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Abstract

Background: Monoclonal antibodies (mAbs) are leading types of ‘blockbuster’ bio-

therapeutics worldwide; they have been successfully used to treat various cancers

and chronic inflammatory and autoimmune diseases. Biotherapeutics process devel-

opment and manufacturing are complicated due to lack of understanding the factors

that impact cell productivity and product quality attributes. Understanding complex

interactions between cells, media, and process parameters on the molecular level is

essential to bring biomanufacturing to the next level. This can be achieved by ana-

lyzing cell culture metabolic levels connected to vital process parameters like viable

cell density (VCD). However, VCD and metabolic profiles are dynamic parameters and

inherently correlated with time, leading to a significant correlation without actual

causality. Many time-series methods deal with such issues. However, with metabolic

profiling, the number ofmeasured variables vastly exceeds the number of experiments,

makingmost of existingmethods ill-suited and hard to interpret.

Methods and Major Results: Here we propose an alternative workflow using hierar-

chical dimension reduction to visualize and interpret the relation between evolution

of metabolic profiles and dynamic process parameters. The first step of proposed

method is focused on finding predictive relation between metabolic profiles and pro-

cess parameter at all timepoints usingOPLS regression. For each timepoint, thep(corr)

obtained from OPLS model is considered as a differential metabogram and is further

assessed using principal components analysis (PCA).

Conclusions: Compared to traditional batch modeling, applying proposed method-

ology on metabolic data from Chinese Hamster Ovary (CHO) antibody production

characterized the dynamic relation between metabolic profiles and critical process

parameters.

Abbreviations: BEM, batch evolutionmodel; BLM, batch level model; CCF, central composite face-centered; CHO, Chinese Hamster Ovary; CPPs, critical process parameters; CQAs, critical

quality attributes; CV-ANOVA, ANOVA of cross-validated residuals; DOEs, design of experiments; 1H-NMR, 1H-nuclear magnetic resonance; IVCC, integral viable cell concentration; LOD, limit of

detection; LOQ, limit of quantification; mAbs, monoclonal antibodies; MVDA, multivariate data analysis; OPLS, orthogonal projections to latent structures; OPLS-DA, orthogonal partial least

squares-discriminant analysis; PCs, principal components; PCA, principal components analysis; PLS, partial least squares; QbD, quality by design; SUS-plot, shared and unique structure plot; UV,

unit variance; VCC, viable cell concentration; VCD, viable cell density.
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1 INTRODUCTION

Biologics arepharmaceutical drugproductsmanufactured frombiolog-

ical sources,mainly living cells.Of these, ChineseHamster ovary (CHO)

cells are themost usedmammalian[1] system in industrial bioprocesses

to produce therapeutic proteins[2] such as monoclonal antibodies.[3]

Their development and production is an inherently complex process,

not only because mammalian cells are extremely complicated systems,

but also due to the lack of understanding of the factors impacting

cell productivity and product quality.[4] CPPs are process parame-

ters whose variability has an impact on the product’s critical quality

attributes (CQAs) or general process performance, like the amount

of produced drug (its titer), cost, and time of the process, and so on.

Therefore, CPP monitoring, and controlling is a prerequisite to ensure

that the biopharmaceutical process will efficiently produce products

with the desired quality.[5] Enhanced characterization of the process

at the molecular level aligns with the quality by design (QbD) concept

which requires understanding the influence and causality of factors

andparameters, suchas temperature andpH,[6] to identifyCQAsof the

product.[7,8] The small-scale bioreactor systems designed for parallel

operation, like the Ambr technology (high throughput High Perfor-

mance Single-Use Fully AutomatedBioreactor System), combinedwith

newtypesof designof experiments (DOEs) have thepotential to enable

the rapid process characterization and development at a fraction of

cost with higher throughput compared to traditional bench top reac-

tors, thereby drastically shortening both time and costs. Extraction of

knowledge from complex data obtained from such systems is, however,

still a challenge that calls for the development of new methods and

pipelines.

Metabolomics together with process monitoring can be used to

decipher complex interactions between cells, media, and process

parameters, as it provides knowledge of biochemical reactions and

metabolic pathways occurring within living cells. It can be used to

characterize the impact of small molecules (i.e., amino acids and

metabolites) present in cell culturemedia onCHOcell growthbehavior

and productivity to allow identifying, understanding, and manipulat-

ing the production and consumption of metabolites of interest to

enhance cell productivity and final product quality.[9] In metabolomics

studies, methods such as1H-nuclear magnetic resonance (1H-NMR)

spectroscopy can be used as a non-invasive and rapid technique for

simultaneous detection and quantification of metabolites in a complex

biological fluid.Metabolomics data are highly complex andmultidimen-

sional and thus require specific and tailored approaches to be analyzed

properly.

Even though multidimensional time-series data obtained from

the biopharmaceutical process contain valuable information on the

dynamic characteristics of the bioprocess, and thus could potentially

assist increasing process knowledge,[10] little has been accomplished

to improve knowledge through efficient data analytical methods.

Although several data analysis methods,[11–22] such as principal com-

ponents analysis (PCA)[23] are discussed in the literature for multivari-

ate data exploration,[24–29] development of a tailored workflow that is

adjusted to bioprocess time-series of different biomanufacturing sys-

tems is required, especially withmetabolomics datawhere the number

of observations can be lower than the number of highly correlated

variables.

PCA is frequently used to explore the main sources of vari-

ations in metabolomics data when the observations are assumed

independent.[30] However, this is not the case with time-series data

with additional correlation structure because of non-independent

observations over process time. Indeed, PCA inspects for directions

in the data space with maximum variation, and therefore time-related

variation is involved as a confounding factor hindering findingmetabo-

lites significantly correlated to the process variables. Hence, proper

models are required to model the bioprocess data and to extract vital

information.

To properly analyze time-series metabolomics data, some PCA

extensions have been proposed. The weighted PCA model[31] is one

of the PCA-extended models that uses weights to explain variation

due to repeated measurements. Moreover, the analysis-of-variance–

simultaneous component analysis[32] combines analysis of variance

and simultaneous components analysis to address the timely designed

multivariate data which can also be applied for integrative analysis.[33]

Local PCA models[34] were also proposed to be employed for each

time point which subsequently linked to each other. The dynamic

PCA model[35] employs a back-shift matrix to simultaneously ana-

lyze the data from multiple time points. However, the difficulty in

uncertainty assessment of the fitted model estimates is the main lim-

itation of such methods. Mixed-effects models,[36] for instance, linear

mixed-effects model[37] have also been applied for feature selection

in time-series metabolomics data, however, the correlation structure

of the metabolomics data was not considered in the model. On the

other hand, dimension reduction features of methods like PCA are still

appealing.

