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Abstract
We give a simple proof of the strong maximum principle for viscosity subsolutions of fully
nonlinear nonhomogeneous degenerate elliptic equations on the form

F(x, u,Du, D2u) = 0

under suitable assumptions allowing for non-Lipschitz growth in the gradient term. In case
of smooth boundaries, we also prove a Hopf lemma, a boundary Harnack inequality, and
that positive viscosity solutions vanishing on a portion of the boundary are comparable with
the distance function near the boundary. Our results apply, e.g., to weak solutions of an
eigenvalue problem for the variable exponent p-Laplacian.
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1 Introduction

We consider fully nonlinear nonhomogeneous degenerate elliptic equations in nondiver-
gence form,

F(x, u,Du,D2u) = 0, (PDE)
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SE-90187, Umeå, Sweden
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where Du is the gradient, D2u the Hessian, F : Rn × R × R
n × S

n → R, and S
n is the

set of symmetric n × n matrices equipped with the positive semi-definite ordering, i.e., for
X, Y ∈ S

n, we write X ≤ Y if 〈(X − Y )ξ, ξ 〉 ≤ 0 for all ξ ∈ R
n.

We assume that F is proper, i.e.,

F(x, u, p,X) ≥ F(x, v, p, Y ) whenever u ≥ v and X ≤ Y, (F1)

and that one of the following structural assumptions hold, depending on the result. First, in
order to prove the Strong Maximum Principle (SMaP), a Hopf lemma and some boundary
growth estimates we assume that

− F(x, 0, p,X) ≤ φ(|p|)−P−
λ,�(X) whenever x, p ∈ R

n,X ∈ S
n, (F2A)

where P−
λ,�(X) = −�Tr(X+) + λTr(X−) is the Pucci minimal operator for 0 < λ ≤ �

(see Section 2 for details) and φ : [0, ∞) → [0, ∞) is a strictly increasing continuous
function, φ(t) ≥ t , satisfying the Osgood condition∫ 1

0

dt

φ(t)
= ∞. (φA)

Observe that when φ(t) > t , F is not necessarily Lipschitz continuous in the drift term
and the equation can be nonhomogeneous; a prototype example is the variable exponent
p-Laplace equation

−∇ ·
(
|∇u|p(x)−2∇u

)
= 0,

where 1 < p− ≤ p(x) ≤ p+ < ∞ is Lipschitz continuous, satisfying our assumptions with
φ(t) = C (| log t | + 1) t , λ = min{1, p− − 1}, and � = max{1, p+ − 1} (see Section 6). A
counterexample by Julin [25] shows that (φA) is necessary for the SMaP, the weak maximum
principle, and for the comparison principle and uniqueness (see Remark 4.3).

Assumptions (F1) and (F2A) are implied by, e.g., the standard ellipticity assumption

λTr(Y ) ≤ F(x, u, p,X) − F(x, u, p,X + Y ) ≤ �Tr(Y ) (1.1)

for some λ, � > 0 whenever Y is positive semi-definite, together with monotonicity in u

and

− F(x, 0, p, 0) ≤ φ(|p|) whenever x, p ∈ R
n. (1.2)

Note that assumptions (F1) and (F2A) allow nonlinear operators which do not satisfy (1.1),
e.g., operators of the form

F(X) = −�

(
n∑

i=1

�(μ+
i )

)
+ λ

(
n∑

i=1

�(μ−
i )

)

where μ±
i , i = 1, . . . , n, are the postitive and negative eigenvalues of the matrix X ∈ S

n,
respectively, and �, � : [0, ∞) → [0, ∞) are continuous and nondecreasing functions
such that �(s) ≤ s ≤ �(s), see Capuzzo-Dolcetta–Vitolo [17].

Assuming (F1), (F2A) and (φA), we prove that if a viscosity subsolution of (PDE)
attains a positive maximum in the interior of �, then it must be constant (Theorem 4.1).
Moreover, if � satisfies an interior sphere condition and u is a nonconstant viscosity subso-
lution to (PDE), then, for any ω ∈ ∂� s.t. u(w) ≥ lim sup�
x→w u(x) and u(w) > 0 we
prove that

lim sup
s→0

u(w + sγ ) − u(w)

s
< 0
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for any γ ∈ R
n pointing strictly into the domain (Theorem 4.2).

The Strong Minimum Principle (SMiP) for viscosity supersolutions (see Corollary 4.4),
as well as some of the boundary estimates introduced below require, in place of (F2A), one
of the assumptions

F(x, 0, p, X) ≤ φ(|p|) + P+
λ,�(X) whenever x, p ∈ R

n,X ∈ S
n, (F2B)

F(x, r, p,X)≤φ(|p|)+P+
λ,�(X)+γ (r) when r ∈[0, ∞), x, p∈R

n, X∈S
n. (F2B

∗)

Here, P+
λ,�(X) = −λTr(X+) + �Tr(X−) is the Pucci maximal operator, φ is assumed to

satisfy (φA), and γ is a function dominated by φ in the sense that γ (r) ≤ C∗φ(r) whenever
0 ≤ r ≤ 1.

Strong Maximum Principles for solutions of partial differential equations (PDE)s have
attracted lots of attention during the last decades. For linear equations the SMaP dates
back to Hopf (see Gilbarg–Trudinger [22] for a proof) and Calabi [16] considered gen-
eralized solutions of linear equations in nondivergence form. For nonlinear problems,
mainly modeled by the p-Laplacian on divergence form, see Pucci–Serrin [39]. Kawohl–
Kutev [27] and Bardi–Da Lio [8–10] considered fully nonlinear degenerate elliptic PDEs
and Bardi–Goffi [7] nonlinear subelliptic PDEs modeled on Hörmander vector fields. For
nonhomogeneous PDEs of variable exponent p-Laplace type, a proof was given by Fan–
Zhao–Zhang [20] while Zhang [43] considered a larger class of equations and proved a Hopf
lemma for weak C1-supersolutions. See also Wolanski [41, Theorem 4.1] for a proof of the
SMaP for C1-subsolutions. Capuzzo-Dolcetta–Vitolo [17] investigated the validity of the
Alexandrov–Bakelman–Pucci maximum principle and of the Phragmen–Lindelöf principle
for fully nonlinear PDEs. Birindelli–Demengel [12] defined the concept of principal eigen-
value for fully nonlinear second order operators that are elliptic, homogenous and with lower
order terms. Mikayelyan–Shahgholian [38] proved a Hopf lemma for singular/degenerate
PDEs including the p-Laplacian in certain C1,Dini-type domains. Sirakov [40] proved the
weak Harnack inequality and the SMaP for elliptic equations and Birindelli–Galise–Ishii
[13] investigated maximum principles for degenerate elliptic operators whose higher order
term is the sum of k eigenvalues of the Hessian. Julin [25] presented a sharp version of the
Harnack inequality for operators similar to those considered in this paper but without the
dependence on u. In the present paper, we partly generalize some of the above cited works
by allowing for general dependence of |Du| in the first order terms.

