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ABSTRACT

This thesis will focus on generating the probability mass function using Fibonacci se-

quence as the coefficient of the power series. The discrete probability, named Fibonacci dis-

tribution, was formed by taking into consideration the recursive property of the Fibonacci se-

quence, the radius of convergence of the power series, and additive property of mutually exclu-

sive events. This distribution satisfies the requisites of a legitimate probability mass function.

Its cumulative distribution function and the moment generating function are then derived and

the latter are used to generate moments of the distribution, specifically, the mean and the vari-

ance. The characteristics of some convergent sequences generated from the Fibonacci sequence

are found useful in showing that the limiting form of the Fibonacci distribution is a geometric

distribution. Lastly, the paper showcases applications and simulations of the Fibonacci distri-

bution using MATLAB.

Keywords: Power series distribution, Fibonacci sequence, Fibonacci distribution,probability

mass function
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CHAPTER I

INTRODUCTION

This chapter introduces the relevant concepts in probability theory, power series and Fibonacci

sequence. Related literature and studies, the statement of the problem, significance, scope and

limitation of the study are also given in this chapter. Other important details are found in the

succeeding chapters.

1.1 Background and Literature Review of the Study

Consider a random experiment of tossing a fair coin such that we achieve a success

if we obtained a head. Suppose X1 is the random variable associated for this experiment that

describes the number of tails before obtaining the head and p =
1

2
is the Bernoulli probability of

having a head in a single toss, then X1 is commonly known as the geometric random variable.

In 1973, Harold Shane [1] generalized the idea into a Markov process Xn. The random

process is initiate with a marker is positioned inside the slot number zero. Then, continuously

tossing a fair coin and for every head a marker will move up one slot and for every tail the

marker moves back to its original position. Success will only occur if there is n consecutive

heads or the marker moved up n consecutively.

To summarize the result, let Xn be a random variable that describes the number of toss

(not just tails) needed to obtain n consecutive heads. Then, the probability distribution of Xn
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is given by

P (Xn = k) =
Fn,k

2n+k
,

for k = 0, 1, 2, ..., where Fn,k is the kth Fibonacci number of order n defined by

Fn,k+1 = Fn,k + Fn,k−1 + ...+ Fn,k−n+1

with Fn,0 = 1 and Fn,−1 = Fn,−2 = ... = Fn,−n+1 = 0. For n = 2, F2,k = Fk describes

the ordinary Fibonacci number and called the probability distribution as Fibonacci distribution.

For n > 3, the distribution is called the poly-nacci distribution. Shane [1] also generalizes the

random variable Xn with a biased coin, with Bernoulli probability 0 < p < 1 of having a head

in a single toss. The Fibonacci numbers are not explicitly written on the resulting probability

distribution since the probability of success and failure is of different values.

Taillie and Patil (1986) [2] extended the work of Shane by using a different approach on

generalizing the Fibonacci distribution. The method is by including the Fibonacci distribution

as a member of the power series distribution.

The problem starts by fixing a positive integer n and a positive real number θ satisfying

θ + θ2 + ...+ θn < 1. Consider an (n+ 1)−sided dice whose sides are numbered 0, 1, 2, ..., n.

The dice is biased in such a way that the probability of obtaining 0 is 1 − θ − θ2 − ... − θn,

and the probability of obtaining i > 0 is θi. The random experiment is to roll the dice until

side 0 comes up and Yn be the sum of numbers which appears before obtaining 0. The random

variable Yn has probability distribution

P (Yn = k) = Fn,kθ
k(1− θ − θ2 − ...− θn),

for k = 0, 1, 2, ..., and appropriate values of θ. When n = 1, the distribution reduces to a
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geometric distribution. When n = 2 and θ =
1

2
, the distribution P (Y2 = k) = Fk

(
1

2

)k+2

reduces to the Fibonacci distribution. The study continues by describing the probability gen-

erating function, modes, hazard function and the limiting form of the Fibonacci distribution.

Also, discuss the family of power series distribution for the Fibonacci distribution including

multiple parameters, higher order of probability space and multivariate distributions.

This paper is an exposition and extensions of the work of Shane[1], Taillie and Patil[2]

by focusing on the distribution

P (Y2 = k) = Fkθ
k(1− θ − θ2)

with different values of the parameter θ. The extensions include the derivation of the distri-

bution from the power series, computing the range of the parameter, and derivation of some

of its properties. The motivation of the study is to explore on the applications of Fibonacci

numbers in the field of probability theory. The use of Fibonacci sequence as the coefficients of

the power series is the subject of the study because of some interesting characteristics of the

sequence such as recursion, relation to golden ratio, and the convergence of the power series

itself. The purpose of the study is to generate a discrete probability distribution using Fibonacci

power series, identify its parameter, and discover some of its possible applications. The study

will further try to explain some of the application, relation to other distributions, identifying the

limiting form of the distribution, and simulations by using MatLab as the main programming

language.
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1.2 Statement and Relevance of the Problem

The main objective of this study is to generate the probability distribution using Fi-

bonacci sequence as the coefficient of the power series. Specifically, this study aims to accom-

plish the following:

1. Create a random variable that follows the generated probability distribution and identify its

parameter.

2. Determine the cumulative distribution function of this random variable.

3. Find the moment generating function and use it to generate the mean and variance of the

distribution.

4. Describe scenarios of possible application of the distribution.

5. Simulate the scenarios and compare the results to the distribution.

6. Identify the relation to other distributions by changing the values of the parameter and the

random variable.

This problem is relevant because extending the ideas and concept regarding the Fi-

bonacci numbers and dealing with probability distribution at the same time will increase viable

options on the statistical models with regards to discrete random variables. This will advance

the existing knowledge on the Fibonacci power series and power series distributions. This ad-

vancement of knowledge will help the students and practitioners of mathematics to learn more

about this distribution. It will also serve as an opportunity for the other mathematicians to

improve and to gain more knowledge and possible applications about this distribution.
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1.3 Scope and Limitation of the Study

The study focused on generating the discrete probability distribution using the Fi-

bonacci power series, and will be named Fibonacci distribution all throughout the thesis. This

paper is a specification and extension of Taillie and Patil work and will deal with second order

Fibonacci sequence and a background on third order and infinite order Fibonacci sequence.

The extensions are the computation of the range of parameters, cumulative distribution, mo-

ment generating functions, computation of raw and central moments, specifically, the mean and

variance, and exploring the applications and simulations of outcomes using MatLab.

Anything unrelated to these is considered outside of the scope of this thesis.

1.4 Organization of the Paper

The Introduction (Chapter I) highlights the main problem, background, literature re-

view, scope and limitation of the study and methodology. In Fibonacci Distribution (Chapter

II), the preliminaries, initial results of the derivation Fibonacci distribution and its properties

are presented. Followed by Application and Simulation (Chapter III), this chapter shows some

sample computations, graphs and tables. Also, it includes the replication of the distribution by

using Monte Carlo simulation in MatLab. Lastly, the Discussion, Conclusion and Recommen-

dation (Chapter IV) includes the summary and deliberation of the results and the recommenda-

tions for further and future studies.



