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Abstract 
Background: Pancreatic ductal adenocarcinoma (PDAC) is a very 
aggressive malignancy with a 5-year survival of 10 %. Surgery is the only 
curative treatment. Unfortunately, few patients are eligible for surgery 
due to late detection. Thus, we need ways to detect the disease at an earlier 
stage and for that, good screening biomarkers could be used. Previous 
studies have analyzed circulating analytes in prospective studies to 
identify early PDAC signals. One such class is microRNAs (miRNAs). 
MicroRNAs are non-coding RNAs of around 22 nucleotides that act as 
post-transcriptional regulators by interaction with messenger RNAs 
(mRNAs). The function of a miRNA can be elucidated by target prediction, 
to identify its potential targets, followed by enrichment analysis of the 
predicted targets. Challenges with this approach includes a lot of false 
positives being generated and that miRNAs can perform their role in a 
tissue- or disease-specific manner. Other classes of analytes that have 
previously been studied in prospective PDAC cohorts are metabolites and 
proteins.  

Aims: This thesis has three aims. First, to build a miRNA functional 
analysis pipeline with correlation support between miRNA and its 
predicted target genes. Second, to identify potential circulating 
biomarkers for early detection of PDAC using multi-omics. Third, to 
identify potential prognostic metabolites in a prospective PDAC cohort.  

Methods: We used publicly available data from the cancer genome atlas-
pancreatic adenocarcinoma (TCGA-PAAD) and pre-diagnostic plasma 
samples from the Northern Sweden Health and Disease Study. We built a 
pipeline in R including miRNA, mRNA, and protein expression data from 
TCGA-PAAD for in silico miRNA functional analysis. Pre-diagnostic 
plasma samples from future PDAC patients as well as matched healthy 
controls were analyzed using multi-omics. Tissue polypeptide specific 
antigen (TPS) was analyzed by enzyme linked immunosorbent assay in 
267 future PDAC samples and 320 healthy controls. Metabolomics and 
clinical biomarkers (carbohydrate antigen (CA) 19-9, carcinoembryonic 
antigen (CEA), and CA 15-3) were profiled in 100 future PDAC samples 
and 100 healthy controls using liquid chromatography-mass 
spectrometry (MS), gas chromatography-MS, and multi-plex technology. 
Of these, a subset of 39 future PDAC patients and 39 healthy controls were 
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profiled for 2083 microRNAs using targeted sequencing and 644 proteins 
using proximity extension assays. Circulating levels of multi-omics 
analytes were analyzed using conditional or unconditional logistic 
regression. Least absolute shrinkage and selection operator (LASSO) in 
combination with 500 bootstrap iterations identified the most 
informative variables. The prognostic value of metabolites was assessed 
using cox regression. Multi-omics factor analysis (MOFA) and data 
integration analysis for biomarker discovery using latent components 
(DIABLO) were used for multi-omics integration analyses.  

Results: An automated pipeline was built consisting of 1) miRNA target 
prediction, 2) correlation analyses between miRNA and its targets on 
mRNA and protein expression levels, and 3) functional enrichment of 
correlated targets to identify enriched Kyoto encyclopedia of genes and 
genomes (KEGG) pathways and gene ontology (GO) terms for a specific 
miRNA. The pipeline was run for all microRNAs (~700) detected in the 
TCGA-PAAD cohort. These results can be downloaded from a shiny app 
(https://emmbor.shinyapps.io/mirfa/). TPS was not altered in pre-
diagnostic PDAC patients up to 24 years prior to diagnosis, but increased 
at diagnosis (OR = 1.03, 95 % CI: 1.01-1.05). Internal area under curves of 
0.74, 0.80, and 0.88 were achieved for five metabolites, two proteins, and 
two miRNAs, that were selected by LASSO and bootstrap iterations, in 
combination with CA 19-9. Neither MOFA nor DIABLO separated well 
between future PDAC cases and healthy controls.  

Conclusions: Our bioinformatics pipeline for in silico functional 
analysis of microRNAs successfully identifies enriched KEGG pathways 
and GO terms for miRNA isoforms. The investigated plasma samples are 
heterogeneous, but among the analyzed variables, we identified five 
metabolites, two proteins, and two microRNAs with highest potential for 
early PDAC detection. CA 19-9 levels increased closer to diagnosis. We 
identified five fatty acids that could be studied in a diagnostic PDAC 
cohort as prognostic biomarkers. 
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Enkel sammanfattning på svenska 
Bukspottkörtelcancer är mycket aggressiv med en dyster prognos. Kirurgi 
är den enda botande behandlingen, men på grund av sen upptäckt kan 
endast en liten andel patienter opereras med botande syfte. Vi behöver 
därför sätt att upptäcka sjukdomen i ett tidigare skede. För detta ändamål 
skulle bra biomarkörer, mätbara nivåer av biologiska substanser, som 
påverkas av en sjukdom vara av värde. I tidigare studier har biomarkörer 
studerats i pre-diagnostiska blodprover från individer som senare 
utvecklar bukspottkörtelcancer med syfte att identifiera tidiga 
bukspottkörtelcancer-signaler för att kunna behandla sjukdomen i ett 
tidigare skede. En sådan klass av biomarkörer är mikroRNA (miRNA). 
MiRNA är korta RNA-molekyler på cirka 22 nukleotider och reglerar 
genuttryck genom att binda till budbärar-RNA (mRNA). Funktionen av 
ett miRNA kan studeras genom att identifiera potentiella målgener som 
ett specifikt miRNA kan binda till, följt av funktionell analys av de 
identifierade målgenerna. Utmaningar med detta tillvägagångssätt 
inkluderar att många falsk-positiva målgener genereras och att ett miRNA 
kan utföra sin roll på ett vävnads- och sjukdomsspecifikt sätt. Andra 
klasser av biomarkörer som tidigare har studerats i bukspottkörtelcancer 
är metaboliter och proteiner. 

Denna avhandling har tre syften. För det första, att bygga ett 
bioinformatiskt verktyg med korrelationsstöd mellan miRNA och dess 
potentiella målgener på mRNA- och proteinuttrycksnivåer. För det andra, 
att identifiera potentiella cirkulerande biomarkörer för tidig upptäckt av 
bukspottkörtelcancer med hjälp av multi-omik, dvs mikroRNA, 
metaboliter och proteiner. För det tredje, att definiera metaboliter som 
kan förutspå överlevnadstid för bukspottkörtelcancer-patienter. 

Metoder: Fyra olika patientgrupper analyserades i denna avhandling. I 
den första studien inkluderade vi offentligt data från bukspott-
körtelcancer inom the Cancer Genome Atlas (TCGA-PAAD). Vi byggde ett 
bioinformatiskt verktyg med miRNA, mRNA och protein-uttrycksdata 
från TCGA-PAAD för funktionell analys av miRNA in silico med stöd från 
miRNA-målgenskorrelationer. I de andra tre studierna använde vi 
plasmaprover från Northern Sweden Health and Disease Study (NSHDS) 
biobanken. Vi inkluderade plasmaprover från individer som senare 
utvecklade bukspottkörtelcancer samt matchade friska kontroller. Tissue 
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polypeptide-specific antigen (TPS) analyserades i 267 plasmaprover från 
framtida bukspottkörtelcancer-patienter och 320 friska kontroller. 
Metaboliter och tre kliniska biomarkörer mättes i 100 plasmaprover från 
patienter som senare utvecklar bukspottkörtelcancer och 100 friska 
kontroller. Av dessa 100 definierade vi en undergrupp bestående av 39 
framtida bukspott-körtelcancer-patienter och 39 friska kontroller för 
ytterligare analys av 2083 mikroRNA och 644 proteiner. Uppmätta nivåer 
av TPS, metaboliter, mikroRNA, proteiner och kliniska biomarkörer i 
plasma jämfördes mellan framtida bukspottkörtelcancer-patienter och 
friska kontroller.  

Ett bioinformatiskt verktyg byggdes i mjukvaran R bestående av 1) 
miRNA-målgenprediktion, 2) korrelationsanalyser mellan miRNA och 
dess målgener på mRNA- och proteinuttrycksnivåer, samt 3) funktionell 
anrikning av korrelerade målgener för att identifiera över-representerade 
signalvägar och funktionstermer för ett specifikt miRNA. Metodflödet 
kördes för alla mikroRNA (~700) som mätts i TCGA-PAAD-kohorten. 
Resultat för dessa finns tillgängligt för nerladdning 
(https://emmbor.shinyapps.io/mirfa/). TPS skiljde sig inte mellan 
framtida bukspottkörtelcancer-patienter och friska kontroller upp till 24 
år innan bukspottkörtelcancer-diagnos. En skillnad observerades 
däremot vid tidpunkten för diagnos. Några potentiella metaboliter för att 
förutspå överlevnadstid identifierades men dessa behövas undersökas 
ytterligare vid tidpunkten för bukspottkörtelcancer-diagnos. Genom 
kombinerad multi-omik i plasma lyckades vi inte tydligt separera framtida 
bukspottkörtelcancer-patienter från friska kontroller. 

Sammanfattningsvis så identifierar vårt bioinformatiska verktyg för 
funktionell analys av miRNA framgångsrikt över-representerade 
signalvägar och funktionstermer för miRNA. De undersökta 
plasmaproverna uppvisar stor variation. Bland de analyser vi har gjort, så 
har vi identifierat fem metaboliter, två proteiner och två microRNA med 
mest potential att fungera som biomarkörer för tidig detektion av 
bukspottkörtelcancer. Vi identifierade fem metaboliter som kan studeras 
vidare i bukspottkörtelcancer-patienter som biomarkörer för att förutspå 
överlevnadstid.  
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Background 

In this thesis, I focus on in silico analysis of microRNA functions in a 
pancreatic cancer context as well as metabolites, proteins, and 
microRNAs in plasma samples from pre-diagnostic pancreatic cancer 
patients.  

Chapter 1 – The pancreas 
The pancreas, meaning ‘all flesh’ in Greek, is an organ involved in food 
digestion and glucose homeostasis. It was first described in 300 BC by the 
‘Father of anatomy’ Herophilus of Chalcedon (Busnardo et al. 1983). 
However, it was not until the 19th century when Claude Bernard clarified 
the role of pancreas in food digestion. Paul Langerhans described the 
islets of Langerhans in 1869 and in 1893 its role in diabetes was suggested 
by M.E. Laguesse. In 1922, Frederic Banting and Charles Best treated a 
diabetic dog with insulin, where the dog recovered from its coma after 
injection of insulin.  

The pancreas is located in the upper abdomen, it is 14-25 cm long and 
weighs around 100 g. It can be divided into three parts; head (caput), body 
(corpus) and tail (cauda), and consists of the exocrine and endocrine 
compartments (Figure 1). The bile duct runs through pancreas and fuses 
with the main pancreatic duct. The fused part is between a few mm to 1 
cm long and connects to the duodenum through the major papilla.  

1.1. Pancreatic function and cell types 
Acinar and ductal cells are the two exocrine cell types, which make up 
> 95 % of the pancreas. Acinar cells are the most abundant cell type and 
secrete enzymes involved in food digestion. Acinar cells form clusters of 
cells, acini, at the end of ducts. The enzymes are stored in acini in so called 
zymogen granules. Some enzymes are secreted as inactive enzymes, such 
as trypsin, chymotrypsin, carboxypeptidase, and elastase. Ribonuclease, 
deoxyribonuclease, amylase, and lipase are released as active enzymes. 
Ductal cells are located along the pancreatic ducts. The ducts secrete and 
transport pancreatic juice into the duodenum, where the inactive enzymes 
are subsequently activated.  
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The islets of Langerhans constitute the endocrine pancreas (1-2 % of the 
pancreatic mass) and are located scattered within the pancreas. 
Langerhans islets contain glucagon-producing alpha cells, insulin-
producing beta cells, somatostatin-producing delta cells, ghrelin-
producing epsilon cells and pancreatic polypeptide-producing (PP) cells. 
Insulin lowers blood glucose levels and glucagon increases them. 
Somatostatin regulates insulin and glucagon secretion. Ghrelin is the 
‘hunger hormone’ that increases appetite, and pancreatic polypeptide 
regulates pancreatic secretion.  

In addition, pancreatic stellate cells (PSC), capillaries, arteries, 
lymphatics, nerve fibers, fat cells, and veins are found in the pancreas. 
During inflammation or tissue injury, PSC are activated to form 
fibroblasts that contribute to fibrosis. This process is central in pancreatic 
cancer, which is characterized by a rich stroma.  

 

Figure 1. Anatomy of the pancreas.  

1.2. Development of the pancreas 
Ectoderm, endoderm, and mesoderm are the three germ layers in human 
embryonic development. Pancreas originates from the endoderm (Lewis 
and Mao 2018). Initially two buds are independently differentiated from 
the foregut that later fuse into one pancreatic organ. The ventral bud 
forms into part of the pancreas head, and the dorsal part into head, body, 
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and tail of pancreas. The central early transcription factors are pancreatic 
and duodenal homeobox 1 (PDX1) and pancreas associated transcription 
factor 1a (PTF1A), as well as signaling pathways, such as the fibroblast 
growth factor (FGF) signaling and sonic hedgehog signaling in pancreas 
development.  

