 In this thesis “cardiac hypertrophy” is defined as heart weight above reference values, as suggested 
by Basso et al. (29). 
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Table 3. The most often cited estimates of “normal” heart weight in 
chronological order. BMI = body mass index, BSA = body surface area, 
SD = standard deviation.  

    Mean heart weight (and SD, range) (g)  

Study Study 
population 
and year 

Predictors  Overall Males Females 

Arnold et al. 
1899 (3) 

Retrospective 
analysis of 216 
hospital autopsy 
cases without 
cardiac 
pathology. USA. 
1894–1898. 

- - 290  

Range 

250–325 

253 

Range 

225–300 

Smith 1928 (4) Retrospective 
analysis of 854 
hospital autopsy 
cases without 
cardiac 
pathology. USA. 
Dates not given 
(article published 
1928). 

body weight - 294  

Range 137–

400 

250  

Range 

110–375 

Hayes & Lovell 
1966 (34)  

126 consecutive 
hospital autopsy 
cases. Jamaica. 
1962. 

 - - 295  

SD 49 

259 

SD 50 

Dadgar et al. 
1979 (35)  

Retrospective 
analysis of 138 
hospital autopsy 
cases without 
cardiac 
pathology. India. 
Dates not given 
(article published 
1979).  

body height - 236 ‡ 
SD 57 
Range 
60–375 

207‡ 
SD 79 
Range 
25–375 

Kitzman et al. 
1988 (36)  

Retrospective 
analysis of 765 
hospital autopsy 
cases without 
severe coronary 
sclerosis. USA. 
1960–1982. 

body weight Range 
164–557 

- - 

Hanzlick & 
Rydzewski 

1990 (37) 

Retrospective 
analysis of 218 
medico-legal 
autopsies of 
Caucasian males 
aged 20–39 
years. In total, 
201 died from 
external causes 
and 17 from 
natural causes. 
USA. 
1985–1988. 

age and body 
weight 

- 364† 

SD 62 

- 

Garby et al. 
1993 (15)  

Retrospective 
analysis of 1598 
“healthy” 
medico-legal 
autopsy cases. 
Denmark. 
1972–1990. 

age, body 
weight, and 
body height 

- 423 SD 87 320  

SD 67 

de la 
Grandmaison 

et al. 2001 (11) 

Retrospective 
analysis of 684 
medico-legal 

age, body 
weight, and 
BMI 

- 365 

SD 71 

Range 

312  

SD 78 

Range 
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autopsy cases 
without cardiac 
pathology, and 
who died from 
trauma. France. 
1987–1991. 

90–630 174–590 

Sawabe et al. 
2006 (38) 

A total of 1,615 
consecutive 
hospital autopsy 
cases aged 60–99 
without “organ 
affected by 
serious disease.” 
Japan.  
1973–1995. 

age and body 
weight 

 312  

SD 83 

342 

SD 90 

Sheikhazadi 
2010 (5) 

Retrospective 
analysis of 1,222 
medico-legal 
autopsy cases 
without cardiac 
pathology, and 
who died from 
trauma. Iran. 
2007–2008. 

BMI  - 360 SD 77 

Range 

209–607 

319 

SD 86 

Range 

199–540 

Gaitskel et al. 
2011 (13)  

Prospective 
analysis of 384 
consecutive 
hospital autopsy 
cases without 
cardiac 
pathology. 
England. 
2003–2006.  

BSA  - 388 

SD 81 

Range 

192–672 

338 

SD 82 

Range 

197–765 

Molina & 
DiMaio 2012 

(6) 

Prospective 
analysis of 232 
male medico-
legal autopsy 
cases aged 18–35 
years, without 
cardiac 
pathology, who 
died from 
trauma. USA. 
2005–2011. 

-  - 331  

SD 57 

- 

Vanhebost et 
al. 2014 (14) 

Retrospective 
analysis of 288 
medico-legal 
autopsy cases 
without cardiac 
pathology. 
Switzerland. 
2007–2011  

BSA  - 357  

SD 53 

Range 

260–550 

290 

SD 63 

Range 

160–455 

Molina & 
DiMaio 2015 

(8) 

Prospective 
analysis of 102 
female medico-
legal autopsy 
cases, aged 18–
35 years, without 
cardiac 
pathology, who 
died from 
trauma. USA. 
2004–2014. 

- - - 245 

SD 52 

Wingren & 
Ottoson 2015 

(10) 

Retrospective 
analysis of 
27,645 medico-
legal autopsy 
cases with an 
external cause of 
death. Sweden.  

body weight, 
body height, 
and BSA 

392 
Range 
101–985 

- - 
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1997–2013.  

Skurdal & 
Nordrum 2016 

(12) 

Retrospective 
analysis of 692 
medico-legal and 
hospital autopsy 
cases without 
cardiac 
pathology. 
Norway. 
2003–2012. 

body weight - 395 

SD 83 

316  

SD 69 

Schoppen et al. 
2020 (32) 

Retrospective 
analysis of 3,398 
medico-legal 
autopsy cases 
where the 
manner of death 
was non-natural, 
age was 40 years 
or younger and 
there were no 
signs of cardiac 
pathology. 
USA. 
2014–2017. 

age, sex, body 
height, body 
weight, and 
multiple 
interaction 
and higher 
order terms 

361 
SD 96 
 

  

Kakimoto 2021 
(39) 

Retrospective 
analysis of 3,534 
medico-legal 
autopsy cases, 
death was due to 
external causes 
in 594 cases.  
Japan. 
2017–2019. 

age, sex, body 
weight, body 
height, and 
BMI 

405 
SD 116 

431 

SD 114 

394† 

SD 90 

345 

SD 96 

324† 

SD 79 

† Among deaths due to external causes. ‡Data include infants and children 

The studies presented in Table 3 offer no guidance on interpretation, 
rather suggesting only arbitrary cut-off limits for what is “normal.” For 
instance, some offer a mean or an upper 95% quantile limit. However, 
the upper 95% limit could very well be above the peak probability of a 
hypothetical hypertrophic heart weight distribution (Figure 1). There is 
no reason to assume that there is some “threshold” weight that clearly 
delineates hypertrophic hearts from “normal” hearts; instead, a large 
portion of cases presumably have only moderately increased heart 
weight. 
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Figure 1. Hypothetical distribution of normal (blue) and hypertrophic 
(yellow) heart weights on the unit scale. The dashed line represents the 
upper 95% quantile of the normal heart weight distribution. SD = 
standard deviation. 

Furthermore, the data included in the studies cited above are also often 
an issue: when only healthy young individuals are included, the heart 
weight estimate is likely going to be lower than what is actually “normal” 
in a medico-legal autopsy population. The reason — often only implied — 
why this has been done historically is that the presence of heart disease 
in the overall medico-legal population means that any reference value 
would represent a mixture of normal and hypertrophic heart weights, 
which in turn would cause any estimate to be biased towards higher 
values than what truly represents a “normal” heart weight. Simply 
removing all known hypertrophic cases from the dataset would not 
resolve this issue, as an unknown proportion of hypertrophic cases are 
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likely not recognized as such. Designating a heart weight cut-off as a 
definition of “hypertrophic” and modelling the remaining cases as 
“normal” leads to circular reasoning, as any such model would estimate 
heart weight below that cut-off as “normal,” proving only that the cut-off 
was used. 

For a model to be able to both successfully remove all cases with known 
cardiac hypertrophy and estimate the probability that a given heart is 
hypertrophic, it must account for undiagnosed cardiac hypertrophy. 
Hence, diagnosed cases can be seen as truly having cardiac hypertrophy, 
but undiagnosed cases must be treated as “unknown.” This type of data 
structure, where a single datapoint can be “partially” missing, is common 
and requires care to model.  
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Aims 

The aims of this thesis was to examine heart weight and lung weight in a 
medico-legal population so as to create relevant reference values and 
offer guidance in the interpretation of heart weight and lung weight by 
calculating the predictive value of findings of increased weights by: 

• creating a model of lung weight to achieve an objective measure of 
what constitutes “heavy lungs,” 

• assessing how well “heavy lungs” can predict fatal intoxication in a 
given case in a representative population, 

• assessing which intoxication agents cause “heavy lungs,” and 

• creating a model of heart weight which accounts for undiagnosed 
cardiac hypertrophy and offers guidance in diagnosing cardiac 
hypertrophy. 
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Materials and Methods 

In Sweden, cases of suspected unnatural death should be referred to a 
medico-legal autopsy at one of six units of the NBFM (1). This agency 
conducts roughly 5,500 medico-legal autopsies annually. Since 1992, 
demographic data, body and organ weights, cause of death, and 
toxicology findings from each autopsy are registered in the NBFM 
autopsy database, which was the source of data for this thesis. 

In Papers I–III, lung weight was defined as the combined weight of both 
lungs.  

Papers I and II used classical frequentist models while Paper III and IV 
used Bayesian models. A brief discussion of the differences between 
these two approaches is available in appendix A. Paper III used a causal 
structural model to assess the effect of intoxicants on lung and brain 
weight, a brief discussion of this approach is available in appendix B. 

In Papers I and II, the results were presented with 95% confidence 
intervals (CIs), whereas in Papers III and IV, model results were 
presented using mean or median values from the posterior distribution 
with related highest posterior density intervals (HPDI).  

In Paper I, the analyses were performed in IBM SPSS Statistics version 
23.0.0.0, in Papers II–V in R. The Bayesian models in Papers III and IV 
were created using Stan. 

Paper I  

Material 

All decedents older than 18 years which had undergone a medico-legal 
autopsy in 2000 through 2013 were identified in the NBFM autopsy 
database (N = 71,012). Cases with a post-mortem interval (PMI) longer 
than 5 days (N = 42,660), unregistered lung weight (N=3,377), extreme 
and/or obviously incorrect values of body height (<120 cm and >250 cm) 
(N = 626), body weight (<20 kg and >300 kg) (N = 72) and combined 
lung weight (<200 g and >5000 g) (N = 221) were excluded. A total of 
24,056 cases were left for analysis. 
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Methods 

Multiple univariable and multivariable linear regression models of lung 
weight were fit. Body weight, body height, body surface area (BSA) were 
included as continuous variables. Body mass index (BMI) was included 
both as a continuous variable as well as a categorical variable using the 
groups (i) underweight (BMI <18.5), (ii) normal weight (BMI 18.5-25), 
(iii) overweight (BMI 25-30) and (iv) obese (BMI>30). Age was included 
as a categorical predictor using 3 categories: (i) 18-40), (ii) 41-60, and 
(iii) >60 years of age.  