CHAPTER II

Fibonacci Distribution

This chapter presents the generalization of Fibonacci distribution as a power series distribution

as described by Taillie and Patil [2].

2.1 Fibonacci Sequence

To begin this section, we will present the formal definition of nth order Fibonacci number as

follows:

Definition 2.1. The kth Fibonacci number of order n is defined by the recurrence formula

Fn,k+1 = Fn,k + Fn,k−1 + ...+ Fn,k−n+1

for k = 0, 1, 2, ..., with Fn,0 = 1 and Fn,−1 = Fn,−2 = ... = Fn,−n+1 = 0.

This is an example of a linear homogeneous recurrence relation with constant coeffi-

cients. To solve for the characteristic equation of any linear difference equation, we can assume

that xm be a solution to the recurrence formula. Thus,

xm = xm−1 + xm−2 + ...+ xm−n+1 + xm−n.

Since x ̸= 0, we can divide the equation by xm−n, resulting to

xn = xn−1 + xn−2 + ...+ x1 + 1.
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Transposing each terms to the left-hand side of the equation, we obtained

xn − xn−1 − xn−2 − ...− x− 1 = 0

and that is the characteristic equation of the nth order Fibonacci sequence.

With some manipulation,

xn − xn−1 − xn−2 − ...− x− 1 = xn − xn − 1

x− 1
=

xn+1 − 2xn + 1

x− 1
.

Therefore, the solutions for xn+1 − 2xn + 1 = 0 where x ̸= 1 is the same with the solutions

for the characteristic equation. Moreover, for n > 1, at x = 1.5 we have xn+1 − 2xn + 1 < 0,

and at x = 2, we have xn+1 − 2xn + 1 = 1 > 0 indicating a real root on the interval [1.5, 2]

by extreme value theorem. Observing the change of signs in the characteristic equation, by

Descartes’ rule of signs, has exactly one real root. We let this root φn.

Now, let xk =
Fn,k+1

Fn,k

, then

xk =
Fn,k + Fn,k−1 + ...+ Fn,k−n+1

Fn,k

= 1 +
1

xk−1

+ ...+
1

xk−1xk−2 · · ·xk−n+1

.

Suppose x = lim
k→∞

xk, then

x = lim
k→∞

1 +
1

xk−1

+ ...+
1

xk−1xk−2 · · ·xk−n+1

= 1 +
1

x
+ ...+

1

xn−1
.

Multiplying xn−1 from the above equation, we get

xn = xn−1 + xn−2 + ...+ x1 + 1

which is equivalent to the characteristic equation of the nth order Fibonacci sequence. Hence,

the limit of successive ratio of the nth order Fibonacci numbers is φn.
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2.1.1 Fibonacci sequence of order 2

By default, when we say the Fibonacci number, we refer on the 2nd order Fibonacci number.

The following is its definition:

Definition 2.2. The Fibonacci sequence, {Fn}∞n=0, starts with F0 = 1, F1 = 1, and then each

subsequent term is the sum of the two previous ones:

Fn = Fn−1 + Fn−2.

Hence, the sequence is

1, 1, 2, 3, 5, 8, 13, ....

The characteristic equation of the Fibonacci sequence is x2 − x − 1 = 0. The positive

real root of this equation is the golden ratio φ2 =
1 +

√
5

2
. Moreover,

lim
n→∞

Fn+1

Fn

=
1 +

√
5

2
.

2.1.2 Fibonacci sequence of order 3

The Fibonacci numbers of order 3 is called the Tribonacci numbers and is denoted by Tk :=

F3,n.

Definition 2.3. The Tribonacci sequence, {Tn}∞n=0, starts with T0 = 1, T1 = 1, T2 = 2, and

then each subsequent term is the sum of the three previous ones:

Tn = Tn−1 + Tn−2 + Tn−3.

Hence, the sequence is

1, 1, 2, 4, 7, 13, 24, 44, 81, ....
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The characteristic equation of the Fibonacci sequence is x3 − x2 − x − 1 = 0. The

positive real root of this equation is φ3 =
1

3

(
1 +

3
√
19 + 3

√
33 +

3
√

19− 3
√
33
)

. Moreover,

lim
n→∞

Tn+1

Tn

=
1

3

(
1 +

3

√
19 + 3

√
33 +

3

√
19− 3

√
33

)
.

2.1.3 Fibonacci sequence of infinite order

The Fibonacci numbers of infinite order is called the infinacci numbers. Denote the infinacci

numbers by In := F∞,n.

Definition 2.4. The infinacci sequence, {In}∞n=0, starts with I0 = 1, and then each subsequent

term is the sum of all the previous ones:

In =
n−1∑
n=0

Ii.

Hence, the sequence is

1, 1, 2, 4, 8, 16, 32, ....

We can observe that the infinacci numbers can be defined as

In =

 1 for n = 0,

2n−1 for n = 1, 2, 3, ...

The limit of successive ratio is

lim
n→∞

In+1

In
= 2.

2.2 Power Series Distributions

In this section, we will give some preliminaries on power series distribution.

For convention and notation in this paper, we denote {an} := {an}∞n=0.
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Suppose we have a sequence {an}, we can define another sequence {sn} as

sn :=
n∑

i=0

ai,

and each sn is called partial sum. The limit of the sequence

lim
n→∞

sn =
∞∑
i=0

ai

is called an infinite series. It is simply the sum of all the terms of sequence {an} in order of the

index. We say that the infinite series is convergent if the partial sum {sn} is convergent, and

the infinite series is divergent if the partial sum {sn} is divergent.

A power series is any series written of the form

∞∑
i=0

cnx
n

where cn’s, known as the coefficient of the series, is an element of the sequence {cn}.

2.2.1 Probability Mass Function

Let N be a random variable with a power series distribution. The probability mass function of

the random variable N with a parameter θ > 0 is defined by

P (N = n) =
gnθ

n

∞∑
i=0

giθ
i

where {gn} is the coefficient of the power series and gn ≥ 0.

You can see that the denominator of the pmf is a power series. And hence the name of

the class of distribution.

Note that we want a closed form for the power series so that we can describe well

the generated distribution. Such examples are: the geometric power series that generates the
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geometric distribution and the Taylor expansion of ex that generates the Poisson distribution.

There are many convergent series that exist without closed form. For example, we know that

the p-series converges when p > 1, however some of the p-series does not have closed form.

Another examples are functions such as

f1(x) =
∞∑
i=1

1

3n − n
, f2(x) =

∞∑
i=1

n2 + 2

n4 + 5
,

these functions converge by comparison test but do not have closed forms. With these, we

cannot generate or formulate the probability distribution exactly. We can do so by numerical

approximation, however it will generate an approximation error. Thus, we cannot describe the

generated distribution accurately.