The primary goal of bioprocess data models, such as batch evolu-

tion model (BEM) and batch level model (BLM),[38] is to reduce the

dimensionality of data and discover the dynamics unfolding over time.

BEMmodels can then be used to forecast future process performance

and to evaluate how variations in each input parameter influence the

batch trajectory. Whereas averaged trajectories of different process

parameters (e.x. media composition) can be tracked well with time-

BEMmodels, pinpointing significantmetabolites that changewith time,

and have a significant connection to the specific process parameters

(like viable cell concentration (VCC), viable cell density (VCD), titer,
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etc.) is a more difficult task, mainly because all process parameters

are to some extent correlated with time. Therefore, it is interesting to

reduce the dimensionality of the data and at the same time highlight

significant metabolites which change over time and are also correlated

to the process parameters.

In this work, we provide a fast overview of the most used methods

formodeling batch process data and thenpropose a new two-step hier-

archical modeling approach specifically targeted to model important

process parameters such as VCD. The1H-NMR based metabolomics

data from the antibody production process by CHO cells were used

to represent the performance of the proposed approach.Wemanaged

to successfully evaluate correlations between metabolite levels and

important bioprocess parameters that change over time to understand

the underlying dynamic behavior of biological systems.

2 MATERIAL AND METHOD

2.1 Cell line and culture conditions

Cultivations were performed in a 0.25-L bioreactor (Ambr 250 High

Throughput bioreactors, Sartorius Stedim Biotech GmbH, Göttingen,

Germany) and aCHOcell line (Sartorius) expressing amonoclonal anti-

body (mAb, IgG1) was used. All experiments were carried out using

chemically definedmedia (Sartorius).[39]

To maximize the beneficial impact of the culture parameter change

to control the cell proliferation, bioreactor cultures were maintained

at 36.8 ˚C, pH = 7.1 until day 7 (͠ 170 h) to reach a suitable cell

density under the standard condition.[40,41] Different experimental

conditions (pH=6.9, 7.1, 7.3, and temperature=31, 33.9, 36.8 ˚C)were
implemented in bioreactors after day 7 to investigate the impact of

temperature and pH by central composite face-centered (CCF) exper-

imental design. The replicated condition was implemented for the

standard temperature (36.8 ˚C, pH = 7.1) in the experimental design

(Figure 1).

Feeding was started on day 3 at 14:00 ( ͠ 80 h) and fed daily there-

after. The changes inpHand temperaturewere inducedonday7before

feeding (before the start of the stationary phase) at approximately

170 h. Samples were drawn from the bioreactors several times per

day to measure the metabolites by NMR spectroscopy as well as the

BioProfile FLEX2 and titer data by HPLC (SEC) (Figure 1).

2.2 Sample preparation and offline
measurement/analytics

Samples were taken automatically from the Ambr250 high through-

put bioreactors to separate vials. VCC, viability, average cell diameter,

pH, pO2, pCO2, as well as metabolite levels (glucose, lactate, ammo-

nia, and glutamine) and osmolality were measured using BioProfile

FLEX2. The remaining sample volume (1 mL) was centrifuged (16,600

× g, RT = 23◦C, 5 min) and the supernatant was stored at −20◦C for

subsequent analytics.

2.3 Determination of the cell-specific
productivity (Qp)

The specific growth rate (µ (1/d)) can be calculated by Eq. (1).[42]

𝜇 =
ln x2 − ln x1

t2 − t1
(1)

Here, x2 and x1 are the VCCs at time points t2 and t1, respectively.

Cell specific productivity (pg cell−1 day−1) (Qp) was calculated by

Eq. (2).

Qp =
Δz

ΔIVCC
(2)

Where Δz is the differences of the titer and ΔIVCC is the cor-

responding integral viable cell concentration (IVCC). Growth phases

(i.e., exponential, stationary and dead phases) and productivity phases

can be determined based on the changes in the µ and Qp values,

respectively, as a sharp change can be evaluated as a new phase.

2.4 Experimental data (NMR metabolomics data)

Samples were analyzed for metabolite content by Eurofins Spinnova-

tion Analytical BV (TheNetherlands), using their proprietary protocols

(Spedia-NMR). Obtained data were concentrations for 39 identified

metabolites in mM. The identified metabolites were mainly amino

acids, vitamins, saccharides, and organic acids.

2.5 Data preprocessing

Before analysis, one variable, which had missing values higher than

75% of the number of samples, was removed from the analysis. The

values lower than the limit of quantification (LOQ) were also included

in the analysis. The values lower than the limit of detection (LOD)

were not reported from the experimental quantification. Therefore, in

order to include these values, they were simulated as log-normally dis-

tributed values below the LOD. Unit variance (UV) scaling has been

applied to remove differences in the range between variables.

3 THEORY AND METHODS

Multivariate data analysis techniques such as PCA, PLS, orthogo-

nal projections to latent structures (OPLS), and orthogonal PLS-

discriminant analysis (OPLS-DA) can be used for the monitoring of

bioprocess behavior to distinguish between systematic information

and unsystematic information.[11–22] In this section, first, we will

shortly introduce the BEM and BLM models and discuss their proper-

ties and then explain the proposed hierarchical modeling for analysis

of the bioprocess data. Multivariate data analysis (MVDA) using PCA

andOPLSwas carried out using SIMCA (Sartorius StedimData Analyt-

ics, vs. 16.0.2, Umeå, Sweden) software. All data were scaled to UV and
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Day 0

Day 1, 2

Day 3 - 11

Day 12

Day 7

Experimental 
design points

F IGURE 1 Illustration of the feeding and sampling timestamp of the fed-batch CHO cell cultivation process for 12 days (left figure), as well as
the design points for 2-variable central composite face-centered (CCF) on day 7 of the process (right figure)

mean-centered prior to modeling. Data cleaning and visualization for

hierarchical modeling were performed using Python libraries Pandas

v.1.3.4 andMatplotlib v.3.4.3.[43]

3.1 Batch evolution model (BEM)

The BEM is used to estimate the maturity of a process from its mea-

sured parameters and set points. It is also used to detect variations of

CPPs from their ideal trajectory in relation to maturity.[38] To accom-

plish BEM, the three-way batch (i.e., K batches, T time points, and J

variables) data should be unfolded to a two-way data such that the

variable mode is preserved. It will result in a matrix with K * T rows

(observations) and J columns (variables). Batch age/time or any other

monotonous batch maturity index can be included as a y-variable in

the PLS/OPLS model. To establish the control charts, BEM scores can

be rearranged in a way that the score values of each batch are as row

vectorsunderneatheachother. By computing theaverageand the stan-

dard deviation of score vectors of all batches at different time points,

the control limits can be derived as the average score ± 3 SD. Loading

plots represent the variables that are responsible for the metabolite

changes over time.