Both lung weight as well as all continuous predictors were tested using 
both untransformed as well as square root or logarithmically 
transformed values.  

The models were stratified by sex and after final fit was achieved and 
cases with large residuals (>±3 SD) were excluded to dampen the effect 
of outliers. 

Paper II 

Material 

The data in Paper II was identical that of Paper I but with minor 
modifications (italicized):  

All decedents 18 years or older from 2000 through 2013 which had 
undergone a conventional autopsy were identified in the NBFM autopsy 
database (N = 71,414). Cases with a post-mortem interval (PMI) 5 days 
or longer (N = 42,801), unregistered lung weight (N=3404), extreme 
and/or obviously incorrect values of body height (<120 cm and >250 cm) 
(N = 803), body weight (<20 kg and >300 kg) (N = 121) or combined 
lung weight (<200 g and >5000 g) (N = 3) were excluded. A total of 
23,978 cases were left for analysis. 

Intoxication cases were classified into subgroups based on the ICD-9/10 
code used for the underlying cause of death (Table 4).  
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Table 4. ICD codes used. Note that some codes are modifications of the 
ICD-9 system made by the National Board of Forensic Medicine. NA = 
not applicable. CNS = central nervous system. 

Group ICD-9 ICD-10 
Intoxication with any 
substance (excluding 
alcohol) 

960–979 T36–50 

Intoxication with a 
single substance 

977K NA 

Intoxication with 
multiple substances 

977L NA 

Intoxication with a 
single substance and 
ethanol 

980C NA 

Intoxication with 
multiple substances and 
ethanol 

980L NA 

Intoxication with 
opiates 

965A T40–40.4 

Intoxication with CNS 
stimulants 

969H T40.5, T43.6 

Intoxication with 
antidepressants 

969A T43.0–43.2 

Ethanol intoxication 980A T51.0 

 

Methods 

The lung weight to heart weight (LWHW) ratio was calculated for each 
case, and the mean ratio was calculated in the total population and in 
each stratum of sex and BMI category.  

Independent samples t-tests were used to assess whether there were 
significant differences in mean lung weight between groups. Heavy lungs 
were identified based on cases where the LWHW ratio was above the 
mean, both overall and in subgroups based on sex and BMI category.  

The applicability of this definition of “heavy lungs” for identifying fatal 
intoxications was evaluated using sensitivity, specificity, and positive as 
well as negative predictive values. Since positive and negative predictive 
values are questionable if the base rate is incorrect (such as in the 
smaller subgroups), positive and negative likelihood ratios, which are 
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invariant to the base rate, were also calculated. All results are presented 
with 95% confidence intervals (CI).  

The stratified ratio was converted to Z scores, that is, standardized to 
have a mean of 0 and a standard deviation of 1, allowing us to treat the 
ratio as a continuous variable common to all subgroups. Further, 
receiver operating characteristic (ROC) analysis of the best performing 
models was performed to the optimal cutoff values to optimize the 
sensitivity and specificity of models. Optimal values were calculated 
using Youden's J statistic.  

All analyses were also performed using “classic” analyses, in which all 
cases with cardiac and/or pulmonary disease on the death certificate 
were excluded, leaving 3,105 intoxication cases. Cases where the 
underlying cause of death was hanging were chosen as control cases (N = 
1,892). 

Paper III  

Material 

To identify intoxication cases, the NBFM autopsy database was searched 
from 2009 through 2019 for cases in which the underlying cause of 
death was fatal intoxication (N = 4,783). Further, cases in which one of 
any substances on a predetermined list was mentioned on the death 
certificate were selected (N = 4,339, Table 16 in Appendix C). For each of 
the included intoxicants, all cases in which that substance was 
mentioned on the cause of death certificate were reviewed and those that 
had a cause of death attributed to that single intoxicant only, with no 
contributing cause of death, were selected (N = 1,762). All decedents 
younger than 18 years, with a PMI greater than 7 days, not registered as 
having been found dead (to remove cases which could potentially have 
undergone cardiopulmonary resuscitation), or a state of decomposition 
registered as anything other than “none” or “not registered,” were 
excluded (N = 1,045). Lastly, cases with missing information on lung 
and/or brain weight (N = 16), sex (N = 4), or age (N = 1) were omitted, 
leaving 696 cases for analysis. 

Suicidal hangings deaths were chosen as controls. All cases with suicidal 
hanging as the underlying cause of death from 2012 through 2019 were 
identified. After using the same inclusion and exclusion criteria as in the 
intoxication population, with the added criteria that all cases had 
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undergone a negative drug and alcohol screening (at most 0.5 mg of 
ethanol per gram of femoral vein blood) (N = 104) and omitting cases 
with missing data (N=3), a total of 101 controls remained for analysis. 

Individual cases were not re-examined to validate the diagnoses set by 
the forensic pathologists. However, a full autopsy was conducted in all 
the included cases. In all cases, femoral vein blood, urine, and aqueous 
humor samples were taken (if possible), and toxicological analyses 
performed. In Sweden, all medico-legal autopsy cases are also 
independently reviewed by at least two forensic pathologists (the 
pathologist performed the autopsy; at least one must be board-certified), 
indicating that there should be few erroneous cause of death 
determinations.  

All continuous variables were standardized to a mean of 0 and SD of 1. 

Methods 

Organ weights were assumed to be influenced by case factors, as shown 
in the simplified causal model in Figure 2. To remove confounders for 
the effect of intoxicants on organ weight under the proposed model, 
decomposition and PMI were adjusted for through case selection, 
whereas age and sex were adjusted for through regression parameters.  

Using these data, Bayesian regression models of brain and lung weight 
were fit with varying intercepts for each specific intoxicant nested in 
groups and using age and sex as linear predictors. 

The modeled difference in mean brain or lung weight was calculated by 
subtracting the posterior distribution of the suicidal hanging intercept 
from the posterior distributions of the group and intoxicant intercepts. 

As this model is not frequentist and as such does not test any null 
hypothesis (i.e., Pr(𝑋 ≥ 𝑥|𝐻0)), there is no defined binary cut-off where 
the effect is said to exist – in other words, there is no significance level. 
However, to directly test the hypothesis that there was no difference 
between controls and intoxication cases, a region of practical equivalence 
(ROPE) was defined as 0 ± 0.1 SD. Any difference within the ROPE was 
treated as no difference, since it was considered too small to matter. The 
probability that the differences in mean brain and lung weight between 
intoxication cases and controls was inside the ROPE was then calculated.  
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Only results from groups with more than ten cases are presented in the 
main text. Model details, results from all groups, and Stan model code 
are found in Appendix C. 

 

 

Figure 2. A directed acyclic graph (DAG) showing the proposed causal 
model with arrows representing causal paths between variables. Bold 
text represents variables adjusted for, and dotted arrows causal paths 
from the exposure (cause of death [COD]) to the outcome (organ 
weight). PMI = post-mortem interval, PMC = post-mortem changes. 

Paper IV 

Material 

All decedents 18 years or older from 2010 through 2019 who had 
undergone a conventional medico-legal autopsy with no external cause 
of death other than intoxication, and a state of decomposition registered 
as “none” or not registered (N = 21,976) were identified. The subset of 
cases with a PMI of ≤ 7 days (N = 12,418) were selected, after which 
cases with missing or extreme data (body weight < 40 kg or > 140 kg, 
body height < 150 cm or > 200 cm, age > 100 years, heart weight < 100 g 
or > 1,000 g) (N = 703) were excluded, leaving 11,715 cases for analysis.  

Cases were categorized as “known hypertrophic” if cardiac hypertrophy 
was the underlying cause of death, with all other cases categorized as 
“unknown if hypertrophic.” This approach was chosen to only include 
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cases where the pathologist had excluded competing causes of death, in 
order to estimate at which heart weights cardiac hypertrophy might 
come into question as a potential cause of death. Where cardiac 
hypertrophy was not identified as the cause of death, it might still have 
been present, but deemed irrelevant as the cause of death or overlooked.  

The model was validated using non-obese young suicidal hanging 
decedents, as these would be unlikely to have any degree of cardiac 
hypertrophy. All non-obese (BMI < 30 kg/m2) suicidal hanging cases 
aged 20–30 years with a state of decomposition registered as “none” or 
not registered, and a PMI of ≤ 7 days that had undergone a conventional 
autopsy, from 2010 through 2015, were identified (N = 305). The same 
exclusion criteria as for the main population were applied, which left 296 
cases for validation of the model. 

Body height and heart weight were standardized by dividing them by 
their respective mean values. They were used as continuous variables. 
Age was used as a categorical variable divided into groups younger than 
40 years, 40–49 years, 50–59 years, 60–69 years, and those 70 years or 
older. BMI was also categorized into groups of less than 18.5 kg/m2, 
18.5–24.9 kg/m2, 25–29.9 kg/m2, 30–34.9 kg/m2, and 35 kg/m2 or 
higher. 

Methods 

To assess how much variance there was in the proportion of cases 
classified as hypertrophic given different cut-offs, some previously 
published models (Table 2) were applied to the included cases.  

Heart weight was then modelled as a mixture between hypertrophic and 
normal heart weights, with body height as the sole predictor. In all cases 
where the underlying cause of death was something other than cardiac 
hypertrophy, the model estimated whether the case had a hypertrophic 
heart based on heart weight, age group, BMI group, and sex.  

Both the probability (assuming a 50% a priori probability of a case being 
hypertrophic) and Bayes factor (BF) values are presented. The latter has 
the advantage of being invariant to prior probability of cardiac 

hypertrophy, though the interpretation of a BF value is not as intuitive as 

that of a probability (Table 5) (40). Model details as well as the Stan code 
used are available in Appendix D. 
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Table 5. Approximate interpretation of different Bayes factor values, 
adapted from Kass & Raftery (40). 