2.2.2 Cumulative distribution function

The cumulative distribution function of the random variable N is defined by

P (N ≤ n) =

⌊n⌋∑
i=0

giθ
i

∞∑
i=0

giθ
i

.

Observe that the numerator of the cdf is simply the partial sum of the sequence {giθi}.

2.2.3 Moment generating function and Moments

For a power series distribution with random variable N , coefficient of the power series {gn},

and radius of convergence R, we can generalize the moment generating function. Let g(x) =
∞∑
i=0

gix
i, where |x| < R. Then,

P (N = n) =
gnθ

n

∞∑
i=0

giθ
i

=
gnθ

n

g(θ)
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and

MN(t) = E(etN) =
∞∑
n=0

etnP (N = n)

=
∞∑
n=0

etn
gnθ

n

∞∑
i=0

giθ
i

=
1

g(θ)

∞∑
n=0

gn(e
tθ)n

=
g(etθ)

g(θ)
.

Therefore,

E(N r) =
1

g(θ)

dr

dtr
g(etθ)

∣∣∣∣
t=0

.

For r = 1, we have

E(N) =
1

g(θ)

d

dt
g(etθ)

∣∣∣∣
t=0

=
etθg′(etθ)

g(θ)

∣∣∣∣
t=0

=
θg′(θ)

g(θ)
.

This is the mean of the random variable N .

For r = 2, we have

E(N2) =
1

g(θ)

d2

dt2
g(etθ)

∣∣∣∣
t=0

=
1

g(θ)

d

dt
etθg′(etθ)

∣∣∣∣
t=0

=
(etθ)2g′′(etθ) + etθg′(etθ)

g(θ)

∣∣∣∣
t=0

=
θ2g′′(θ) + θg′(θ)

g(θ)
.

We can generalize the variance of any random variable with a power series power series

distribution. That is,

V ar(N) = E(N2)− [E(N)]2 =
θ2g′′(θ) + θg′(θ)

g(θ)
−
[
θg′(θ)

g(θ)

]2
.
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2.3 Fibonacci Power Series Distribution

The focus of this study revolves on the use of Fibonacci power series and the distribution. In

this section, we will combine the concepts presented previously on this chapter.

2.3.1 Fibonacci Power Series

Definition 2.5. A Fibonacci power series is formed using Fibonacci sequence {Fn} as the

coefficient of the power series. That is,

∞∑
i=0

Fix
i = 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + ....

Theorem 2.6. The Fibonacci power series

∞∑
i=0

Fix
i = 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + ...

has a radius of convergence R =
−1 +

√
5

2
and converges to

1

1− x− x2
.

Proof. The radius of convergence can easily be solved using ratio test. That is,

L = lim
n→∞

∣∣∣∣Fn+1x
n+1

Fnxn

∣∣∣∣ = lim
n→∞

Fn+1

Fn

|x| = 1 +
√
5

2
|x|.

Choosing R =

(
1 +

√
5

2

)−1

=
−1 +

√
5

2
, we have

L =
1 +

√
5

2
|x| < 1 +

√
5

2
R = 1

Thus, the radius of convergence of the Fibonacci power series is
−1 +

√
5

2
.
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Now, suppose
∞∑
i=0

Fix
i converges to f(x) for |x| < R. Then

f(x) =
∞∑
i=0

Fix
i

= F0x
0 + F1x

1 +
∞∑
i=2

Fix
i

= 1 + x+
∞∑
i=2

(Fi−1 + Fi−2)x
i

= 1 + x+
∞∑
i=2

Fi−1x
i +

∞∑
i=2

Fi−2x
i

= 1 + x+ x
∞∑
i=2

Fi−1x
i−1 + x2

∞∑
i=2

Fi−2x
i−2

= 1 + x

(
1 +

∞∑
i=1

Fix
i

)
+ x2

∞∑
i=0

Fix
i

= 1 + xf(x) + x2f(x)

f(x)− xf(x)− x2f(x) = 1

f(x)(1− x− x2) = 1

f(x) =
∞∑
i=0

Fix
i =

1

1− x− x2
.

2.3.2 Fibonacci Distribution

As stated in introduction, we will explore more on the 2nd order Fibonacci power series distri-

bution.

Probability mass function

Definition 2.7. Let N be a random variable that follows the 2nd order Fibonacci distribution

with parameter 0 < θ <
−1 +

√
5

2
. The probability of N = n is given by the probability mass

function:

P (N = n) := Fnθ
n(1− θ − θ2)
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for n = 0, 1, 2, ... We call N a Fibonacci random variable with parameter θ.

The distribution has 3 factors and each can be understood as follows: 1−θ−θ2 describes

the independent probability of obtaining success, Fn is the number of composition of n by

using 1 and 2 and θn is the total probability of each compositions of n with weights θ and θ2,

respectively.

For example, let n = 3. The compositions of 3 by using 1 and 2 are

1 + 1 + 1, 1 + 2, 2 + 1,

so F3 = 3 and the total probability of each composition is

θ · θ · θ = θ · θ2 = θ2 · θ = θ3

. Thus, P (N = 3) = 3θ3(1− θ − θ2).

Cumulative distribution function

Theorem 2.8. If N is a Fibonacci random variable with parameter θ, then the cumulative

distribution function of N is

P (N ≤ k) =

 0 for k < 0

1− Fn+1θ
n+1 − Fnθ

n+2 for n ≤ k < n+ 1
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Proof. The proof is by direct computation. Let n = 0, 1, 2, ..., we have

P (N ≤ n) =
n∑

i=0

P (N = i)

=
n∑

i=0

Fiθ
i(1− θ − θ2)

=
n∑

i=0

Fiθ
i −

n∑
i=0

Fiθ
i+1 −

n∑
i=0

Fiθ
i+2

= F0 + F1θ + F2θ
2 + F3θ

3 + ...+ Fn−2θ
n−2 + Fn−1θ

n−1 + Fnθ
n

−F0θ − F1θ
2 − F2θ

3 − F3θ
4 − ...− Fn−2θ

n−1 − Fn−1θ
n − Fnθ

n+1

−F0θ
2 − F1θ

3 − F2θ
4 − F3θ

5 − ...− Fn−2θ
n − Fn−1θ

n+1 − Fnθ
n+2

= F0 + (F1 − F0)θ + (F2 − F1 − F0)θ
2 + (F3 − F2 − F1)θ

3 + ...

+(Fn−1 − Fn−2 − Fn−3)θ
n−1 + (Fn − Fn−1 − Fn−2)θ

n

−(Fn + Fn−1)θ
n+1 − Fnθ

n+2.

Note that Fn+2 = Fn+1 + Fn, so Fn+2 − Fn+1 − Fn = 0 for all n, thus

P (N ≤ n) = F0 + (F1 − F0)θ − (Fn + Fn−1)θ
n+1 − Fnθ

n+2.