The proof of the SMaP and the Hopf lemma builds on comparison with certain clas-
sical supersolutions of (PDE) constructed with inspiration from Avelin–Julin [5] in
Section 3. Using these solutions in a barrier argument inspired by Aikawa–Kilpeläinen–
Shanmugalingam–Zhong [3], we also prove that for domains with C1,1-boundary, positive
viscosity solutions vanishing on a portion of the boundary are comparable with the distance
function near the boundary (Corollary 5.5), i.e.,

c−1 d(x, ∂�) ≤ u(x) ≤ c d(x, ∂�) whenever x ∈ � ∩ B(w, r). (1.3)

As a direct consequence, we obtain a boundary Harnack inequality (Corollary 5.6) for
positive viscosity solutions of (PDE).

Our boundary estimate (1.3) consists of a lower estimate (Theorem 5.1) and an upper
estimate (Theorem 5.2) generalizing the main results of Adamowicz–Lundström [1] to vis-
cosity solutions of more general PDEs. To prove the lower estimate we need the stronger
structural assumption in (F2B

∗) in order to build a positive barrier function consisting of a
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classical subsolution (Lemma 3.2). To prove the upper estimate we need to deal with large
gradients, forcing us to assume that

∫ 1

0
f (t)dt → ∞ as ν → ∞ (φB )

where f (t) solves the differential equation f ′(t)=−φ(f (t)) with initial condition f (0)=ν.
Condition (φB ), whose necessity will be shown by a counterexample in Remark 5.3,

holds, e.g., if there are s0 and C such that

φ(s) ≤ Cs2, whenever s ≥ s0, (1.4)

or, if the Keller-Osserman type condition
∫ ∞

1

dt

φ(t)
= ∞ (1.5)

holds (see Remark 5.4).
The studies of boundary Harnack type inequalities for solutions of differential equations

have a long history. In the setting of harmonic functions on Lipschitz domains, such a result
was proposed by Kemper [28] and later studied by Ancona [4], Dahlberg [18] and Wu
[42]. Subsequently, Kemper’s result was extended by Caffarelli–Fabes–Mortola–Salsa [15]
to a class of elliptic equations, and by Jerison–Kenig [24] to the setting of nontangentially
accessible domains. Banuelos–Bass–Burdzy [6] and Bass–Burdzy [11] considered Hölder
domains while Aikawa [2] studied uniform domains. Recently, Silva–Savin [19] gave a
short proof of a boundary Harnack inequality for solutions of uniformly elliptic equations
in divergence and nondivergence form. Concerning nonlinear PDEs, Aikawa–Kilpeläinen–
Shanmugalingam–Zhong [3] proved similar results in the setting of positive p-harmonic
functions while in the same year Lewis–Nyström [29–31] started to develop a theory for
proving boundary estimates, including the boundary Harnack inequality, for such functions
allowing for more general geometries such as Lipschitz and Reifenberg-flat domains. More-
over, growth estimates near low-dimensional boundaries were considered in Lindqvist [33],
Lundström [34, 35] and Lewis–Nyström [32]. For nonhomogeneous equations Adamowicz–
Lundström [1] proved similar boundary estimates as we do in Section 5 but for positive
p(x)-harmonic functions, and Avelin–Julin [5] proved a sharp boundary Harnack inequal-
ity for operators similar to those considered in this paper but without dependence on u.
Concerning applications of boundary Harnack type inequalities we mention free boundary
problems and studies of the Martin boundary, see, e.g., Lewis–Nyström [30, 31]. We end the
paper by showing that our results hold for weak solutions of an eigenvalue problem for the
variable exponent p-Laplacian, giving boundary estimates which relate to the asymptotic
behavior of solutions near C2-boundaries proven by Zhang in [44].

2 Preliminaries

By � we denote a domain, that is, an open connected set, and for a set E ⊂ R
n we let E

denote the closure and ∂E the boundary of E. Furthermore, d(x,E) denotes the Euclidean
distance from x ∈ R

n to E, and B(x, r) = {y : |x − y| < r} denotes the open ball with
radius r and center x. By c we denote a constant ≥ 1, not necessarily the same at each
occurrence. Moreover, c(a1, a2, . . . , ak) denotes a constant ≥ 1, not necessarily the same
at each occurrence, depending only on a1, a2, . . . , ak .
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Let X ∈ S
n have eigenvalues e1, e2, . . . , en. The Pucci extremal operators P+

λ,� and

P−
λ,� with ellipticity constants 0 < λ ≤ � are defined by

P+
λ,�(X) := −λ

∑
ei≥0

ei − �
∑
ei<0

ei and P−
λ,�(X) := −�

∑
ei≥0

ei − λ
∑
ei<0

ei,

and with Aλ,� := {A ∈ S
n : λI ≤ A ≤ �I } we have

P+
λ,�(X) = sup

A∈Aλ,�

−Tr(AX) = −λTr(X+) + �Tr(X−),

P−
λ,�(X) = inf

A∈Aλ,�

−Tr(AX) = −�Tr(X+) + λTr(X−),

where X = X+ − X− with X+ ≥ 0, X− ≥ 0, and X+X− = 0. For properties of the Pucci
operators see, e.g., Caffarelli–Cabre [14] or Capuzzo-Dolcetta–Vitolo [17].

We next recall the standard definition of viscosity solutions. An upper semicontinuous
(USC) function u : � → R is a viscosity subsolution if for any ϕ ∈ C2(�) and any x0 ∈ �

such that u − ϕ has a local maximum at x0 it holds that

F(x0, u(x0), Dϕ(x0),D
2ϕ(x0)) ≤ 0. (2.1)

A lower semicontinuous (LSC) function u : � → R is a viscosity supersolution if for any
ϕ ∈ C2(�) and any x0 ∈ � such that u − ϕ has a local minimum at x0 it holds that

F(x0, u(x0), Dϕ(x0),D
2ϕ(x0)) ≥ 0. (2.2)

A continuous function is a viscosity solution if it is both a viscosity sub- and viscos-
ity supersolution. In the following we sometimes drop the word “viscosity” and simply
write subsolution, supersolution, and solution. We say that a subsolution (supersolution) is
strict in a domain � if the equality in (2.1) ((2.2)) is strict, and we say that a subsolution,
supersolution, or solution is classical if it is twice differentiable in �.