Bayes factor value Strength of evidence 
1 to 3.2 Barely worth mentioning 

3.2 to 10 Substantial 
10 to 100 Strong 

> 100 Decisive 
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Ethical considerations 

The data consist of information recorded regarding decedents who 
underwent a medico-legal autopsy, a procedure which is not voluntary or 
subject to consent from next of kin. The studies included only 
anonymized data presented at group level with no possibility of 
identification of an individual. Further, the studies are retrospective and 
no new data were collected. 

No formal ethical approval is required when performing research on 
registry data regarding deceased persons (2003:204 Ethical Permission 
Act, 2016/679 General Data Protection Regulation). 
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Results 

Defining heavy lungs and predicting fatal 

intoxication (Paper I) 

Study population 

The mean age was 54 years and the age category 41–60 years 
encompassed the majority of cases. Age showed a tendency towards a 
bimodal distribution with a peak at 60 years and a smaller peak at 20 
years. The population was made up mainly of normal weight and 
overweight males (Table 6). Mean lung weight increased with BMI, from 
a mean weight of 1,043 g in the underweight group to 1,302 g in the 
obese group. 

Table 6. Characteristics of the population included in linear regression 
analysis. 

Variables 
  

Age category (years) 

18–40 41–60 > 60 

Total population size (n) 6,156 9,057 8,843 

Underweight (BMI < 18.5 kg/m2) (n, 
%) 

274 (4.5) 374 (4.1) 596 (6.7) 

Normal weight (BMI 18.5–25 kg/m2) 
(n, %) 

2,982 (48.4) 3,748 (41.4) 3,985 (45.1) 

Overweight (BMI 25–30 kg/m2) (n, 
%) 

1,933 (31.4) 3,077 (34.0) 2,903 (32.8) 

Obese (BMI > 30 kg/m2) (n, %) 966 (15.7) 1,858 (20.5) 1,354 (15.3) 

Male sex (n, %) 4,730 (77.1) 6,675 (73.9) 6,269 (70.9) 

Body height (cm) (mean, min–max) 176 (123–210) 175 (121–204) 171 (122–200) 

Body weight (kg) (mean, min–max) 79 (32–212) 81 (30–188) 74 (24–195) 

Mean lung weight (g) (mean, min–
max) 

1,182 (240–
4,318) 

1,290 (239–
3,860) 

1,198 (246–
4,250) 
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Linear regression 

Lung weight transformed into the logarithmic scale fulfilled model 
assumptions to a greater extent than untransformed lung weight. The 
associations between lung weight transformed into the logarithmic scale 
and individual characteristics were studied using univariate linear 
regression models (Table 7). Body height and BSA performed best in 
both sex categories. To avoid including both body height and BSA in the 
same model, my coauthors and I decided to include body height, weight, 
and age in the final multivariate linear regression model. Cases with 
large standardized residuals were then excluded (n = 166) (>3, <-3) 
(Table 8). The final multivariate model explained approximately 13% 
and 11% of the variation in lung weight in females and males, 
respectively. 

Table 7. R2 of tested uni-, bi- and multivariate associations. 

Variables Decedent sex 
 

Female Male 
 

(R2) (R2) 

Weight in kg 0.059 0.054 

Height in cm 0.085 0.060 

Age category 0.029 0.019 

BMI in kg/m2 0.024 0.024 

BSA in m2 0.085 0.073 

Height and body weight 0.104 0.078 

Height, weight, and age category 0.124 0.101 

 

  



  Page 22    

 

 

 

Table 8. Regression coefficients from multivariate regression model of 
logarithmically transformed lung weight after exclusion of large 
standardized residuals (> 3, < -3). 

Variables 
 

Regression 
coefficient 

95% CI P-value Standard 
error of 
estimate 

R2 

Female         0.122 0.132 

  Intercept 2.222 2.149, 2.296 <0.001     

  Body 
weight 

-0.053 -0.061, -
0.044 

<0.001     

  Body 
height 

-0.024 -0.041, -
0.017 

<0.001     

  Age over 
60 years 

0.004 0.004, 
0.005 

<0.001     
 

Age under 
41 years 

0.001 0.001, 0.001 <0.001     

Male         0.122 0.106 
 

Intercept 2.401 2.356, 2.446 <0.001     
 

Body 
weight 

-0.046 -0.051, -
0.042 

<0.001     
 

Body 
height 

-0.004 -0.009, 
0.000 

0.051     
 

Age over 
60 years 

0.004 0.003, 
0.004 

<0.001     
 

Age under 
41 years 

0.001 0.001, 0.001 <0.001     

 

Predicting fatal intoxication (Paper II) 

The overall population was predominantly male (74%) and middle-aged 
(Table 9). A large proportion of the intoxication cases had a non-specific 
fatal intoxication cause of death code (1,294 out of 2,189 non-ethanol 
intoxication cases, 59%), with the next most common causes being 
opioid intoxication (448 cases, 20%) and central nervous system (CNS) 
stimulants (58 cases, 2.6%). Generally, intoxication cases were slightly 
younger than the total population, and this difference was more 
pronounced in the CNS stimulant and opioid intoxication groups. The 
LWHW ratio decreased with decreasing BMI (Table 10).  
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Table 9. Lung weight, heart weight, age, body mass index (BMI), and 
sex by total population and intoxication subgroups. 

 
 

Overall All fatal 
intoxications 

Fatal opioid 
intoxications 

Total 
population size, 

n 

23,978 2,189 448 

Combined lung 
weight, g 

(range, SD) 

1,229 (200–
4,318, 378) 

1,374 (480–
2,880, 336) 

1,460 (692–
2,880, 317) 

Heart weight, g 
(range, SD) 

416 (200–1,000, 
110) 

391 (200–910, 
93) 

388 (210–910, 
80) 

Age, years 
(range, SD) 

53 (18–102, 18) 43 (18–95, 17) 35 (18–83, 11) 

BMI, kg/m2, 
mean (SD) 

26 (5) 27 (6) 26 (5) 

Male sex, n (%) 17,675 (74) 1,394 (64) 387 (86) 

 

On average, the lungs were heavier in deaths due to intoxication than in 
controls, with a difference of 159 g (95% CI: 144—174). The difference 
was larger when comparing pure opioid intoxication cases to non-
intoxication cases, 235 g (95% CI: 205—265).  
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Table 10. Mean lung weight to heart weight (LWHW) ratio (SD) by 
BMI and sex. 

 LWHW ratio (SD) 

Overall 3.05 (0.98) 

 Male Female 

Underweight 
(BMI < 18.5 

kg/m2) 

3.40 (1.14) 3.30 (1.06) 

Normal weight 
(BMI 18.5–25 

kg/m2) 

3.22 (1.07) 3.22 (1.01) 

Overweight 
(BMI 25–30 

kg/m2) 

2.96 (0.94) 2.97 (0.89) 

Obese (BMI > 
30 kg/m2) 

2.70 (0.83) 2.69 (0.79) 

 

Using the LWHW ratio, stratified by sex and BMI, slightly improved the 
sensitivity and specificity in identifying cases of fatal intoxication 
compared with when using lung weight only (Table 11). In all cases, the 
negative predictive value was high, in opioid intoxication cases as high as 
0.99 (95% CI: 0.99—0.99). The negative LR was small to moderate at 
0.45 (95% CI: 0.41—0.49) in the overall group and 0.31 (95% CI: 0.23—
0.36) in the opioid group. A ROC analysis of stratified LWHW ratio 
showed that the optimal cut-off point was +0.12 SD from the mean for 
fatal intoxications in general and +0.17 SD from the mean for opioids 
specifically. 
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Table 11. Sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), positive likelihood ratio (LR+), and 
negative likelihood ratio (LR−) of lung weight above mean and of lung 
weight to heart weight (LWHW) ratio above sex and BMI category-
stratified mean. 

 
Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

PPV 
(95% 
CI) 

NPV 
(95% 
CI) 

LR+  
(95% 
CI) 

LR-  
(95% 
CI) 

LWHW ratio 
above mean 

All fatal 
intoxications 

0.74 
(0.72, 
0.76) 

0.58 
(0.57, 0.58) 

0.15 
(0.14, 
0.16) 

0.96 
(0.95, 
0.96) 

1.76 
(1.67, 
1.81) 

0.45 
(0.41, 
0.49) 

Fatal opioid 
intoxications 

0.83 
(0.80, 
0.87) 

0.55 
(0.55, 0.56) 

0.03 
(0.03, 
0.04) 

0.99 
(0.99, 
0.99) 

1.84 
(1.78, 
1.98) 

0.31 
(0.23, 
0.36) 

Lung weight 
above mean 

All fatal 
intoxications 

0.64 
(0.62, 
0.66) 

0.53 
(0.53, 0.54) 

0.12 
(0.12, 
0.13) 

0.94 
(0.93, 
0.94) 

1.36 
(1.32, 
1.43) 

0.68 
(0.63, 
0.72) 

Fatal opioid 
intoxications 

0.76 
(0.72, 
0.80) 

0.53 
(0.52, 0.53) 

0.03 
(0.03, 
0.03) 

0.99 
(0.99, 
0.99) 

1.62 
(1.50, 
1.70) 

0.45 
(0.38, 
0.54) 

 

  



  Page 26    

 

 

 

The association between “heavy” lungs and 

intoxication with opioid and non-opioid 

intoxicants (Paper III) 

Study population 

The study population was predominantly male (73%), with a smaller 
proportion of males among intoxications (71%), and a greater proportion 
among controls (83%). Brain weights were similar (intoxications mean 
1,460 g, SD 154; controls mean 1,497 g, SD 139). The intoxication group 
was younger (median 38 years, SD 17) than controls (median 43 years, 
SD 19), and had heavier lungs (mean combined lung weight 1,412 g, SD 
339 versus mean 1,270 g, SD 269). Opiates constituted the most 
common intoxicant group (N = 496), distantly trailed by “other 
sedatives” (N = 56) and Z-drugs and benzodiazepines (N = 40) (Figure 
3). 