3.2 Batch level model (BLM)

In contrast to BEM data, where each row is corresponding to one time

point in a specific batch, each row of the BLM data is obtained by
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unfolding the three-way batch along the time axis, one row represents

the whole batch including all variables at all time points. Multivariate

methods such as PCA, PLS/OPLS can then be used to provide the over-

all pattern in all the batches in relation to experimental design or any

other batch related time-independent parameters.[38]

3.3 Shared and unique structure plot (SUS-plot)

Comparison between two models can be performed using a shared

and unique structure plot (SUS-plot), in which the p(corr) of the pre-

dictive part for two OPLS models are plotted against each other. It

can reveal differences and similarities in the metabolite contribution

betweenmodels.[44] The SUS-plot can be interpreted based upon vari-

able location in the plot. For identical profiles, the SUS-plot should have

thepoints on thediagonal line,while off-diagonal points showvariables

with different effects in two models. Variables with unique effects can

be found as points close to the X- or Y-axis away from the origin.

3.4 Hierarchical modeling

A hierarchical data analytic workflow has been developed to solve

the confounding influence of time on the relation between dynamic

process parameters and metabolic profiles. The first step of the hier-

archical model is to capture the relation between themetabolic profile

and the parameter of interest such as VCD at each time point using

OPLS regression. The second step, that is, PCA, here can be considered

as an extension of the SUS methodology when more than two profiles

can be compared (Figure 2).

3.4.1 Base level OPLS model

OPLS is an extension to thePLS regressionmethod that divides the sys-

tematic variation in the X data matrix into two parts which makes the

results easier to interpret. One part models the correlation between X

and Y and the other part expresses the systematic variation in X that

is orthogonal to Y. In the OPLS model, the component related to Y

are called predictive which are appointed with the subscript P. Com-

ponents unrelated to Y are called orthogonal and are appointed with

the subscript O. Suppose Xt holds the number of rows K and the num-

ber of columns J, then OPLS can decompose the data set at each time

point t according to Eq. (3). For this step of the model, each line of the

Xmatrix is themetabolite profile corresponding to one cultivation and

the y-variable is the corresponding VCD profile.

Xt = TPtP
T
Pt + TOtP

T
Ot + Et (3)

Here, Xt ∈ RK×Jt , where t = 1, . . . , T corresponds to the various mul-

tivariate data sets at different time points, whose rows contain the

measurement of objects k= 1, . . . , K and columns contain the measure-

ment of variables jt = 1, . . . , Jt. TPt ∈ RK× R is the score matrix related to

Ywith r= 1 number of significant components andPPt ∈ RJt×Rcontains

the relevant loadings related to Y for each data Xt. TOt ∈ RK× R is the

score matrix unrelated to Ywith r= 1, . . . , R number of significant com-

ponents and POt ∈ RJt×Rcontains the relevant loadings unrelated to Y

for each dataXt. Et ∈ RK×Jt is the residual matrix.

With a single y-variable, only one predictive component is feasible,

but possibly several orthogonal components. The p(corr) is desirable as

the input of the second step in the model, that is, top level PCA model.

The p(corr) is a correlation loading profile of the OPLS model. The X

loading weight w, which combines the X variables to form the scores t,

can also be used as the input of the second step in themodel.

In this model, the p(corr) from each OPLS model of t = 1, . . . , T is

called differential metabogram which can be augmented column-wise

to build the Z datamatrix according to Eq. (4).

Z =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s1

s2

.

.

.

st

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

Here, st ∈ RK× R is the p(corr) and Z ∈ RK× (t× J) is the matrix of

differential metabograms, where t = 1, . . . , T corresponds to the vari-

ous multivariate data sets at different time points, whose rows contain

the measurement of objects k = 1, . . . , K and columns contain the

measurement of variables jt = 1, . . . , Jt.

To validate the models against overfitting, the number of model

components was evaluated by the 7-fold cross-validation parameter

Q2 (goodness of prediction).Moreover, the performance ofmodelswas

also evaluated by R2X and R2Y (goodness of fit). The statistical signifi-

cance of the OPLSmodels was assessed by permutation tests with 103

repetitions to compare the fit of the original model with the randomly

permutedmodels.[45]

3.4.2 Top level PCA model

The second step of hierarchical modeling is an analysis by PCA on the

matrix of differential metabograms calculated from the OPLS models.

PCA can reducemultivariate data to a smaller number of uncorrelated

variables, that is, the scores of the PCs, and provide an overview of the

bioprocess data from all cultivations at all time points. Suppose Z con-

tains the number of rows T and the number of columns J, then PCA can

decompose the data set according to Eq. (5).

Z = TPT + F (5)

Here Z ∈ RT× J, whose rows contain the OPLS p(corr) for different

time points t = 1, . . . , T and columns contain the measurement of vari-

ables j = 1, . . . , J. T ∈ RT× R is the PCA score matrix with r = 1, . . . , R
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Metabolite
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F IGURE 2 Schematic representation of the proposed hierarchical modeling. TheOPLS regressionmodel in the first step of the hierarchical
model captures the relation between themetabolic profile and the parameter of interest (here: VCD) at each time point. PCA in the second step
reduces themultivariate data to a smaller number of uncorrelated variables and provides an overview of bioprocess data from all cultivations at all
time points

number of significant components and P ∈ RJ× R contains the relevant

loadings for each data Z. F∈RT× J is the residual matrix.