Let u be a subsolution and v a supersolution of (PDE) and let a and b be constants. As
(PDE) is not homogeneous, a +bu and a +bv are not necessarily sub- and supersolutions.
However, (F1) guarantees that u − c is a subsolution and v + c is a supersolution whenever
c ≥ 0 is a constant.

We will not discuss the validity of a general comparison principle for viscosity solutions
of (PDE) as our proofs only require the comparison with classical strict sub- and super-
solutions and this comparison is always possible. Indeed, let � be a bounded domain, u a
viscosity subsolution, and v a classical strict supersolution in �. Assume that u ≤ v on ∂�

and that u ≥ v somewhere in �. By USC the function u − v then attains a maximum ≥ 0
at some point x0 ∈ �. Since v ∈ C2(�), u − v has a maximum at x0, and u is a viscosity
subsolution it follows by definition that

F(x0, u(x0),Dv(x0),D
2v(x0)) ≤ 0. (2.3)

But since v is a classical strict supersolution we have F(x, v(x),Dv(x), D2v(x)) > 0
whenever x ∈ �, and as u(x0) ≥ v(x0) it follows from (F1) that F(x0, u(x0),Dv(x0),
D2v(x0)) ≥ F(x0, v(x0),Dv(x0),D

2v(x0)) > 0. This contradicts (2.3) and hence we have
proved the following simple lemma.

Lemma 2.1 Assume (F1) and let � be a bounded domain, u ∈ USC(�) a viscosity sub-
solution and v ∈ LSC(�) a viscosity supersolution to (PDE), satisfying u ≤ v on ∂�. If
either u is a classical strict subsolution, or v is a classical strict supersolution, then u < v

in �.
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Remark 2.2 We remark that the choice of viscosity solutions is not necessary for our results;
other definitions of “weak solutions” can be considered in our arguments as long as such
subsolutions (supersolutions) are USC (LSC) and can be compared to classical strict super-
solutions (subsolutions) in the sense of Lemma 2.1. For example, it is not necessary for
our proofs that F is continuous w.r.t. x, even though this is often assumed in the viscosity
solution framework.

When dealing with boundary estimates we make use of the following sphere conditions.
A point w ∈ ∂�, where � ⊂ R

n is a domain, satisfies the interior sphere condition with
radius ri > 0 if there exists ηi ∈ � such that B(ηi, ri) ⊂ � and ∂B(ηi, ri) ∩ ∂� = {w}.
Similarly, w ∈ ∂� satisfies the exterior sphere condition with radius re > 0 if there exists
ηe ∈ R

n \ � such that B(ηe, re) ⊂ R
n \ � and ∂B(ηe, re) ∩ ∂� = {w}. A point w ∈ ∂�

satisfies the sphere condition with radius rb if it satisfies both the interior and exterior sphere
condition with radius rb. A domain � ⊂ R

n is said to satisfy the (interior/exterior) sphere
condition if the corresponding condition holds for all w ∈ ∂�. It is well known that � ⊂ R

n

satisfies the sphere condition if and only if � is a C1,1-domain, see Aikawa–Kilpeläinen–
Shanmugalingam–Zhong [3, Lemma 2.2] for a proof.

3 Construction of Auxiliary Functions

This section is devoted to the construction of some classical strict sub- and supersolutions
of (PDE) which will be used in our proofs of the maximum principles and the bound-
ary estimates. The first lemma gives negative subsolutions and positive supersolutions with
arbitrary small gradients in an annulus, needed in the proof of Hopf’s lemma, the SMaP,
and the SMiP. The arguments, which are inspired by Avelin–Julin [5], were recently further
advanced by the first author in [36] for proving sharp Phragmen–Lindelöf principles for
subsolutions of (PDE) in halfspaces of Rn.

Lemma 3.1 Assume that (F1), (F2B) and (φA) hold. Suppose that r ≤ r∗, M > 0, and y ∈
R

n are given and let A := B(y, 2r) \ B(y, r). Then there exist positive m(λ, �, n, φ, r∗) ≤
M , μ(λ, �, n, φ, r∗,M), and a negative radial classical strict subsolution ǔ of (PDE) in
A such that

ǔ = 0 on ∂B(y, r), ǔ = −mr on ∂B(y, 2r), and μ ≤ |Dǔ(x)| ≤ μ−1 in A.

Moreover, if we assume (F2A) in place of (F2B), then v̂ = −ǔ is a positive radial classical
strict supersolution to (PDE) in A.

In the above lemma, it is crucial that M > 0 is arbitrary and that 0 < m ≤ M , meaning
that we can construct arbitrarily flat strict sub- and supersolutions. Together with (F1) this
allows us to find a classical strict subsolution ǔ and supersolution v̂ in A satisfying

v̂ = −ǔ = M̃ − mr > 0 on ∂B(y, r) and v̂ = −ǔ = M̃ on ∂B(y, 2r) (3.1)

whenever M̃ > 0 is given.
In order to prove the lower boundary growth estimate for positive solutions of (PDE)

we need a positive barrier from below in terms of a classical strict subsolution. The fol-
lowing lemma, which is similar to Lemma 3.1, shows that this is possible. Note however
that, contrary to Lemma 3.1, we now need to impose some extra control on the growth of
F(x, r, p,X) in the parameter r . Namely, we need (F2B

∗) in place of (F2B). Due to the



Strong Maximum Principle and Boundary Estimates for Nonhomogeneous...

generality of the function γ in (F2B
∗) we need to bound the maximal size r∗ of the annulus

in order to handle the lower order terms in γ (u).

Lemma 3.2 Assume that (F1), (F2B
∗) and (φA) hold. Suppose that r ≤ r∗ ≤ 1,

0 < M , and y ∈ R
n are given and let A = B(y, 2r) \ B(y, r). Then there exist positive

m(λ, �, n, φ, r∗, C∗) ≤ M , μ(λ,�, n, φ, r∗, C∗,M), and a positive radial classical strict
subsolution ˇ̌u of (PDE) in A such that

ˇ̌u = mr on ∂B(y, r), ˇ̌u = 0 on ∂B(y, 2r) and μ ≤ |D ˇ̌u(x)| ≤ μ−1 in A.