The effect of intoxication on brain weight and lung weight 

Overall, intoxication cases had heavier lungs than controls when account 
was taken of age and sex (Figure 3). The largest difference observed was 
in the opioid intoxication group where the mean effect was around +0.49 
SD, varying from +0.42 SD for oxycodone and to +0.58 SD for heroin. 
The posterior distributions of most intoxicant groups overlapped with 
the opioid group to some extent.  

Overall, intoxication cases had lower brain weight than controls. 
Notably, there was a clear overlap between opioid and non-opioid 
substances (Figure 4). It was highly probable that differences in mean 
brain weights between opioids and any other intoxicants were inside the 
ROPE (Table 12). 
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Figure 3. Posterior distributions of the difference in mean combined 
lung weight between fatal intoxications with a single intoxicant and 
suicidal hangings. Distributions based on fewer than ten cases are 
omitted. Bolded text indicates a substance group. The bars represent 
95% highest posterior density intervals (HPDIs) and the greyed areas 
represent 50% HPDIs. The diamonds represent the posterior means. 
SNRI = serotonin and norepinephrine reuptake inhibitor. SSRI = 
selective serotonin reuptake inhibitor. 
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Figure 4. Posterior distributions of the difference in mean brain weight 
between fatal intoxications with a single intoxicant and suicidal 
hangings. Distributions based on fewer than ten cases are omitted. 
Bolded text indicates a substance group. The bars represent the 95% 
highest posterior density intervals (HPDIs) and the greyed areas 
represent 50% HPDIs. The diamonds represent the posterior means. 
SNRI = serotonin and norepinephrine reuptake inhibitor. SSRI = 
selective serotonin reuptake inhibitor.   
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Table 12. The probability that difference in mean brain weight between 
tested substance groups and opioids is within the region of practical 
equivalence (ROPE, 0 ± 0.1 standard deviations), i.e., that there is no 
difference. SNRI = serotonin and norepinephrine reuptake inhibitor. 
SSRI = selective serotonin reuptake inhibitor. 

Substance Probability that 
value is in ROPE 

Antidiabetics 80% 

Antiepileptics 82% 

Antipsychotics 81% 

Beta blockers 80% 

Calcium antagonists 80% 

CNS stimulants 77% 

Z-drugs & 
benzodiazepines 

82% 

Other sedatives 81% 

SNRIs 82% 

SSRIs 79% 

TCA 81% 
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Defining “normal” heart weight and diagnosing 

cardiac hypertrophy (Paper IV) 

Study population 

The study population was predominantly male (73 %), middle-aged 
(mean 54 years, SD 17), and overweight (mean BMI 27 kg/m2, SD 6) 
(Table 13). Cardiac hypertrophy was the underlying cause of death in 5% 
of cases (N = 594) and a contributing cause of death in 6% of cases (N = 
720). Various forms of heart disease, including cardiac hypertrophy, (N 
= 4,163, 36%) and intoxications (N = 3,020, 26%) were the most 
common causes of death.  

When applying previous definitions of cardiac hypertrophy, there was 
considerable difference in the proportion of included cases classified as 
enlarged (Figure 5). 

Model results 

A normal heart weight for an average adult decedent (mean 369 g, 95% 
HPDI: 259–486) according to our model was 141 g lower than modelled 
hypertrophic heart weight (mean 510 g, 95% HPDI: 335–703). 

For an average case, the BF in favor of cardiac hypertrophy rose 
exponentially with increasing heart weight, with weak support for a 
diagnosis at around 430 g, substantial support at around 470 g, and 
strong support at 520 g (Figure 6). However, for a 160 cm tall decedent, 
the same levels of support would be reached at 370 g, 400 g, and 420 g 
respectively. 

The model distinguished two clear groups of heart weights. However, a 
large portion of cases had an intermediate probability (assuming a 50% a 
priori probability) of cardiac hypertrophy (Figure 7). The proportion of 
cases with high probability of cardiac hypertrophy was similar among all 
body heights. 

The modelled prevalence of cardiac hypertrophy was large among 
overweight and older decedents (Figure 8). The probability of a 
hypertrophic heart being deemed the underlying cause of death 
(assuming the heart was truly hypertrophic) varied considerably across 
NBFM units (Table 14). 
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Table 13. Population variable means and standard deviations (SDs), 
overall and stratified among cases where cardiac hypertrophy was or 
was not a cause of death. 

 
Age 
in 

years 
(SD) 

Body 
height 
in cm 
(SD) 

Body 
weight 
in kg 
(SD) 

BMI 
in 

kg/m2 
(SD) 

Percentage 
male 

Heart 
weight 

in g 
(SD) 

All cases (N 
= 11,715) 

54 
(17) 

174 (9) 81 (20) 27 (6) 73 443 
(116) 

Cardiac 
hypertrophy 
is not a 
cause of 
death (N = 
10,401) 

54 
(17) 

174 (9) 80 (19) 26 (6) 71 427 
(107) 

Cardiac 
hypertrophy 
is a cause of 
death (N = 
1,314) 

61 
(14) 

177 (9) 92 (20) 29 (6) 84 567 
(107) 

 

Table 14. The probability that a hypertrophic heart was deemed the 
cause of death, by NBFM unit (A–F) (95% highest posterior density 
interval). 

NBFM unit Probability that a 

hypertrophic heart would 

be deemed a cause of death  

A 5 (4–6)% 

B 16 (13–18)% 

C 4 (3–6)% 

D 18 (15–20)% 

E 9 (7–11)% 

F 19 (14–24)% 
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Figure 5. Included cases by heart weight (HW) (g) and body height 
(cm). Color represents classification (blue = normal, yellow = 
hypertrophic) using the definitions: A) HW ≥ 450 g for males and ≥ 
400 g for females, B) HW ≥ 400 g, C) HW ≥ 500 g for males and HW ≥ 
400 g for females, D) HW ≥ 350 g for males and HW ≥ 300 g for 
females, E) HW ≥ 400 g for males and HW ≥ 350 g for females, F) HW 

≥ 500 g, G) 
𝐻𝑊

𝑏𝑜𝑑𝑦𝑤𝑒𝑖𝑔ℎ𝑡
 ≥ 5, H) 

𝐻𝑊

𝑏𝑜𝑑𝑦𝑤𝑒𝑖𝑔ℎ𝑡
 ≥ 4.5 for males and 

𝐻𝑊

𝑏𝑜𝑑𝑦𝑤𝑒𝑖𝑔ℎ𝑡
 

≥ 4 for females, I) HW ≥ 2 times body weight in lbs. 

 



  Page 33    

 

 

 

 

Figure 6. Bayes factor in favor of a cardiac hypertrophy diagnosis as a 
function of heart weight for a decedent of average body height, 
presented on the log scale.  
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Figure 7. Included cases by heart weight (g) and body height (cm). The 
dashed line represents the posterior median of the hypertrophy model 
and the solid line represents the posterior median of the normal model. 
The color represents the probability (assuming a 50% a priori 
probability) that the case is hypertrophic. 
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Figure 8. Heatmaps of the probability that a case in the population 
would have a hypertrophic heart, stratified by sex. The colors represent 
the median posterior probability. 
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Model validation 

Validation cases were on average normal weight (mean BMI 23 kg/m2, 
SD 3), young (mean age 25 years, SD 3) males (81%). The mean heart 
weight was considerably lower than in the model data (mean 329 g, SD 
62 vs. 445 g, SD 116). When only the model’s normal heart weight 
mixture component was used, the model captured most assumed healthy 
decedent cases within 1 SD. However, it slightly overestimated the heart 
weight values (a median difference of 43 g) (Figure 9). 

 

Figure 9. Heart weight (g) by body height (cm) among cases not 
included in the model; suicidal hangings aged 20-30 years with a BMI 
< 30 kg/m2. The thick line represents the posterior median of the 
normal heart weight model, solid lines represent 1 standard deviation, 
and dashed lines represent 2 standard deviations. 
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Discussion 

“Heavy lungs” and fatal intoxications 

This thesis attempted to define “heavy lungs” in multiple ways, including 
using different populations or regression-based cut-offs and creating a 
ratio between lung weight and heart weight. None of these methods has 
been shown to be particularly reliable.  

The R2 of 0.13/0.11 achieved by the linear model is in line with what has 
been reported in some previous literature (7, 9, 41), with the exception of 
one study (11). This exception is presumably due to study design and 
population; that study included only cases of traumatic deaths with short 
survival time without any pathological changes (11). All except one (41) 
of these studies included only traumatic deaths and – as stated in the 
introduction to this thesis – I believe such models lack validity. This, 
taken together with the poor fit achieved in non-traumatic populations, 
implies that linear models are a poor method for defining a reference for 
what constitutes “heavy lungs.”  

A possible explanation for this is the very same reason that the lungs are 
of interest: their function as a fluid capacitor. The process which creates 
the perceived pulmonary oedema and “heaviness” is presumably non-
specific and in the disease-burdened medico-legal autopsy population 
there are likely many other reasons for such a finding. 

The LWHW ratio outperformed lung weight alone and showed similar 
performance regardless of which controls were used (Table 11). This 
implies that the heart can act to normalize lung weight somewhat, 
though this of course leads to issues when there is cardiovascular 
disease, as cases with cardiac hypertrophy would inevitably lead to lower 
ratios, regardless of lung weight.  

In either case, regardless of method and cut-off applied, the positive 
predictive value for fatal intoxication was small (≤ 0.15, Table 11). 
However, the negative predictive value was large (≥0.94), suggesting 
that the probability of a fatal intoxication when lungs are not “heavy” is 
quite low. However, this estimate ignores the base rate of intoxication 
and does not reflect how the test would actually be used. 
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When using the negative LR, the effect of “heavy lungs” is small. If the 
base rate is assumed to be 10%, the negative LR can then be applied to 
calculate the posttest probability of intoxication (Equation 1). 