An undifferentiated tubular network is formed by epithelial cells growing 
into the surrounding mesenchyme (Lewis and Mao 2018). These tubular 
networks are premature duct systems with acinar cells located at the end 
of the branches. Isolated clusters of endocrine cells within the 
parenchyma are formed from delaminated cells. These clusters proliferate 
and differentiate into islets of Langerhans. Most endocrine cells identified 
at 12 weeks of gestation express glucagon and are believed to be alpha 
cells. Zymogen granules start to appear at week 16, which indicates acinar 
cell differentiation. The transition from an immature network into a 
mature ductal system is not fully understood, although WNT signaling has 
been suggested to have a role (Heiser et al. 2006).  

Many of the pathways important in pancreas development do also play a 
role in pancreas disease or cancer, such as pancreatic ductal 
adenocarcinoma (PDAC) and maturity-onset diabetes of the young 
(MODY) (Lewis and Mao 2018). The adult pancreas shows outstanding 
plasticity in pancreatitis, pancreatic injury, and tumorigenesis.  

Chapter 2 – Pancreatic cancer 
Cancer is defined as abnormal cell growth and invasion of the basal 
membrane. Cancer progresses through genetic mutations, classified as 
driver or passenger mutations. Genetics as well as environmental factors 
affect the risk of developing cancer. For some cancer types, there is one 
clear cause of cancer, for instance cervical cancer, which is mainly caused 
by human papillomavirus infection. Another example is lung cancer, 
where 80-90 % of patients are smokers or have previously smoked. 
Fourteen hallmarks or enabling characteristics of cancer have been 
defined, e.g. deregulating cellular metabolism, sustaining proliferative 
signaling, evading growth suppressors, and resisting cell death (Hanahan 
2022; Hanahan and Weinberg 2000, 2011).  



 

4 

PDAC constitutes the most common (around 90 %) type of pancreatic 
cancer. In this thesis, the term ‘pancreatic cancer’ will be used 
interchangeably with PDAC. Pancreatic cancer is one of the most 
aggressive malignancies with a 5-year overall survival (OS) of around 9-
11 % (Siegel et al. 2022; Wild et al. 2020). In Sweden, the 5-year survival 
of pancreatic cancer is only about 6 % (Regionala cancercentrum i 
samverkan 2022a). The relative 5-year survival rate has improved slightly 
between 1996-2017 from 5 to 11 % in the US (Jemal et al. 2007; Siegel et 
al. 2022). The reason for the poor prognosis is that PDAC is detected at a 
late stage with spread disease in most patients. In addition, among the 
patients with localized disease where curative surgery is an option, the 
survival rate still remains low at around 40 % (Siegel et al. 2022). 
Pancreatic ductal adenocarcinoma is the 3rd most common cause of cancer 
death in the United States (US) but has been estimated to become the 
second leading cause of cancer deaths in 2026 (Rahib et al. 2021).  

2.1. Epidemiology and risk factors 
A total of 1387 new cases with a malignant tumor in pancreas were 
reported in Sweden, in 2020 (Socialstyrelsen 2022). Incidence rates 
ranged between 1-8 per 100 000, being highest in Western Europe (8.3 
per 100 000) and North America (7.6 per 100 000) in 2018 (Wild et al. 
2020). Non-modifiable risk factors include higher age, African-American 
race, non-O blood group, and increased adult height. Most patients are 
between 60-80 years at diagnosis (Wild et al. 2020). Family history of 
PDAC and hereditary pancreatitis increase the risk. Modifiable risk 
factors include smoking, excessive alcohol use, obesity, germ-line 
mutations, in for instance BRCA2 DNA repair associated (BRCA2) or 
serine/threonine kinase 11 (STK11) (Peutz-Jeghers syndrome). Medical 
conditions such as pancreatitis and diabetes mellitus are also associated 
with a higher risk of developing pancreatic cancer.  

2.2. Symptoms and metabolic changes 
Symptoms associated with PDAC are non-specific and emerge late in 
disease progression. Weight loss, pain, and jaundice are the most common 
symptoms (Table 1). Cachexia is the loss of skeletal muscle mass, which 
is one explanation for weight loss being a common pancreatic cancer 
symptom (Kordes et al. 2021). High prevalence of cachexia among PDAC 
patients can be attributed to systemic metabolic changes, pathogenic 
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signals produced by the tumor, disrupted pancreatic function as well as 
the physical proximity between pancreas and the gut. In addition to being 
a risk factor, diabetes is also a PDAC symptom and only around 14 % of 
PDAC patients have normal fasting glucose levels (Pannala et al. 2008). 
Thus, PDAC patients display a severe metabolic shift at diagnosis. In 
addition, metabolic alterations can emerge before pancreatic cancer 
diagnosis (Jacobson et al. 2021; Sah et al. 2019; Sharma et al. 2018).  

Table 1. Pancreatic cancer symptoms. Modified from the Swedish treatment 
guidelines for pancreatic cancer (Regionala cancercentrum i samverkan 2021).  

Symptom Frequency 
Involuntary weight loss 60-90 % 
Pain 50-80 % 
Jaundice 50-75 % 
Nausea 30 % 
Non-hereditary diabetes 5 % 
Acute pancreatitis 3 % 

 

2.3. Imaging 
Computer tomography (CT) is usually performed on patients with a PDAC 
suspicion (Regionala cancercentrum i samverkan 2021). If a spread 
malignancy is not visible on a transabdominal CT, a pancreas-specific CT 
is performed that consists of two phases; one pancreas- and one venous 
liver phase. A common feature for tumors in the pancreas head (caput) is 
a dilated bile and pancreatic duct, known as the ‘double duct sign’. This 
can also be caused by bile stones obstructing the bile duct as well as 
intraductal papillary mucinous neoplasms (IPMN). Magnetic resonance 
imaging (MRI) can be used if a clear conclusion cannot be made based on 
the CT. Use of endoscopic ultrasound (EUS) is encouraged as it has the 
advantage of finding small pancreatic tumors. Positron emission 
tomography-CT (PET-CT) is not routinely used in PDAC investigations 
but can sometimes be used postoperatively to monitor patients with a high 
risk of developing metastatic disease. Ultrasound can be useful for 
excluding bile stones as the reason for jaundice. Many asymptomatic 
PDAC patients are discovered through imaging when other diseases are 
being investigated. 
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2.4. PDAC staging 
Tumors are classified preoperatively through pancreas-specific CT 
according to AJCC 8th edition tumor-node-metastasis (TNM) system 
(Table 2) (Brierley 2017). The tumor diameter cutoffs proposed in the 8th 
AJCC TNM version were shown statistically valid in R0 resected patients 
and more reproducible compared to the 7th edition (Allen et al. 2017).  

Table 2. TNM classification of PDAC (8th edition). Modified from (Brierley 2017). 

TNM 
Stage 

Tumor (T) Lymph node 
metastasis 
(N) 

Distant 
Metastasis 
(M) 

IA < 2 cm (T1) N0 M0 
IB 2-4 cm (T2) N0 M0 

IIA ≥ 4 cm (T3) N0 M0 
IIB ≥ 2 cm (T1-3) N1 M0 

III ≥ 2 cm (T1-3) N2 M0 
III Tumor involves 

celiac axis, SMA, 
and/or hepatic 
artery (T4) 

Any M0 

IV Any Any M1 
SMA = superior mesenteric artery, N0 = no lymph node metastasis, N1 = metastasis in one-three 
lymph nodes, N2 = metastasis in ≥ four lymph nodes, M0 = no distant metastasis, M1 = distant 
metastasis  

2.5. Cancer progression 
Pancreatic intraepithelial neoplasia (PanIN), mucinous cystic neoplasm 
(MCN), intraductal tubulopapillary neoplasms (ITPN), and IPMN are 
precursor lesions for PDAC. Precancerous lesions can be divided into low- 
or high-grade lesions (Regionala cancercentrum i samverkan 2021).  

The most common precursor pancreatic cancer lesions are PanIN. 
Telomere shortening and Kirsten rat sarcoma virus (KRAS) mutations are 
early events found in low-grade PanIN (PanIN-1A, -1B or 2) but are not by 
themselves sufficient for PDAC development (Figure 2) (Kanda et al. 
2012). Additional mutations are required for progression to PDAC, 
typically involving cyclin dependent kinase inhibitor 2A (CDKN2A), 
SMAD Family Member 4 (SMAD4), and tumor protein p53 (TP53) 
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(Maitra et al. 2003; Waters and Der 2018). Overall, at least 90 % of PDAC 
tumors contain activating KRAS mutations.  

 

Figure 2. Molecular hallmarks from pancreatic intraepithelial neoplasia 
(PanIN) to pancreatic ductal adeno-carcinoma (PDAC) progression. Modified 
from (Maitra et al. 2003; Noë et al. 2018). 
 

The IPMN are divided into main duct-IPMN and branch-duct IPMN, 
where IPMN found in the main duct increase the risk of developing PDAC. 
Many IPMN harbor early KRAS or GNAS complex locus (GNAS) 
mutations. MCN develop mostly in the pancreas body or tail in women 
and have ovarian-like stroma. ITPN is a type of rare intraductal neoplasm. 

Some efforts have been made to understand progression time to PDAC by 
using mutation rates or patients’ age and stage at diagnosis (Figure 3). A 
tumor evolution model based on sequencing data from seven primary 
pancreatic cancers and paired metastases suggested a time frame of at 
least ten years from initiating tumor to a founder cancer cell, and at least 
another five years for the establishment of metastatic lesions (Yachida et 
al. 2010). From the establishment of metastasis, Yachida et al. estimated 
another two years on average before the patients die. Genomic 
characterization of matched IPMN and PDAC suggested an average 
progression rate of more than three years from high-grade precursor 
lesions to pancreatic cancer (Noë et al. 2020). A simulation model, using 
information from the National Cancer Institute’s Surveillance, 
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Epidemiology and End Results (SEER) database and reported PanIN 
prevalence by age, predicted 9.5 years progression time on average 
between high grade-PanIN and PDAC (Peters et al. 2018). Altogether, 
these studies indicate that precancerous lesions that later develop into 
PDAC can be detected early. 

Yu et al. compared the mean age at diagnosis in the SEER database 
stratified by tumor stage (Yu et al. 2015). They found stage IV patients to 
be on average 1.3 years (adjusted by sex, ethnicity, tumor location, and 
neoplastic grade) older than stage I patients. This suggests a rapid disease 
course from low to high PDAC tumor stages. The two models by Yachida 
et al. and Yu et al. are slightly different but not necessarily contradictive 
since the rapid PDAC progression predicted by Yu et al. can fit into the 
cancer-metastatic phase predicted by Yachida et al. (Yachida et al. 2010; 
Yu et al. 2015). As mentioned, early-stage patients can have a short post-
operative survival, which suggests that micro-metastatic disease is already 
established and thus the progression from stage I to stage IV occurs 
rapidly and is consistent with the PDAC progression model by Yu et al. In 
addition, the time until stage I is not taken into account in the model by 
Yu et al. as this is a cross-sectional study (Gallmeier et al. 2015). In 
addition to a gradual progression, chromothripsis has been shown to be a 
common event in PDAC, which leads to a fast catastrophic event by 
shattered chromosomes (Cortes-Ciriano et al. 2020; Notta et al. 2016). 
These studies estimated chromothripsis events occurring in 56-65 % of 
PDAC tumors.  

 

Figure 3. Models for PDAC progression time. Estimated progression time between 
high grade-PanIN or -IPMN to PDAC, between the first mutation event and death, as well 
as between PDAC stages I and IV (Noë et al. 2020; Peters et al. 2018; Yachida et al. 2010; 
Yu et al. 2015).  
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2.6. Surgical Treatment 
Radical surgery in combination with chemotherapy is needed to achieve 
long-term survival in PDAC patients. The first recorded one-stage 
pancreaticoduodenectomy, also known as Whipple’s procedure, dates 
back to 1940 and was performed by Whipple and Nelson (Busnardo et al. 
1983). Pancreatic surgery is a major surgery with a long recovery time and 
high morbidity (Regionala cancercentrum i samverkan 2021). 
Unfortunately, due to late disease stage discovery, only 20-30 % of 
patients have resectable disease at diagnosis. In addition, curative surgery 
is cancelled in around 11 % of resectable patients due to discovery of 
metastatic disease or locally advanced PDAC during surgery.  

There are three main surgical strategies, Whipple’s procedure, distal 
pancreatectomy and total pancreatectomy, and the choice between these 
depends on the size and location of the PDAC tumor. The Whipple’s 
procedure (pancreatoduodenectomy) is the most common PDAC surgery 
performed on pancreas head tumors, where the pancreas head, gall 
bladder, duodenum and part of the bile ducts are removed (Figure 4A). 
The small intestine is anastomosed to the stomach and the remnant 
pancreas so that digestive enzymes can still be secreted into the small 
intestine after surgery (Figure 4B). A Whipple’s procedure can also be 
performed for patients with main-duct IPMN.  

Distal pancreatectomy is the removal of the body and tail of the pancreas, 
and often together with the spleen (and sometimes left kidney, left 
diaphragm and left adrenal gland). Benign or low-malignant lesions can 
be surgically removed by laparoscopy and has been shown to benefit 
postoperative recovery.  

Total pancreatectomy is the removal of the whole pancreas, and 
sometimes the bile duct, spleen, gallbladder, part of small intestine and 
surrounding lymph nodes are removed as well, depending on the tumor 
spread. The patients will be severely diabetic after a total pancreatectomy 
and needs to take insulin and digestive enzymes for the rest of their lives. 
Total pancreatectomy is recommended for patients with multi-focal 
PDAC, widespread tumors, widespread IPMN and those with a high risk 
of pancreatic leakage.  
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Figure 4. Illustration of Whipple’s procedure. A) The pancreas head is removed as 
well as the gall bladder and part of the duodenum. B) The remaining pancreas and stomach 
are anastomosed with the small intestine.  