The next lemma gives existence of a classical strict supersolution that is zero on the inner
ball of the annulus A and as large as needed on the outer ball; the proof therefore needs
(φB ), which is an assumption on φ(t) for large t , to handle the steep gradients.

Lemma 3.3 Assume that (F1), (F2A) and (φB ) hold. Suppose that r ≤ r∗, M > 0, and
y ∈ R

n are given. Then there exist positive m(λ,�, n, φ, r∗) ≥ M , ν(λ, �, n, φ, r∗,M),
k(λ, �, n, φ, r∗,M) > 1, and a classical strict supersolution ˆ̂v of (PDE) in Ak := B

(y, kr) \ B(y, r) such that

ˆ̂v = 0 on ∂B(y, r), ˆ̂v = mr on ∂B(y, kr) and ν−1 ≤ |D ˆ̂v(x)| ≤ ν in A.

Proof of Lemma 3.1 Let g(t) be a solution to g′(t) = Cφ(g(t)) with initial condition
g(0) = μ > 0, i.e.,

t =
∫ g(t)

μ

ds

Cφ(s)
, (3.2)

where μ and C are constants to be chosen later (see Fig. 1). By assumption (φA) the increas-
ing solution g : [0, 1] → [μ, ∞) is well defined through the implicit function theorem
whenever μ = μ(C, φ) is small enough. Define

m(μ,C, φ) :=
∫ 1

0
g(t)dt (3.3)

and

ǔ(x) = r

(∫ 2−|x−y|/r

0
g(t)dt − m

)
, whenever x ∈ A.

By construction ǔ(x) < 0 whenever x ∈ A, ǔ = 0 on ∂B(y, r), and ǔ = −mr on
∂B(y, 2r) for m as defined in (3.3). By assumption (φA) we also have that μ → 0 implies
g(t) → 0, for all t ∈ [0, 1], and so m, ǔ → 0 as μ → 0. Therefore, by decreasing μ if
necessary, we have m ≤ M . Our choice of μ depends only on C, φ and M .

To prove that ǔ is a strict classical subsolution to (PDE) we first calculate the derivatives
of ǔ. For notational simplicity we set τ := 2 − |x − y|/r and obtain

∂ǔ

∂xi

= −xi − yi

|x − y|g (τ) giving |Dǔ| = g (τ) .

The construction of g(t) implies g′(t) = Cφ(g(t)) and hence

∂2ǔ

∂xj ∂xi

= 1

r

(xi − yi)(xj − yj )

|x − y|2 Cφ (g (τ)) −
(

δij

|x − y| − (xi − yi)(xj − yj )

|x − y|3
)

g (τ) ,
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Fig. 1 (A) The function g(t) in the proof of Lemma 3.1, (B) f (t) in the proof of Lemma 3.3, (C) the
function H(x) showing the necessity of assumption (φA) and (D) the function F(x) showing the necessity
of assumption (φB )

implying

Tr(D2ǔ) = 1

r
Cφ (g (τ)) − n − 1

|x − y|g (τ) .

We now decompose D2ǔ = D2ǔ+ − D2ǔ− so that

Tr
(
D2ǔ+)

= 1

r
Cφ (g (τ)) and Tr

(
D2ǔ−)

= n − 1

|x − y|g (τ) .

Utilizing assumption (F2B) gives, since ǔ ≤ 0, that

F(x, ǔ,Dǔ, D2ǔ) ≤ F(x, 0,Dǔ,D2ǔ) ≤ φ (g (τ)) + � n−1
|x−y|g (τ) − λ

r
Cφ (g (τ)) .

By recalling t ≤ φ(t) and observing that r ≤ |x − y| ≤ 2r for all x ∈ A we conclude

F(x, ǔ,Dǔ, D2ǔ) ≤ φ (g (τ))
(

1 + �n−1
r

− C λ
r

)

and thus by taking C large enough, depending only on λ, �, n, and r∗, we obtain

F(x, ǔ,Dǔ, D2ǔ) < 0 in A.

Consequently, ǔ is a strict classical subsolution to (PDE) in the annulus A. Finally, after
decreasing μ if necessary, we have

μ ≤ |Dǔ| ≤ μ−1

where μ depends only on λ, �, n, φ, r∗, and M . This completes the proof of the classical
strict subsolution ǔ.

By defining v̂ = −ǔ and mimicking the above reasoning, using (F2A) in place of (F2B),
we conclude that v̂ is a classical strict supersolution. The proof of Lemma 3.1 is complete.
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Proof of Lemma 3.2 As the proof largely follows that of Lemma 3.1 we only lay out the
main differences. With g(t) as in (3.2) and m as in (3.3), define

ˇ̌u(x) = r

∫ 2−|x−y|/r

0
g(t)dt whenever x ∈ A.

Then ˇ̌u is a positive function satisfying the specified boundary conditions and which has
the same derivatives as the subsolution candidate ǔ in Lemma 3.1. Applying (F2B

∗) we
conclude

F(x, ˇ̌u,D ˇ̌u, D2 ˇ̌u) ≤ φ (g (τ)) + �
n − 1

|x − y|g (τ) − λ

r
Cφ (g (τ)) + γ ( ˇ̌u(x))

≤ φ (g (τ))

(
1 + �

n − 1

r
− λC

2r

)
+ γ ( ˇ̌u(x)) − λC

2r
φ (g (τ )) .

Recall C∗ given by (F2B
∗) and pick C = C(λ, �, n, r∗, C∗) so large that the first term on

the right hand side of the above inequality is negative and such that λC/(2r∗) ≥ C∗. It then
remains to ensure that

γ ( ˇ̌u(x)) − C∗φ (g (τ)) ≤ 0 (3.4)

whenever ˇ̌u(x) has a small gradient, i.e., whenever g(τ) is small. Since g(t) is a strictly
increasing function it follows that ˇ̌u satisfies the sub-mean value property and thus

ˇ̌u(x) ≤ r|D ˇ̌u(x)| = rg(τ ) → 0 as μ → 0.

By assumption we have γ (r) ≤ C∗φ(r) whenever r ≤ 1 and thus (3.4) holds as long
as r ≤ 1 and g(τ) ≤ 1, since then ˇ̌u(x) ≤ g(τ) ≤ 1 and γ ( ˇ̌u(x)) − C∗φ (g (τ)) ≤
γ ( ˇ̌u(x)) − C∗φ

( ˇ̌u(x)
)

≤ 0. The proof of Lemma 3.2 can thus be completed by taking μ

small enough.

