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ABSTRACT
Cyber-physical disaster systems (CPDS) are a new cyber-physical
application that collects physical realm measurements from IoT
devices and sends them to the edge for damage severity analysis
of impacted sites in the aftermath of a large-scale disaster. How-
ever, the lack of effective machine learning paradigms and the data
and device heterogeneity of edge devices pose significant chal-
lenges in disaster damage assessment (DDA). To address these
issues, we propose a generative adversarial network (GAN) and a
lightweight, deep transfer learning-enabled, fine-tuned machine
learning pipeline to reduce overall sensing error and improve the
model’s performance. In this paper, we applied several combina-
tions of GANs (i.e., DCGAN, DiscoGAN, ProGAN, and Cycle-GAN)
to generate fake images of the disaster. After that, three pre-trained
models: VGG19, ResNet18, and DenseNet121, with deep transfer
learning, are applied to classify the images of the disaster. We ob-
served that the ResNet18 is the most pertinent model to achieve a
test accuracy of 88.81%. With the experiments on real-world DDA
applications, we have visualized the damage severity of disaster-
impacted sites using different types of Class Activation Mapping
(CAM) techniques, namely Grad-CAM++, Guided Grad-Cam, &
Score-CAM. Finally, using k-means clustering, we have obtained
the scatter plots to measure the damage severity into no damage,
mild damage, and severe damage categories in the generated heat
maps.
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1 INTRODUCTION
Cyber-Physical Systems (CPS) tightly-integrate networking and
computational algorithms into real-world physical objects to offer
variety of multidisciplinary applications in the fields of transporta-
tion, military, smart environment, healthcare, agriculture, manu-
facturing industry, smart grid, distributed robotics, process control
systems, disaster, and emergency response management [4], [8]. So-
cial sensing based emergency frameworks for disaster systems are
designed for generating post-disaster damage assessment reports
after major events such as cyclone, hurricane, earthquake, wildfire
[12], etc. Afterwards, the emergency rescue teams analyzed the
reports of the impacted sites for real-time geographic information
systems (GIS) and situational awareness. A typical CPDS with the
components of sensing, computation, communication, and control
is given in Figure 1.

In current years, computer vision based autonomous damage
assessment has become a research hotspot with significant devel-
opment in deep learning. The most popular types of deep learning
algorithms have great advantages and generate more sophisticated
results for different computer vision and machine learning (ML)
tasks. However, deep learning algorithms suffer from weak gener-
alization when trained on limited data. Convolutional neural net-
works (CNNs) [9] have significantly improved the performance for
several applications [5]. For example, Patel et al. [8] integrated CNN
with MobileNetV2 and gradient weighted class activation mapping
(Grad-CAM++) to locate and quantify the damages. Banerjee et al.
[1] designed a CNN-based deep learning model for classification
of multiple diseases from chest-X-ray in a federated setting. The
authors show that in federated environment, the ResNet18 model
achieves up to 98.3% accuracy during pneumonia detection. The
main advantage of CNNs is that they can automatically extract rel-
evant features while mitigating the risk of over-fitting and are also
computationally efficient [6]. However, it requires large training
data and also don’t well encode the position and orientation of ob-
jects. Otherwise, it will suffer from data insufficiency problem that
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Figure 1: Smart Cyber-Physical Disaster Systems

causes model overfitting. Generative adversarial networks (GANs)
are much faster than CNN and robust for learning deep representa-
tion without extensively annotated training data [3]. GANs have
produced tremendous performance for diverse applications such as
image synthesis, super-resolution and classification, and pattern
transfer [7]. These benefits of deep learning models are due to data
explosion and fast computation. In fact, edge computing systems are
started being combined with deep learning for realization of edge
intelligence which can offer high resource utilization and through-
put [6]. For visual interpretation of the results, CAM based methods
such as Score-CAM [11], Grad-CAM [10], and Grad-CAM++ [2] are
widely applied for different domains, such as disaster management
[8] and healthcare [1]. In this paper, we focus on deep transfer
learning based model training and GAN based data augmentation
to elevate the problem of model over-fitting, and for assessing the
damage severity from disaster images. The contributions of that
works are as follows,

(1) We developed a GAN and deep transfer learning based ma-
chine learning pipeline for disaster damage assessment.