4 RESULTS AND DISCUSSION

4.1 Bioprocess parameters

The data derived from twelve fed-batch cultivations were used for the

analysis. Figure 3A–D shows the time trajectories for the process vari-

ables of VCD (106 cell.mL−1), viability (%), average live cell diameter

(µm), IgG titer (g.L−1) in all analyzed batches. Figure 3E shows the final

titer and average Qp for each batch. The average Qp was calculated

as the ratio of final titer (titer at last process time point) to the final

IVCC for each batch. The differences in the trajectories, final titer and

average Qp related to temperature variation can be seen in the plots.

No clear differences related to the pH could be observed in the plots.

The VCD increased during the first 175 h and reached 20×106 cell/ml

within 7 days. The temperature and pH changes were applied to the

bioreactors on day 7 ( ͠170 h). After 230 h, theVCD started to decrease,

and its declinewas faster in thebioreactorwith the lowest temperature

(31◦C). The cell diameter started to increase after reaching aminimum

of 20 µm and increased over time up to a maximum of 26 µm, while the

cell growth was lower at 31◦C. Final IgG titers of about 3 and 2.8 and

2 g L−1 were obtained at temperatures 36.8, 33.9, and 31◦C, respec-

tively (Figure 3E), which is equivalent to the cell specific productivity of

about 19, 18,14 (pg cell−1 day−1).

4.2 Batch modeling

The BEM was implemented on the processed metabolite data from all

cultivations. OPLS models can be fitted by correlating metabolomic

data with either time or maturity related critical process variables.

However, maturity related critical process variables should be mono-

tonic to be implemented in the BEM. Here, an OPLS model was built

with time as maturity y-variable (y). Cross-validation indicated the

significance of one predictive and one orthogonal OPLS components

corresponding to the R2X for predictive component = 0.369, R2X for

orthogonal component = 0.408, R2 for predictive component = 0.976,

and Q2 = 0.972. Scores and loadings from the BEM model can be

seen in Figure 4-A, which illustrates that there was a strong similar-

ity among the different batches and none of the batches deviated from

the overall trend in the bioprocess. Slightly higher variability in the

batch trajectories could be seen after imposing temperature and pH

changes on day 7 ( ͠ 170 h). The score plot shows the overall time trend

in the predictive score, while the orthogonal score represents the vari-

ation regarding the temperature parameter. In the predictive loading,

we could see the metabolites that are strongly correlated to the batch

time with increased levels of alanine, glycine, serine, tyrosine, choline,
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ALINAGHI ET AL. 7 of 13

F IGURE 3 Offlinemeasurements of all CHO cultivations in the Ambr250: (A) viable cell density (VCD) (106 cell.mL−1), (B) viability (%), (C)
average live cell diameter (µm), (D) IgG titer (g.L−1) over 12 days, (E) bar plot of final titer and averageQp for all cultivations

cyanocobalamin, pantothenic acid, acetic acid, butyrate, citrate, for-

mate, fumaric acid, and isovaleric acid, as well as decreased levels of

succinic acid, pyroglutamic acid, folic acid, nicotinamide, and several

amino acids such as aspartic acid, asparagine, cysteine, glutamic acid,

glutamine, histidine, hydroxyproline, isoleucine, leucine, lysine, threo-

nine, and valine over batch time. Whereas connecting each metabolite

changewith time to specific biochemical pathwayswould requiremore

effort, including additional experiments, which is outside the scope of

presented work, the majority of observed changes in metabolite lev-

els could be connected to gradual consumption of amino acids present

in the media and accumulation with time of cell by-products. There-

fore, BEM is a proper model to understand if there is any deviation in

the process trajectory and find variables that are responsible for the

overall time trend. Even though we can observe the impact of the tem-

perature in theOPLSorthogonal components in the scoreplots, further

analysis can also be implemented by applying BLM to find the over-

all pattern in relation to the experimental design or any other batch

related time-independent parameters (see text below).

Finding connections betweenmetabolite levels and specific process

parameters, such as VCD, can provide valuable insights into the bio-

logical mechanisms involved in the bioprocess. Analysis of variation

of metabolic profile of the cell culture in correlation to VCD or titer

can contribute to a better understanding of the studied biological sys-

tem. Here, a proper BEM model with the VCD could not be built in a

strict BEM context, due to the drop of the VCD at the last phase of

the process. To find the correlation ofmetabolite changeswithVCD, an

OPLSmodel of themetabolomics datawas builtwithVCDas y-variable

(Figure4-B). Similar to themodel inFigure4-A, the scoreplot shows the

overall time trend in thepredictive score and the temperature variation

in the orthogonal score.

These two models (BEM with y = time and OPLS model with

y = VCD) had the same dimension in terms of weights, loadings, and

regression coefficients. Hence a comparison of the two models was

possible by using the SUS-plot methodology using the p(corr) values of

BEMwith y= time and p(corr) values of theOPLSmodel with y=VCD.

The SUS-plot demonstrated a strong correlation of themetabolite pat-

terns between the two models (Figure 4-C), meaning that no major

differences could be seen between themetabolic profiles connected to

time and VCD. However, we could not conclude that the loadings and

regression coefficients of theVCDOPLSmodel showed the actualVCD

relation with metabolic composition. Even though VCD does not grow

monotonically with time, its correlation with time is still important

and thus time acts as a confounding factor when comparing metabolic

profiles with VCD. This can lead to the strong correlation of results

between the twomodels.

To find the correlation of metabolite changes with titer, the BEM of

the metabolomics data was also built with titer as y-variable (Figure

S1). However, it should be considered that titer is a cumulative param-

eter and thus cannot be modeled independently of time as such, and

thus it might not be a proper variable for correlating to the metabo-

lite changes. In this case, the correlation with time is even greater as

the titer grows monotonically with time. In general, metabolic profiles

as well as VCD and titer are dynamic parameters and hence are inher-

ently correlated with time, a correlation that does not need to mean

actual causality.

A BLM was also implemented on the processed metabolite data

from all cultivations sets (Figure S2). The score plot showed that the

variation related to the separation of groups by temperature differ-

ences couldbeexplainedby the first PC inBLM.Thebatcheswith lower

temperatures (Temp. = 31) were separated more from the two other
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8 of 13 ALINAGHI ET AL.