Simplifying further by substituting F0 = F1 = 1 and Fn + Fn−1 = Fn+1, we get

P (N ≤ n) = 1− Fn+1θ
n+1 − Fnθ

n+2.

Since N is discrete random variable, for any real k with n ≤ k < n+ 1, P (N ≤ k) = P (N ≤

n) which is the desired result.

Moment generating function, Mean and Variance

Theorem 2.9. If N is a Fibonacci random variable with parameter θ, then

1. mgf of N , MN(t) =
1− θ − θ2

1− etθ − (etθ)2
for t < ln

(
−1 +

√
5

2θ

)
.

2. mean of N , E(N) =
θ + 2θ2

1− θ − θ2
.
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3. variance of N , V ar(N) =
θ + 4θ2 − θ3

(1− θ − θ2)2
.

Proof. The proof is by direct computation. Note that
∞∑
n=0

Fnx
n =

1

1− x− x2
for |x| <

−1 +
√
5

2
. We have

MN(t) = E
(
etN
)

=
∞∑
n=0

etnP (N = n)

=
∞∑
n=0

etnFnθ
n(1− θ − θ2)

= (1− θ − θ2)
∞∑
n=0

Fn(e
tθ)n.

If |etθ| < −1 +
√
5

2
, then

MN(t) =
1− θ − θ2

1− etθ − (etθ)2
=

1− θ − θ2

1− etθ − e2tθ2
.

Note that et > 0 and θ > 0, thus

etθ <
−1 +

√
5

2

et <
−1 +

√
5

2θ

ln (et) < ln

(
−1 +

√
5

2θ

)

t < ln

(
−1 +

√
5

2θ

)
.

Since θ <
−1 +

√
5

2
, then

1 <

(
−1 +

√
5

2θ

)

0 < ln

(
−1 +

√
5

2θ

)
.

Therefore, it is possible to choose t = 0.

Consequently,

MN(t) =
1− θ − θ2

1− etθ − e2tθ2
,
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when 0 < θ <
−1 +

√
5

2
and t < ln

(
−1 +

√
5

2θ

)
.

From here, we can compute for the mean as E(N) =
d

dt
MN(t)

∣∣∣∣
t=0

.

d

dt
MN(t) = (1− θ − θ2)(−1)

−etθ − 2e2tθ2

(1− etθ − e2tθ2)2

= (1− θ − θ2)
etθ + 2e2tθ2

(1− etθ − e2tθ2)2

d

dt
MN(t)

∣∣∣∣
t=0

= (1− θ − θ2)
θ + 2θ2

(1− θ − θ2)2

E(N) =
θ + 2θ2

1− θ − θ2
.

Now, to solve for the variance, we need the second raw moment, E(N2). We can solve

this using the mgf as E(N2) =
d2

dt2
MN(t)

∣∣∣∣
t=0

.

Starting from
d

dt
MN(t) = (1− θ − θ2)

etθ + 2e2tθ2

(1− etθ − e2tθ2)2
, we have

d2

dt2
MN(t) = (1− θ − θ2)

[
(1− etθ − e2tθ2)2(etθ + 4e2tθ2)

(1− etθ − e2tθ2)4

−(etθ + 2e2tθ2)(2)(1− etθ − e2tθ2)(−etθ − 2e2tθ2)

(1− etθ − e2tθ2)4

]
d2

dt2
MN(t)

∣∣∣∣
t=0

= (1− θ − θ2)

[
(1− θ − θ2)2(θ + 4θ2)

(1− θ − θ2)4

−(θ + 2θ2)(2)(1− θ − θ2)(−θ − 2θ2)

(1− θ − θ2)4

]
=

(1− θ − θ2)(θ + 4θ2) + 2(θ + 2θ2)2

(1− θ − θ2)2

=
θ + 5θ2 + 3θ3 + 4θ4

(1− θ − θ2)2
.

Finally,

V ar(N) = E(N2)− [E(N)]2

=
θ + 5θ2 + 3θ3 + 4θ4

(1− θ − θ2)2
−
[

θ + 2θ2

1− θ − θ2

]2
=

θ + 5θ2 + 3θ3 + 4θ4 − (θ2 + 4θ3 + 4θ4)

(1− θ − θ2)2

=
θ + 4θ2 − θ3

(1− θ − θ2)2
.

In summary, we obtained the mgf MN(t) =
1− θ − θ2

1− etθ − (etθ)2
for t < ln

(
−1 +

√
5

2θ

)
,

the mean E(N) =
θ + 2θ2

1− θ − θ2
and the variance V ar(N) =

θ + 4θ2 − θ3

(1− θ − θ2)2
.
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Distribution using different parameters

We will show some sample computations of the Fibonacci distribution, its pmf, cdf, mean,

variance and plots with different values of θ.

Table 2.1. The mean and variance of Fibonacci random variable N

θ 0.2 0.4 0.6

Mean, E(N)
7

19

18

11
33

Variance, V ar(N)
220

361

610

121
1140

Table 2.2. The pmf and cdf of Fibonacci random variable, N , with parameter θ = 0.2

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.76000000 0.76000000 8 0.00006615 0.99996836

1 0.15200000 0.91200000 9 0.00002140 0.99998976

2 0.06080000 0.97280000 10 0.00000693 0.99999669

3 0.01824000 0.99104000 11 0.00000224 0.99999892

4 0.00608000 0.99712000 12 0.00000073 0.99999965

5 0.00194560 0.99906560 13 0.00000023 0.99999989

6 0.00063232 0.99969792 14 0.00000008 0.99999996

7 0.00020429 0.99990221 15 0.00000002 0.99999999
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Table 2.3. The pmf and cdf of Fibonacci random variable, N , with parameter θ = 0.4

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.44000000 0.44000000 8 0.00980419 0.98201692

1 0.17600000 0.61600000 9 0.00634388 0.98836081

2 0.14080000 0.75680000 10 0.00410622 0.99246703

3 0.08448000 0.84128000 11 0.00265751 0.99512454

4 0.05632000 0.89760000 12 0.00172000 0.99684454

5 0.03604480 0.93364480 13 0.00111320 0.99795774

6 0.02342912 0.95707392 14 0.00072048 0.99867822

7 0.01513882 0.97221273 15 0.00046630 0.99914453

Table 2.4. The pmf and cdf of Fibonacci random variable, N , with parameter θ = 0.6

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.04000000 0.04000000 8 0.02284278 0.24014172

1 0.02400000 0.06400000 9 0.02217093 0.26231265

2 0.02880000 0.09280000 10 0.02152596 0.28383861

3 0.02592000 0.11872000 11 0.02089711 0.30473572

4 0.02592000 0.14454000 12 0.02028761 0.32502333

5 0.02488320 0.16952320 13 0.01969553 0.34471886

6 0.02426112 0.19378432 14 0.01912086 0.36383972

7 0.02351462 0.21729894 15 0.01856290 0.38240262
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(a) (b)

Figure 2.1. Plot of (a) pmf, and (b) cdf for Fibonacci random variable N with θ = 0.2, for

n = 0, 1, 2, ..., 15.