Proof of Lemma 3.3 Let f (t) be a solution to f ′(t) = −Cφ(f (t)) with initial condition
f (0) = ν > 0, where ν and C are constants to be chosen later (see Fig. 1). (A positive
solution exists in a neighbourhood of (0, ν) since φ is continuous.) For small enough k =
k(C, φ) > 1, independent of ν and r , we can define

ˆ̂v(x) = r

∫ |x−y|/r−1

0
f (t)dt, whenever x ∈ Ak := B(y, kr) \ B(y, r). (3.5)

By construction we obtain ˆ̂v = 0 on ∂B(y, r) and ˆ̂v = mr on ∂B(y, kr) where

m =
∫ k−1

0
f (t)dt .

Assumption (φB ) implies m → ∞ as ν → ∞ and therefore we can make m > M by
increasing ν, depending only on φ, k, C and M .

To prove that ˆ̂v is a strict classical supersolution to (PDE), put θ = |x − y|/r − 1 and
differentiate to obtain

Tr(D2 ˆ̂v) = −1

r
Cφ (f (θ)) + n − 1

|x − y|f (θ) and |D ˆ̂v| = f (θ) .

After decomposing D2 ˆ̂v as in the proof of Lemma 3.1 and using ˆ̂v ≥ 0, (F1), and (F2A) we
get

F(x, ˆ̂v, D ˆ̂v, D2 ˆ̂v) ≥ −φ (f (θ)) − � n−1
|x−y|f (θ) + λ

r
Cφ (f (θ)) . (3.6)
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By recalling t ≤ φ(t) and observing that r ≤ |x − y| ≤ kr we conclude

F(x, ˆ̂v,D ˆ̂v, D2 ˆ̂v) ≥ φ (f (θ))
(
−1 − �n−1

r
+ C λ

r

)
> 0

whenever C is large enough, depending only on λ, �, n, and r∗. Thus ˆ̂v is a strict classical
supersolution to (PDE) in the annulus Ak . Moreover, ˆ̂v has bounded gradient since, after
increasing ν if necessary,

ν−1 ≤ |D ˆ̂v| ≤ ν

where ν = ν(λ, �, n, φ, r∗, M).

4 StrongMaximum Principles

We begin by proving the SMaP using a classical contradiction argument based on compari-
son with the supersolution in Lemma 3.1.

Theorem 4.1 (Strong Maximum Principle) Assume that (F1), (F2A) and (φA) hold. Let
� ⊂ R

n be a domain and suppose that u is a viscosity subsolution of (PDE) in �. If u

attains a positive maximum in �, then u is constant.

Proof Assume, by contradiction, that a nonconstant USC subsolution u attains its maximum
M̃ > 0 in � and let K = {x ∈ � | u(x) = M̃}. By assumption K �= �, K �= ∅ and
therefore, by USC, there exist x̄ ∈ � ∩ ∂K and s∗ > 0 such that u(x̄) = M̃ and for every
s < s∗ there is ys ∈ � such that B(ys, s) ∈ �\K , x̄ ∈ ∂B(ys, s) and u(x) < M̃ in B(ys, s).

Lemma 3.1 yields existence of a classical strict supersolution v̂ in the annulus A =
B(ys, 2r) \ B(ys, r), and since M̃ > 0 we see from (3.1) that we can chose v̂ to satisfy

v̂ = M̃ − mr on ∂B(ys, r), and v̂ = M̃ on ∂B(ys, 2r),

with constant m satisfying M̃ − mr ≥ 0 for all r ∈ (0, r∗].
Choose r so that r < s < 2r and B(ys, 2r) ∈ � (after decreasing s if necessary). It

follows that u ≤ v̂ = M̃ on ∂B(ys, 2r). Since u < M̃ on ∂B(ys, r) we can decrease m so
that u ≤ v̂ on ∂B(ys, r) as well (since v = M̃ − mr there). The weak comparison principle
in Lemma 2.1 therefore implies u < v̂ in the annulus A = B(ys, 2r) \ B(ys, r). As the
gradient of v̂ does not vanish in A, x̄ ∈ A and u(x̄) = M̃ , we arrive at a contradiction.

Using a similar argument we next prove the following version of the Hopf lemma.

Theorem 4.2 (Hopf lemma) Assume that (F1), (F2A) and (φA) hold. Let � ⊂ R
n be a

domain, w ∈ ∂�, and suppose that � satisfies the interior sphere condition with B(yw, rw)

at w. If u is a nonconstant viscosity subsolution of (PDE) in �, upper semicontinuous on
� ∪ {w} so that u(w) ≥ lim sup�
x→w u(x) and u(w) > 0, then, for any γ ∈ R

n such that
γ · (w − yw) < 0 we have

lim sup
s→0

u(w + sγ ) − u(w)

s
< 0.

Proof Choose r < rw/2 and let yr = w+2r
(yw−w)
|(yw−w)| . Put M̃ = u(w) > 0. Lemma 3.1 now

yields a classical strict supersolution v̂ in the annulus A = B(yr , 2r) \ B(yr , r) satisfying
v̂ = M̃ on ∂B(yr , 2r) and v̂ = M̃ − mr on ∂B(yr , r). Choosing r small enough, we can
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ensure that v̂ > u on B(yr , r) and thus, from the weak comparison principle in Lemma 2.1
we have that v̂ > u in A. Hence, since v̂ is a radial function with bounded gradient

lim sup
s→0

u(w + sγ ) − u(w)

s
≤ Dv̂(w) · γ < 0.

Remark 4.3 Assumption (φA) is necessary for Theorems 4.1 and 4.2 to hold.

Indeed, assume that (φA) does not hold and follow Julin [25] by defining h : (−1, 1) →
[0, ∞) so that h(x) = 0 for (−1, 0) and

x =
∫ h(x)

0

dt

φ(t)
for x ∈ [0, 1).

Then h′(x) = φ(h(x)) and the function

H(x) = 1 −
∫ x

0
h(s)ds

satisfies H ′′ + φ(|H ′|) = 0 classically on (−1, 1) and violates both the Hopf lemma
and the SMaP. (The SMiP is violated by −H .) Extending H to (−3, 1) evenly in the line
x = −1 produces a classical solution contradicting the maximum principle, the comparison
principle, and uniqueness since constants solve the equation, see Fig. 1.

We end this section by giving the following analogous results for supersolutions of
(PDE):

Corollary 4.4 (I ) Under the assumptions in Theorem 4.2 but with (F2A) replaced by
(F2B), if v is a viscosity supersolution of (PDE) in �, lower semicontinuous on � ∪ {w}
such that v(w) ≤ lim inf�
x→w v(x) and v(w) < 0, then, for any γ ∈ R

n such that
γ · (w − yw) < 0 we have

lim inf
s→0

v(w + sγ ) − v(w)

s
> 0.