Pr(𝐼𝑛𝑡𝑜𝑥𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝐿𝑊𝐻𝑊𝑏𝑒𝑙𝑜𝑤𝑚𝑒𝑎𝑛) = 

𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡𝑜𝑑𝑑𝑠

1 + 𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡𝑜𝑑𝑑𝑠
= 

𝑃𝑟𝑒𝑡𝑒𝑠𝑡𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
1 − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

× 𝐿𝑅−

1 +
𝑃𝑟𝑒𝑡𝑒𝑠𝑡𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
× 𝐿𝑅−

= 

0.1
1 − 0.1 × 0.045

1 +
0.1

1 − 0.1 × 0.045
=

0.05

1 + 0.05
≈ 4.8% 

(1) 

As can be seen, the probability of intoxication has dropped from 10% to 
4.8%. Though this a clear effect, it is too small to be of clinical 
importance.  

The same is true even when there is a large prior probability of 
intoxication, e.g., when a decedent is a known drug abuser and is found 
next to a syringe. Assuming there is a pretest probability of 90% and a 
low LWHW ratio is found, the posttest probability is still 80%. The 
probability is clearly lowered, but not enough to matter. 

Further, the study analyzed an unselected population, which meant that 
cases where cardiopulmonary resuscitation had been performed could 
have been included in the data. Though there is no reason to suspect that 
there is a systemic bias where intoxication cases are more or less likely to 
be subjected to cardiopulmonary resuscitation than other medico-legal 
cases, this is a possible source of uncertainty, which could plausibly have 
reduced predictive power somewhat. 

This poor performance could also possibly be due to overinclusion of 
non-opioid deaths in which increased lung weight might not be as 
typical. However, the findings in Paper III seem to debunk this claim. 
Indeed, the results show that most, if not all intoxicants analyzed were 
associated with an increased lung weight, corroborating the more non-
specific findings in Paper II and some previous literature (23, 24). 
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Sample sizes of many groups were quite small, however, so the results 
should be viewed as preliminary.  

Nonetheless, opioid intoxications had large differences in credible 
intervals (i.e., the largest distance between the lower bound of the HPDI 
and 0), but the posterior mean value was only slightly above most 
intoxicants (Figure 3), implying that this is indeed largely a sample size 
effect.  

To alleviate this problem, intoxicants were modelled using nested 
varying effects, pooling data across groups when the model deemed it 
useful. However, estimates based on groups with smaller numbers of 
cases should be interpreted with caution, as higher order group effects 
largely inform these estimates (e.g., clomethiazole with N = 1 is mostly 
an effect of the higher order term “other sedatives,” see Figure 13 in 
Appendix C). 

It is notable that the differences in mean lung weight calculated in Paper 
II (Table 9) and Paper III (Figure 3) are smaller than those reported in 
previous studies (18, 23), probably caused by inclusion of hypovolemic 
cases as controls, thus biasing results in favor of a larger difference. 
However, Molina (18) compared intoxication cases to cardiovascular 
deaths as well, with results more in line with those of Papers II and III. 

All intoxicants were associated with a lower average brain weight than 
controls, but all upper HPDI bounds overlapped 0. The model also 
showed that there was a considerable probability of no difference in 
brain weight between intoxicants (Figure 4).  

The obtained estimates of brain weight seem to debunk the hypothesis 
that increased brain weight is a sign of opioid intoxication (18). It is 
unclear if this is due to weight being a poor proxy for cerebral oedema, or 
if there is some cause for more severe cerebral oedema in hanging deaths 
biasing results. However, even if a higher brain weight is expected in 
intoxication deaths, it cannot be said to be unique to opioid deaths.  

“Normal” heart weight and cardiac hypertrophy 

In this thesis, a model of heart weight in a non-traumatic medico-legal 
autopsy population accounting for undiagnosed states of cardiac 
hypertrophy (i.e., where this was not the underlying cause of death) was 
created. The model can be accessed through a simple application 
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accessible via https://formedum.shinyapps.io/HeartWeightCalc and the 
source code and files needed to run the application are available at 
https://github.com/formedum/HeartWeightCalc. Using this model, a 
pathologist can assess the strength of the evidence in support of a 
cardiac hypertrophy being a cause of death. 

However, and importantly, the model only offers an estimate of how well 
a “potentially lethal” cardiac hypertrophy would explain the measured 
heart weight compared with a “normal” heart weight. It does not 
calculate the probability that cardiac hypertrophy is the cause of death 
(or even a contributing cause). Although it is possible to calculate this 
probability given some base rate, this would not be particularly useful – 
as the assessment of cause of death is based on far more information 
than heart weight alone. As such, the model does not exempt the 
pathologist performing the autopsy from accounting for other 
circumstances in the specific case and a model’s support of a cardiac 
hypertrophy diagnosis must not be seen as absolute.  

 

Figure 10. A density kernel estimate of heart weights (g) included in the 
model (black line) with kernel density estimates of 100 random samples 
from the posterior predictive distribution of the body height-based 
model (blue lines) and a body weight-based model (red lines). 

A model based only on body weight was also tested (see Appendix D). It 
was a marginally better predictor of heart weight compared with body 
height, in line with previous research (4, 6, 8, 12, 36). The improvement 

https://formedum.shinyapps.io/HeartWeightCalc/
https://github.com/formedum/HeartWeightCalc
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can be seen mainly in the tail regions of the posterior predictive 
distribution (Figure 10).  

This result could be interpreted as evidence that body height is only 
useful in predicting heart weight in as much as it acts as a proxy for heart 
weight. Indeed, this seems to confirm what has been assumed since at 
least the early 20th century “[…] it is apparent that there must be a 
correlation between the weight of the body and that of the heart, 
probably due to the ‘need of a given mass of heart muscle to pump 
blood to a given mass of tissue.’” (4) However, this ignores the issue that 
an increased heart muscle mass might be adaptive to the need, but may 
nonetheless be pathologic in nature, as has been noted before (6). 
Further, using body weight as the only predictor caused an unsound 
negative relationship between BMI and the probability of hypertrophy, 
suggesting that severely obese decedents had the lowest probability of 
having hypertrophic hearts (Figure 11).  

 

Figure 11. The means and 95% highest probability density intervals for 
probability of cardiac hypertrophy for a decedent under the age of 40 
years, as a function of body mass index (BMI) group in the body 
weight-based model. 

It is likely the case that when body weight is used as a linear predictor of 
heart weight, cases with obesity-induced cardiac hypertrophy are well 
within the normal model’s bounds. Although a body height-based model 
offers slightly worse predictions out of sample and is associated with 
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greater uncertainty, I believe it offers a more correct model of 
hypertrophy than a body weight-based one. 

There was a large overlap in the distribution of heart weights between 
cases assessed as normal and cases assessed as hypertrophic. This seems 
reasonable, as it is self-evident that there are more borderline cases of 
cardiac hypertrophy with a falling prevalence, paired with an increasing 
probability of hypertrophy as heart weights become more extreme.  

The modelled heart weight of “normal” cases is close to what has been 
seen in some modern studies using healthy populations (5, 6, 12–14, 32). 
The model also gave reasonable results when used for the out-of-sample 
young adult suicidal hanging deaths (Figure 9), though it did slightly 
overestimate their heart weights. Perhaps this is due to the model truly 
overestimating normal or because a “slight” cardiac hypertrophy is rarely 
considered a potential cause of death and as such the model’s conception 
of normal reflects what could be considered “non-lethal” heart weight 
values. Further development and application of the model in other 
settings is likely needed to assess this.  

It is also noteworthy that the model results are in close agreement with 
the only previous attempt to establish cut-offs based on cases with 
known heart disease. Kakimoto et al. (39) established a cut-off for 
cardiac hypertrophy of 407 g in men, which – given the mean body 
height in their data (168 cm) in our model – almost exactly corresponds 
to the intersection of the normal and hypertrophic heart weight 
distributions, i.e., the boundary at which the data begin to support a 
cardiac hypertrophy diagnosis. Their cut-off for females (327 g) was 
slightly lower than it would be in our model, though their mean body 
height for females (154 cm) was close to the extreme of our data. 

Strengths & weaknesses 

The included studies are retrospective and there is a risk of circular 
reasoning when studying a finding in relation to the cause of death. 
However, in the case of lung weight, this risk should be of minimal 
importance in the present context; lung weight can inform the forensic 
pathologist in the interim between the autopsy and access to results of 
the toxicological analyses, but cause of death is based on autopsy 
findings, including toxicological analyses, and circumstantial evidence in 
an individual case, never on lung weight. Hence, the weight of the lungs 
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and the toxicological results can be considered mutually independent 
and objectively registered findings. 

The data included are limited as the cause of death was in many cases 
coded in a non-specific way. Although this means that the data are a 
good estimate of the baseline of fatal intoxications overall (and the major 
subgroup of isolated opioid intoxications), the base rates of fatal 
intoxication in the smaller subgroups are uncertain. 

This probability of cardiac hypertrophy in the heart weight model is 
based on a latent (i.e., unobserved) variable which itself is based on 
previous diagnoses. Since a diagnosis of cardiac hypertrophy is at least 
partially based on measured heart weight, there is some risk of circular 
reasoning. However, by including only cases where cardiac hypertrophy 
was the underlying cause of death, the model should presumably also be 
applicable to cases where other potential causes of death have been 
deemed unlikely.  

Prospects for the future 

Modelling organ weights and defining “normal” 

Many papers have attempted to model heart weight or organ weights 
using linear models (5, 10–15, 35–37). None have had satisfactory 
results, achieving at most an R2 of 0.642 for heart weight (12). The 
individual variability due to effects such as subclinical hypertension, 
body mass, and genetic factors is likely too large to create a model with 
better fit. Very select populations (e.g., young adult trauma deaths) could 
be used, but validity in cases out of sample would then be questionable. 

Further, comparing measured organ weights to estimates from such 
models is likely an inadequate approach since there is nothing 
suggesting that, e.g., a 95% CI would not contain truly enlarged organs. 
The approach of modeling the disease state and comparing how well 
different hypotheses explain the measured organ weights might be a way 
forward. 