(2) The training of the CNN on disaster datasets using transfer
learning to classify 6 different types of disasters (e.g., earth-
quake, wildfire, tsunami, avalanche, drought, thunderstorm)

(3) Visualizationwith CAMbased techniques (i.e., Grad-CAM++,
Guided Grad-Cam, and Score-CAM) to demonstrate the ef-
ficacy of the proposed method for assessing the damage
severity (DES) from disaster images.

(4) Clustering on DES scores to find the severity level of the
disaster image into none, mild, and severe classes.

2 PROBLEM FORMULATION
The disaster identification problem consists: (1) GAN based data
augmentation, (2) learning models, (3) image localization, and dam-
age assessment. GAN-based techniques are applied in the data
augmentation while deep transfer learning is used to train learning

models. Class activation mapping (CAM) based methods are applied
for image localization and damage severity assessment (DES).

2.1 Data augmentation
The GAN network incorporates generator G\ (𝑧) and a discrimi-
nator D𝜙 (𝑥). Where 𝑥 denotes samples (either from real images
or generator), and 𝑧 denotes noise vector. The generator and dis-
criminator both play a two-player min-max game. The generator
tries to fool the discriminator by generating samples that are in-
distinguishable from 𝑝𝑖𝑚𝑔 . The Objective of GAN can be written
as,

V(G\ ,D𝜙 ) = E𝑥∼𝑃𝑖𝑚𝑔
[logD𝜙 (𝑥)]+E𝑧∼𝑃 (𝑧 ) [log(1−D𝜙 (G\ (𝑧)))]

(1)

min
\

max
𝜙
V(G\ ,D𝜙 ) (2)

2.2 Learning problem
Let the pretrained model isM(𝑥,𝑤). The disaster image dataset
contains real and generated images of different natural disasters.
Suppose, X contains input images X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, and Y ∈
{0, 𝑘}1×𝑛 contains corresponding labels. The training data is divided
into mini-batches of size, B. The empirical loss function can be
defined as:

L(𝑤,𝑋 ) =
∑
𝑥∈𝑋,𝑦∈𝑌 𝑙 (M(𝑥,𝑤), 𝑦)

𝐵
(3)

where y is the true label for input x. w is the model update and 𝑙 (.)
is the multi-class loss function on each sample of B. The objective
is to generate a optimal model (𝑤∗).

𝑤∗ = arg min
𝑤𝑖 ∈𝑤

L(𝑤𝑖 , 𝑋 ) (4)

2.3 Localization problem
The localization problem is to detect damage severity from the
disaster image efficiently and to identify the affected regions. Lo-
calization problem consists of generating heatmaps and computing
the Damage assessment scores. First we compute the gradient of
feature maps H of a convolutional layer that is used by CAM to
localize disaster images. The aggregation of all gradients of output
𝑌 𝑠 regarding 𝐻𝑘

(𝑖, 𝑗 ) , ∀𝑖, 𝑗 and 𝑍 represents the weights 𝑤𝑐
𝑘
as the

number of pixels in the activation map.

𝑤𝑐
𝑘
=

1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑌𝑠

𝜕𝐻𝑘
(𝑖, 𝑗 )

(5)

Heatmaps are a weighted composite of the created feature maps,
preceded by a ReLU function.

𝑞𝑖, 𝑗 = 𝑅𝑒𝐿𝑈

(∑︁
𝑘

𝑤𝑐
𝑘
𝐻𝑘

)
(6)

However, when an picture has many occurrences of the same class,
the Grad-CAM fails to execute localization appropriately. Grad-
CAM++ solves this problem by taking a weighted average of the
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Figure 2: Proposed Machine Learning Pipeline

pixel-wise gradients.

𝑤𝑐
𝑘
=
∑︁
𝑖

∑︁
𝑗

Φ𝑘𝑐𝑖,𝑗 · 𝑟𝑒𝑙𝑢
( 𝜕𝑌𝑐

𝜕𝐻𝑘
(𝑖, 𝑗 )

)
(7)

where, Φ𝑘𝑐
𝑖,𝑗

is the weighted co-efficient. From the heatmap of the
image, an assessment score is calculated based on the the Equation
(8). We can imply the level of severity (DES) of the disaster (e.g.,
mild, severe), according to this score.