(a) (b)

Figure 2.2. Plot of (a) pmf, and (b) cdf for Fibonacci random variable N with θ = 0.4, for

n = 0, 1, 2, ..., 15.
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(a) (b)

Figure 2.3. Plot of (a) pmf, and (b) cdf for Fibonacci random variable N with θ = 0.6, for

n = 0, 1, 2, ..., 15.

By observation of the results, we can see that as the parameter θ close to zero, the pmf

approaches zero and cdf approaches one faster than with θ close to
−1 +

√
5

2
. That is because

the ratio of consecutive probability is

P (N = n+ 1)

P (N = n)
=

Fn+1θ
n+1(1− θ − θ2)

Fnθn(1− θ − θ2)
=

Fn+1θ

Fn

.

Thus, for a fixed θ close to zero, and 1 ≤ Fn+1

Fn

≤ 2, the next probability decreases by a

maximum factor of 2θ. Therefore, as θ → 0, the faster the P (N = n) approaches zero.

Now, for the cdf,

P (N ≤ n) = 1− Fn+1θ
n+1 − Fnθ

n+2

= 1− Fn+1θ
n+1(1− θ − θ2)

(1− θ − θ2)
− θ2

Fnθ
n(1− θ − θ2)

(1− θ − θ2)

= 1− P (N = n+ 1)

1− θ − θ2
− θ2

P (N = n)

1− θ − θ2
.

Hence, if θ is small and close to zero, as n increases, the P (N = n) approaches 0, and

P (N ≤ n) approaches 1 faster than with larger θ.
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We can support this claim with the mean and the variance as well. Notice that for

θ = 0.2 the mean and variance are small and for θ = 0.6 the mean, especially the variance

are large. Empirically, most of the probability is around the mean E(N) within some standard

deviations away. Thus, for small θ, with small variance, most of the probability are within

some small interval about the mean or dense around the mean. While, for large θ, with large

variance, most of the probability are of bigger interval about the mean or sparse values. One

can observe further by analysing Figure 2.1, Figure 2.2, and Figure 2.3.

Another observation is that for θ < 0.5, the distribution is strictly decreasing while

for θ ≥ 0.5 there where finite number of oscillations from the start then gradually become a

decreasing function.

Note that
Fn

Fn+1

≥ 0.5 for all n = 0, 1, 2, .... Thus, if θ < 0.5, then
Fn

Fn+1

> θ. It follows

that Fn > θFn+1 or Fnθ
n(1− θ− θ2) > θn+1Fn+1(1− θ− θ2) for all n = 0, 1, 2, .... Therefore,

P (N = n) > P (N = n+ 1) for all n = 0, 1, 2, ....

Meanwhile, for θ = 0.5, we have 2θ = 1. Then F2θ
2 = F1θ implying that P (N =

2) = P (N = 1). Moreover, for n = 2, 3, 4..., we have Fnθ
n = 2Fnθ

n+1 > Fn+1θ
n+1 implying

that P (N = n) > P (N = n + 1). Now, for θ > 0.5, there exists an integer k such that

θ >
Fk

Fk+1

≥ 0.5 implying that P (N = k) < P (N = k + 1). Note that k = 1 is on the list of

those integers. We are interested with m = max

{
k : θ >

Fk

Fk+1

}
. With this, for n ≤ m + 1,

the P (N = n) oscillates because of the monotonicity of
{

F2n

F2n+1

}
and

{
F2n+1

F2n+2

}
. Lastly, for

n > m+ 1, P (N = n) > P (N = n+ 1) since θ <
Fm+1

Fm+2

.
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2.4 Tribonacci Power Series Distribution

In this section, we will use the 3rd order Fibonacci number into the Fibonacci distribution.

2.4.1 Tribonacci Power Series

Definition 2.10. A Tribonacci power series is formed using Tribonacci sequence {Tn} as the

coefficient of the power series. That is,

∞∑
i=0

Tix
i = 1 + x+ 2x2 + 4x3 + 7x4 + 13x5 + ....

Theorem 2.11. The Tribonacci power series

∞∑
i=0

Tix
i = 1 + x+ 2x2 + 4x3 + 7x4 + 13x5 + ...

has a radius of convergence R =
1

φ3

and converges to
1

1− x− x2 − x3
.

Proof. Let φ3 =
1

3

(
1 +

3
√

19 + 3
√
33 +

3
√

19− 3
√
33
)

, which is the only real solution to the

characteristic equation of 3rd order Fibonacci sequence. The radius of convergence can easily

be solved using ratio test. That is,

L = lim
n→∞

∣∣∣∣Tn+1x
n+1

Tnxn

∣∣∣∣ = lim
n→∞

Tn+1

Tn

|x| = φ3|x|.

Choosing R =
1

φ3

, we have

L = φ3|x| < φ3R = 1

Thus, the radius of convergence of the Tribonacci power series is
1

φ3

.
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Now, suppose
∞∑
i=0

Tix
i converges to g(x) for |x| < R. Then

g(x) =
∞∑
i=0

Tix
i

= T0x
0 + T1x

1 + T2x
2 +

∞∑
i=3

Tix
i

= 1 + x+ 2x2 +
∞∑
i=3

(Ti−1 + Ti−2 + Ti−3)x
i

= 1 + x+ 2x2 + x

∞∑
i=3

Ti−1x
i−1 + x2

∞∑
i=3

Ti−2 + x3

∞∑
i=3

Ti−3x
i

= 1 + x

(
1 + x+

∞∑
i=2

Tix
i

)
+ x2

(
1 +

∞∑
i=1

Tix
i

)
+ x3

∞∑
i=3

Ti−3x
i

= 1 + xg(x) + x2g(x) + x3g(x)

g(x) =
1

1− x− x2 − x3
.

2.4.2 Tribonacci Distribution

The proofs and computation for the Tribonacci distribution is similar to the Fibonacci distribu-

tion.

Probability mass function

Definition 2.12. Let N be a random variable that follows the 3rd order Fibonacci distribution

with parameter 0 < θ <
1

φ3

. The probability of N = n is given by the probability mass

function:

P (N = n) := Tnθ
n(1− θ − θ2 − θ3)

for n = 0, 1, 2, ... We call N a Tribonacci random variable with parameter θ.
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Cumulative distribution function

The cumulative distribution is given by the following theorem

Theorem 2.13. If N is a Tribonacci random variable with parameter θ, then the cumulative

distribution function of N is

P (N ≤ k) =

 0 for k < 0

1− Tn+1θ
n+1 − (Tn + Tn−1)θ

n+2 − Tnθ
n+3 for n ≤ k < n+ 1

Moment generating function, Mean and Variance

Theorem 2.14. If N is a Tribonacci random variable with parameter θ, then

1. mgf of N , MN(t) =
1− θ − θ2 − θ3

1− etθ − (etθ)2 − (etθ)3
for t < ln

(
1

φ3θ

)
.