(A)

(B)

(C)

F IGURE 4 BEM (OPLSmodel with two components) on themetabolomics (A) data with 372 observations and 38 variables for 12 cultivations,
BR1 – BR12 and time as y-variable. OPLSmodel parameters are as follows, R2X for predictive component= 0.369, R2X for orthogonal
component= 0.408, R2 for predictive component= 0.976, andQ2 = 0.972. (B) data with 372 observations and 38 variables for 12 cultivations,
BR1 – BR12 and VCD as y-variable. OPLSmodel parameters are as follows, R2X for predictive component= 0.449, R2X for orthogonal
component= 0.284, R2 for predictive component= 0.827, andQ2 = 0.823. The left figures represent the first OPLS score over time and the score
plots of t2 versus t1, colored based on the temperature imposed after day 7 ( ͠ 170 h) (the arrows in the score plots of t2 versus t1 illustrate the time
direction and the points are labeled by the bioprocess day). The right figures represent the loading plot. (C) SUS-plot of p(corr) vectors for two
OPLSmodels with y=VCD (x-axis) and y= time (y-axis)
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groups. The impact of pH on the grouping could not be observed. The

effect of temperature and pH can be further investigated by PLS-DA or

OPLS-DA model with the temperature or pH as y-variable. Inspection

of the loading plots (Figure S2), which contain the information on the

metabolite levels in relation to the studied y-variable, revealed that the

levels of somemetabolites such as isovaleric acid, butyric acid, glycine,

and butyric acid decreased in the last phase of the process, while the

level of most metabolites increased. BLM is informative on the experi-

mental design observed in the row space/mode of the data as the data

is arranged to account for all variables at all time points of completed

batches and therefore is proper for showing the quality or yield param-

eters of finished batches. However, the data arrangement is not proper

for the analysis of process evolution in correlation to the VCD pro-

file. The dynamic nature of process parameters such as VCD needs to

be accounted for in the modeling. Thus, it is not proper to regress the

dynamic parameters versus the BLMdata as timewill be a confounding

factor in the columnmode of the data.

Exploring the metabolite differences in correlation to the process

parameters, OPLS-DA models can also be built for each growth phase

and be compared using SUS-plots (Figure S3). Growth phases are

determined based on the process parameters (Theory section) and

can reveal metabolite alternations in connection to these parameters.

Even though we cannot assess the dynamic nature of the data and find

the metabolite evolution over all process time points by applying dis-

criminant analysis, we still divide the data into three time intervals

of exponential, stationary and dead phases, and therefore it can pro-

vide a picture of metabolite shifts between the specific time intervals

of bioprocess, in another word, the dynamic of the system in lower

resolution.

We applied OPLS-DA model to evaluate metabolic differences

betweenvarious growthphases (i.e., exponential vs. stationary, station-

ary vs. dead, and also exponential vs. dead phases). Therefore, three

OPLS-DAmodels for the three growth phases were built. Table S1 pro-

vides the parameters of these three studied models. To compare the

similarity of metabolic profiles between different growth phases, we

further investigated SUS-plots with p(corr) vectors from the OPLS-

DA models of exponential versus stationary and stationary versus

dead (Figure S3-D). Obtaining common and unique metabolic pro-

files between different phases could give relevant information about

perturbations in metabolite levels between phases.

4.3 Hierarchical modeling

The proposed methodology combines OPLS and PCA to model and

visualize metabolic profiles in correlation to the dynamic process

parameters such as VCD while accounting for the high dimensionality

of metabolomics observations (Figure 2).

The method has two steps. At first, it looks at the predictive vari-

ation between metabolite levels and VCD. For that, OPLS models are

built between metabolite data (X) and VCD (y) at each time point.

The OPLS model parameters (number of OPLS components, R2, Q2,

and ANOVAof cross-validated residuals (CV-ANOVA) p-values) can be

seen inTable S2andFigure5.Growthphases andproductivity reported

in the table are determined based on Qp and µ values as explained in

the theory section.

Themain conclusion from the applied analysis is thatmetabolic pro-

files have different relations to VCD over time. This can be seen firstly

by the different significance of the correspondingOPLSmodels, that is,

some of themodels in the initial phase are not significant, which can be

interpreted as a result of lack of correlation of metabolite profiles to

VCD in the first phase of the bioprocess. Itmight be due to the fact that

in this phase cells are in lownumber and slowly start to growand hence

the effect of their metabolism was still not visible in the composition

of the media. A low correlation between metabolite levels and VCD

could also be seen in the late stage of the stationary phase, after impos-

ing the temperature and pH change on the system. At this stage, some

of the cultivations have disturbed metabolite equilibrium as a result

of changes imposed in the bioreactor. This could be again connected

to the fact that cells did not have time to establish a new correlation

structure and provide their metabolic imprint into the cell media after

rearrangement imposed by changes in the bioreactor conditions. The

presented approach for modeling metabolic data can be hence help-

ful in the diagnosis of the instability and changing correlation structure

between metabolite profiles and VCD as a result of the disturbance in

the system.

Further confirmation of dynamic relation ofmetabolites to VCD can

be obtained by comparison of metabolic profiles related to VCD at dif-

ferent time points, as investigated by SUS-plots with p(corr) vectors

coming from theOPLSmodels for different time points/growth phases

(Figure 6). Analysis of SUS-plots fromVCDmodels for time points from

different growth phases clearly shows that transitions between phases

are due to alterations in culture conditions such as nutrient depletion

and/or waste accumulation. At the same time, two consecutive time

points from the same phase (with approximately 8 to 9 h time differ-

ences) show that metabolic profiles in the same phase are comparable

(diagonal plots in Figure 6). However, the similarities of the metabo-

lite profiles within the dead phase (i.e., SUS-plot of t = 274 h and

t= 283 h) aremore than in other phases and theweakest similarity can

be observed for the profileswithin the exponential phase (i.e., SUS-plot

of t= 82 h and t= 90 h).

As mentioned above, the differences between the VCD-related

metabolite profiles between different growth phases were higher than

those for the same phase. However, more similarities could still be

observed between VCD related metabolic profiles of stationary and

dead phases (i.e., SUS-plot of t = 178 h and t = 274 h) in comparison

to the exponential and stationary phases (i.e., SUS-plot of t = 82 h and

t=178h). Discussion on themain cause of phase transition differences

is outside the scope of present work. Analysis of SUS-plots is a good

visualization method for comparison of the VCD-related metabolic

profiles from different process times in the bioreactor. However, with

a higher number of time points, the number of plots will increase, and

the proper evaluation of the changes can be difficult.

For the second step of hierarchical modeling, the p(corr) vectors

(differential metabograms) obtained from OPLS models of each time

point could be compared using an additional MVDA step, here PCA,
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10 of 13 ALINAGHI ET AL.