The heart weight model attempted to model a so-called latent (i.e., 
unobserved) state. State-based models are flexible and allow for 
estimates of variables not observed from partial data, in this case 
whether a case was hypertrophic, for instance. This type of approach has 
many possible applications in organ weight modelling and in medico-
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legal research in general, as partial data are quite common (e.g., when it 
is unknown whether a decedent abused drugs).  

Predicting fatal intoxication 

Increased lung weight does seem to be a finding common in most, if not 
all intoxication deaths, but its predictive performance is poor (18, 19). 
This is surprising, given that the finding is anecdotally claimed to be 
common. Such anecdotes can be blamed on recall bias, but the poor 
results might (also) be due to issues with case selection. A study 
analyzing lung weight and brain weight when accounting for case history 
and whether or not there is any competing cause of death could perhaps 
be the best approach to resolve these issues.  

Still, an explanation could be that there is some morphological finding in 
these cases that is lost when analyzing only lung weight, in which case a 
prospective study analyzing other qualities of lung tissue (e.g., density) 
in a representative population should be conducted.  
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Conclusions 

• Simple linear regression cannot predict lung weight to any clinically 
useful degree. 
 

• Most, if not all intoxication deaths are associated with heavier lungs 
than in the average medico-legal autopsy case. However, lung weight 
alone and LWHW ratio are poor predictors of fatal intoxication.  

 

• There is evidence against the hypothesis that increased brain weight 
and/or lung weight are findings unique or specific to opioid deaths. 

 

• Future studies attempting to make predictive models of intoxication 
need to account for factors other than organ weights, such as case 
history and presence of competing findings. 
 

• The prevalence of cardiac hypertrophy in a medico-legal setting is 
high. 

 

• Comparing measured heart weight to previously published reference 
weights is an inadequate method for diagnosing cardiac hypertrophy. 

 

• Modeling heart weight as a function of body weight is likely the 
approach which gives the best estimates of expected heart weight; 
however, it does not enable identification of which hearts are truly 
enlarged. 

 

• The heart weight model described in this thesis is the only published 
model that provides a probability of cardiac hypertrophy given case-
specific details. 
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Appendix A—Frequentist and Bayesian 

views on probability (Papers III and IV) 

There are two main views on how to interpret probability, frequentism, 
and Bayesianism. Both views agree on the formula for calculating a 
conditional probability, known as Bayes’ theorem (Equation 2) 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

(2) 

𝑃(𝐴|𝐵) denotes the conditional probability of A given B, called the 
“posterior probability” in the Bayesian view. The probability of B given A 
(𝑃(𝐵|𝐴)) is called the likelihood, whereas the unconditional probabilities 
of A and B are called prior probabilities and represent prior information 
or beliefs. 

For example, to calculate the probability of whether a patient has a 
disease if they test positive using some test, assuming a disease 
prevalence 2% and a test sensitivity and specificity of 99% (Equation 3) 

𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒|𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝐷𝑖𝑠𝑒𝑎𝑠𝑒)𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒)

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
= 

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝐷𝑖𝑠𝑒𝑎𝑠𝑒)𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒)

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝐷𝑖𝑠𝑒𝑎𝑠𝑒) 𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒) + 𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝐻𝑒𝑎𝑙𝑡𝑦) 𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦)
= 

0.99 × 0.02

0.99 × 0.02 + 0.01 × 0.98
≈ 67% 

(3) 

In the frequentist view, probability is defined as the long-run frequency 
of occurrence of some event. That is to say, the probability of getting 
heads when flipping a fair coin is 50% because if the coin was flipped an 
infinite number of times, it would on average come up heads half of 



 

 

those times. In this view, single-event probabilities (such as the 
probability that a specific person has cancer) are undefined. 

The Bayesian view is somewhat less uniform, but a popular 
interpretation, pioneered by Jaynes (42), is that probability is a measure 
of information. The Jaynesian view is that probability is an extension of 
deductive logic to non-binary truth values, or rather that deductive logic 
is a special case of probability where all the included probabilities are 
either 0 or 1. That is to say, in the Jaynesian view, the deductive 
statement “𝑅𝑎𝑖𝑛𝑖𝑛𝑔 → 𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎” (where → is read as “implies”) is 
equivalent to the probabilistic statement “𝑃(𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎|𝑅𝑎𝑖𝑛𝑖𝑛𝑔) = 1.” It 
is easily proven that Bayes’ theorem obeys the contrapositive, i.e., that 
“𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 → 𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎” is equivalent to 
“𝑃(𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎|𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) = 1” (Equation 4).  

𝑃(𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎|𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) = 

𝑃(𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔|𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)𝑃(𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)

𝑃(𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
= 

𝑃(𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔|𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)𝑃(𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)

𝑃(𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔|𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎)𝑃(𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎) + 𝑃(𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔|𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)𝑃(𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)
 

(4) 

From Equation 4, it is easy to see that if “𝑃(𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎|𝑅𝑎𝑖𝑛𝑖𝑛𝑔) = 1” 
then “𝑃(𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎|𝑅𝑎𝑖𝑛𝑖𝑛𝑔) = 0,” which cancels out denominator, 
proving the contrapositive (Equation 5). 

𝑃(𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔|𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)𝑃(𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)

0 + 𝑃(𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔|𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)𝑃(𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎)
= 1 

(5) 

The same type of proofs holds for modus ponens (Equation 6) and 
modus tollens (Equation 7).  

((𝑅𝑎𝑖𝑛𝑖𝑛𝑔 → 𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎)𝑎𝑛𝑑𝑅𝑎𝑖𝑛𝑖𝑛𝑔) → 𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎 

(6) 



 

 

((𝑅𝑎𝑖𝑛𝑖𝑛𝑔 → 𝑈𝑚𝑏𝑟𝑒𝑙𝑙𝑎)𝑎𝑛𝑑𝑁𝑜𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) → 𝑁𝑜𝑡𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎 

(7) 

The Bayesian definition is at first glance more opaque than the 
frequentist definition, but it allows probability to answer questions 
regarding single-occurrence events and allows prior information to be 
incorporated more directly.  

The utilization of prior information in Bayesian models is sometimes 
critiqued as making the results of any analysis dependent on them, and 
thus making the results subjective. This objection is not, however, in line 
with modern Bayesian philosophy, where the prior is seen as an integral 
(and testable!) part of the model and no more subjective than the 
assignment of a null hypothesis in a frequentist analysis (43). Further, 
the assignment of priors has the advantage of working as a 
“regularization device” which penalizes extreme values without 
informing the model in the relevant portion of the posterior (44). 
Generally, such priors are easily justified, e.g., few would argue with a 
prior belief that a 1 SD increase in body height is likely to be associated 
with a change in body weight smaller than ±10 SDs. To argue otherwise 
would be to argue that there is a priori reason to suspect an effect of such 
a massive size, in which case that prior information should be included 
in the model. 

The difference in definitions between frequentist and Bayesian views 
also has a bearing on the type of answers that statistics can provide: In 
the frequentist view only the data has a probability, since only they can 
be said to have a frequency. This means that the probability of a 
hypothesis given some observed data—𝑃(𝐻|𝐷)—cannot be defined, only 
the probability of the data given a hypothesis—𝑃(𝐷|𝐻). This is the basis 
for classic p-values.  

Assume that a coin is tossed 100 times and a result of 61 heads and 39 
tails is obtained, and that the experimenter wants to know whether this 
is merely a fluke or if the coin is unfair. To calculate a p-value in this 
case, one first assumes a null hypothesis (denoted 𝐻0), e.g., that the coin 
has a 50% probability of heads. Then, the probability that a result as 
extreme or a more extreme than the result acquired could have been 
observed given the null hypothesis is calculated (Equation 8). 



 

 

𝑃(𝑋 ≥ 𝑋𝑜𝑏𝑠|𝐻0) = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑋 ≥ 0.61|𝜃 = 0.5, 𝑁 = 100) ≈ 0.02 

(8) 

If any result of p <0.05 is treated as significant, one should then reject 
the null hypothesis. However, note that the above shown equation does 
not give a probability that the coin is fair (𝑃(𝐻0|𝑋𝑜𝑏𝑠) nor a probability 
that the coin is not fair (𝑃(𝐻0

̅̅̅̅ |𝑋𝑜𝑏𝑠), where 𝐻0
̅̅̅̅  denotes the hypothesis 

that the probability of heads is not 50%). The calculation gives a 
probability of observing similar or more extreme data if the coin is 
fair—𝑃(𝑋 ≥ 𝑋𝑜𝑏𝑠|𝐻0).  

The corresponding Bayesian solution requires that some prior 
distribution is defined for all parameters (in this case 𝑃(𝐻0)). For 
example, an a priori assumption could be that there is a 50% chance of 
the coin being fair. The probability that the coin is fair can thus be 
calculated directly (Equation 9). 

𝑃(𝐻0|𝑋𝑜𝑏𝑠) =
𝑃(𝑋𝑜𝑏𝑠|𝐻0)𝑃(𝐻0)

𝑃(𝑋𝑜𝑏𝑠)
= 

𝑃(𝑋𝑜𝑏𝑠|𝐻0)𝑃(𝐻0)

𝑃(𝐻0)𝑃(𝑋𝑜𝑏𝑠|𝐻0) + 𝑃(𝐻0
̅̅̅̅ )𝑃(𝑋𝑜𝑏𝑠|𝐻0

̅̅̅̅ )
= 

0.007 × 0.5

0.5 × 0.007 + 0.5 × 0.993
≈ 0.007 

(9) 

This solution is superficially similar to the frequentist solution, but it is 
an answer to a different question.  



 

 

Appendix B—Causal inference using 

DAGs (Paper III) 

Causal inference in statistics has traditionally been limited to the realm 
of philosophy and in epidemiology specifically it has been mostly 
confined to the nine Bradford Hill criteria published in 1965 (45) (Table 
15). These criteria are not a “checklist,” but rather guidelines regarding 
which factors suggest that an observed effect might be causal.  

However, in recent years, the science of causal inference in statistics has 
matured, with structural causal models using directed acyclic graphs 
(DAGs) being included among the standard methods (46). 