2. mean of N , E(N) =
θ + 2θ2 + 3θ3

1− θ − θ2 − θ3
.

3. variance of N , V ar(N) =
θ + 4θ2 + 8θ3 − 4θ4 − θ5

(1− θ − θ2 − θ3)2
.

Distribution using different parameters

We will show some sample computations of the Tribonacci distribution, its pmf, cdf, mean,

variance and plots with different values of θ.

Table 2.5. The mean and variance of Fibonacci random variable N

θ 0.18 0.36 0.54

Mean, E(N)
666

1985

3076

1879

10505

72

Variance, V ar(N)
840

1459

2274

415

194159

9
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Table 2.6. The pmf and cdf of Tribonacci random variable, N , with parameter θ = 0.18

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.78176800 0.78176800 8 0.00006978 0.99996546

1 0.14071824 0.92248624 9 0.00002310 0.99998856

2 0.05065856 0.97314480 10 0.00000764 0.99999621

3 0.01823708 0.99138189 11 0.00000253 0.99999874

4 0.00574468 0.99712657 12 0.00000083 0.99999958

5 0.00192036 0.99904693 13 0.00000027 0.99999986

6 0.00063815 0.99968508 14 0.00000009 0.99999995

7 0.00021059 0.99989567 15 0.00000003 0.99999998

Table 2.7. The pmf and cdf of Tribonacci random variable, N , with parameter θ = 0.36

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.46374400 0.46374400 8 0.01059700 0.97923123

1 0.16694784 0.63069184 9 0.00701757 0.98624880

2 0.12020244 0.75089428 10 0.00464572 0.99089453

3 0.08654576 0.83744004 11 0.00307635 0.99397089

4 0.05452382 0.89196387 12 0.00203698 0.99600787

5 0.03645307 0.92841694 13 0.00134876 0.99735663

6 0.02422727 0.95264422 14 0.00089307 0.99824971

7 0.01599000 0.96863422 15 0.00059134 0.99884106
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Table 2.8. The pmf and cdf of Tribonacci random variable, N , with parameter θ = 0.54

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.01093600 0.01093600 8 0.00640462 0.06249962

1 0.00590544 0.01684144 9 0.00636192 0.06886155

2 0.00637787 0.02321931 10 0.00631752 0.07517907

3 0.00688810 0.03010742 11 0.00627509 0.08145416

4 0.00650925 0.03661667 12 0.00623251 0.08768668

5 0.00652785 0.04314453 13 0.00619015 0.09387684

6 0.00650777 0.04965230 14 0.00614818 0.10002503

7 0.00644269 0.05609500 15 0.00610646 0.10613150

(a) (b)

Figure 2.4. Plot of (a) pmf, and (b) cdf for Tribonacci random variable N with θ = 0.18, for

n = 0, 1, 2, ..., 15.
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(a) (b)

Figure 2.5. Plot of (a) pmf, and (b) cdf for Tribonacci random variable N with θ = 0.36, for

n = 0, 1, 2, ..., 15.

(a) (b)

Figure 2.6. Plot of (a) pmf, and (b) cdf for Tribonacci random variable N with θ = 0.54, for

n = 0, 1, 2, ..., 15.
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2.5 Infinacci Power Series Distribution

In this section, we will observe the infinite order Fibonacci number into the Fibonacci distribu-

tion.

2.5.1 Infinacci Power Series

Definition 2.15. A infinacci power series is formed using infinacci sequence {In} as the coef-

ficient of the power series. That is,

∞∑
i=0

Iix
i = 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + ....

Theorem 2.16. The infinacci power series

∞∑
i=0

Iix
i = 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + ....

has a radius of convergence R =
1

2
and converges to

1− x

1− 2x
.

Proof. The radius of convergence can easily be solved using ratio test. That is,

L = lim
n→∞

∣∣∣∣In+1x
n+1

Inxn

∣∣∣∣ = lim
n→∞

In+1

In
|x| = 2|x|.

Choosing R =
1

2
, we have

L = 2|x| < 2R = 1

Thus, the radius of convergence of the infinacci power series is
1

2
.

Now, suppose
∞∑
i=0

Iix
i converges to h(x) for |x| < R. Then

h(x) = 1 + x+ 2x2 + 4x3 + 8x4 + 16x5 + ...

= 1 +
x

1− 2x

h(x) =
1− x

1− 2x
.
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2.5.2 Infinacci Distribution

The proofs and computation for the infinacci distribution is similar to the Fibonacci distribution.

Probability mass function

Definition 2.17. Let N be an random variable that follows the infinite order Fibonacci distri-

bution with parameter 0 < θ <
1

2
. The probability of N = n is given by the probability mass

function:

P (N = n) :=


1− 2θ

1− θ
for n = 0,

(2θ)n
1− 2θ

2(1− θ)
for n = 1, 2, 3, ...

We call N an infinacci random variable with parameter θ.

Cumulative distribution function

The cumulative distribution is given by the following theorem

Theorem 2.18. If N is an infinacci random variable with parameter θ, then the cumulative

distribution function of N is

P (N ≤ k) =


0 for k < 0

1− 2θ

1− θ
for 0 ≤ k < 1

1− θ

1− θ
(2θ)n for n ≤ k < n+ 1

Moment generating function, Mean and Variance

Theorem 2.19. If N is an infinacci random variable with parameter θ, then

1. mgf of N , MN(t) =
(1− etθ)(1− 2θ)

(1− 2etθ)(1− θ)
for t < ln

(
1

2θ

)
.

2. mean of N , E(N) =
θ

(1− θ)(1− 2θ)
.
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3. variance of N , V ar(N) =
θ − 2θ3

(1− θ)2(1− 2θ)2
.

Distribution using different parameters

We will show some sample computations of the infinacci distribution, its pmf, cdf, mean, vari-

ance and plots with different values of θ.