F IGURE 5 Plot of OPLSmodel parameters R2Y, andQ2 on themetabolomics fromBR1 – BR12 cultivations at different process times. TheQ2

values are illustrated as bar plots with dark colors according to the growth phase. The R2Y values are illustrated as bar plots with light colors
according to the growth phase

F IGURE 6 SUS-plot of p(corr) vectors from the twoOPLSmodels of some selected time points from various growth phases. TheOPLSmodels
are performed on themetabolomics fromBR1 – BR12 cultivations. SUS-plots p(corr) vectors from the twoOPLSmodels from different growth
phases (off-diagonal) andmodels from the same growth phase (diagonal)

highlighting the dynamic relation between metabolic profile and the

process parameter of interest.

Dynamic changes in metabolite composition in correlation to VCD

obtained from hierarchical modeling are visualized in the score plot

in Figure 7. The differential metabograms obtained from the OPLS

models with Q2 values lower than 0.3 are illustrated with diamond

symbols, as a valid correlation between the metabolite profiles and

VCD values could be questioned at these time points. As mentioned
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ALINAGHI ET AL. 11 of 13

F IGURE 7 Hierarchical modeling on themetabolomics data fromBR1 – BR12 cultivations. PCA score plot colored according to growth phase,
differential metabograms obtained from theOPLSmodels with Q2< 0.3 illustrated with diamond symbols (t[1] and t[2] explain 74% and 8%
variation of the data) and p(corr) plots of three time points (i.e., time= 82, 178, and 235 h) are illustrated in the plot

before, these points are positioned at the edges of the stationary phase

and are the last points before the dead phase. Therefore rearrange-

ment of the metabolites in the cells might be the reason for lack of a

valid correlation at these time points. Metabolite compositions were

more comparable to each other over stationary and dead phases, while

higher variation could be seen in the exponential phase, which could

be the result of general intensive rearrangement of the cellmetabolism

in this phase of cell growth. The p(corr) plots of three time points (i.e.,

time=82, 178, and235h) are illustrated inFigure7 to showmetabolite

profiles related to VCD at different growth phases. These three p(corr)

plots are chosen as an example and p(corr) plots of all time points are

presented in Figure S4.

In the PCA score plot, the last two points of the exponential phase

(points at 139 and 145 h process time) were closer to the stationary

points. We could conclude that the metabolite composition of these

two time points, which were determined as exponential phase based

on the specific growth rate values, weremore similar to themetabolite

composition of the later stage in the bioprocess, which could suggest

that specific growth rate calculation, in this case, may not be the most

accurate approach for determination of the break between the phases.

Hence, the hierarchical modeling approach presented here, taking into

account real information of metabolite composition correlated to the

VCD, can potentially reveal more accurate information about the cell

metabolic status.

Even though the traditional batch process analysis such as BEM,

BLM, and also OPLS-DA models could provide valuable knowledge

about the bioprocess overall trend and design, the confounding influ-

ence of time on the relation between dynamic process parameters and

metabolic profiles could not be resolved with such models. Therefore,

there is a need to properly model and assess the dynamic nature of

the data. The proposed model successfully addressed the challenges

of time-series data regarding dimensionality as well as the correla-

tion of CPPs with time. It has been shown that hierarchical modeling

could visualize the metabolic trajectories related to the CPPs and

highlight the metabolites that are correlated to the VCD and evolve

over process time. Understanding the cellular metabolism based on
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12 of 13 ALINAGHI ET AL.

metabolic trajectories and enhanced characterization of the biopro-

cess allow improvement of the culture conditions, that is, diminishing

toxic metabolites or providing nutritional demands of cells over pro-

cess time. This could lead to enhanced cellular productivity, longer

culture durations, and higher titer production.

5 CONCLUSIONS

The practical approach for maintaining minimum product variability

is by running the processes on pre-defined and well-established tra-

jectories. This requires increased bioprocess understanding together

with advanced process monitoring and application of comprehensive

data mining models to be able to extract relevant information from

the obtained data. While it is currently possible to effectively mon-

itor and control bioprocesses, understanding complex interactions

between cells and process parameters that influence final process out-

come and product quality is still not fully achieved, even if high-quality

biological data such as metabolomics data are acquired. Analyzing

time-series data from bioprocess studies is challenging due to dimen-

sionality of the data, the correlation structure in the metabolite data

and the correlation structure due to repeated measurements over

time. Many currently existing approaches to analyzing such data sets

either have the limitationof confounding treatment variationwith vari-

ability due to thedynamic natureof thedataor they ignore the fact that

metabolites do not work independently of each other.

Here, a hierarchical approach, based on OPLS and PCA is proposed

to achieve dimension reduction while appropriately modeling the

correlation of metabolite levels to the CPPs such as VCD. We demon-

strated the applicationof theproposedmethodologyonmetabolic data

from CHO based antibody production and compared obtained results

to traditional approaches used in modeling bioprocess data (i.e., batch

modeling) to characterize the dynamic relation between metabolic

profiles and CPPs. The proposed model successfully addressed the

aims of the bioprocess study, that is, it enabled visualization of the

metabolomic trajectories through time, presenting the time effect on

the metabograms, and highlighting metabolites that evolve over time.

Many areas of further research naturally arise from the proposed

model such as investigating the application of the model to different

process parameters. It could be also interesting to assess how this type

of model can be applied to other processes.

AUTHOR CONTRIBUTIONS

Masoumeh Alinaghi: Formal analysis; Investigation; Methodology; Val-

idation; Visualization; Writing – original draft; Writing – review &

editing. Izabella Surowiec: Data curation; Investigation; Methodology;

Project administration; Supervision; Writing – review & editing. Steffi

Scholze: Data curation; Investigation; Methodology; Writing – review

& editing. Chris McCready: Conceptualization; Investigation; Method-

ology. Christoph Zehe: Conceptualization; Investigation; Methodol-

ogy. Erik Johansson: Investigation; Methodology; Writing – review

& editing. Johan Trygg: Conceptualization; Investigation; Methodol-

ogy. Olivier Cloarec: Conceptualization; Investigation; Methodology;

Supervision;Writing – review& editing.

ACKNOWLEDGMENTS

None.

CONFLICT OF INTEREST

None.

DATA AVAILABILITY STATEMENT

The datasets generated during the current study are not publicly avail-

able but are available from the corresponding author on reasonable

request.