(II ) Under the assumptions in Theorem 4.1 but with (F2A) replaced by (F2B) a viscosity
supersolution of (PDE) can not attain a negative minimum in � unless it is constant.
(III ) If the stronger assumption (F2B

∗) holds, then (I) holds with v(ω) < 0 replaced by
v(ω) ≤ 0, and assertion (II) holds also when the minimum is nonpositive.

Proof Statements (I ) and (II ) follow by using the negative subsolution from Lemma 3.1
in place of the positive supersolution in similar arguments as in the proofs of Theorem 4.1
and Theorem 4.2. Assertion (III ) follows using the positive subsolution from Lemma 3.2
in the same arguments.

5 Boundary Growth Estimates

In this section we prove that a positive solution vanishing on a boundary satisfying the
sphere condition vanishes at the rate of the distance to the boundary. We state and prove a
lower estimate for a positive supersolution and an upper estimate for a positive subsolution
separately and give the full combined result in Corollary 5.5. As an immediate consequence,
we also get the boundary Harnack inequality stated in Corollary 5.6.
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Theorem 5.1 (Lower estimate) Assume that (F1), (F2B
∗) and (φA) hold. Let � ⊂ R

n be a
domain satisfying the interior sphere condition with radius ri and take w ∈ ∂� and r s.t.
0 < 2r < ri . Assume that v ∈ LSC(� ∩ B(w, 6r)) is a positive viscosity supersolution of
(PDE) in � ∩ B(w, 6r) satisfying v = 0 on ∂� ∩ B(w, 6r). Then there exists a constant
c = c(λ,�, n, φ, ri , r

−1inf�w,r v, C∗) such that

c v(x) ≥ d(x, ∂�) whenever x ∈ � ∩ B(w, r),

where �w,r = {x ∈ �|r < d(x, ∂�) < 3r} ∩ B(w, 6r).

Proof We follow the lines of Aikawa–Kilpeläinen–Shanmugalingam–Zhong [3, Lemma
3.1]. Take x ∈ �∩B(w, r) and let η ∈ ∂� be such that d(x, ∂�) = |x − η|. By the interior
sphere condition at η we can find a point ηi such that B(ηi, ri) ⊂ � and η ∈ ∂B(ηi, ri).
Now, take the point ηi

2r which is such that η = ηi
2r+2r

η−ηi|(η−ηi )| , i.e., ηi
2r ∈ � lies on a straight

line � between η and ηi on a distance 2r from the boundary ∂�. Then B(ηi
2r , 2r) ⊂ �

so v is a positive viscosity supersolution in B(ηi
2r , 2r). By construction |x − η| < r so

|ηi
2r − x| > r and by the interior sphere condition we get that x lies on the line � and thus

x ∈ A = B(ηi
2r , 2r) \ B(ηi

2r , r).
Next we note that B(ηi

2r , r) ⊂ �w,r and that, for m > 0 small enough, we have

v(x) ≥ inf
�w,r

v ≥ mr > 0 whenever x ∈ �w,r .

Now apply Lemma 3.2 with r∗ = ri/2 and M = r−1 inf�w,r v to ensure existence of a

classical strict subsolution ˇ̌u in the annulus A ⊂ � ∩ B(w, 6r). Moreover, this subsolution
can be taken to satisfy ˇ̌u = 0 on ∂B(ηi

2r , 2r) and ˇ̌u = mr ≤ v(x) on ∂B(ηi
2r , r), for some

m = m(λ, �, n, φ, ri) ∈ (0, r−1 inf�w,r u). Since ˇ̌u ≤ v on the boundaries of the annulus

A = B(ηi
2r , 2r) \ B(ηi

2r , r) and ˇ̌u is a classical strict subsolution we get from the weak

comparison principle in Lemma 2.1 that ˇ̌u(x) ≤ v(x) for all x ∈ A.
Since x ∈ A the result will follow after ensuring that ˇ̌u does not vanish faster than

d(x, ∂�) as x → ∂�. However, this is a consequence of Lemma 3.2 which gives the
existence of a constant c = c(λ,�, n, φ, r−1 inf�w,r v, C∗), independent of x, such that

c−1 ≤ |D ˇ̌u| ≤ c. The proof is thus complete.

We next prove an upper estimate of viscosity subsolutions vanishing on a portion of a
domain satisfying an exterior sphere condition.

Theorem 5.2 (Upper estimate) Assume that (F1), (F2A) and (φB ) hold. Let � ⊂ R
n be

a domain satisfying the exterior ball condition with radius re and take w ∈ ∂� and r s.t.
0 < 2r < re. Assume that u ∈ USC(� ∩ B(w, 6r)) is a positive viscosity subsolution of
(PDE) in � ∩ B(w, 6r) satisfying u = 0 on ∂� ∩ B(w, 6r). Then there exists a constant
c = c(λ,�, n, φ, re, r

−1 supB(w,6r)∩� u) such that

u(x) ≤ c d(x, ∂�) for x ∈ � ∩ B(w, r).

Proof We follow the lines of Aikawa–Kilpeläinen–Shanmugalingam–Zhong [3, Lemma
3.3] and take x ∈ � ∩ B(w, r) and let η ∈ ∂� be such that d(x, ∂�) = |x − η|. By the
exterior sphere condition at η we can find a point ηe such that B(ηe, re) ⊂ R

n \ � and
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η ∈ ∂B(ηe, re). Now, take the point ηe
r which is such that η = ηe

r + r
η−ηe

|(η−ηe)| (i.e., ηe
r �∈ �

lies on the straight line γ between η and ηe on a distance r from the boundary ∂�).
Applying Lemma 3.3 we ensure existence of a classical strict supersolution ˆ̂v in the

annulus A = B(ηe
r , 2r) \ B(ηe

r , r) satisfying v̂ = 0 on ∂B(y, r) and v̂ = mr on ∂B(y, 2r).
Moreover, we are free to choose m such that m ≥ M = r−1 supB(w,6r)∩� u so that ˆ̂v > u on

the boundary of B(ηe
r , 2r)∩� and since ˆ̂v ≥ 0 also dominates u on �∩B(w, 6r) we are in

a position to apply the weak comparison principle in Lemma 2.1. We thus obtain u ≤ ˆ̂v in
B(ηe

r , 2r)∩� and since x belongs to this set the result follows by showing that ˆ̂v vanishes at
least as fast as d(x, ∂�) when x → ∂�. However, this is immediate by the gradient bound
in Lemma 3.3, with constant depending on λ, �, n, φ, re and M = r−1 supB(w,6r)∩� u.