Postoperative complications in PDAC surgery are common, especially 
after Whipple’s procedure, which is associated with an in-hospital 
mortality incidence of 3 % (Merath et al. 2020) and complications in 30-
40 % of resected patients (Regionala cancercentrum i samverkan 2021). 
The patient often needs to take digestive enzymes and hormonal 
supplements to control food digestion and blood glucose levels. Leakage 
in the pancreas-jejunum anastomosis occurs in 2-30 % of operated 
patients and is the leading cause of postoperative death (Regionala 
cancercentrum i samverkan 2021). Some patients show long-term 
survival after radical surgery, whereas others undergo extensive 
operations with questionable benefit. Thus, methods for the prediction of 
surgical benefit and better selection of patients for surgery are needed.  

2.7. Oncological treatment 
Adjuvant chemotherapy is routinely administered after PDAC surgery 
(Regionala cancercentrum i samverkan 2017). Palliative chemotherapy or 
best supportive care is given to unresectable patients.  

First line adjuvant treatment is FOLFIRINOX or gemcitabine-
capecitabine. Randomized controlled trials have concluded that this 
treatment is superior to single-agent chemotherapy or observation only 
(Conroy et al. 2018; Neoptolemos et al. 2017). Standard palliative 
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treatment is FOLFIRINOX or gemcitabine in combination with nab-
paclitaxel (Regionala cancercentrum i samverkan 2021).  

Administering neoadjuvant therapy will delay surgery, and due to the 
aggressive nature of PDAC, it can be argued to perform the surgery as soon 
as possible to prevent further tumor progression. At the same time, 
neoadjuvant chemotherapy could be a mean to select truly resectable 
patients for surgery while treating micro-metastatic disease. Neoadjuvant 
chemotherapy is currently recommended to borderline resectable and 
locally advanced PDAC to achieve resectability. However, evidence and 
use of neoadjuvant chemotherapy in PDAC is increasing, especially in the 
US (Aquina et al. 2021). Long-term results from the PREOPANC trial 
concluded that neoadjuvant single-agent chemotherapy in combination 
with radiotherapy improved overall survival (OS) compared to upfront 
surgery, with 5-year OS rates of 20.5 % and 6.5 %, respectively (Versteijne 
et al. 2022). However, this difference was mainly driven by included 
borderline resectable patients. Studies evaluating multiagent neoadjuvant 
chemotherapy in upfront resectable patients are ongoing (NorPACT-1, 
PREOPANC-3, and NEOPAC) with mature data expected soon.  

The oncological treatments have a high toxicity and can give severe side 
effects for the patients. Thus, biomarkers for predicting treatment 
response would be very valuable to avoid unnecessary side-effects and 
restrict administration to those patients that will benefit from oncological 
treatment. 

2.8. Radiotherapy 
Radiotherapy combined with chemotherapy, radiochemotherapy, is not 
routinely used in PDAC treatment in Sweden (Regionala cancercentrum i 
samverkan 2021). It is only applied within clinical trials focused on 
converting borderline resectable tumors to resectable (as mentioned in 
section ‘2.7. Oncological treatment’).  

2.9. Histopathology  
Pancreatic cancer is characterized by duct-like structures grown in a 
haphazard pattern surrounded by a dense stroma (Figure 5) (Pittman 
and Hruban 2018). PDAC cells often contain intracytoplasmic mucin and 
are shaped as columnar or cuboidal cells. Perineural and intravascular 
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invasion are common features in PDAC. Tumors that resemble normal 
ducts are considered ‘well-differentiated’, whereas poorly formed glands 
are categorized as ‘poorly differentiated’.  

 

Figure 5. Histology of the pancreas. A) Normal pancreas tissue showing a duct (D) 
and an islet of Langerhans (IL). B) Pancreatic ductal adenocarcinoma (PDAC) with 
surrounding stroma (S). Scale bar = 100 µm. Image courtesy of Anette Berglund. 

Chapter 3 – Early detection of cancer 
Identifying a tumor early is essential for a good patient survival. According 
to World Health Organization (WHO), early detection can be divided into 
two strategies: early diagnosis and screening.  

Early diagnosis concerns setting a correct diagnosis in individuals that 
seek medical care after onset of symptoms. A challenge in PDAC 
management is that many individuals are asymptomatic and have an 
advanced disease by the time they develop symptoms. However, some 
individuals develop symptoms and can still be offered curative surgery.  
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Screening programs are used to detect a cancer in asymptomatic, high-
risk individuals. National screening programs for cervical cancer and 
breast cancer are currently performed in Sweden. Screening for colorectal 
cancer is established in some Swedish regions with ongoing 
implementation in additional regions. Cervical cancer patients have 
decreased from 25 to 8.4 per 100 000 in Sweden since 1965 when the 
screening program started (Regionala cancercentrum i samverkan 
2022b). PDAC-screening is limited today, mainly because of the low 
incidence, but also because it is challenging to define a high-risk group to 
include in a screening setting. Patients with an increased PDAC risk, due 
to having a risk-increasing syndrome (e.g. Peutz-Jeghers) or with familial 
PDAC, are monitored from the age of 50 or 10 years prior to when the 
index case developed PDAC. Yearly surveillance is also recommended for 
individuals with high-risk cysts. One risk of screening is over-diagnosis, 
especially for PDAC where curative surgery is a major intervention.  

Chapter 4 – Biomarkers in pancreatic cancer 

4.1. What is a biomarker? 
A biomarker is defined by WHO as “any substance, structure or process 
that can be measured in the body or its products and influence or predict 
the incidence of outcome or disease” (WHO 2001). It can be measured in 
blood, tissue, urine, stool, or other body fluids. There are different types 
of biomarkers and these can be divided into the following five categories; 
diagnostic, prognostic, predictive, monitoring, and screening biomarkers. 
Depending on the type of biomarker studied, different criteria are needed. 
For a diagnostic biomarker, there must be a good discriminative ability 
between individuals with a specific disease and healthy controls. A good 
prognostic biomarker holds information regarding survival of the patients 
and thus the biomarker is mainly assessed among the patients. To assess 
the response to a certain treatment, good predictive biomarkers are 
needed. A monitoring biomarker can be used in the follow-up of patients 
to study the response to treatment or potential disease relapse. Screening 
biomarkers can be used with the purpose of finding a disease at an early, 
curable stage.  

How do we decide if a biomarker is good or not? Biomarker performance 
can be assessed by various measures such as sensitivity (also called recall), 
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specificity, positive predictive value (PPV, also called precision), negative 
predictive value (NPV), and accuracy (i.e. fraction of correctly classified 
samples) (Figure 6). An area under the receiver operating characteristic 
(ROC) curve (AUC) is a combination of two performance parameters, e.g. 
sensitivity and specificity where an AUC of 0.5 has similar performance as 
a random classifier and AUC of 1.0 represents a perfect classifier (100 % 
of all samples are correctly classified). These performance parameters can 
then be compared for the newly identified biomarker(s) and compared to 
the currently used biomarker or other suitable reference biomarkers.  

 

Figure 6. Performance assessment of a biomarker. Red plus sign and blue minus 
sign represent two different conditions, e.g. disease and control. SN = sensitivity, SP = 
specificity, PPV = positive predictive value, NPV = negative predictive value, ACC = 
accuracy.  

4.2. Clinically used biomarkers in PDAC 

4.2.1. CA 19-9 
Carbohydrate antigen 19-9 (CA 19-9), a sialyl-Lewis A antigen expressed 
on cell surfaces, is the gold standard biomarker in PDAC and new 
potential biomarkers are often compared to CA 19-9 in terms of 
performance. CA 19-9 is utilized for PDAC diagnostics in symptomatic 
patients but has some disadvantages. It does not have an optimal 
sensitivity since 10 % of the Caucasian population lacks expression of the 
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Lewis antigen. Furthermore, the specificity is suboptimal since it can be 
elevated in other gastrointestinal diseases (Poruk et al. 2013).  

In some individuals, CA 19-9 starts to increase between 2-3 years before 
PDAC diagnosis (Honda et al. 2019; Mason et al. 2022; O'Brien et al. 
2015). However, considerable CA 19-9 elevations are noted very close to 
diagnosis, limiting its use as biomarker for early PDAC detection (Mason 
et al. 2022). CA 19-9 does not hold promise as a screening biomarker in 
asymptomatic individuals due to low positive predictive values (0.5-
0.9 %) using a circulating CA 19-9 cutoff > 37 U/mL (Chang et al. 2006; 
Kim et al. 2004). However, among symptomatic patients presenting with 
abdominal complaints, screening was concluded as effective in finding 
patients eligible for pancreatic cancer resection (Satake et al. 1994). 
CA 19-9 has also been indicated as a useful pre- and post-operative follow-
up marker and as a prognostic biomarker in several studies as reviewed in 
(Ballehaninna and Chamberlain 2012).  

4.2.2. CEA 
The glycoprotein carcinoembryonic antigen (CEA) is involved in cell 
adhesion and mainly used as a colorectal cancer biomarker. A meta-
analysis found CEA to have lower sensitivity but slightly higher specificity 
in separating benign and malignant pancreatic disease as compared to 
CA 19-9 (Poruk et al. 2013). A more recent study found CEA to be a more 
robust predictor of advanced PDAC than CA 19-9 in 214 patients with 
suspected PDAC (van Manen et al. 2020). Furthermore, combining CEA 
and CA 19-9 had a higher PPV than either biomarker alone of predicting 
advanced PDAC (91.4%). 

Chapter 5 – MicroRNAs 
MicroRNAs (miRNAs) are small non-coding RNAs of around 22 
nucleotides that act as post-transcriptional regulators by binding to 
messenger RNA (mRNA) (Bhaskaran and Mohan 2014). MicroRNAs 
originate from a miRNA gene that, through different hairpin precursors, 
are formed into two mature miRNA isoforms, termed -3p and -5p arms 
(Figure 7). Usually, one of the mature miRNAs plays a role in post-
transcriptional regulation, termed the guide strand, whereas the other 
strand referred to as passenger strand is degraded. However, sometimes 
both miRNA strands can be involved in miRNA-mediated regulation. 
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MicroRNAs are mostly known for degrading or repressing their target 
mRNAs, but a few studies suggest an up-regulating role of miRNAs in 
some cell conditions (Rusk 2008; Vasudevan et al. 2007). MiRNAs can be 
detected and quantified by reverse transcription-real time polymerase 
chain reaction (RT-qPCR), microarrays or next-generation sequencing 
(NGS) (Git et al. 2010). 

 

Figure 7. Biogenesis of microRNAs. A miRNA gene is transcribed and a pri-miRNA 
is formed. Microprocessor complex is involved in forming pre-miRNA, which is 
transported into the cytoplasm by Exportin-5. Finally, two mature miRNA strands, 3’- and 
5’-arms, are formed by the Dicer enzyme (Bhaskaran and Mohan 2014).  

5.1. Functional analysis of miRNAs 
In silico-based functional analysis of miRNAs typically consists of an 
indirect annotation comprising 1) miRNA target prediction followed by 2) 
functional enrichment of predicted targets.  

5.1.1. MiRNA target prediction 
There are numerous miRNA target prediction resources available today, 
including miRNA target prediction tools and databases collecting 
experimentally validated miRNA targets. The prediction tools utilize 
different algorithms and parameters, such as seed region match, 
interaction site accessibility, free energy and conservation, in their 
miRNA target prediction (Peterson et al. 2014). There are over 75 
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databases available and a lot of these use combinations of existing tools 
(Tokar et al. 2018). Most tools search the 3’-untranslated region for 
miRNA targets, for instance miRanda (Enright et al. 2003; John et al. 
2004), microRNA.org (Betel et al. 2008), miRDB (Wong and Wang 2015), 
DIANA-microT (Paraskevopoulou et al. 2013) and TargetScan (Agarwal 
et al. 2015). DIANA-microT-CDS algorithm also searches the coding 
sequence for potential miRNA binding regions (Reczko et al. 2012).  

5.1.2. Functional enrichment 
Functional enrichment tools have been developed to understand long 
gene lists. Predicted miRNA target genes can be used as input in these 
tools to find over-represented functions connected to a specific miRNA. 
There are a few functional enrichment tools available such as DAVID 
(Huang da et al. 2009a, 2009b), GOMA (Huang et al. 2013), g:Profiler 
(Raudvere et al. 2019) and FunRich (Pathan et al. 2015). In addition, the 
R package edgeR provides functions for analyzing over-representation of 
gene ontology (GO) terms and Kyoto Encyclopedia of genes and genomes 
(KEGG) pathways (McCarthy et al. 2012; Robinson et al. 2010). The 
online tool DIANA-miRPath combines miRNA target prediction, using 
two experimentally validated databases and one experimentally validated 
database, and functional enrichment for miRNA functional analysis 
(Vlachos, Zagganas, et al. 2015). The user can identify predicted miRNA 
targets and functionally enriched GO terms and KEGG pathways from the 
same resource, instead of using another tool for functional enrichment of 
a list of miRNA targets. MiRNet is another tool for microRNA functional 
analysis (Chang et al. 2020).  