Table 2.9. The mean and variance of infinacci random variable N

θ 0.12 0.32 0.48

Mean, E(N)
100

357

200

153

300

13

Variance, V ar(N)
516

1109

845

199

23929

40

Table 2.10. The pmf and cdf of infinacci random variable, N , with parameter θ = 0.12

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.80952380 0.80952380 8 0.00004450 0.99997905

1 0.12952380 0.93904761 9 0.00001424 0.99999329

2 0.04144761 0.98049523 10 0.00000455 0.99999785

3 0.01326323 0.99375847 11 0.00000145 0.99999931

4 0.00424423 0.99800271 12 0.00000046 0.99999978

5 0.00135815 0.99936086 13 0.00000014 0.99999992

6 0.00043460 0.99979547 14 0.00000004 0.99999997

7 0.00013907 0.99993455 15 0.00000001 0.99999999
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Table 2.11. The pmf and cdf of infinacci random variable, N , with parameter θ = 0.32

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.52941176 0.52941176 8 0.00745080 0.98675411

1 0.16941176 0.69882352 9 0.00476851 0.99152263

2 0.10842352 0.80724705 10 0.00305185 0.99457448

3 0.06939105 0.87663811 11 0.00195318 0.99652767

4 0.04441027 0.92104839 12 0.00125003 0.99777770

5 0.02842257 0.94947097 13 0.00080002 0.99857773

6 0.01819044 0.96766142 14 0.00051201 0.99908974

7 0.01164188 0.97930331 15 0.00032769 0.99941743

Table 2.12. The pmf and cdf of infinacci random variable, N , with parameter θ = 0.48

n P (N = n) P (N ≤ n) n P (N = n) P (N ≤ n)

0 0.07692307 0.07692307 8 0.02774575 0.33410192

1 0.03692307 0.11384615 9 0.02663592 0.36073785

2 0.03544615 0.14929230 10 0.02557048 0.38630833

3 0.03402830 0.18332061 11 0.02454766 0.41085600

4 0.03266717 0.21598779 12 0.02356575 0.43442176

5 0.03136048 0.24734827 13 0.02262312 0.45704489

6 0.03010606 0.27745434 14 0.02171820 0.47876309

7 0.02890182 0.30635617 15 0.02084947 0.49961257
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(a) (b)

Figure 2.7. Plot of (a) pmf, and (b) cdf for infinacci random variable N with θ = 0.12, for

n = 0, 1, 2, ..., 15.

(a) (b)

Figure 2.8. Plot of (a) pmf, and (b) cdf for infinacci random variable N with θ = 0.36, for

n = 0, 1, 2, ..., 15.
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(a) (b)

Figure 2.9. Plot of (a) pmf, and (b) cdf for infinacci random variable N with θ = 0.54, for

n = 0, 1, 2, ..., 15.



CHAPTER III

APPLICATION AND SIMULATION

In this chapter, we will compare the Fibonacci distribution to other distribution. Moreover, we

will show some simulation for its application.

3.1 Fibonacci Distribution and Geometric Distribution

Consider the Fibonacci sequence {Fn}. Based on limit of successive ratio of Fibonacci number,

we have

lim
n→∞

Fn+1

Fn

=
1 +

√
5

2
.

By Hadamard’s formula, we can conclude

lim
n→∞

|Fn|
1
n =

1 +
√
5

2
.

Now,

lim
n→∞

|Fn|
1
n = 1 +

−1 +
√
5

2
= lim

θ−→−1+
√
5

2

(1 + θ).

That is, when n is sufficiently large and θ is about its maximum value, F
1
n
n and 1+θ approaches

the same value
1 +

√
5

2
.

Consequently, when N is a Fibonacci random variable with n is sufficiently large and θ
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is about its maximum value,

P (N = n) = Fnθ
n(1− θ − θ2)

=
(
F

1
n
n

)n
θn(1− θ − θ2)

≈ (1 + θ)nθn(1− θ − θ2)

= [(1 + θ)θ]n (1− θ − θ2)

= (θ + θ2)n(1− θ − θ2).

The symbol ‘≈’ means approximately equal to. Let p = 1− θ − θ2 and q = 1− p. Also,

0 < θ <
−1 +

√
5

2

0 < θ2 <

[
−1 +

√
5

2

]2
=

3−
√
5

2

0 < θ + θ2 < 1

0 < q < 1

0 < p < 1.

Implying that P (N = n) ≈ pqn, which is a geometric distribution. Hence, the Fibonacci

probability distribution is nearly a geometric distribution whenever n is large and its parameter

θ is close to its maximum possible value.

Now, for any order of Fibonacci distribution, if you observe the distribution for large

values of n, we can see that the pmf looks like a geometric distribution. We can support this

claim by the successive ratio of the Fibonacci probability distribution. That is,

P (N = n+ 1)

P (N = n)
=

Fk,n+1θ
n+1(1− θ − θ2 − ...− θk)

Fk,nθn(1− θ − θ2 − ...− θk)
=

Fk,n+1

Fk

θ,

where k is the order of Fibonacci number. For large enough n, we can see that
Fk,n+1

Fk

is closer

and closer to a constant value φk. Therefore, the successive ratio of the Fibonacci probability

distribution is almost a constant at the tail of the distribution which is a property of geometric
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distribution. For infinite order Fibonacci distribution, it is clear that for n > 0, the distribution

looks like a geometric distribution. And hence, explaining the claim.

3.1.1 Comparison of Fibonacci distribution and geometric distribution

The underlying condition for the Fibonacci distribution to have geometric distribution as a

limiting form is to have θ → −1 +
√
5

2
and sufficiently large n. See the following table with

θ = 0.612 and p = 1− θ − θ2 = 0.013456

Table 3.1. The comparison of the pmf of Fibonacci random variable N with θ = 0.612 and

Geometric random variable N ′ with p = 0.013456

n P (N = n) P (N ′ = n) Percentage Error(%)

80 0.00444164 0.00455232 2.4312

81 0.00439828 0.00449106 2.0660

82 0.00435534 0.00443063 1.6994

83 0.00431281 0.00437101 1.3315

84 0.00427071 0.00431220 0.9621

85 0.00422901 0.00425417 0.5914

86 0.00418772 0.00419693 0.2193

87 0.00414684 0.00414045 0.1542

88 0.00410635 0.00408474 0.5291

89 0.00406626 0.00402978 0.9054

90 0.00402656 0.00397555 1.2831

The sufficiency of n lies on the approximation that (Fn)
1
n ≈ 1 + θ. In this simulation,

since we have θ = 0.612, the value of n such that (Fn)
1
n − 1 is closest to θ when n = 87.

Therefore, around n = 87 the probability of Fibonacci random variable N is close to the
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probability of Geometric random variable N ′.

The following table will give a guide on some values of θ and n and the given values

are not limited on whats on the table.

Table 3.2. The values of n to have accurate approximation of the Fibonacci distribution with

specific θ to a Geometric distribution

n 29 35 43 58 87 172

θ 0.600 0.603 0.606 0.609 0.612 0.615

3.2 Convergence of Fibonacci random variable

Let {Nn} be a sequence of Fibonacci random variables such that Nn has a parameter θn and

θn → θ as n → ∞ and N be a Fibonacci random variable with parameter θ. Then,

lim
n→∞

P (Nn = k) = lim
n→∞

Fkθ
k
n(1− θn − θ2n)

= Fk lim
n→∞

θkn lim
n→∞

(1− θn − θ2n)

= Fkθ
k(1− θ − θ2)

= P (N = k).

Note that this is valid since k is finite and lim
n→∞

θn assumes to exist.