We now comment on the necessity of the assumptions in Theorem 5.1 and Theorem 5.2.
Indeed, necessity of (φA) for the lower bound follows by the counterexample in Remark 4.3
as the derivative of 1 −H approaches zero as the function itself vanishes near the origin. To
see the necessity of (φB ) for the upper bound, assume that it does not hold. Then for ε > 0
there is C < ∞ such that ∫ ε

0
f (t)dt ≤ C for all ν > 0

where f (t) solves the differential equation f ′(t) = −φ(f (t)) with initial condition f (0) = ν.
Define

F(x) =
∫ x

0
f (t)dt, whenever x ∈ (0, ε)

and note that then F ′(x) = f (x) and F(x) satisfies the differential equation

F ′′ + φ(|F ′|) = 0.

Moreover, F ′(0) = f (0) = ν which explodes as ν → ∞, see Fig. 1. This contradicts the
upper bound in Theorem 5.2 and we conclude the following remark:

Remark 5.3 Condition (φA) is necessary for the lower bound in Theorem 5.1 and condition
(φB ) is necessary for the upper bound in Theorem 5.2.

As assumption (φB ) is a bit technical we here comment on some functions φ satisfying
it. To this end we restrict to φ(s) = sk , k ≥ 1, and note that the solution to f ′(t) = −f (t)k

with initial condition f (0) = ν yields

f (t) =
{

νe−t if k = 1,(
(k − 1)t + ν1−k

) 1
1−k if k > 1.

Therefore,

∫ ε

0
f (t)dt =

⎧⎪⎪⎨
⎪⎪⎩

ν
(
1 − e−ε

)
if k = 1,

log(1 + εν) if k = 2,

1
2−k

(
ν2−k − (

(k − 1)ε + ν1−k
) 2−k

1−k

)
otherwise,
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and the above integral diverges for any ε > 0 whenever 1 ≤ k ≤ 2 and converges if k > 2,
as ν → ∞. Thus assumption (φB ) is satisfied if and only if k ≤ 2 and it follows that
condition (1.4) implies (φB ). Moreover, as∫ ∞

1

dt

φ(t)
= ∞

ensures that (1.4) holds we have proved:

Remark 5.4 The Keller-Osserman type condition (1.5) implies (1.4) which in turn implies
(φB ).

Using the lower and upper estimates in Theorems 5.1 and 5.2 we conclude that positive
viscosity solutions vanishing on a portion of the boundary are comparable with the distance
function near the boundary.

Corollary 5.5 Let � ⊂ R
n be a domain satisfying the sphere condition with radius rb.

Assume that (F1), (F2A), (F2B
∗), (φA), and (φB ) hold. Let w ∈ ∂� and 0 < r < rb.

Assume that u is a positive viscosity solution of (PDE) in � ∩ B(w, 6r), continuous in
� ∩ B(w, 6r) satisfying u = 0 on ∂� ∩ B(w, 6r). Then there exists a constant c such that

c−1 d(x, ∂�) ≤ u(x) ≤ c d(x, ∂�) whenever x ∈ � ∩ B(w, r).

The constant c has dependence according to Theorems 5.1 and 5.2.

An immediate consequence of Corollary 5.5 is the boundary Harnack inequality.

Corollary 5.6 (Boundary Harnack inequality) Let �, w, r , and u be as in Corollary 5.5
and suppose that v is another solution satisfying the same properties as u. Then there exists
a constant c such that

1

c
≤ u(x)

v(x)
≤ c whenever x ∈ � ∩ B(w, r).

The constant c has dependence according to Theorems 5.1 and 5.2.

6 A Variable Exponent Eigenvalue Problem

In this section we discuss our results in the setting of the eigenvalue problem

− �p(x) := −∇ ·
(
|∇u|p(x)−2∇u

)
= −a|u|q(x)−2u, (6.1)

where 1 < p− ≤ p(x) ≤ p+ < ∞ is Lipschitz continuous, a ≥ 0, and where q(x) is to be
specified later. To be able to apply our results to (6.1) we define

−F(x, u,Du,D2u) = Tr(D2u) + (p(x) − 2)�∞u + log |Du|〈Dp, Du〉 − a|u|q(x)−2u,

where �∞u denotes the normalized infinity Laplace operator �∞u = 〈D2u Du
|Du| ,

Du
|Du| 〉.

Note that the above operator coincides with (6.1) if |Du| �= 0 (which is enough for our
needs). Moreover, it satisfies (1.1) and (1.2) and therefore also (F2A) (without further
restrictions on q) and if q(x) ≥ 2 it satisfies also (F2B

∗) with

λ = min{1, p− − 1}, � = max{1, p+ − 1}, φ(t) = C (| log t | + 1) t, and γ (t) = at, (6.2)

where φ(t) = C (| log t | + 1) t satisfies both the Osgood condition (φA) and the Keller-
Osserman condition (1.5). By these observations, we can conclude that given the validity of
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a comparison principle, our main results apply to solutions (considered in a suitable weak
sense) of (6.1).

To be a bit more precise, but still leaving a general discussion of (6.1) to experts in the
field of variable exponent eigenvalue problems, we note that solutions of (6.1) are often
considered in the following weak sense: A function u ∈ W 1,p(x)(�) is a weak solution of
(6.1) in � if ∫

�

(
〈|∇u|p(x)−2∇u,∇ψ〉 + a|u|q(x)−2uψ

)
dx = 0, (6.3)

whenever ψ ∈ W
1,p(x)

0 (�), see, e.g., Harjulehto–Hästö–Lê–Nuortio [23] for details, applica-
tions, and a general overview of variable exponent problems. It is a non-trivial task to show
that weak solutions in the sense of (6.3) are also viscosity solutions, see, e.g., Juutinen–
Lukkari–Parviainen [26] and Julin [25] for the case a = 0. However, as the results of
Sections 4 and 5 only rely on the classical sub- and supersolutions constructed in Section 3
together with the weak comparison principle in Lemma 2.1, we can, using the corresponding
comparison principle in Lemma 6.2 below, conclude that the results of Sections 4 and 5
hold also in the setting of weak solutions of (6.1) (cf. Remark 2.2). In particular:

Corollary 6.1 If q(x) = p(x) and q(x) ≥ 2 then all Theorems in Sections 4 and 5 apply
to continuous weak solutions of (6.1). The dependence of constants in the Theorems of
Section 5 can be traced via (6.2).