5.1.3. Validation 
One problem with in silico-based functional analysis of miRNAs is the 
large number of false positive targets generated by prediction algorithms 
and that the expression or miRNA-mRNA interactions might differ 
between tissues or disease states (Singh 2017; Wu et al. 2017). The most 
optimal method to validate miRNA targets is experimental validation, 
however this approach is not possible for a large number of predicted 
miRNA targets. Functional analysis of miRNAs can be performed in vitro 
by knockdown/knockin to increase or decrease levels of a certain miRNA. 
Another method is using databases that collects experimentally validated 
miRNA-mRNA interactions from the literature, such as DIANA-Tarbase 
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(Karagkouni et al. 2018), miRecords (Xiao et al. 2009), miRTarBase 
(Chou et al. 2018) or miRWalk (Sticht et al. 2018).  

5.2. MicroRNAs in pancreatic cancer 
MicroRNA levels can be altered in cancerous tissues. Both tumor 
suppressors, e.g. hsa-miR-141 and hsa-miR-200, and oncogenic miRNAs 
(onco-miRs) such as hsa-miR-21 and hsa-miR-31, have been identified in 
pancreatic cancer (Baradaran et al. 2019). MicroRNAs are suitable as 
circulating biomarkers due to their remarkable stability in blood, and 
previous studies have identified differentially altered circulating 
microRNAs in PDAC (Franklin et al. 2018; Hussein et al. 2017). The 
stability of miRNAs could be due to protection from degradation by 
exosomes, associations to proteins or miRNA modifications making them 
more resistant to degradation (Mitchell et al. 2008).  

Franklin and co-workers previously identified a 15-miRNA signature with 
an AUC of 0.96 at PDAC diagnosis, which outperformed CA 19-9 (AUC = 
0.92) (Franklin et al. 2018). However, this 15-miRNA signal as well as the 
CA 19-9 signal were lost in a pre-diagnostic cohort including blood 
samples from future PDAC patients up to ten years prior to diagnosis 
(AUC ≤ 0.65). A pre-diagnostic PDAC cohort derived from the European 
Prospective Investigation into Cancer and Nutrition (EPIC) study was 
screened for eight selected miRNAs (Duell et al. 2017). This 8-miRNA 
panel was selected based on previous studies investigating overexpressed 
miRNAs in PDAC. No clear biomarker with potential for early PDAC 
diagnosis emerged, but the three most promising miRNAs were hsa-miR-
21-5p, hsa-miR-30c, and hsa-miR-10b. The best performing AUCs were 
observed within 5 years prior to a PDAC diagnosis and these were 0.79 
(hsa-miR-21-5p) and 0.77 (hsa-miR-30c). Recently, a panel of two 
miRNAs, hsa-miR-33a-3p + hsa-miR-320a, in combination with CA 19-9 
has been suggested to have a potential role in early detection of PDAC as 
this signature was found to discriminate PDAC and patients with IPMN 
from healthy controls with an AUC of 0.95 (Vila-Navarro et al. 2019). 

Chapter 6 – Metabolomics in pancreatic cancer 
Metabolomics involves studying small molecules resulting from metabolic 
processes. A meta-analysis of 25 previous metabolomics studies in PDAC 
shows that most studies have found altered amino acid pathways (Long et 
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al. 2018). The most commonly altered metabolites found are glutamic acid 
and histidine (found in seven studies), as well as glutamine and isoleucine 
(found in five studies). Due to different sample sizes and lack of external 
validations, there were a lot of inconsistencies between the studies. Of 25 
included studies, only nine included any kind of external validations of 
their findings.  

In 2018, a 9-metabolite profile + CA 19-9 was identified excellent in 
distinguishing between PDAC and chronic pancreatitis (CP) with an AUC 
of 0.94 (Mayerle et al. 2018). To make it more translatable into clinical 
use, an improved signature was derived, resulting in a minimalistic (m)-
metabolic signature of CA 19-9 and four metabolites (ceramide [d18:1, 
C24:0], lysophosphatidylethanolamine [C18:9], phosphatidylethanol-
amine [C18:0,C22:6], and sphingomyelin [d17:1,C16:0]) (Mahajan et al. 
2022). The m-metabolic signature was excellent at distinguishing 
between individuals with PDAC, chronic pancreatitis (CP) and non-
pancreatic disease controls (NPC) in Lewis-positive patients with an AUC 
of 0.924. A 12-metabolite signature was also applicable to Lewis-antigen 
negative subjects that do not express CA 19-9 and displayed an AUC of 
0.805. The 9-metabolic signature, termed MxP® PancreasScore, will be 
validated in a prospective study of individuals with undefined pancreatic 
mass on imaging (Deutsche Register Klinischer Studien registration ID: 
DRKS00010866). Furthermore, validation of the m-metabolic signature 
in pre-diagnostic individuals with a pancreatic mass lesion is underway 
(Mahajan et al. 2022).  

Analyses in pre-diagnostic pancreatic cancer cohorts with regards to 
altered metabolites have previously been performed. Branched-chain 
amino acids (BCAA; isoleucine, leucine and valine) were found up-
regulated in PDAC patients, with the strongest association found at 2-5 
years prior to PDAC diagnosis (Mayers et al. 2014). The findings were 
supported by elevated BCAA in early PDAC progression in mouse models 
with KRAS-driven tumors, and muscle catabolism was suggested as the 
source of the elevated BCAA. Circulating BCAAs were validated in a 
separate Japanese cohort, where the strongest association was observed 
≥ 10 years prior to PDAC diagnosis (Katagiri et al. 2018). These findings 
were not replicated by Fest et al., who instead found downregulated 
histidine and glutamine associated with an increased PDAC risk (Fest et 
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al. 2019). However these were not statistically significant after multiple 
hypothesis correction.  

Chapter 7 – Proteins in pancreatic cancer 

7.1. Circulating TPS 
Tissue polypeptide specific antigen (TPS) is a fragment of cytokeratin 18. 
Using cut-offs of 37 kiloarbitrary units (kAU)/L for CA 19-9 and 40 AU/L 
for TPS resulted in higher sensitivity of TPS, but lower specificity 
compared to CA 19-9 with respect to benign diseases (22 % for TPS; 60 % 
for CA 19-9) and a control group of blood donors (88 % for TPS; 100 % for 
CA 19-9) (Banfi et al. 1993). It has been suggested to have a better 
discriminative ability between PDAC and chronic pancreatitis compared 
to CA 19-9 (Slesak et al. 2000). Furthermore, TPS was differentially 
altered when comparing PDAC and benign hepatopancreabiliary diseases 
but had low discriminative ability (Pasanen et al. 1994). TPS has been 
suggested to be more suitable for monitoring the clinical status in post-
operative PDAC patients compared to CA 19-9 (Slesak et al. 2004). 
However, a later study found no diagnostic value of TPS in discriminating 
between pancreatobiliary diseases (Ozkan et al. 2011).  

7.2. Circulating protein biomarkers 
IMMray® (Immunovia, Inc.) is a platform of 349 human recombinant 
antibodies targeting 156 antigens that correspond to systemic disease 
response and tumor secretome (Mellby et al. 2018). This platform was 
utilized to develop a 29-biomarker signature that displayed an AUC of 
0.963 for separating PDAC stages I & II from normal controls in a 
validation cohort. In 2022, the signature was refined to include 8-
biomarkers + CA 19-9, which was named the PanCan-d test (Brand et al. 
2022). PanCan-d outperformed CA 19-9 alone (specificity 97.6 %, 
sensitivity 75.8 %) for PDAC stages I & II compared to a high-risk cohort 
(PanFAM, PanCan-d: specificity 98 %, sensitivity 85 %) or healthy 
controls (PanCan-d: specificity 99 %, sensitivity 85 %). Analyzing the 8-
biomarkers without CA 19-9 in individuals with CA 19-9 levels < 2 U/mL 
generated an AUC of 0.874.  
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Chapter 8 – Multi-omics profiling 
Systems biology aims to understand complex biological systems by 
studying interactions between biological components. With high-
throughput analyses dropping in price, it is nowadays feasible to generate 
omics data at multiple levels. Multi-omics consists of combining data 
from at least two different omics levels. There are various methods to 
analyze multiple omics levels together. The most straightforward way is 
looking at data modalities separately or by concatenating all variables into 
the same matrix (Singh et al. 2019). Unsupervised and supervised 
methods for multi-omics data also exist to include the covariance between 
different omics levels (Argelaguet et al. 2020; Rohart et al. 2017; Singh et 
al. 2019).  

Unsupervised analyses do not label the outcome and can be performed to 
look at the overall variation in the data. It can be used to look at whether 
confounders are main contributors to certain variation or if outliers exist. 
Principal component analysis (PCA) is a linear method widely used to get 
an overview of data by reducing dimensions. Multi-omics factor analysis 
(MOFA) is an extension of PCA for multi-omics data (Argelaguet et al. 
2020). It allows us to understand how much each omics layer contributes 
to the latent factors (equivalent to principal components) and to identify 
the features with highest weights in the latent factors. 

Supervised analysis is performed to find the best separation on the 
outcome or conditions of interest, such as disease versus healthy. Data 
integration analysis for biomarker discovery using latent components 
(DIABLO) is a supervised method that allows disentangling the different 
omics layers, compare them and see how they correlate indirectly through 
the components (Rohart et al. 2017; Singh et al. 2019). One limitation of 
DIABLO is that the user has to specify the number of components and 
variables to include in the model. An algorithm is available to find the 
most appropriate parameter tunings by splitting the cohort into train and 
test data. However, this can be challenging for small datasets.  

8.1. Multi-omics biomarkers 
CancerSEEK consists of a panel of eight circulating proteins and 
mutations in 1933 genomic positions that detects eight different cancer 
types, including pancreatic cancer (Cohen et al. 2018). The mean 
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sensitivity was 62 % at > 99 % specificity for all cancer types combined. 
The highest sensitivities, in all eight cancer types combined, were 
achieved in cancer stages II & III (75-78 %), whereas sensitivity dropped 
to 40 % in stage I. Larger prospective cohorts will be needed to further 
evaluate the clinical utility of CancerSEEK.  

There is an ongoing observational clinical trial named the DAYBREAK 
study with the aim to separate between pancreatic cancer and benign 
pancreatic disease by a multi-omics profile in blood (ClinicalTrials.gov 
Identifier: NCT05495685). The omics modalities include, but are not 
restricted to, cell-free DNA (cfDNA) methylation, blood miRNAs, serum 
proteins in 450 participants. The study is currently (October 2022) 
recruiting.  

In translational research and for discovery of biomarkers that would 
eventually be implemented in clinics, the cost-efficiency question is 
central. If the best biomarker signature spans a multi-omics panel, then it 
has to be sufficiently good to be worth implementing. However, it might 
also be that multi-omics can be used as a first screening to gain more 
biological insights and generate hypotheses. Eventually, a biomarker 
signature using only one omics layer consisting of a few biomarkers might 
be derived with clinical value.  
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Aims 

Overall aim 
The overall aim of this thesis is to understand the biological functions of 
circulating microRNAs in pancreatic cancer. Moreover, to identify 
circulating biomarkers with a potential use in early pancreatic cancer 
detection to be able to offer curative surgery to more patients and 
subsequently improve patient survival.  

Specific aims 
 

• To build a tool for in silico functional analysis of microRNAs in 
pancreatic cancer with correlation support of predicted microRNA 
targets 

(Paper I) 
 

• To determine the use of TPS as a biomarker for early pancreatic 
cancer detection 

(Paper II) 
 

• To identify biomarkers for early pancreatic cancer detection by 
multi-omics, including microRNAs, metabolites, and proteins 

(Papers III & IV) 
 

• To assess the prognostic value of circulating metabolites in pre-
diagnostic plasma samples of individuals that later develop 
pancreatic cancer 

(Paper III) 
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Materials and Methods 
In this thesis, publicly available expression data derived from pancreatic 
cancer tissue and plasma samples from pre-diagnostic or diagnostic 
pancreatic cancer was used (Table 3).  

Table 3. Overview of materials and methods in this thesis. 

 
Paper 

I II III IV 
Study 
design 

Software 
develop-
ment 

Nested case-
control study 

Nested case-
control study 

Nested case-
control study 

Data  MiRNA, 
mRNA, 
protein 
expression 
(public 
data) 

TPS Metabolomics, 
clinical 
biomarkers 

Metabolomics, 
miRNomics, 
proteomics, 
clinical 
biomarkers 

Sample 
size 

183 PDAC 
patients 

267 future 
PDAC,  
26 PDAC, 
328 controls 

100 future 
PDAC,  
100 controls 

39 future 
PDAC, 39 
controls 

TPS = tissue polypeptide specific antigen, miRNA = microRNA, mRNA = messenger RNA 

Chapter 9 – Patient cohorts and characteristics 

9.1. Ethics statement 
Public data was used in Paper I. Remaining studies in this thesis were 
approved by the ethical committee at Umeå University according to the 
Helsinki Declaration of 1975. Written informed consent was given by 
participants at inclusion into the Northern Sweden Health and Disease 
Study (NSHDS). Pre-diagnostic PDAC cohorts were subsequently 
obtained from NSHDS and used for Papers II-IV. Participants in the 
diagnostic PDAC cohort gave their written informed consent before 
inclusion into the biobank at the Department of Surgery.  
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9.2. TCGA and TCPA 
We used miRNA, mRNA, and protein expression from the cancer genome 
atlas (TCGA) pancreatic adenocarcinoma (PAAD) generated by the TCGA 
Research Network (http://cancergenome.nih.gov/) and the cancer 
proteome atlas (TCPA)-PAAD projects (Li et al. 2013). MiRNA isoform 
quantification data from the GDC portal (https://portal.gdc.cancer.gov/) 
and mRNA expression data from the Xena browser 
(https://xenabrowser.net/datapages/) were downloaded (Goldman et al. 
2020). Mature miRNA expression was annotated from the miRNA 
isoform quantification by summarizing values ≥ 1 reads per million (rpm) 
for each miRNA using plyr R package (Wickham 2011). 