A DAG is a graphical representation of a proposed causal model (46). 
The DAG is an abstract representation that only proposes the direction 
in which causes flow, but says nothing about the type of relationship 
which exists between variables (e.g., if there is a negative or positive 
correlation, an interaction effect, some dose-response effect, etc.). DAGs 
have large overlaps with the Bradford Hill criteria, but cannot for 
example assess the strength of an association or assess dose-response 
relationships (47).  

As an example, whether or not a light is bright could be described as an 
effect of both the state of the light switch (on or off) and whether there is 
electricity in the wall socket (Figure 12). 

 

Figure 12. A directed acyclic graph describing the system causing a 
light to be bright or not. 

  



 

 

Table 15. Brief descriptions of the Bradford Hill criteria which suggest 
that an effect is causal.  

Criteria  

Strength of association Large effects 

Consistency Effects which can be 
reproduced consistently 
across labs and researchers  

Specificity Effects limited to a specific 
population or location 

Temporality Effects occur after their 
causes 

Biological gradient Effects with a dose-response 
relationship 

Plausibility Effects which have a 
scientifically plausible 
explanation 

Coherence Effects which do not conflict 
with the present 
understanding of the system 
studied 

Experiment Effects for which there is 
experimental evidence 

Analogy Effects for which there is 
previous knowledge of a 
causal effect in a similar 
system 

 

 



 

 

In this simple example, it is obvious that the light switch being on and 
electricity being present jointly cause the light to be bright. However, 
this could not be concluded from viewing data alone, as the statistical 
association between for example electricity and light brightness would 
not say anything about direction of the relationship. Further, model 
prediction has a limited relationship to causal inference. In the above 
example, light brightness is a very good predictor of the presence of 
electricity (given that the light switch is turned on) even though it 
obviously cannot be said to cause the presence of electricity. 

There are three main types of relationships (“paths”) between predictor 
(X), outcome (Y), and intermediate variables (Z) in a DAG: “forks” (𝑋 ←
𝑍 → 𝑌), “pipes” or “chains” (𝑋 → 𝑍 → 𝑌) and “colliders” (𝑋 → 𝑍 ← 𝑌). 

“Pipes” and “forks” are naturally “open” paths, i.e., if they are not 
adjusted for, an association between X and Y will be seen in the model. 
In the case of pipes, these are mediating paths which should remain 
open if the total causal effect is being studied, e.g., if studying the effect 
of an angiotensin-converting enzyme-inhibiting drug on blood pressure, 
angiotensin-converting enzyme activity would be a pipe variable in the 
path between the angiotensin-converting enzyme inhibitor and blood 
pressure. 

Forks are common causes of both X and Y, for example the status of a 
light switch in the relationship between the brightness of two lamps 
(Figure 13). These should be adjusted for, as non-adjustment allows non-
causal relationships to impact the estimate of the effect of X on Y. 

 

Figure 13. A directed acyclic graph describing the effect of a light switch 
on two lights to be bright or not. 

 



 

 

Colliders are caused jointly by both Z and Y and are naturally closed. 
However, they open if they are conditioned on, which introduces bias to 
the model. This was the case in the light switch example in Figure 10. 

This heuristic for choosing which variables to adjust for is called the 
“backdoor” criterion (46). The name comes from the fact that 
conditioning on these variables stops estimates from flowing against 
arrow directions and “in through the backdoor.”  

In for example a randomized controlled trial, all backdoor paths are 
closed automatically as the randomization replaces all causes for X. 
However, if the outcome is dependent on some variable downstream of 
X (e.g., patient dropout), it might be related to the predictor X as well as 
some confounder, and collider bias might thus have been introduced (in 
which case a DAG is needed to determine which other variables should 
be adjusted for). 

This method is more rigorous than common practice as it tests most 
possible predictors and chooses those with best fit. As has been shown 
above, this could introduce bias to the model. In such cases, all 
regression parameters are presented without accounting for which (if 
any) estimates are causal. This is unwise as a table of regression 
parameters without context is often interpreted causally even though it 
should not be (the so-called “Table 2 fallacy”) (48). 

The causal estimate is nonetheless only correct if the DAG is correct, 
which is impossible to prove. It is also impossible to determine which 
types of paths are present from the data alone. However, for any given 
DAG, there are testable relationships which could be used to hypo-
deductively test the DAG, i.e., if the DAG suggests two variables should 
be unrelated and they are found to be strongly correlated when tested, 
that DAG could be said to have been falsified and should be updated to 
include new information. 

  



 

 

Appendix C—Supplementary materials 

for Paper III 

Choice of priors 

My coauthors and I aimed for weakly informative prior distributions that 
would regularize away extreme values, but otherwise have minimal effect 
on the model. For the grand mean as well as all linear predictor 
variables, we chose a normal distribution with a mean of 0 and a SD of 
2.5, implying that male sex or a 1 SD change in age was a priori plausibly 
associated with a ±2.5 SD change in lung or brain weight. For overall 
variance and random variance components, we chose an exponential 
distribution with a rate of 1. We chose this because the exponential 
distribution, like variance, is strictly positive. The rate was chosen as it 
has an expected value of 1 but a very wide tail, placing a large proportion 
of the probability around 0 (implying a large degree of partial pooling). 
The wide tail allows the model to severely moderate the degree of partial 
pooling. 

All these included priors were weak and should be overwhelmed by even 
a few data points. 



 

 

Supplementary figures and tables 

 

Figure 14. Posterior distributions of the difference in mean combined 
lung weight between fatal intoxications with a single intoxicant and 
suicidal hangings. Bolded text indicates a substance group. The bars 
represent 95% highest posterior density intervals (HPDIs) and the 
greyed areas represent 50% HPDIs. The diamonds represent posterior 
means. MDMA = 3,4-methylenedioxymethamphetamine. SNRI = 
serotonin and norepinephrine reuptake inhibitor. SSRI = selective 
serotonin reuptake inhibitor. TCA = tricyclic antidepressant. 

 



 

 

 

Figure 15. Posterior distributions of the difference in mean brain weight 
between fatal intoxications with a single intoxicant and suicidal 
hangings. Bolded text indicates a substance group. The bars represent 
95% highest posterior density intervals (HPDIs) and the greyed areas 
represent 50% HPDIs. The diamonds represent posterior means. 
MDMA = 3,4-methylenedioxymethamphetamine. SNRI = serotonin and 
norepinephrine reuptake inhibitor. SSRI = selective serotonin reuptake 
inhibitor. TCA = tricyclic antidepressant. 



 

 

Table 16. Number of cases where a substance was present on the death 
certificate and number of cases where that substance was the sole cause 
of death.  

Substance Cases, 
overall 
(N)  

Single 
substance 
cases (N) 

% single 
substance 

Substance Cases, 
overall 
(N) 

Single 
substance 
cases (N) 

% single 
substance 

9-OH risperidone 0 0 - loperamide 27 16 59% 

alimemazine 457 99 22% lorazepam 3 0 0% 

alprazolam 400 9 2% MDMA 58 16 28% 

amiodarone 2 2 100% melperone 2 0 0% 

amitriptyline 17 4 24% metformin 12 7 58% 

amlodipine 30 3 10% methadone 601 269 45% 

amphetamine 242 44 18% methylphenidate 44 2 5% 

aripiprazole 5 0 0% metoprolol 34 3 9% 

atenolol 12 2 17% mianserin 8 0 0% 

atomoxetine 1 1 100% medazepam 0 0 - 

bisoprolol 8 0 0% mirtazapine 228 13 6% 

buprenorphine 498 122 24% modafinil 0 0 - 

bupropion 1 0 0% morphine 252 51 20% 

buspirone 17 0 0% nitrazepam 94 7 7% 

carbamazepine 21 1 5% nortriptyline 0 0 - 

chlorpromazine 0 0 - olanzapine 84 12 14% 

chlorprothixene 4 0 0% oxazepam 104 2 2% 

citalopram 171 27 16% oxycodone 385 85 22% 

clomethiazole 9 2 22% paroxetine 23 2 9% 

clomipramine 73 14 19% pentobarbital 22 20 91% 

clonazepam 192 3 2% perphenazine 4 0 0% 

clozapine 25 10 40% phenobarbital 2 1 50% 

cocaine 83 20 13% phenytoin 0 0 - 

codeine 165 11 12% pregabalin 370 20 5% 

diazepam 371 0 0% propranolol 4 0 0% 

diltiazem 2 2 100% propafenone 0 0 - 

duloxetine 51 2 4% propiomazine 332 30 9% 

escitalopram 0 0 - quetiapine 93 12 13% 

ethylphenidate 42 0 0% reboxetine 0 0 - 

felodipine 1 0 0% risperidone 7 0 0% 

fentanyl 271 141 52% sertraline 159 26 16% 

flecainide 2 2 100% sotalol 3 2 67% 

flunitrazepam 58 14 0% temazepam 14 0 - 

fluoxetine 82 10 12% topiramate 10 0 0% 

flupentixol 7 0 0% tramadol 464 138 29% 

gabapentin 92 3 3% venlafaxine 151 29 19% 

haloperidol 6 1 17% verapamil 5 0 0% 

heroin 515 360 70% vortioxetine 5 0 0% 

hydroxyzine 104 6 6% ziprasidone 1 0 0% 

lacosamide 1 1 100% zolpidem 197 26 13% 

lamotrigine 51 6 12% zonisamide 0 0 - 

levetiracetam 4 0 0% zopiclone 532 47 9% 

levomepromazine 49 3 6% zuclopenthixol 8 1 13% 

    Total 8,484† 1,762 - 

†This number does not represent the actual number of cases, as many 
cases include several of the listed intoxicants. 