REFERENCES

1. Kim, J. Y., Kim, Y.-G., & Lee, G.M. (2012). CHOCHOcells in biotechnol-

ogy for production of recombinant proteins: Current state and further

potential. AppliedMicrobiology and Biotechnology, 93(3), 917–930.
2. Noh, S. M., Sathyamurthy, M., & Lee, G. M. (2013). Development of

recombinant Chinese hamster ovary cell lines for therapeutic protein

production. Current Opinion in Chemical Engineering, 2(4), 391–397.
3. Jagschies, G., Lindskog, E., Lacki, K., & Galliher, P. M. (2018). Bio-

pharmaceutical Processing: Development, Design, and Implementation of
Manufacturing Processes, Elsevier.

4. Richelle, A., & Lewis, N. E. (2017). Improvements in protein produc-

tion in mammalian cells from targeted metabolic engineering. Current
Opinion in Systems Biology, 6, 1–6.

5. Guideline, I. H. T. (2009). Pharmaceutical Development. Q8 (2R). As
revised in August.

6. Trummer, E., Fauland, K., Seidinger, S., Schriebl, K., Lattenmayer, C.,

Kunert, R., Vorauer-Uhl, K., Weik, R., Borth, N., & Katinger, H. (2006).

Process parameter shifting: Part I. Effect of DOT, PH, and tempera-

ture on the performance of Epo-Fc expressing CHO cells cultivated

in controlled batch bioreactors. Biotechnology & Bioengineering, 94(6),
1033–1044.

7. Rathore, A. S., & Winkle, H. (2009). Quality by design for biopharma-

ceuticals.Nature Biotechnology, 27(1), 26–34.
8. NPolitis, S., Colombo, P., Colombo,G., &MRekkas,D. (2017). Design of

experiments (DoE) in pharmaceutical development. Drug Development
and Industrial Pharmacy, 43(6), 889–901.

9. Alden, N., Raju, R., McElearney, K., Lambropoulos, J., Kshirsagar, R.,

Gilbert, A., & Lee, K. (2020). Using metabolomics to identify cell

line-independent indicators of growth inhibition for Chinese hamster

ovary cell-based bioprocesses.Metabolites, 10(5), 199.
10. Craven, S., & Becken, U. (2014). A quality-by-design approach to

upstream bioprocess interrogation and intensification. Engineering
Journal.

11. Nomikos, P., &MacGregor, J. F. (1995). Multi-way partial least squares

in monitoring batch processes. Chemometrics and Intelligent Laboratory
Systems, 30(1), 97–108.

12. Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling

and diagnostics of batch processes and analogous kinetic experiments.

Chemometrics and Intelligent Laboratory Systems, 44(1–2), 331–340.
13. Dahl, K. S., Piovoso, M. J., & Kosanovich, K. A. (1999). Translat-

ing third-order data analysis methods to chemical batch processes.

Chemometrics and Intelligent Laboratory Systems, 46(2), 161–180.
14. Undey, C., & Cinar, A. (2002). Statistical monitoring of multistage,

multiphase batch processes. IEEE Control Systems Magazine, 22(5),
40–52.

15. Louwerse, D., Tates, A. A., Smilde, A. K., Koot, G. L., & Berndt, H.

(1999). PLS discriminant analysis with contribution plots to determine

 18607314, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/biot.202200237 by U

m
ea U

niversity, W
iley O

nline L
ibrary on [30/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALINAGHI ET AL. 13 of 13

differences between parallel batch reactors in the process industry.

Chemometrics and Intelligent Laboratory Systems, 46(2), 197–206.
16. Singhal, A., & Seborg, D. E. (2002). Pattern matching in historical batch

data using PCA. IEEE Control SystemsMagazine, 22(5), 53–63.
17. Andersen, S. W., & Runger, G. C. (2011). Partitioned partial least

squares regression with application to a batch fermentation process.

Journal of Chemometrics, 25(4), 159–168.
18. Aguado, D., Ferrer, A., Ferrer, J., & Seco, A. (2007). Multivariate SPC of

a sequencing batch reactor for wastewater treatment. Chemometrics
and Intelligent Laboratory Systems, 85(1), 82–93.

19. Kourti, T. (2003). Multivariate dynamic data modeling for analysis and

statistical process control of batch processes, start-ups and grade

transitions. Journal of Chemometrics, 17(1), 93–109.
20. Kourti, T. (2005). Application of latent variable methods to pro-

cess control and multivariate statistical process control in industry.

International Journal of Adaptive Control and Signal Processing, 19(4),
213–246.

21. García-Muñoz, S., Kourti, T., & MacGregor, J. F. (2004). Model predic-

tive monitoring for batch processes. Industrial & Engineering Chemistry
Research, 43(18), 5929–5941.

22. Duchesne, C., & MacGregor, J. F. (2000). Multivariate analysis

and optimization of process variable trajectories for batch pro-

cesses. Chemometrics and Intelligent Laboratory Systems, 51(1), 125–
137.

23. Jolliffe, I. (2005). Principal component analysis. Encyclopedia of Statis-
tics in Behavioral Science.

24. Walsh, M. C., Brennan, L., Pujos-Guillot, E., Sébédio, J.-L., Scalbert, A.,

Fagan, A., Higgins, D. G., & Gibney, M. J. (2007). Influence of acute

phytochemical intake on human urinary metabolomic profiles. The
American Journal of Clinical Nutrition, 86(6), 1687–1693.

25. Sachse, D., Sletner, L., Mørkrid, K., Jenum, A. K., Birkeland, K. I., Rise, F.,

Piehler, A. P., &Berg, J. P. (2012).Metabolic changes in urine during and

after pregnancy in a large, multiethnic population-based cohort study

of gestational diabetes. Plos One, 7(12), e52399.
26. Carvalho, E., Franceschi, P., Feller, A., Palmieri, L., Wehrens, R., &

Martens, S. (2013). A targeted metabolomics approach to understand

differences in flavonoid biosynthesis in red and yellow raspberries.

Plant Physiology and Biochemistry, 72, 79–86.
27. Smolinska, A., Blanchet, L., Buydens, L. M., & Wijmenga, S. S. (2012).

NMR and pattern recognition methods in metabolomics: From data

acquisition to biomarker discovery: A review. Analytica Chimica Acta,
750, 82–97.