Protein expression was derived from the TCPA-PAAD project 
(http://tcpaportal.org/tcpa/download.html) (Li et al. 2013). The list of 15 
differentially expressed miRNAs at PDAC diagnosis by Franklin et al. was 
used (Franklin et al. 2018) to demonstrate the functionality of the in silico 
miRNA functional analysis (miRFA) pipeline developed in Paper I and 
to compare it to miRCancerdb (Ahmed et al. 2018).  

9.3. Pre-diagnostic cohorts 
Pre-diagnostic PDAC plasma samples and matched healthy controls were 
withdrawn from NSHDS. Two healthy controls without malignancy were 
matched to the first sampling occasion of the future PDAC patient by sex, 
age (± 6 months), and sample date (± 6 months) in the first withdrawal 
(Paper II). A second withdrawal was performed in the same way to 
include additional diagnosed PDAC patients. A matching procedure 
within the withdrawn cohort was performed by matching one healthy 
control to each PDAC sample by sex, age (± 6 years), and sampling date 
(± 6 years) up to 5.2 years lag-time to diagnosis (Papers III & IV). There 
was two exceptions, for one case the sample date differed 9 years and for 
another case age differed 15 years. 

9.4. Pre-diagnostic symptoms 
Pancreatic cancer-related symptoms were reviewed for PDAC patients in 
the cohort used in Paper III up to six years prior to diagnosis from 
medical records in orthopedic, surgical, medical, and health care centers. 
Symptoms reviewed included back pain, abdominal pain, jaundice, new-
onset diabetes, diarrhea, weight loss, gallstone, pancreatitis, and fatigue. 
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Inclusion and exclusion criteria of the reviewed symptoms are listed in 
Paper III, Supplementary Table 1.  

9.5. Diagnostic cohorts 
Plasma samples at PDAC diagnosis before surgical or oncological 
treatment were collected at the Department of Surgery, Umeå University 
Hospital (Paper II).  

Chapter 10 – Bioinformatics  

10.1. MiRNA functional analysis pipeline 
The miRNA functional analysis (miRFA) pipeline was built in R project 
for statistical computing (R Core Team 2021), where one miRNA is 
queried separately and consists of the following steps:  

1) MiRNA target prediction 
2) Correlation analyses of the predicted miRNA target between 

miRNA-mRNA expression and miRNA-protein expression 
3) Functional enrichment analysis of correlated predicted miRNA 

targets  

MicroRNA target prediction was done using two prediction databases; 
DIANA-microT-CDS (Reczko et al. 2012) and TargetScan version 7.1 
(Agarwal et al. 2015), as well as the experimentally validated database 
DIANA-TarBase version 7 (Vlachos, Paraskevopoulou, et al. 2015). 
DIANA-microT-CDS was downloaded from http://diana.imis.athena-
innovation.gr/DianaTools/index.php and a prediction score threshold of 
0.7 was used. DIANA-TarBase v7 was downloaded from 
http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=tarbase/index. We downloaded 
predicted targets for conserved sites for miRNAs, conserved miRNA 
families, and predicted non-conserved sites miRNAs for TargetScan 
(http://www.targetscan.org/vert_71/). The downloaded miRNA 
prediction databases were combined with miRNA, mRNA, and protein 
expression data into an sqlite database, which was queried from R using 
the RSQLite package (Müller et al. 2022). Over-representation analysis of 
KEGG pathways and GO terms was performed using the edgeR package 
(McCarthy et al. 2012; Robinson et al. 2010).  
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10.2. Network analysis 
Networks are displayed by nodes interconnected by edges (Figure 8). 
The nodes with a high number of direct neighbors are referred to as hubs 
(Barabasi and Oltvai 2004). Protein-protein interaction networks were 
generated in the STRING database (https://string-db.org/) (Szklarczyk et 
al. 2021). The network was analyzed in Cytoscape software (Shannon et 
al. 2003) and hub genes identified by the cytohubba plugin (Chin et al. 
2014). CluePedia plugin was used to visualize the overlap between 
different KEGG pathways (Bindea et al. 2013).  

 

Figure 8. Simple network. Five nodes (green) are connected by edges (black) showing 
the most highly connected node or hub (H). 

10.3. Shiny web app 
To enable non-bioinformaticians to run the miRFA pipeline, we created a 
shiny app for all 775 miRNAs detected in the TCGA-PAAD data 
(https://emmbor.shinyapps.io/mirfa/). The shiny app includes predicted 
miRNA targets, as well as correlation results for miRNA-miRNA target 
mRNA expression and miRNA-miRNA target protein expression. A Venn 
diagram is generated showing the overlap of the three miRNA target 
prediction databases. Over-represented KEGG pathways and GO terms of 
miRNA targets that were significantly correlated to the miRNA expression 
level can be downloaded.  

Chapter 11 – Metabolite profiling 
Metabolites were detected by untargeted liquid chromatography mass 
spectrometry (LCMS) and gas chromatography-MS (GCMS). LCMS and 
GCMS detect different metabolites depending on volatility and polarity 
(Figure 9). The volatility also depends on how the samples are pre-
processed and whether metabolites are derivatized or not. There is some 
overlap between the two platforms, such as amino acids and fatty acids, 
whereas other metabolites are specific for LCMS or GCMS. Metabolite 
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profiling was performed at the Swedish Metabolomics Centre (Umeå, 
Sweden).  

 

Figure 9. Types of metabolites quantified by LCMS and GCMS. Detected 
metabolites differ by the two methodologies in terms of polarity and volatility (Brack et al. 
2016). LCMS = liquid chromatography mass spectrometry, GCMS = gas chromatography 
mass spectrometry.  

11.1. Metabolite extraction 
Plasma samples were prepared as previously described (A et al. 2005). 
Briefly, 900 µL extraction buffer (90/10 v/v HPLC grade methanol (Fisher 
Scientific, Waltham, MA, USA)/milliQ water) including internal 
standards was added to 100 µL plasma followed by shaking for 2 minutes 
at 30 Hz in a mixer mill. Proteins were precipitated at 4 °C on ice followed 
by centrifugation at 14,000 rpm, 4 °C for 10 minutes. A volume of 200 µL 
supernatant for LC-MS analysis and 100 µL for GC-MS were evaporated 
to dryness in a speed-vac concentrator. Furthermore, solvents were 
evaporated followed by storage at -80 °C until analysis. Quality control 
samples were created by pooling a small aliquot of remaining 
supernatants. The QC samples were analyzed by MSMS (LCMS) for 
metabolite identification purposes. 
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11.2. LCMS 
Samples were resuspended in 10 µL methanol and 10 µL water followed 
by LCMS analysis in positive and negative mode. Chromatographic 
separation was performed on Agilent 1290 Infinity UHPLC-system 
(Agilent Technologies, Waldbronn, Germany) followed by detection with 
Agilent 6550 Q-TOF mass spectrometer connected to a jet stream 
electrospray ion source. Data was processed using Agilent Masshunter 
Profinder version B.08.00 (Agilent Technologies Inc., Santa Clara, CA, 
USA). Batch Targeted feature extraction in Masshunter Profinder was 
used to search a pre-defined list of commonly detected metabolites in 
plasma and serum. An inhouse LCMS library of authentic standards 
analyzed on the same system with similar settings for targeted processing. 
Metabolites were identified by information of MS, MSMS, and retention 
time.  

11.3. GCMS 
Derivatization and GC-MS profiling was performed on a Pegasus HT time-
of-flight mass spectrometer, GC/TOFMS (Leco Corp., St Joseph, MI) as 
previously described (A et al. 2005). Non-processed MS-files were 
exported from ChromaTOF software to MATLAB 2018a (Mathworks, 
Natick, MA, USA), where following pre-treatment procedures were 
performed; base-line correction, chromatogram alignment, data 
compression, and multivariate curve resolution (Jonsson et al. 2005). 
Mass spectra were identified by comparing retention index and mass 
spectra with those found in libraries using NIST MS 2.2. software 
(Schauer et al. 2005). Reverse and forward searches were done, with extra 
caution taken on masses and ratio between masses indicative of a 
derivatized metabolite. A peak was identified by the mass spectrum with 
the highest probability and a maximum difference of five between library 
and sample for the suggested metabolite.  

Chapter 12 – Protein profiling 
Plasma proteins were analyzed using enzyme-linked immunosorbent 
assay (ELISA, Paper II), Luminex (Papers III & IV) or proximity 
extension assays (PEA, Olink®, Paper IV) (Figure 10). All three protein 
methods require antibody recognition of two different epitopes of the 
protein, which reduces false positive signals and increases specificity. The 
choice of protein assay depends on the purpose of the study. Milliplex and 
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PEA are more sensitive than ELISA and require smaller sample volumes. 
However, ELISA is cheap and fast to run. PEA can be multiplexed up to 
around 3000 proteins using NGS.  

 

 

Figure 10. Methods employed for quantification of plasma proteins. A) In 
sandwich enzyme-linked immunosorbent assay (ELISA), a protein binds to a capturing 
antibody that is attached to the bottom of a well  in a microplate. A primary antibody is 
added followed by a secondary antibody ligated to an enzyme. Substrate is added and 
consumed by the enzyme generating a signal. B) In Luminex assays, a protein binds to 
antibodies coupled to fluorescent beads. Another antibody is added conjugated to biotin. 
A streptavidin ligated to phycoerythrin (PE) generates a fluorescent signal. C) In proximity 
extension assays, antibodies conjugated to DNA tags bind to the target protein. When the 
two antibodies bind to two proximal target epitopes of a protein, the DNA tags are 
hybridized and amplified by qPCR or NGS.  

12.1. ELISA 
Circulating TPS was assessed in 50 µL plasma using TPS ELISA kit (IDL 
Biotech, Bromma, Sweden) following the manufacturer’s instructions. 
Samples were analyzed in duplicates and a coefficient of variation (CV) 
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below 15 % was accepted. For samples with TPS < 80 U/L (lowest 
reference value), a higher CV was accepted. The average of duplicates was 
used in statistical analyses.  

12.2. Luminex analyses 
The clinically used biomarkers CA 19-9, CEA, and CA 15-3 were assessed 
in 6 µL plasma using Milliplex Multiplex assays for Luminex kit Human 
circulating biomarker panel 1 (Merck) according to manufacturer’s 
instructions. Samples were analyzed in duplicates with an accepted CV 
below 15 %. The average of the two replicates was used in statistical 
analyses. Values for samples above the dynamic range of the standard 
curve were determined from an extrapolated standard curve. Values 
below limit of detection were imputed by lowest detectable value divided 
by two.  

12.3. PEA 
Proximity extension assays (PEA) were performed by Olink® (Uppsala, 
Sweden). Plasma samples were analyzed using seven Olink® panels; 
metabolism, immune response, inflammation, oncology II & III, 
cardiometabolic, and cardiovascular III. A volume of 1 µL plasma was 
analyzed in each Olink® panel.  

Chapter 13 – MicroRNA profiling 
A total of 2083 miRNAs were analyzed in 15 µL plasma using whole 
miRNA transcriptome assay (HTG Molecular Diagnostics, Inc) by TATAA 
Biocenter AB (Göteborg, Sweden). Quantification and sequencing are 
performed on hybridized miRNA-specific probes (Figure 11). The 
protocol for Plasma, Serum and PAXgene samples (HTG EdgeSeq System 
User Manual [ROU], version 10254600 Revision F) was followed. Briefly, 
15 µL plasma was lysed, followed by hybridization between microRNAs 
and probes. Indexing, library amplification and cleanup followed by 
quality check and qPCR quantification by TATAA NGS Library 
Quantification kit (Part no: TA20-NGSQ, TATAA Biocenter AB) were 
subsequently performed. Libraries were normalized, pooled and 
sequenced using NextSeq500 (Illumina) with the parameter single end 50 
base pairs mid output in Illumina’s cloud-based service BaseSpace. 
Demultiplexed fastq-files were aligned, parsed and raw miRNA counts 
were generated in the HTG Edgeseq system software.  
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Figure 11. Whole miRNA transcriptome assay by HTG Edgeseq. 1) MicroRNA (miRNA) 
is hybridized to a protection probe ligated to ‘wings’ that will bind to a ‘wingman’. 2) Non-
hybridized probes and RNA are degraded by S1 nuclease, which results in a 1:1 ratio of 
probes and miRNAs. 3) Primers carrying sequencing adaptors and molecular barcodes 
amplify the remaining probes. 4) Resulting PCR amplicons are purified, quantified, and 
combined into a sequencing library.  

Chapter 14 – Statistical analyses 
All statistical analyses were performed in R (R Core Team 2021).  

14.1. Univariate analysis 
Conditional or unconditional logistic regression was performed using 
survival R package (Therneau 2022; Therneau and Grambsch 2000) or 
glm function from stats package (R Core Team 2021), respectively. For 
comparing continuous clinical characteristics, the Student’s t-test or 
Mann-Whitney U rank test was performed. For categorical clinical 
characteristics, Fisher’s exact test was calculated.  