As already mentioned in the Introduction, earlier results on maximum principles for vari-
able exponent problems can be found in Fan–Zhao–Zhang [20] and Zhang [43], and we
also remark that our boundary estimates in Corollary 6.1 relate to the asymptotic behavior
of solutions near C2-boundaries proven by Zhang in [44].

We proceed by noting that existence of weak solutions of −�p(x) = −a|u|p(x)−2u when

a =
∫
�

|∇u(x)|p(x) dx∫
�

|u(x)|p(x) dx

follows by Mendez [37]. Next, we give the following proof of the comparison principle
based on Fleckinger-Pellé–Takáč [21, Proposition 4.1]:

Lemma 6.2 Assume that u, v ∈ W 1,p(x)(�) are weak solutions, respectively, of

− �p(x)u = −a|u|p(x)−2u + f (x), u = g on ∂�, (6.4)

and

− �p(x)v = −a|v|p(x)−2v + f ′(x), v = g′ on ∂�. (6.5)

Let p′ be such that 1/p + 1/p′ = 1 and assume a > 0, f ≤ f ′ in Lp′(x)(�), and g ≤ g′ in
W 1/p′,p(∂�). Then u ≤ v a.e. in �.

Proof Set w = u − v and w+ = max{w, 0}, w− = max{−w, 0}. Then w = w+ − w− by
definition and w+ ∈ W 1,p(x)(�) with trace w+ = 0 on ∂�. By multiplying (6.4) with w+,
integrating over �, and applying integration by parts, we get∫

�

|∇u|p(x)−2〈∇u,∇w+〉 dx = −
∫

�

∇ · (|∇u|p(x)−2∇u)w+ dx

= −a

∫
�

|u|p(x)−2uw+ dx +
∫

�

f w+ dx.
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Applying the same procedure to (6.5), subtracting the two equations, and recalling f ≤ f ′,
we get∫

�

(
|∇u|p(x)∇u − |∇v|p(x)−2∇v

)
· ∇w+ dx + a

∫
�

(
|u|p(x)−2u − |v|p(x)−2v

)
w+ dx

=
∫

�

(f − f ′)w+ dx ≤ 0.

Next consider the sets

�+ = {x ∈ � | u(x) > v(x)} and �−
0 = {x ∈ � | u(x) ≤ v(x)}.

Note that � = �+ ∪ �−
0 and that in �+ we have w+ = u − v > 0 and ∇w+ = ∇u − ∇v,

while in �−
0 we have w+ = ∇w+ = 0 (see Gilbarg–Trudinger [22, Lemma 7.6]). Using

this the previous equation can be written as∫
�+

(
|∇u|p(x)−2∇u − |∇v|p(x)−2∇v

)
· ∇(u − v) dx

+a

∫
�+

(
|u|p(x)u − |v|p(x)−2v

)
(u − v) dx (6.6)

=
∫

�+
(f − f ′)w+ dx ≤ 0.

Next, assume that u ≤ v does not hold in a set of positive measure, i.e., assume that |�+| >

0. We will now prove a contradiction by showing that the left-hand side of (6.6) must be
positive in this case. First, since |u|p(x)−2u is monotonically increasing for a.e. x ∈ � and
a > 0, we have

a

∫
�+

(
|u|p(x)−2u − |v|p(x)−2v

)
(u − v) dx > 0.

Second, using Cauchy–Schwarz inequality we observe that
∫
�+

(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v
) · ∇(u − v) dx

≥ ∫
�+

(|∇u|p(x)−1 − |∇v|p(x)−1
)
(|∇u| − |∇v|) dx ≥ 0.

The above two displays together with (6.6) give the contradiction and thus the desired result
follows.

We end the paper by noting that in case of the eigenvalue problem (6.1), our auxiliary
functions constructed in Section 3 can be replaced by those constructed in Adamowicz–
Lundström [1, Lemma 4.1]. Indeed, restricting our attention to (6.1) we may prove most of
our main results using the following lemma, together with a similar result for subsolutions:

Lemma 6.3 Let p(x) ∈ (p−, p+) belong to C1(�̄), q(x) ∈ (q−, q+), M > 0 and define

û(x) = M

e−μ − e−4μ

(
e−μ − e

−μ
|s−y|2

r2

)
whenever x ∈ B(y, 2r) \ B(y, r).

Then there are constants r∗ = r∗(p−, ‖p‖L∞) and μ∗ = μ∗(p+, p−, q−, q+, n,

‖p‖L∞ , M) such that for r ≤ r∗ and μ ≥ μ∗ it holds that û(x) = M on ∂B(y, 2r),
û(x) = 0 on ∂B(y, r) and û is a classical supersolution of (6.1).
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Proof The proof in Adamowicz–Lundström [1, Lemma 4.1] hinges on calculating �p(x)u

for u = Ae
−μ

|s−y|2
r2 + B and then choosing A and B appropriately. The estimates (4.1),

(4.6), and (4.8) in [1] carry forward the need for �p(x)u ≤ 0 by choosing μ and r so that

μ(8r‖∇p‖L∞ − 2(p− − 1))

+2r‖∇p‖L∞
(

log

(
4

1 − e−3μ

)
+ | log M| + | log r|

)
(6.7)

+n + p+ − 2 ≤ 0.

The first term is negative if r ≤ p−−1
4‖∇p‖L∞ and with a small upper bound on r , r| log r| is

increasing, meaning the second term does not blow up for smaller r . The inequality then
holds for a big enough positive μ.

In the present case we have �p(x)u ≤ a|u|q(x)−2u (in place of �p(x)u ≤ 0), which enters
on the R.H.S. of (6.7). Sticking to the same choice of A and B as in [1] we have 0 ≤ u ≤ M

and the inequality still holds trivially if a ≥ 0. If a < 0, we can move the extra term to the
L.H.S. of (6.7) and note that

−a|u|q(x)−2u ≤ −a

∣∣∣∣ M

e−μ − e−4μ
(e−μ − e

− |x−y|2
r2 )

∣∣∣∣
q(x)−1

≤ −a max{Mq+−1, Mq−−1}
since

0 <
e−μ − e

− |x−y|2
r2

e−μ − e−4μ
< 1.

This means the additional term is bounded so that, with μ large enough, the L.H.S. of (6.7)
will stay non-positive as in [1]. (The case a < 0 is not very useful as the comparison
principle is not valid.) This completes the proof of the lemma.
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