𝐷𝐸𝑆 =
1
𝑍

∑︁
𝑖

∑︁
𝑗

𝑞𝑖, 𝑗 (8)

3 PROPOSED APPROACH
Figure 2 depicts the proposed machine learning pipeline. It is di-
vided into three phases, such as, preprocessing, learning, and, model
containerization and assessment of the damage.

Algorithm 1: Preprocessing (Data augmentation)
1 Input: Disaster image dataset 𝐷𝑟𝑒𝑎𝑙 , and 𝐷𝑟𝑒𝑎𝑙 : X → R
2 Output: Augmented disaster image dataset 𝐷𝑎𝑢𝑔

3 Initialize: number of training epochs (T), number of steps
applied to discriminator (̂ ), ^ = 1

4 for 𝜏 = 1 . . . T do
5 for ^ steps do
6 Sample mini-batch of noise samples

({𝑧𝑖 |∀𝑚
𝑖
𝑧𝑖 ∈ Z, 𝑧𝑖 ∼ P𝑧𝑖 (𝑧𝑖 )}) of size m from latent

space (Z).
7 Sample mini-batch of size m ({𝑥𝑖 |∀𝑚

𝑖
𝑥𝑖 ∈ X}) from

the data generating distribution 𝑝𝑖𝑚𝑔 (𝑥)
8 Update the generator (G\ ) using the gradient

descent step on \ :
∇𝜙𝑉 (𝐺\ , 𝐷𝜙 ) = 1

𝑚∇\
∑𝑚
𝑖=1 log(1 − D𝜙 (G\ (𝑧𝑖 )))

9 Update the discriminator (D𝜙 ) using gradient assent
step on discriminator parameter 𝜙 :

10 ∇\𝑉 (G\ ,D𝜙 ) =
1
𝑚∇𝜙

∑𝑚
𝑖=1 [log𝐷𝜙 (𝑋 𝑖 ) + log(1 − D𝜙 (G\ (𝑧𝑖 )))]

Algorithm 2: Learning
1 Input: Disaster image dataset D, 𝑋𝑖 ∈ D, B = mini batch

Size,E =Total Epochs,
2 Output: Optimal model parameters𝑤∗ , Optimal loss

function L(𝑤∗)
3 Initialize : 𝑤0=𝑤1, _, 𝛽 , 𝛽1, 𝛽2
4 for 𝑒 = 1; 𝑒 ≤ E; 𝑒+ = 1 do
5 for 𝑏 = 1;𝑏 ≤ |𝐷𝑡𝑟𝑎𝑖𝑛 |

B ;𝑏+ = 1 do
6 Compute model update using ADAM optimizer:
7 𝑚𝑏 = 𝛽1𝑚𝑏−1 + (1 − 𝑏1)∇𝑏

8 𝑣𝑏 = 𝛽2𝑚𝑏−1 + (1 − 𝑏2) [∇2]𝑏

9 �̄�𝑏 = 𝑚𝑏

(1−𝑏1𝑏 )
10 𝑣𝑏 = 𝑣𝑏

(1−𝑏2𝑏 )
11 and then calculate
12 𝑤𝑏 = 𝑤𝑏−1 − _ �̄�𝑏

√
𝑣𝑏+𝜖

13 Compute loss using Equation

14 L(𝑤𝑒 ) =
∑

𝑥 ∈𝑋𝑖 ,𝑦∈𝑌𝑖 𝑙 (M(𝑥,𝑤
𝑏 ),𝑦)

𝐵

15 end
16 end
17 Select the model using
18 L(𝑤∗) = min

𝑒=1...𝐸
(L(𝑤𝑒 ))

19 𝑤∗ = arg
𝑒=1...𝐸

min(L(𝑤𝑒 ))

20 return𝑤∗,L(𝑤∗)