14.2. Multivariate analysis 
Orthogonal projections to latent structures (OPLS) models were 
generated using ropls R package (Thevenot et al. 2015). OPLS models 
separate the latent variables by predictive components associated to the 
outcome and orthogonal components associated to other sources of 
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variation. OPLS effect projections (OPLS-EP) was used for paired 
analyses (Jonsson et al. 2015) and OPLS discriminant analysis (OPLS-DA) 
for unpaired analyses. Subset OPLS-EP models of circulating 
metabolomics were built stratified by time to diagnosis versus overall 
survival (time between sample date and death) or TNM stage (Jonsson et 
al. 2020). Each subset consisted of the 15 cases closest to a specific time 
to diagnosis-value and overall survival or TNM coordinate, as well as their 
matched healthy controls. 

Multi-omics integration was performed using data integration analysis for 
biomarker discovery using latent components (DIABLO) (Rohart et al. 
2017; Singh et al. 2019) and multi-omics factor analysis (MOFA) 
(Argelaguet et al. 2020).  

14.3. LASSO regression 
Least absolute shrinkage and selection operator (LASSO) regression was 
performed using glmnet R package in combination with bootstrapping 
with replacement (Friedman et al. 2010). LASSO is a variable selection 
method that sets some coefficients to zero for variables that are not 
informative for the outcome, it thus simplifies the regression model. 
Bootstrapping with replacement will generate new cohorts consisting of 
some of the samples in the original cohort. This can be viewed as changing 
the cohort multiple times. We performed LASSO on 500 bootstrapping 
iterations and finally we included variables with the highest proportion in 
the bootstrap-cohorts into final logistic regression models.  

14.4. Survival analysis 
Survival analyses were performed using survival (Therneau 2022; 
Therneau and Grambsch 2000), survminer (Kassambara 2018), and 
RTCGA.clinical R packages (Kosinski 2018). Cox regression as well as 
Kaplan Meier estimates using median expression as cut-off were 
performed to determine the prognostic value. Multivariable cox 
regression of miR-885-5p adjusted for age at diagnosis, tumor stage, sex, 
and histological grade was performed in the TCGA-PAAD cohort.  

14.5. Imputation 
Mice package was used o impute missing clinical information on BMI, 
smoking and type of surgery (van Buuren and Groothuis-Oudshoorn 
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2011). Mean values were imputed for BMI and smoking in the final logistic 
regression models of LASSO-selected variables.  

Chapter 15 – Visualization 
Figures were constructed in R using ggplot2 (Wickham 2016), ggrepel 
(Slowikowski 2021), the network analysis and visualization software 
Cytoscape (Shannon et al. 2003), and the graphic design software Affinity 
designer (Serif Europe Ltd).  
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Results 

Chapter 16 – Patient cohorts 

16.1. TCGA-PAAD cohort 
We utilized the TCGA-PAAD and TCPA-PAAD data in Paper I. Clinical 
characteristics for TCGA-PAAD patients are described in Table 4. 

Table 4. Clinical characteristics of TCGA-PAAD patients.  

Variable TCGA-PAAD 
patients (n = 177) 

Mean age (years, range) 65 (36-89) 
Sex  

Women, n (%) 80 (45 %) 
Men, n (%)  97 (55 %) 

Median survival (months) 7.9 
Histological grade  

1 31 (18 %) 
2 94 (53 %) 
3 48 (27 %) 
4 2 (1 %) 
NA 2 (1 %) 

Tumor stage, n (%)  
I 21 (12 %) 
II 146 (82 %) 
III 3 (2 %) 
IV 4 (2 %) 
Information missing 3 (2 %) 

NOS = not otherwise specified 

16.2. Included patients in pre-diagnostic and diagnostic 
cohorts 
Included pre-diagnostic PDAC samples are presented in Figure 12. The 
cohort-specific clinical characteristics are described in Papers II-IV. A 
diagnostic PDAC cohort was also used in Paper II (Paper II, Figure 
1B). 
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Figure 12. Flowchart of prospective cohorts. Included pre-diagnostic PDAC plasma 
samples in papers II-IV.   
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Chapter 17 – miRFA: microRNA functional analysis in 
pancreatic cancer 
We developed a bioinformatics pipeline consisting of the following steps; 
miRNA target prediction, miRNA-target correlations (including mRNA 
and protein expression levels), and over-representation analysis of 
correlated miRNA targets (Paper I, Figure 1). We separated between 
the mature miRNA isoforms to be able to provide a more precise 
functional analysis of miRNAs. A list of 15 differentially expressed 
circulating miRNAs at PDAC diagnosis was used to show the functionality 
of our pipeline (Franklin et al. 2018). An example of mir-144 shows that 
there will be a difference in expression levels depending on whether the 
miR-144-3p and miR-144-5p isoforms are studied together or separately 
(Paper I, Figure 2). The number of predicted miRNA targets was 
reduced by including only those with a correlation support on mRNA or 
protein expression levels (Paper I, Figure 4).  

We included correlation analyses between miRNAs and mRNAs or 
protein expression levels of predicted targets to provide further support 
for identified miRNA targets before proceeding to functional enrichment. 
Since there are studies of up-regulation by microRNAs on their targets, 
we included both positive correlations as well as negative ones in 
functional enrichment analysis (Rusk 2008; Vasudevan et al. 2007). We 
extended the miRFA tool by running each miRNA isoform detected in 
TCGA-PAAD data and made the results easy to download from a shiny 
web app (https://emmbor.shinyapps.io/mirfa/, Figure 13). The 
correlated miRNA targets can also be analyzed by other downstream 
analyses, such as network analyses (Paper I, Figures 6 & 7). We 
analyzed miR-885-5p as an example and identified the top 10 hub genes 
(Paper I, Figure 6). For the downstream analyses, positively and 
negatively correlated targets were analyzed separately. Different top 10 
hub genes were identified for negatively and positively correlated targets 
with the top hits kinesin family member 2C (KIF2C) and S-Phase Kinase 
Associated Protein 1 (SKP1), respectively.  
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Figure 13. Screenshot of miRFA shiny web app.  

We compared miRFA to miRCancerdb (Ahmed et al. 2018). The list of 
genes in KEGG pathway hsa05212 ‘Pancreatic cancer’ was chosen as 
benchmark dataset to compare the 15 miRNAs (Franklin et al. 2018) used 
throughout Paper I. Since input miRNA in miRCancerdb are not in the 
form of mature isoforms, we modified the 15-miRNA list before running 
miRCancerdb. In general, miRFA picked up more correlations on mRNA 
expression level compared to miRCancerdb (Paper I, Table 9). On 
protein expression levels, miRCancerdb and miRFA generated different 
correlations for different miRNAs (Paper I, Table 10).  

Chapter 18 – Potential pre-diagnostic PDAC biomarkers 
A multi-omics approach was applied in this thesis to search widely for 
novel biomarkers with a potential for early PDAC detection. Around 3000 
variables were studied in total. Multi-omics allows us to combine 
biomarkers, not only within a certain omics-type but also across different 
omics levels. This approach also offers the ability to validate findings at 



 

39 

other omics levels, compare performance of different omics candidates, 
and to facilitate biological interpretation.  

18.1. Plasma TPS was not altered in pre-diagnostic PDAC  
Circulating TPS was assessed in plasma samples from future PDAC cases 
up to 18.8 years lag-time to diagnosis. Low TPS levels were found in future 
PDAC cases (n=267 plasma samples) as well as in matched healthy 
controls (n = 320) (Paper II, Figures 2B-D, Table 3).  

18.2. Circulating metabolites 
Univariate logistic regression models adjusted for matching factors age, 
sex, and sample date returned 12 circulating metabolites with a nominal 
P-value < 0.05 (Paper III, Figure 2A, Supplementary Table 2). 
These were not significant after adjusting for multiple hypothesis testing. 
Since circulating histidine was previously found downregulated in pre-
diagnostic PDAC (Fest et al. 2019), we examined the levels in time to 
diagnosis intervals of < 2 years (y), 2-5 y, and > 5 y. A slight drop in 
histidine level is visual < 2 y lag-time to PDAC diagnosis in concordance 
with Fest et al. (Paper III, Supplementary Figure 2A). This pattern 
seems to be specific for females in our data (Paper III, Supplementary 
Figure 2B-C). Longitudinal samples were available for 15 future PDAC 
cases. Among the 12 metabolites with a nominal P-value < 0.05, 
homoarginine (P-value = 0.03) and an unidentified metabolite with 
retention index (RI):2745.4 (P-value = 0.03) differed between first and 
last blood collection within the individuals (Paper III, Supplementary 
Figure 3). However, these differences were not significant after adjusting 
for multiple hypothesis testing.  

We performed LASSO regression of the 12 metabolites with a nominal P-
value < 0.05 using bootstrapping with replacement 500 times. Five 
informative metabolites (occurred in ≥ 80 % of the bootstrap sub-cohorts) 
were identified that were included into a final logistic regression including 
a baseline model (BMI, fasting status, smoking status, sex, sample date, 
and age) and CA 19-9. An improved AUC of the final model of 0.738 (95 
% CI: 0.669-0.807) was achieved compared to 0.641 (95 % CI: 0.563-
0.719) for the baseline model + CA 19-9 (P-value = 0.01, Paper III, 
Figure 2B).  



 

40 

18.3. Metabolites related to pre-diagnostic PDAC symptoms 
Medical records were investigated for symptoms in PDAC patients up to 
six years before diagnosis in the cohorts in Papers III & IV (Paper III, 
Supplementary Table 1). The three most common pre-diagnostically 
reported symptoms were abdominal pain, weight loss, and back pain 
(Paper III, Supplementary Table 4). An OPLS-DA analysis revealed 
no symptom-specific metabolite signature for these three pre-diagnostic 
PDAC symptoms. We also stratified the pre-diagnostic cohort into 
patients with reported symptoms and a sample taken within the same 
time interval or after, and an asymptomatic cohort. We hypothesized that 
this would give cleaner cohorts and increase the chances of findings in 
those patients with reported symptoms that could possibly be due to a 
PDAC. Different metabolite profiles were obtained in the symptomatic 
compared to the asymptomatic cohort, however none of these metabolites 
were statistically significant after adjusting for multiple hypothesis testing 
(Figure 3, Supplementary Tables 5 & 7). A disadvantage of this 
approach is that the cohorts became smaller after splitting based on 
symptoms profile.  

18.4. Circulating metabolites in relation to fasting glucose 
levels 
Newly onset diabetes is a risk factor as well as a consequence of PDAC 
(Wild et al. 2020). Diabetic status can be reflected by fasting glucose 
levels. We thus split the cohort into individuals with normal fasting 
glucose (NFG < 6.1 mmol/L) and impaired fasting glucose (IFG ≥ 6.1 
mmol/L). Different metabolite profiles were obtained with nominal P-
value < 0.05 (Figure 4, Supplementary Tables 10 & 11). However, 
these were not significant after correcting for multiple hypothesis testing.  

18.5. Subset OPLS-EP models of metabolites 
OPLS-EP is a multivariate method used for paired study designs (Jonsson 
et al. 2015). We did not find any significant multivariate paired model 
(OPLS-EP) for the whole pre-diagnostic cohort in Paper III. Therefore, 
we sought to identify OPLS-EP models in subsets of the pre-diagnostic 
cohort since the case samples differ in terms of TNM stage and lag-time 
to PDAC diagnosis (Jonsson et al. 2020). The subsets were determined by 
coordinates in either time to diagnosis vs TNM stage (Figure 14A & -C), 
or time to diagnosis vs overall survival (Figure 14B & -D). A grid search 
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was performed of the whole coordinate system extracting the 15 cases 
closest to the coordinate, along with their matched controls. This creates 
different subsets from which an OPLS-EP model was created. Statistically 
significant OPLS-EP models of 15 case-control subsets could be identified 
using both LCMS and GCMS data (Table 5). However, no clear pattern 
was seen in relation to lag-time, TNM stage or overall survival.  

Table 5. Summary statistics for OPLS-EP models of different case-control sub-
cohorts.  

Model  Max 
R2Y  

Max  
Q2  

Unique  
models  

Significant 
models  

Significant 
models/total 
unique 
models  

LCMS – tnm  0.97  0.64  144  75  52 %  
LCMS – surv  0.98  0.72  203  128  63 %  
GCMS – tnm  0.98  0.53  144  58  40 %  
GCMS – surv  0.96  0.45  203  84  41 %  

LCMS = liquid chromatography mass spectrometry, GCMS = gas chromatography mass spectrometry, tnm = 
tumor node metastasis stage, surv = survival time between time of blood collection and death  
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Figure 14. Subset analyses using OPLS-EP. Subsets were stratified based on time 
between sample date and death (overall survival) or tumor-node-metastasis (TNM) stage 
versus time to diagnosis. Each dot represents the mean value of each subset. Orthogonal 
projections to latent structures-effect projections (OPLS-EP) models were generated using 
LCMS data (A-B) or GCMS data (C-D). Each subset contains 15 cases and their matched 
controls. Since one matched case-control pair was excluded from the GCMS data, some 
subsets contain only 14 matched case-control pairs.   