If θn → −1 +
√
5

2
, then

lim
n→∞

P (Nn = k) = P (N = k) = Fk

(
−1 +

√
5

2

)k
1− −1 +

√
5

2
−

(
−1 +

√
5

2

)2
 = 0.

Therefore, when θn → −1 +
√
5

2
, the Fibonacci random variable Nn

d−→ 0, and so Nn
p−→ 0.

Consider θn → 0 and fixed r ≥ 1. Let g(x) =
1

1− x− x2
, then

lim
n→∞

E(N r
n) = lim

n→∞

1

g(θn)

dr

dtr
g(etθn)

∣∣∣∣
t=0

= lim
n→∞

1

g(θn)
lim
n→∞

dr

dtr
g(etθn)

∣∣∣∣
t=0

.



40

Since r is finite, the order of limit and derivative can be changed. Also, lim
n→∞

g(θn) = g(0) = 1.

Thus,

lim
n→∞

E(N r
n) =

1

g(0)

dr

dtr
lim
n→∞

g(etθn)

∣∣∣∣
t=0

=
dr

dtr
g(0)

∣∣∣∣
t=0

=
dr

dtr
(1)

∣∣∣∣
t=0

= 0

Hence, when θn → 0, the sequence of Fibonacci random variable {Nn} converges in rth mean

to the zero random variable, and therefore converges in probability and in distribution to the

zero random variable.

3.3 Application of the distribution

The original application of this distribution came from the paper of Shane [1]. The random

experiment came from a fair coin tossing. Suppose you will toss a coin repeatedly and stops

when you obtained an outcome of consecutive heads, then the sample space looks like

{HH,THH,HTHH, TTHH,HTTHH, THTHH, TTTHH, ...}.

Since we have a fair coin, the probability of having a head on a single toss is
1

2
and the proba-

bility of having a tail on a single toss is also
1

2
. Thus, P ({HH}) = 1

2

1

2
=

1

4
, P ({THH}) =

1

2

1

2

1

2
=

1

8
, and so on.

This random experiment can represent a random variable N that describes the number

of trials before reaching two consecutive heads. That is, n = 0 implies that there are no coin

toss before getting two consecutive heads, n = 1 implies that there is 1 coin toss before getting

two consecutive heads, n = 2 implies that there are 2 coin tosses before getting two consecutive

heads, and so on.
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This random variable is a Fibonacci random variable with parameter θ =
1

2
or 1− θ −

θ2 =
1

4
. Since the probability is mapped as

P (N = 0) = P ({HH}) = 1

4
= F0

(
1

2

)0
1

4
,

P (N = 1) = P ({THH}) = 1

8
= F1

(
1

2

)1
1

4
,

P (N = 2) = P ({HTHH, TTHH}) = P ({HTHH}) + P ({TTHH})

=
1

16
+

1

16
=

2

16
= F2

(
1

2

)2
1

4
,

and so P (N = n) = Fn

(
1

2

)n
1

4
=

Fn

2n+2
.

We can create a simulation of similar experiment using MatLab. Suppose we want to

observe the distribution for n = 0, 1, 2, ..., k and m experiments. The algorithm is as follows

Step 1. Randomly generate m binary strings of length k + 2 and embed it into a matrix A

Step 2. Create a frequency table n vs f(n)

Step 3. For i = 1 : k + 1

1. Find all rows with 1 on both the ith and (i+ 1)st columns

2. Count the number of rows, this is the frequency of i-1, stored in f(n = i− 1)

3. Delete all these rows

Step 4. For i = k+2, we have f(n = k+1) which pertains to the frequency of a binary strings

with no consecutive 1’s which is the remaining number of rows of A.

Step 5. The probability, F (N = n) = f(n)/m.
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Note that MatLab index starts at 1, that is why we start i with 1. Moreover, random

number generator gives different values depending on the seed number or the device. This is

the result for k = 15, m = 1000 and m = 10000 with seed number 0, −rng(0)−.

Table 3.3. Comparison of Fibonacci distribution with θ = 0.5 and simulation of binary string

with success of two consecutive 1’s in 1000 AND 10000 experiments

Fibonacci distribution Simulation: Frequency Distribution

n P (N = n) 1000 experiments 10000 experiments

0 0.25000000 0.249 0.2505

1 0.12500000 0.138 0.1267

2 0.12500000 0.133 0.1273

3 0.09375000 0.091 0.0940

4 0.07812500 0.075 0.0768

5 0.06250000 0.058 0.0625

6 0.05078125 0.046 0.0500

7 0.04101563 0.032 0.0415

8 0.03320313 0.037 0.0328

9 0.02685547 0.026 0.0262

10 0.02172852 0.020 0.0211

11 0.01757813 0.018 0.0166

12 0.01422119 0.018 0.0128

13 0.01150512 0.014 0.0109

14 0.00930786 0.006 0.0091

15 0.00753021 0.004 0.0095

n ≥ 16 0.03189850 0.035 0.0317
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On Table 3.3, we can see clearly, as we increase the number of experiments in a single

simulation, the closer the simulated values to the theoretical values. These simulations supports

the existence of Fibonacci random variable with parameter θ =
1

2
.



CHAPTER IV

DISCUSSION, CONCLUSION AND RECOMMENDATION

The recursive characteristics of a Fibonacci sequence and the convergence of the Fibonacci

power series provide a helpful tool in generating the probability mass function of Fibonacci

random variable and deriving the moment generating function, the mean and the variance of

this distribution. The recursion property shows an important role in developing its application

on some values of θ.

The function P (N = n) = Fk,nθ
n(1 − θ − θ2 − ... − θk), for n = 0, 1, 2, ... is a

power series distribution derived using the kth order Fibonacci sequence {Fk,n} provided that

0 < θ <
1

φk

and has an additive property. Moreover, the moment generating function of

a random variable, N , having this distribution is MN(t) =
1− θ − θ2 − ...− θk

1− etθ − e2tθ2 − ...− ektθk
and

will exists only when t < ln

(
1

φkθ

)
. This moment generating function is useful in finding

the raw moments of a random variable. The closed form pmf, cdf, mgf of the infinite order

Fibonacci distribution are also present in the paper and provides a clear comparison to the

Fibonacci distribution.

The tail of the Fibonacci distribution follows a nearly geometric distribution. This indi-

cates that the geometric distribution can also be approximated by a Fibonacci distribution when

n is large. While limited, the application with θ =
1

2
supports the theory and the simulation

provided supports the existence of the distribution. With these, the Fibonacci distribution might

be able to model actual real life probability and statistical problems.
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To improve this study, it is recommended to study further the behavior of the discrete

probability distribution especially its raw and central moments extending to the distribution’s

skewness and kurtosis. It is also recommended to extend the cumulative distribution to study

the survival function and hazard rate function and deeper on survival and risk analysis. It is

also suggested to study further its possible applications in statistical modelling and data fitting.

Another interesting recommendation is to generate a power series distribution using Lucas

numbers or other sequences with converging power series.
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