 

 

Stan model code 

data { 

  int<lower=0> N; 

  int L; // number of categories 

  int J; // number of substances 

  //outcome 

  real y[N]; 

   

  // intoxicant ID 

  int intoxicant[N]; 

  //index of category for each intoxicant 

  int intox_in_cat[J]; 

 

  //predictors 

  vector[N] age; 

  vector[N] sex; 

} 

parameters { 

  //overall SD 

  real<lower=0> sigma; 

  // non-random linear effects 

  vector[2] beta; 

 

  //grand mean 

  real alpha; 

   

  //deviation from grand mean 

  //Between categories 

  vector[L] alpha_cat; 

  //Between substances within a category 

  vector[J] dev_int_raw; 

   

  //SD of deviations 

  real<lower=0> sigma_cat; 

  real<lower=0> sigma_int; 

} 

transformed parameters { 

  vector[N] mu; 

  //varying intercepts 

  vector[J] alpha_int; 

  alpha_int = alpha_cat[intox_in_cat] + dev_int_raw * sigma_int; 

  mu = alpha_int[intoxicant]+ beta[1] * age + beta[2] * sex; 

} 

 

model { 

    sigma ~ exponential(1); 

          //Grand mean 

    alpha ~ normal(0,2.5); 

    //linear effects 

    beta ~ normal(0,2.5); 

 

    //random effects 

    alpha_cat ~ normal(alpha, sigma_cat); 

    sigma_cat ~ exponential(1); 

    dev_int_raw ~ std_normal(); //non-centered parameterization 

    sigma_int ~ exponential(1); 

     

    y ~ normal(mu, sigma); 

} 

 



 

 

Appendix D— Supplementary materials 

for Paper IV 

Model explanation 

Heart weight was modelled as a mixture of two lognormal distributions, 
one for hypertrophic heart weight and one for normal heart weight. Body 
height was used as the only predictor of heart weight. Whether or not 
cardiac hypertrophy was the underlying cause of death was modelled as 
a product of the unobserved true state of cardiac hypertrophy and a 
diagnosis probability. 

If the case was classified as “known hypertrophic,” both the detection 
probability and the probability of cardiac hypertrophy were set to 1. In 
cases classified as “unknown,” the probability of cardiac hypertrophy was 
modelled using a logistic model with a different overall mean for males 
and females, as well as varying intercepts by BMI and age groups. 

To account for the assumed variance in use of the diagnosis between 
pathologists, the NBFM autopsy unit (A–F) at which the autopsy was 
performed was fit as a varying intercept for the probability of diagnosis.  

The model results were used to simulate normal and hypertrophic heart 
weights as well as to calculate the probability of cardiac hypertrophy for 
a given heart weight and body height.  

The model ran with 8 chains for 1,000 warmup iterations and 1,000 
sampling iterations, resulting in 8,000 samples per parameter. All 
chains mixed well and there were no divergent iterations.  

Choice of priors 

The model used weakly informative priors. For all positively constrained 
parameters in the heart weight model, an exponential distribution with 
rate 1 was used. This distribution places the peak of the probability 
around 0 and is positively bounded with an expected value of 1, but with 
a very long tail, allowing data to guide the model. For the mean values, 
normal distributions with means of 1 and a SD of 1 were used, because 
the means among both hypertrophic and normal hears are likely close to 



 

 

the overall mean when standardized to proportions of the mean. For the 
body height regression parameters, normal distributions with means of 
0 and SDs of 2 were used. This was justified by the fact that the effect of 
body height might be nonexistent, but my coauthors and I wanted to 
allow for a wide variety of effect sizes a priori. 

For the intercept for probability of hypertrophy θ, the model used 
normal distributions with a mean of 0 and a SD of 0.75. The varying 
effects had mean values of 0 and their variance hyperparameters were 
exponential distributions with rates of 2. This may seem quite narrow, 
but when taken together and transformed to a probability scale, this is a 
very weak prior belief that merely lowers the probability of extreme 
values and should be overwhelmed by almost any data. 

Model construction 

Heart weight was modelled with body height, body weight, and body 
surface area (BSA) as single and combined predictors. Models were 
compared using pareto-smoothed importance-sampling leave-one-out 
cross-validation. This showed that body weight as the sole predictor had 
the best performance, closely followed by a body height-only model.  

The two models showed comparable results, but the body weight-based 
model showed better results out of sample (Figure 16; Figure 9 in the 
manuscript). However, though the body weight model did produce more 
accurate predictions, it also caused an unsound negative association 
between cardiac hypertrophy and obesity, where normal body weight 
cases had the largest probability of hypertrophy (Figure 11). Due to this 
issue, the body height-based model was chosen. 

  



 

 

 

Figure 16. Heart weight (g) by body weight (kg) among cases not 
included in the model; suicidal hangings aged 20-30 years with a BMI 
< 30 kg/m2. The thick line represents the posterior median of the non-
hypertrophic component of the weight-based model, solid lines 
represent 1 standard deviation, and dashed lines 2 standard deviations. 

Explicit model definition 

The heart weight model is defined in Equation 10. 

𝐻𝑒𝑎𝑟𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑑,𝑖 = 𝜃𝑖 × 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(log(𝜇1,𝑖) , 𝜎1) + 

(1 − 𝜃𝑖) × 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(log(𝜇2,𝑖) , 𝜎2) 

𝜇1 = 𝛽10 + 𝛽11 × ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑑,𝑖 

𝛽10 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(1,1) 

𝛽11 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0,2) 



 

 

𝜇2 = 𝛽20 + 𝛽21 × ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑑,𝑖 

𝛽20 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(1,1) 

𝛽21 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0,2) 

𝜎1 ∼ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

𝜎2 ∼ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

(10) 

If a case was classified as “known hypertrophic,” both 𝑃𝑟(ℎ𝑦𝑝𝑒𝑟𝑡𝑟𝑜𝑝ℎ𝑦) 
and Pr(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠) were set to 1. Otherwise, the model used the formula 
in Equation 11. 

𝑃𝑟(ℎ𝑦𝑝𝑒𝑟𝑡𝑟𝑜𝑝ℎ𝑦𝑐𝑜𝑑) = 𝜃𝑖 × Pr(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠) 

𝑃𝑟(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠𝑢𝑛𝑖𝑡𝑖) ∼ 𝑏𝑒𝑡𝑎(𝛼𝑢𝑛𝑖𝑡𝑖 , 𝛽𝑢𝑛𝑖𝑡𝑖) 

𝛼 ∼ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.1) 

𝛽 ∼ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.1) 

𝜃𝑖 = 𝑖𝑛𝑣_𝑙𝑜𝑔𝑖𝑡(𝜅1,𝑠𝑒𝑥𝑖 + 𝜅2,𝐵𝑀𝐼𝑐𝑎𝑡𝑖 + 𝜅3,𝑎𝑔𝑒𝑐𝑎𝑡𝑖) 

𝜅1,𝑚𝑒𝑛 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 0.75) 

𝜅1,𝑤𝑜𝑚𝑒𝑛 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 0.75) 

𝜅2 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜅2) 

𝜎𝑘𝑎𝑝𝑝𝑎2 ∼ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝜅3 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜅3) 

𝜎𝑘𝑎𝑝𝑝𝑎3 ∼ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

(11) 

 



 

 

Stan model code 

data { 

  int<lower=0> N; 

  int<lower=0> J; //number of units 

  int K; //number of BMI groups 

  int L; //number of age groups 

 

  int hypertrophy[N]; 

  int sex[N]; 

 

   //Groups 

  int unit[N]; 

  int BMIcat[N]; 

  int agecat[N]; 

 

  //predictor 

  vector[N] height; 

  //outcome 

  vector[N] heartweight; 

} 

 

transformed data { 

  vector[N] heartweight_std; 

  vector[N] height_std; 

   

  heartweight_std = heartweight/mean(heartweight); 

  height_std = height/mean(height); 

   

} 

 

parameters { 

  real<lower=0> sigma; 

  real<lower=0> sigma_norm; 

   

  ordered[2] beta; //mean  

 

   

  vector<lower=0,upper=1>[J] detectionprob;    // prob of detecting hypertrophy 

 

  //Priors for detection (beta) for unit varying effect 

  real<lower=0> detectpriorA; 

  real<lower=0> detectpriorB; 

   

//logistic model for true state  

  vector[2] theta; 

  real theta_beta_BMI[K]; 

  real<lower=0> sigma_BMI; 

  real theta_beta_age[L]; 

  real<lower=0> sigma_age; 

   

  //predictor 

  ordered[2] beta_height; 

   

 

 

} 

 

model { 

  vector[N] probtruestate; 

 



 

 

  sigma ~ exponential(1); 

  sigma_norm ~ exponential(1); 

 

   

 //Latent detection rate with random effect for unit 

  detectionprob ~ beta(detectpriorA, detectpriorB); 

  detectpriorA ~ exponential(0.1); 

  detectpriorB ~ exponential(0.1); 

   

  //means 

  beta ~ normal(1,1); 

   

  //predictor 

  beta_height ~ normal(0,2); 

   

  //latent true state 

  theta ~ normal(0, 0.75); 

   

  theta_beta_BMI ~ normal(0, sigma_BMI); 

  sigma_BMI ~ exponential(2); 

  theta_beta_age ~ normal(0, sigma_age); 

  sigma_age ~ exponential(2); 

 

   for (i in 1:N) { 

    probtruestate[i] = inv_logit(theta[sex[i]+1] + theta_beta_BMI[BMIcat[i]] +  

    theta_beta_age[agecat[i]]); //+ theta_beta_age[age_group[i]); 

  } 

   

   

  { 

  vector[N] mu; 

 

    for(i in 1:N){ 

         

              if ( hypertrophy[i]==1 )       

      if ( hypertrophy[i]==1 ) 

      // hypertrophy present and detected 

      target += log(probtruestate[i]) + log(detectionprob[unit[i]]) +  

      lognormal_lpdf( heartweight_std[i] | log(beta[2] + 

      beta_height[2] * height_std[i]), sigma); 

      if ( hypertrophy[i]==0 ) { 

        // hypertrophy not observed 

        // marginalize over unknown hypertrophy state: 

        // (1) hypertrophy present and not detected 

        // (2) hypertrophy absent 

        target += log_sum_exp( 

          log(probtruestate[i]) + 

          log1m(detectionprob[unit[i]]) + 

          lognormal_lpdf( heartweight_std[i] | log(beta[2] +  

          beta_height[2] * height_std[i]), sigma), 

          log1m(probtruestate[i]) + 

          lognormal_lpdf( heartweight_std[i] | log(beta[1] +  

          beta_height[1] * height_std[i]), sigma_norm)); 

      //  

      } 

    } 

  } 

 

} 