18.6. Multi-omics of pre-diagnostic PDAC 
We profiled plasma proteins, metabolites, and microRNAs in 39 future 
PDAC samples and 39 matched healthy controls. Univariate logistic 
regression analysis revealed no significant (Q-value < 0.01) metabolite, 
protein, or microRNA after adjusting for multiple hypothesis testing, 
although we identified 96 variables with a nominal P-value <0.05 (Paper 
IV, Figure 2). Among these variables, none were selected in ≥ 70 % of 
LASSO-iterations when all omics levels were analyzed together. When 
performing LASSO on the omics types separately, two proteins (C-C motif 
chemokine ligand 15 [CCL15] and nuclear factor of activated T cells 3 
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[NFATC3]) and two miRNAs (miR-3646 and miR-132-5p) were selected 
in ≥ 70 % of the models. Final logistic regression models were built with 
miRNAs or proteins and were adjusted for sex, age, sample date, BMI, 
smoking status, and fasting status. The internal AUC for miRNAs in 
combination with CA 19-9 (0.884 [95 % CI: 0.810-0.959]) performed 
better than without miRNAs (0.769 [95 % CI: 0.661-0.878], P-value = 
0.01, Paper IV, Figure 3). No statistically significant difference was 
found between a model including proteins in combination with CA 19-9 
(0.802 [95 % CI: 0.703-0.902]) and a model without the proteins.  

To find the variables that separated best between future PDAC cases and 
healthy controls, we performed DIABLO, a supervised multi-omics 
method (Rohart et al. 2017; Singh et al. 2019). The best visual separation 
was seen between future PDAC cases and healthy controls for miRNA and 
protein blocks (Paper IV, Figure 4). However, the performance, 
assessed by leave-one-out cross-validation, of these was poor (Paper IV, 
Table 4). Unsupervised MOFA factors correlated more to clinical 
parameters than to the outcome of interest, namely case-control status 
(Paper IV, Figure 5B).  

We also created a DIABLO model with male/female as outcome. This was 
regarded as a positive control for biological signals in our data. Perfect 
discrimination by LC-Metabolites was found with the male hormone 
testosterone giving the highest loading of the component (Paper IV, 
Supplementary Figure 2, Supplementary Table 1).  

Chapter 19 – Pre-diagnostic CA 19-9 levels 
Circulating CA 19-9 levels start to increase < 2 years before PDAC 
diagnosis (Figure 15). The odds ratio increased from 1.38 in the cohort 
in Paper III (up to six years lag-time to PDAC diagnosis) to 2.18 in the 
cohort in Paper IV (up to three years lag-time to PDAC diagnosis) (Table 
6).  



 

44 

Figure 15. CA 19-9 in pre-diagnostic pancreatic cancer. Plasma CA 19-9 levels 
stratified by different lag-time to pancreatic cancer diagnosis intervals and matched 
healthy controls (CTRL).  

Table 6. Conditional logistic regression models of plasma CA 19-9 in pre-
diagnostic pancreatic cancer. Odds ratios are shown for unadjusted (‘Crude’) 
models and models adjusted for smoking status and BMI (‘Adjusted’).  

Lag-time to 
PDAC 
diagnosis 

Crude OR  
(95 % CI) 

Crude  
P-value 

Adjusted OR 
(95 % CI) 

Adjusted 
P-value 

< 6 y  
(Paper III) 

1.38 (1.02-1.86) 0.04 1.46 (1.06-2) 0.02 

< 3 y  
(Paper IV) 

2.18 (1.15-4.13) 0.02 2.45 (1.21-4.95) 0.02 

PDAC = pancreatic ductal adenocarcinoma, OR = odds ratio 

Chapter 20 – Circulating TPS at diagnosis 
Circulating TPS was found higher in PDAC patients compared to benign 
controls by logistic regression adjusted for age (Paper II, Figure 2A, 
Table 3, P-value < 0.001). The mean TPS level in PDAC patients and 
controls were 208 ± 196 U/L and 48 ± 28 U/L, respectively. The levels did 
not differ between different PDAC stages (Paper II, Figure 3, P-value = 
0.3, Kruskal Wallis rank sum test).  
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Chapter 21 – Prognostic biomarkers 

21.1. The prognostic value of miR-885-5p in TCGA-PAAD 
We found miR-885-5p to be a possible prognostic tissue miRNA 
biomarker in PDAC using information from the TCGA-PAAD project 
(Paper I, Figure 5). However, it was not significant after adjusting for 
multiple testing and we did not adjust for any potential confounders. MiR-
885-5p was moreover not significant after adjusting for potential 
confounders (Table 7).  

Table 7. Crude and adjusted cox regression models of miR-885-5p in the 
TCGA-PAAD cohort. P-values for the coefficient are shown. Models were adjusted for 
age at diagnosis, sex, tumor stage, and histological grade. 

MiRNA Crude HR  
(95 % CI) 

Crude  
P-value 

Adjusted HR  
(95 % CI) 

Adjusted 
P-value 

miR-885-5p 0.61 (0.38-0.96) 0.032* 0.67 (0.40-1.12) 0.13 
HR = hazard ratio 

21.2. Prognostic circulating metabolites 
Five circulating fatty acids (3-hydroxypalmitate, 13-HODE + 9-HODE or 
alpha-Dimorphecolic acid, hydroxystearate, 3-hydroxydecanoate, and 
hydroxymyristate) with prognostic value were identified in pre-diagnostic 
PDAC samples (Q-value < 0.1, Paper III, Figure 5). Higher levels of 
these fatty acids indicated a worse prognosis.  



 

46 

Discussion 
Pancreatic ductal adenocarcinoma presents at a late stage with diffuse 
symptoms. In this thesis, a bioinformatics tool was developed for 
investigating miRNA functions in pancreatic cancer. Furthermore, we 
have investigated a total of 2083 miRNAs, 645 proteins, and 408 
metabolites in pre-diagnostic plasma with the main aim to identify 
potential biomarkers for early PDAC detection. The miRFA tool was 
developed into a shiny app, where the user can download results for the 
miRNAs detected in the TCGA-PAAD data. TPS was downregulated in 
pre-diagnostic PDAC but increased at PDAC diagnosis. Among analytes 
with a nominal P-value < 0.05, LASSO selected five metabolites, two 
proteins, and two microRNAs to be most informative. Logistic regression 
models were built in combination with baseline variables, such as BMI, 
smoking status, matching factors, and fasting status, as well as CA 19-9. 
Internal AUCs for these models were 0.74, 0.80, and 0.88 for five 
metabolites, two proteins, and two miRNAs, respectively.  

Chapter 22 – miRFA 
The miRNA functional analysis approach implemented in miRFA is an 
indirect annotation consisting of miRNA target prediction and functional 
enrichment of predicted target genes. We compared miRFA to another 
tool called miRCancerdb (Ahmed et al. 2018), which we considered most 
similar to our tool. Functional enrichment analysis was not implemented 
in miRCancerdb, and we thus only compared the obtained miRNA-target 
correlations in the two tools. We defined the gene list in KEGG pathway 
hsa05212 ‘pancreatic cancer’ as our benchmark data set. MiRFA and 
miRCancerdb generated somewhat different correlations on miRNA-
target mRNA (Paper I, Table 9), as well as miRNA-target protein 
expression levels (Paper I, Table 10). There are at least two differences 
that could explain this. First, miRNA expression differ between the two 
tools. In miRFA, we implemented mature miRNA isoform expression, 
whereas miRCancerdb use the hairpin miRNA expression level. Second, 
different resources of miRNA target predictions were used in the two 
tools. DIANA-microT-CDS, Tarbase, and TargetScan were implemented 
for miRNA target prediction in miRFA. MiRCancerdb implements 
targetscan.Hs.eg.db R package for miRNA target prediction of conserved 
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miRNA targetes using TargetScan (Csardi 2013). Thus, different miRNA 
targets will be identified in miRFA and miRCancerdb.  

Chapter 23 – Pre-diagnostic plasma analyses 
The search for new early detection biomarkers was done directly in pre-
diagnostic cohorts in this thesis. We have previously identified 15 miRNAs 
deregulated at PDAC diagnosis, which were then studied pre-
diagnostically (Franklin et al. 2018). However, the 15-miRNA signature 
was not discriminative between PDAC and healthy controls in the pre-
diagnostic cohort. Hence, there could be other important circulating 
signals pre-diagnostically that disappears at diagnosis or later in the 
disease course.  

23.1. Metabolomics in pre-diagnostic PDAC 
We identified a few metabolites with a nominal P-value < 0.05 that did 
not remain significant after multiple hypothesis correction. This could be 
due to low power and a heterogeneous cohort, with different lag-times to 
PDAC diagnosis and different clinical characteristics at diagnosis. 
Interestingly, we found histidine as one of the downregulated metabolites 
identified in our pre-diagnostic pancreatic cancer cohort. This is in line 
with Fest et al., who also found histidine to be downregulated with a 
nominal P-value < 0.05 in future PDAC patients using plasma samples 
from five European population-based biobanks (Fest et al. 2019). Not only 
has histidine been found downregulated pre-diagnostically, but a 
systematic review also identified histidine as one of the most frequently 
reported downregulated metabolites in pancreatic cancer at diagnosis 
(Long et al. 2018). Histidine has also been found to have an inverse 
association with colorectal cancer risk in the EPIC cohort (Breeur et al. 
2022).  

We further stratified the pre-diagnostic cohort based on fasting glucose 
levels and pre-diagnostically reported PDAC symptoms. We identified 
different deregulated metabolites between future PDAC patients and 
controls within these sub-cohorts, yet no metabolite reached statistical 
significance after adjusting for multiple hypothesis testing. By this 
stratification approach, we expect the sub-cohorts to be slightly less 
heterogeneous, however we lose power as the cohorts get smaller, which 
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could be why no metabolites remained significant after adjusting for 
multiple hypothesis testing.  

A prognostic biomarker would in a clinical setting be measured at the time 
of disease onset to predict survival of patients. In Paper III, we identified 
five potential prognostic fatty acids (3-hydroxypalmitate, 13-HODE + 9-
HODE or alpha-Dimorphecolic acid, hydroxystearate, 3-
hydroxydecanoate, and hydroxymyristate) that were measured pre-
diagnostically. Cox regression models adjusted for lag-time and the 
interaction term lag-time*metabolite were constructed. In this way we 
adjusted for the fact that the measurements were performed pre-
diagnostically. However, translating lag-time to a clinical setting is 
difficult and thus further validation of these fatty acids in PDAC diagnostic 
cohorts will be necessary to evaluate the clinical utility.  

23.2. Multi-omics analyses in pre-diagnostic PDAC 
We performed multi-omics on pre-diagnostic PDAC plasma samples with 
the aim to identify a biomarker signature that could be useful in early 
PDAC detection. None of the metabolites, proteins, or miRNAs studied 
were significant after adjusting for multiple testing in univariate analyses. 
This could – similar to the case in Paper III – be due to heterogeneous 
cohorts and low power. Among the nominal variables with a P-
value < 0.05, LASSO combined with 500 bootstrap iterations identified 
CCL-15, NFATC3, miR-3646, and miR-132-5p as the most potential 
candidates for  early PDAC detection.  

A model constructed by supervised multi-omics method DIABLO 
successfully identified different omics profiles that separated between 
males and females. This provided a positive control for biological signals 
in our data. Furthermore, this might offer important biological insights 
that could benefit other studies of plasma samples using any of the omics 
methods we have included. As expected, testosterone was most important 
for separating males and females, which indicates that the data is reliable. 
Another expected finding was Chorionic Gonadotropin Subunit Beta 3 
(CGB3), a subunit of chorionic gonadotropin (CG), which is important in 
maintaining pregnancy. However, there was another protein with much 
higher loading on the proteomics DIABLO-component; persephin 
(PSPN). Persephin promotes survival of neuronal populations and is 



 

49 

enhanced in early and late spermatids by RNA single cell data in the 
human protein atlas (proteinatlas.org).  

Chapter 24 – Strengths  
In our developed miRFA tool for in silico functional analysis of miRNAs, 
we separated between miRNA isoforms to enable a more specific 
functional analysis of mature miRNAs. MiRFA was extended to a freely 
available shiny app containing results for all miRNA isoforms identified 
in TCGA-PAAD data. This makes the tool more widely accessible to users 
not familiar with R in which the pipeline was built.  

Our pre-diagnostic plasma samples were obtained from the NSHDS 
biobank, which contains good quality plasma samples that have been 
frozen within 1 hour after sampling and stored at -80 °C. In Paper III, 
we combined metabolomics analyses with symptoms reported up to six 
years prior to PDAC diagnosis, which made it possible for us to separate 
the search for screening biomarkers in an asymptomatic population and 
early diagnosis biomarkers in symptomatic individuals. We performed 
wide screens of potential biomarkers by including validated high 
throughput methods. By combining multi-omics levels we could gain 
more biological insights by correlating different omics layers. This was 
done by correlating the latent MOFA factors with other clinical variables, 
such as BMI, smoking status, and sex. Moreover, we could directly 
compare the performance of different types of biomarkers. We could see 
in our DIABLO model that the protein block separated future PDAC 
patients from healthy controls better than the other omics modalities 
studied. 

Chapter 25 – Limitations  
There are several limitations in the current miRFA version. First, it is only 
possible to query one miRNA at a time. Adding the option to query a whole 
list would be of value. Second, it is limited to pancreatic cancer, but it 
would be possible to extend to other cancer types in TCGA. Third, the tool 
is limited to perform enrichment analysis of both positively and negatively 
correlated miRNA targets together. An option would be to allow the user  
to perform over-representation analysis of positively and negatively 
correlated miRNA targets separately. Even though we included both 
correlation directions with the aim of being unbiased, we might miss 
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interesting GO terms or KEGG pathways when combining positively and 
negatively correlated miRNA targets. Fourth, a relatively narrow protein 
expression dataset (~200 proteins) was available in TCPA-PAAD. Thus, 
many miRNA targets were not available for correlation analyses between 
a miRNA and its predicted targets on protein expression levels. Fifth, 
miRFA is currently restricted to pancreatic cancer.  