Algorithm 1 is the GAN based augmentation for image genera-
tion. We supplied six different disaster image-set (see Table 1) to
the GAN generator. Then we initialize the total number of training
epochs (T ) and number of steps (^) applied to discriminator. The
generator network G, generates candidates from the latent space
and the discriminator network (D) evaluates them. The outcome
of the GAN is a new disaster image dataset 𝐷𝑎𝑢𝑔 . Now, the new
dataset contains 𝐷 ← 𝐷𝑟𝑒𝑎𝑙 + 𝐷𝑎𝑢𝑔 . In Algorithm 2, we divided
the dataset (𝐷) into train (70%), validation (20%), and test(10%) sets.
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Algorithm 3: Assessment of damage and model container-
ization
1 Input: Disaster Dataset 𝐷 with respective output label Y,

trained modelM(D).
2 Output: Damage severity assessment (𝐷𝐸𝑆) of disaster

image.
3 𝐷𝑅𝑀 (M(𝐷)) ← Features extraction of damage recognition

map (𝐷𝑅𝑀)
4 𝐷𝐸𝑆 (𝐷𝑅𝑀 (M(𝐷))) ←Damage severity assessment from

DRM
5 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝐷𝐸𝑆) ← Create three clusters based on the 𝐷𝐸𝑆

score of training images.
6 Return 𝐷𝐸𝑆

Algorithm 4:Model containerization
1 Input: Real-time Disaster Dataset 𝐷𝐼 , trained modelM(𝐷),

Registered edge devices set 𝐸 = {𝐸1, 𝐸2, . . . , 𝐸𝑛}
2 Output: Containerized model 𝐶 (M(𝐷))
3 𝐶 (M(𝐷)) ← Containerize the trained modelM(𝐷)
4 Deploy 𝐶 (M(𝐷)) at the registered edge devices 𝐸.
5 Run the Containerized model 𝐶 (M(𝐷)) on real-time

captured disaster images D𝐼 = {D𝐼1 ,D𝐼2 , . . .D𝐼𝛿 } at edge
devices.

We downloaded pre-trained deep learning models (e.g., ResNet18,
VGG19, DenseNet121 ) and applied transfer learning using 𝐷 . We
initialize the weights (𝑤0) similar to the pre-trained model, and
hyper-parameters _, 𝛽, 𝛽1, 𝛽2. The model is training for a maximum
of E epochs and selecting the best performing modelM(𝐷) from it.
In Algorithm 3, we performed the damage assessment using CAM
and clustering method. A damage detection map is extracted from
there to interpret the damaged area. Heatmaps are used to illustrate
the CAM localized categories, which have soft bounds. We applied
clustering to identify the severity of the identified images. We di-
vided the identified images into three clusters, and each cluster
specifies the range of severity level of the disaster image. The left
cluster (minimum centroid) signifies none, and the rightmost clus-
ter (highest centroid) indicates severe damages. The middle cluster
represents mild damage assessment. To provide lightweight and
leverage computation at proximity of the data sources, we applied
model containerization technique. In Algorithm 4, we containerize
the trained modelM(𝐷). We used docker mechanism to container-
ize a model. The containerized model can be deployed on a set of
Edge devices 𝐸 = {𝐸1, . . . , 𝐸𝑛} to detect disaster images in real-time
(𝐷𝐼 ) and produce the severity level of them.

4 EXPERIMENTAL RESULTS
We carried out the following tasks for experiments:

(1) Data collection : We collected post disaster images of
Earthquake, Wildfire, Tsunami, Avalanche, Drought, and
Thunderstorm from social media and pubic available datasets.
The details of dataset is in table 1.

Table 1: Dataset details

Dataset No. of Images
Earthquake 192
Wildfire 410
Tsunami 234
Avalanche 278
Drought 240

Thunderstorm 235

Table 2: Hyperparameter settings

Architecture Details
Parameter Value

Default hidden layers 16, 19, 150, 103, 48
Training step/epochs 13

Dropout rate 0.4
Batch size 128

Loss function categorical-crossentropy
Optimizer Adam

Activation function Relu
Input layer neurons 150528
Final layer neurons 7
Trainable Parameters 821511, 821511, 1607943, 1345799, 2394375

Non-Trainable Parameters 14714688, 20024384, 2257984, 7037504, 21802784

(2) Data generation : The collected data are insufficient for
training, therefore we applied GAN to generate the data from
the disaster images.