28. Cassol, E., Misra, V., Holman, A., Kamat, A., Morgello, S., & Gabuzda,

D. (2013). Plasmametabolomics identifies lipid abnormalities linked to

markers of inflammation,microbial translocation, and hepatic function

in HIV patients receiving protease inhibitors. Bmc Infectious Diseases
[Electronic Resource], 13(1), 1–17.

29. Bathen, T. F., Geurts, B., Sitter, B., Fjøsne, H. E., Lundgren, S., Buydens,

L. M., Gribbestad, I. S., Postma, G., & Giskeødegård, G. F. (2013). Feasi-

bility ofMRmetabolomics for immediate analysis of resectionmargins

during breast cancer surgery. Plos One, 8(4), e61578.
30. Choi, Y. H., Kim, H. K., Linthorst, H. J., Hollander, J. G., Lefeber,

A. W., Erkelens, C., Nuzillard, J.-M., & Verpoorte, R. (2006). NMR

metabolomics to revisit the tobaccomosaic virus infection in nicotiana

t abacum leaves. Journal of Natural Products, 69(5), 742–748.
31. Jansen, J. J., Hoefsloot, H. C., Boelens, H. F., Van Der Greef, J., &

Smilde, A. K. (2004). Analysis of longitudinal metabolomics data.

Bioinformatics, 20(15), 2438–2446.
32. Smilde, A. K., Jansen, J. J., Hoefsloot, H. C., Lamers, R.-J. A., Van Der

Greef, J., & Timmerman, M. E. (2005). ANOVA-simultaneous compo-

nent analysis (ASCA): A new tool for analyzing designedmetabolomics

data. Bioinformatics, 21(13), 3043–3048.

33. Alinaghi, M., Bertram, H. C., Brunse, A., Smilde, A. K., & Westerhuis, J.

A. (2020). Common and distinct variation in data fusion of designed

experimental data.Metabolomics, 16(1), 1–11.
34. Jansen, J. J., van Dam, N. M., Hoefsloot, H. C., & Smilde, A. K. (2009).

Crossfit analysis: A novel method to characterize the dynamics of

inducedplant responses.BmcBioinformatics [Electronic Resource],10(1),
1–15.

35. Smilde, A.,Westerhuis, J., Hoefsloot, H., Bijlsma, S., Rubingh, C., Vis, D.,

Jellema, R., Pijl, H., Roelfsema, F., & Van Der Greef, J. (2010). Dynamic

metabolomic data analysis: A tutorial review.Metabolomics,6(1), 3–17.
36. Berk, M., Ebbels, T., & Montana, G. (2011). A statistical framework for

biomarker discovery in metabolomic time course data. Bioinformatics,
27(14), 1979–1985.

37. Mei, Y., Kim, S. B., & Tsui, K.-L. (2009). Linear-mixed effects models

for feature selection in high-dimensional NMR spectra. Expert Systems
with Applications, 36(3), 4703–4708.

38. Eriksson, L., Byrne, T., Johansson, E., Trygg, J., & Vikström, C. (2013).

Multi-and Megavariate Data Analysis Basic Principles and Applications,
Umetrics Academy, Vol. 1.

39. Metze, S., Ruhl, S., Greller,G.,Grimm,C., &Scholz, J. (2020).Monitoring

online biomass with a capacitance sensor during scale-up of indus-

trially relevant CHO cell culture fed-batch processes in single-use

bioreactors. Bioprocess and Biosystems Engineering, 43(2), 193–205.
40. Hendrick, V., Winnepenninckx, P., Abdelkafi, C., Vandeputte, O.,

Cherlet, M., Marique, T., Renemann, G., Loa, A., Kretzmer, G., &

Werenne, J. (2001). Increased productivity of recombinant tissular

plasminogen activator (t-PA) by butyrate and shift of temperature: A

cell cycle phases analysis. Cytotechnology, 36(1), 71–83.
41. Schatz, S. M., Kerschbaumer, R. J., Gerstenbauer, G., Kral, M., Dorner,

F., & Scheiflinger, F. (2003). Higher expression of fab antibody frag-

ments in a CHO cell line at reduced temperature. Biotechnology and
Bioengineering, 84(4), 433–438.

42. Chusainow, J., Yang, Y. S., Yeo, J. H., Toh, P. C., Asvadi, P., Wong, N.

S., & Yap, M. G. (2009). A study of monoclonal antibody-producing

CHO cell lines: What makes a stable high producer? Biotechnology and
Bioengineering, 102(4), 1182–1196.

43. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Comput-
ing in Science & Engineering, 9(03), 90–95.

44. Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U.,

Shockcor, J. P., Gottfries, J., Moritz, T., & Trygg, J. (2008). Visualization

of GC/TOF-MS-based metabolomics data for identification of bio-

chemically interesting compounds using OPLS class models. Analytical
Chemistry, 80(1), 115–122.

45. Lindgren, F., Hansen, B., Karcher, W., Sjöström, M., & Eriksson, L.

(1996). Model validation by permutation tests: Applications to vari-

able selection. Journal of Chemometrics, 10(5-6), 521–532.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Alinaghi, M., Surowiec, I., Scholze, S.,

McCready, C., Zehe, C., Johansson, E., Trygg, J., & Cloarec, O.

(2022). Hierarchical time-series analysis of dynamic

bioprocess systems. Biotechnology Journal, 17, e2200237.

https://doi.org/10.1002/biot.202200237

 18607314, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/biot.202200237 by U

m
ea U

niversity, W
iley O

nline L
ibrary on [30/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/biot.202200237

	Hierarchical time-series analysis of dynamic bioprocess systems
	Abstract
	1 | INTRODUCTION
	2 | MATERIAL AND METHOD
	2.1 | Cell line and culture conditions
	2.2 | Sample preparation and offline measurement/analytics
	2.3 | Determination of the cell-specific productivity (Qp)
	2.4 | Experimental data (NMR metabolomics data)
	2.5 | Data preprocessing

	3 | THEORY AND METHODS
	3.1 | Batch evolution model (BEM)
	3.2 | Batch level model (BLM)
	3.3 | Shared and unique structure plot (SUS-plot)
	3.4 | Hierarchical modeling
	3.4.1 | Base level OPLS model
	3.4.2 | Top level PCA model


	4 | RESULTS AND DISCUSSION
	4.1 | Bioprocess parameters
	4.2 | Batch modeling
	4.3 | Hierarchical modeling

	5 | CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES
	SUPPORTING INFORMATION