Another limitation in this thesis is that we obtained rather small sub-
cohorts by splitting the metabolomics cohort (Paper III) into individuals 
with IFG, NFG, pre-diagnostic symptoms and no pre-diagnostic 
symptoms. We imputed smoking status and BMI for individuals with 
missing information and that introduced some uncertainty. The potential 
prognostic circulating metabolites identified were measured pre-
diagnostically and hence these results should be interpreted with caution. 
We restricted our search to include seven Olink® panels leaving out other 
potential biomarkers as more panels were available. We only focused on 
pre-diagnostic sample from individuals who later developed pancreatic 
cancer. This made it impossible to interpret whether deregulated variables 
related to a cancer in general or specifically to PDAC.  

Our studied cohorts were challenging to work with for several reasons. 
First, we did not know how PDAC progresses in each case, i.e. we cannot 
be sure that a tumor actually exists at the sample occasion. In addition, 
even if there was a tumor present at blood sample collection, when does it 
become detectable in blood? Second, larger cohorts are needed. We 
analyzed a larger cohort in paper II, however the lag-time to diagnosis for 
PDAC patients was very long – up to 19 years. Third, the cohorts were 
extremely heterogeneous. The heterogeneity was mainly due to different 
lag-times to diagnosis as well as a variation in clinical characteristics at 
the time of PDAC diagnosis. Adding to that, there was also variation in life 
style factors and other clinical parameters in the cohort participants. 
Fourth, although we had a lot of information on lifestyle factors, such as 
smoking and BMI, there could also be other confounders that we have not 
measured.  

Chapter 26 – Challenges in biomarker discovery 
The curse of dimensionality (CoD) is a major challenge in large scale data 
(Altman and Krzywinski 2018). The concept includes for instance data 
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sparsity, multicollinearity, overfitting, and multiple testing. As the 
number of variables grow, data will become more sparse. Multicollinearity 
describes how we can predict one variable by a linear combination of the 
rest when the number of variables outgrows the number of samples. 
Overfitting happens when a prediction model gets too adapted to the 
samples, partly due to random associations in the samples. This will create 
a very good model for the cohort studied but the external validity will be 
low. We aimed to mitigate overfitting by applying bootstrapping iterations 
in our data and perform variable selection by LASSO. This reduced the 
number of variables in logistic regression models, which decreases the 
chances of overfitting. Adjusting for multiple testing is performed with the 
goal to reduce the number of false positive results but it can also lead to 
false negatives due to reduced power. None of our studied multi-omics 
variables in association to early PDAC detection remained significant after 
we applied multiple hypothesis correction. Statistical improvements, 
larger sample sizes, and machine learning can to some extent mitigate 
CoD. However, the most important aspect as suggested by Altman & 
Kzywinski, is to separate between exploratory studies and confirmatory 
studies (Altman and Krzywinski 2018). The multi-omics analysis of pre-
diagnostic PDAC samples performed in this thesis was explorative. Thus, 
our identified metabolites, proteins, and microRNAs might be worth 
exploring further despite being non-significantly altered after multiple 
hypothesis correction. Another challenge is that the choice of 
bioinformatics or statistical tools as well as parameter definitions can 
have a great impact on the results. This makes comparing and 
reproducing studies challenging.  

Many promising biomarker candidates fail clinical implementation. 
CA 19-9 is still the only clinically used biomarker for PDAC. One 
explanation for that is lack of validation and the presence of confounders. 
Many studies are published today with good biomarker performance that 
were not validated in an external cohort (Long et al. 2018). This relates to 
the previously mentioned problem of overfitting a model. A confounder is 
a variable correlated to the exposure as well as the outcome, causing a 
false association between the exposure and the outcome. The potential 
confounders highly depend on the research question, but smoking, 
socioeconomic status, and risk factors for the disease studied are 
examples of confounders. In this thesis, we adjusted the models by known 
confounders that we have measured, such as sex, BMI, and smoking 
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status. However, the unmeasured, but known potential confounders could 
affect the results in a way that we cannot control for. Heavy alcohol 
consumption is a risk factor in PDAC (Wild et al. 2020). However, we 
lacked information on alcohol habits for around 80 % of individuals in our 
cohort. We did therefore not adjust our statistical models for alcohol 
consumption. In addition, there might exist confounders that we do not 
know of and that we have not measured.  

Chapter 27 – Opportunities in biomarker discovery 
In 1990, the human genome project (HUGO) started with the aim to 
sequence the whole human genome (https://www.hugo-
international.org/). In 2003, more than 90 % of the human genome was 
mapped. In January 2022, the full human genome was complete. The cost 
for producing the whole genome sequence was around the figures of 
several billion dollars at the time, whereas today companies offer whole 
genome sequencing for costs of around a few hundred dollars. This decline 
in sequencing costs has led to a lot of data being generated throughout the 
years, much of them publicly accessible. Sharing or publishing data, and 
decreasing costs will make research faster and more effective. This makes 
it easier to reuse data. Mendelian Randomization is a statistical method 
that uses nature’s random allocation of alleles to explain causality in 
observational studies. It can also be applied in biomarker discovery for 
risk prediction and can facilitate biological understanding by for instance 
associating circulating biomarkers with known risk factors and the disease 
of interest. Public data can also be used for creating accessible 
bioinformatics tools. TCGA-PAAD and TCPA-PAAD are examples of 
publicly available data resources that we used for building the miRFA tool.  

Chapter 28 – Challenges in PDAC screening 
The biomarker discovery conducted in this thesis is just the first step in 
identifying a potential screening biomarker or diagnostic biomarker. 
There are many challenges to tackle before reaching clinical 
implementation of candidate PDAC biomarkers. Screening the whole 
population for PDAC will probably never become a reality since a 
biomarker with an excellent specificity of 99% will still result in 1000 
false-positives per 100,000 screened individuals due to low life-time risk 
of developing pancreatic cancer (Lucas and Kastrinos 2019). One risk with 
screening programs is overdiagnosis and overtreatment. For pancreatic 
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cancer screening, this is very challenging as pancreatic surgery is a major 
procedure with high morbidity. Another challenge is that risk factors for 
PDAC are still poorly characterized (Wild et al. 2020). Some risk factors 
are defined such as chronic pancreatitis, or a history of familial PDAC, 
however these still explain a small portion of patients. This makes it 
difficult to define a high risk population to include in a screening setting 
and to enable prevention.  

The International cancer of the pancreas screening (CAPS) consortium 
has suggested annual imaging screening of individuals carrying a 
mutation with higher risk for developing PDAC or familial pancreatic 
cancer kindreds (Goggins et al. 2020). The main goal of the pancreatic 
surveillance program is to prevent PDAC death and progression to PDAC 
by treating precursor lesions. This is achieved by early PDAC detection at 
either stage I or precursors with high-grade dysplasia. Some individuals 
enrolled in PDAC surveillance programs with annual imaging still present 
with advanced disease without an option for curative surgery once a PDAC 
is formed. A recent study followed 366 high-risk individuals (165 
mutation carriers and 201 mutation-negative familial PDAC kindreds) 
annually by imaging using EUS and MRI/MRCP (Overbeek, Levink, et al. 
2022). Ten PDAC patients were identified among mutation carriers, with 
an over-representation of individuals with CDKN2A mutation or Peutz-
Jeghers syndrome. Of these PDAC patients, only six were resected with 
curative intent and only three (30 %) met the formal goal of surveillance 
defined by CAPS consortium. A multi-center study in 16 centers and seven 
countries surveilling 2552 high-risk individuals detected 28 individuals 
that developed pancreatic cancer or high-grade dysplasia (Overbeek, 
Goggins, et al. 2022). Thirteen had a new lesion since prior examination 
and ten had a lesion with progression beyond pancreas at diagnosis. 
Fifteen had a previously detected lesion out of which eleven had a lesion 
with progression beyond pancreas. This highlights the timing challenge of 
pancreatic cancer surveillance, which would have to be further 
investigated before implementing novel screening biomarkers.  
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Future perspectives 

Chapter 29 – Early detection of PDAC 
Despite years of research, the overall survival of pancreatic cancer 
patients remains poor. Early detection is crucial to be able to offer curative 
surgery to a greater proportion of pancreatic cancer patients and 
subsequently enhance patient survival. Further analyses of larger pre-
diagnostic cohorts could pave the way towards discovery of novel 
biomarkers. However, pre-diagnostic pancreatic cancer samples are rare. 
Thus, international collaborations are valuable to be able to increase the 
sample size and simultaneously limit the lag-time to up to a few years 
before pancreatic cancer diagnosis. New potential biomarkers might be 
discovered by other platforms, such as lipidomics or additional Olink® 
panels. There are also other sample matrices available in NSHDS biobank, 
such as red blood cells, and buffy coat, which also might be interesting to 
analyze for potential biomarkers.  

One aspect of early detection is to be able to set the correct diagnosis fast 
in patients presenting with symptoms. In paper III, we identified future 
pancreatic cancer patients that experienced symptoms before disease 
onset. It would be interesting to collect more samples of individuals with 
pancreatic cancer-associated symptoms and identify altered analytes 
associated to pancreatic cancer among symptomatic individuals. This 
would enable us to compare molecular patterns between individuals that 
experience symptoms due to pancreatic cancer or other reasons.  

The other aspect of early detection is screening. Since PDAC is a rare 
disease, this is not feasible in the whole population and a high-risk group 
needs to be identified. The United Kingdom Early Detection Initiative has 
started constructing a biobank of individuals with new-onset diabetes for 
early detection of pancreatic cancer (Oldfield et al. 2022). Individuals with 
familial pancreatic cancer or carriers of mutations that entail an increased 
pancreatic cancer risk are monitored today. As some individuals display a 
rapid disease progression in current surveillance programs, it would be of 
value to find biomarkers that could detect malignant changes before these 
appear on imaging. Performing large scale explorative studies on blood 
samples collected in high-risk individuals would provide an opportunity 
to identify potential screening biomarkers for pancreatic cancer.  
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Chapter 30 – Future bioinformatics studies 
Expression data for 32 cancer types is available in the TCGA database. The 
miRFA pipeline could be extended to include other cancer types than 
pancreatic cancer, or a pan-cancer dataset since many features are shared 
across different cancer types (Chen et al. 2018). Hence, this would give the 
opportunity to study miRNA functional analysis in a wide cancer-context. 
It would also be interesting to compare mechanisms that are specific to 
pancreatic cancer and mechanisms shared across cancer types.  

In this thesis we defined four omics modalities; microRNAs, proteins, LC-
metabolites, and GC-metabolites. However, different types of omics can 
be redefined. It would be of value to further zoom into the proteins block 
and disentangle variation specific to the seven Olink® panels. In this way 
we could determine which one(s) of the protein panels is most interesting 
to choose in further analyses of larger cohorts. We have performed 
extensive multi-omics analyses on plasma samples, which we hope to 
make publicly available in some way. Since the samples fall under general 
data protection regulation (GDPR) and are thus considered personal data, 
one possibility would be to make results instead of raw data freely 
available.  

In addition to the studied pre-diagnostic analytes in this thesis, imaging 
data could also be explored for early PDAC detection. Artificial 
intelligence (AI) could be applied on imaging data to determine whether 
subtle pancreatic changes visible through imaging can be detected. A good 
AI tool could also remove the differences in inter-individual performance 
by radiologists. Recently, an AI tool was published for early pancreatic 
cancer detection on CT scans (Chen et al. 2022). This tool could be 
implemented for CT scans in Umeå retrospectively. It would also be 
interesting to study plasma analytes in relation to findings by imaging to 
see whether biomarkers could be identified that detects the tumor before 
visible on imaging.  
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Conclusions 
In this thesis, we developed a novel bioinformatics pipeline for microRNA 
functional analysis and performed multi-omics analysis of high-quality,  
pre-diagnostically collected blood samples. Early pancreatic cancer 
detection is difficult to achieve by analyzing microRNAs, Olink® protein 
panels and metabolomics in pre-diagnostic plasma samples. Thus, 
identifying biomarkers for early detection of pancreatic cancer still 
remains challenging.  

• Our miRFA tool successfully identifies and correlates predicted 
miRNA targets, as well as generates enriched pathways, in a 
pancreatic cancer-specific context 
 

• Circulating TPS is increased in pancreatic cancer at diagnosis 
 

• Among the studied multi-omics analytes, we identified five 
metabolites, two proteins, and two miRNAs as most informative 
for separating between future pancreatic cancer patients and 
healthy controls 
 

• Circulating CA 19-9 levels increase closer to pancreatic cancer 
diagnosis 
 

• Five circulating fatty acids (3-hydroxypalmitate, 13-HODE + 9-
HODE or alpha-Dimorphecolic acid, hydroxystearate, 3-
hydroxydecanoate, and hydroxymyristate) had prognostic value in 
pre-diagnostic pancreatic cancer and could be validated in 
pancreatic cancer patients at diagnosis 
 

• Liquid chromatography-derived metabolites and proteins 
successfully separate males from females with highest weights in 
testosterone and persephin 
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