(3) Transfer learning : On the generated and collected data,
we trained deep learning models using transfer learning. The
hyperparameter settings of deep learning models are shown
in Table 2.

(4) Damage detection map : Extract damage detection map
features from images using grad-cam++, guided grad-cam,
and score cam.

(5) Grouping based on severity of damages : We applied
k-means clustering techniques on each dataset based on the
damage detection score to group the images as none, mild,
and severe.

4.1 Results and Discussion
4.1.1 GAN based data augmentation. We used several GAN based
methods, such as Cycle-GAN, Pro-GAN, Disco-GAN, and DCGAN.
We discarded generated images with the low resolution. A compari-
son of the outcome of the different GAN is given in Figure 3. Images
generated by Cycle-GAN and ProGAN are much better than DC-
GAN and DiscoGAN, therefore, images generated form Cycle-GAN
and ProGAN are added to the original dataset for training.

4.1.2 Transfer learning. Here we compared 3 pre-trained models
ResNet18, VGG19, DenseNet121 on disaster image data sets. We
trained these three models for 5 epochs and found that ResNet18
outperforms other methods (see Figure 4). The ResNet18 model
produces the loss 0.12 which in comparison to other models is min-
imum. In Figure 5, we compared the validation accuracy between
ResNet18, VGG19, DenseNet121. ResNet18 converges earlier than

375



Towards Post-disaster Damage Assessment ICDCN 2023, January 4–7, 2023, Kharagpur, India

         CYCLE GAN - RESULT              PROGAN - RESULT

             DCGAN - RESULT         DISCO GAN - RESULT

Figure 3: Comparision betweenCycleGAN, ProGAN,DCGAN,
and DiscoGAN on disaster images

Figure 4: Convergence comparison of VGG19, ResNet18 and
DenseNet121 models on disaster images

other methods and produce accuracy of 88.81%. Also, ResNet 18 is a
lightweight model that reduces the network depth while widening
residual networks.

Figure 5: Comparison of validation accuracy of VGG19,
ResNet18, and DenseNet121 on disaster image set.

Figure 6 shows the performance of VGG19, DenseNet121, and
ResNet18models across test accuracy, precision, recall, and F1-score.
ResNet18 performs best amongst others.

Figure 6: Performance of VGG19, DenseNet121, and ResNet18
models trained on disaster images

4.1.3 CAM-based analysis. In Figure 7, we compared three CAM
based techniques (grad-cam++, guided grad cam, and score cam)
on disaster datasets. We found that Score-cam outperforms other
methods to identify the disaster affected regions.

Figure 7: Comparison of different CAM based approach on
disaster images

4.1.4 Damage severity analysis. We calculated the level of severity
( DES) of each disaster images. And based on the DES scores, we
can determine the severity of the disaster. High DES score means
Sever damage, whereas, low DES means no-damage. DES score
∈ (0, 1) Figure 8, shows clustering of images based on severity of
the disaster. We applied k-means clustering on DES scores and
got 3 clusters such as none, mild, and severe(see in Figure 8). A
cluster with pink dots signifies the severely damaged images. red
dots implies the disaster is mild, and blue dots represent negligible
severity, i.e., no damage. Figure 9, shows how many images fall into
these three categories.

5 CONCLUSION
We proposed a fine-tuned deep transfer learning approach for CPDS
that takes advantage of GAN to get rid of the data insufficiency
problem. We have validated the performance by training three
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Figure 8: Damage severity analysis, Earthquake (Top left),
Wildfire (Top middle), Tsunami (Top right), Avalanche (Bot-
tom left), Drought (Bottommiddle), and Thunder storm (Bot-
tom right)

Figure 9: Dataset details

models, i.e., VGG19, DenseNet121, and ResNet18. We observed
that ResNet18 is the most pertinent deep transfer model for the
real-world disaster damage detection applications. To visualize the
severity of damaged sites, we applied CAM enabled techniques,
including Grad-CAM++, Guided Grad-Cam, and Score-CAM on
trained ResNet18 model and extracted the damage detection maps.
Finally, the clustering technique is applied to analyze the level of
damage severity into 3 classes named as, severe,mild and no damage.
In future, we would like to extend it towards distributed learning.
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