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Abstract: The COVID-19 pandemic has demonstrated the importance of unbiased, real-time statistics
of trends in disease events in order to achieve an effective response. Because of reporting delays, real-
time statistics frequently underestimate the total number of infections, hospitalizations and deaths.
When studied by event date, such delays also risk creating an illusion of a downward trend. Here, we
describe a statistical methodology for predicting true daily quantities and their uncertainty, estimated
using historical reporting delays. The methodology takes into account the observed distribution
pattern of the lag. It is derived from the “removal method”—a well-established estimation framework
in the field of ecology.
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1. Introduction

The coronavirus pandemic has profoundly affected societies all around the world. As
countries were challenged to control and fight back, they were in need of timely, unbiased
data to monitor trends and make fast and well-informed decisions [1]. One of the main
areas of failure identified by the Lancet commission on COVID-19 was “the lack of timely,
accurate, and systematic data on infections, deaths, viral variants, health system responses,
and indirect health consequences” [2]. Official statistics are usually reported with a long
delay after thorough verification, but in the midst of a deadly pandemic, real-time data
are of critical importance for policymakers [3]. The latest data are often not finalized,
but change as new information is reported. In fact, reporting delays mean that the most
recent days have the least cases accounted for, producing a dangerous illusion of an always
improving outlook.

Still, these unfinished statistics offer crucial information. If the pandemic is indeed
slowing, we should not wait for the data to be finalized before using them. In Sweden,
these statistics were reported with a warning sign, indicating that more cases would likely
be reported in the future. In this paper, we argue that by explicitly taking the historical
reporting delay into account, it is possible to produce more accurate statistics. When case
counts and deaths are nowcasted to account for reporting delay, policymakers can use the
latest numbers without being misled by reporting bias.

Predictions produced by a statistical model provide an additional feature that is
perhaps even more important: they model the uncertainty about these unknown quantities,
ensuring that all users of these data have the same view of the current state of the epidemic.

In this paper, we describe a statistical methodology for nowcasting epidemic statistics,
such as hospitalizations or deaths, and the degrees of uncertainty surrounding these
counts. The model is based on the daily reported event frequency and the observed
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distribution of reporting delays. The prediction model builds on a methodology developed
in ecology, often referred to as the “removal method” [4]. We further show that this model
is considerably more accurate and precise than the simpler strategy of simply including the
average historical reporting delay.

To help motivate why such forecasting is needed, we now turn to the case of Sweden.
The model is flexible by design, however, and in our Results section, we present data from
both Sweden and the UK.

Reporting of COVID-19 Statistics in Sweden

The publication of real-time pandemic statistics enables public health professionals
and the public to follow the evolving patterns of the pandemic [5]. It is of specific interest to
identify when the growth rate changes, since such events could indicate the need for a policy
response. The Swedish Public Health Agency updates their public COVID-19 statistics
daily [6]. By downloading these data each day, the authors of this paper have tracked the
reporting delay since the very beginning of the pandemic. See the Supplementary Material
for an archive of these reports.

At the peak of the pandemic, the Swedish Public Health Agency held daily press
conferences where updates on the number of deaths, admissions to hospitals and intensive
care, as well as case counts, were presented [7]. Unlike, e.g., the widely used trackers
published by Our World in Data [8] and the Johns Hopkins Coronavirus Resource Center[9],
where the statistic reported is “Daily new confirmed COVID-19 deaths”, the Swedish Public
Health Agency reported deaths by event date. Each day, new numbers of confirmed deaths
were reported and assigned to their actual date of death. This means that, when the daily
statistics are reported by the Public Health Agency, not all events that have happened up
to that day have yet been registered. Furthermore, the share of registered events is lowest
for the latest dates. As a consequence, presenting the numbers by event date creates the
illusion of a downward trend.

By instead presenting mortality statistics by the date they were reported, like Our
World in Data, no such illusion is created. However, since such reports wrongly attribute
deaths from many days back to the current date, any changes in growth rates will also
show up with a delay. If the reporting delay changes for any reason, for example because
of a weekend or a public holiday, this change will show up as a trend shift in such data.

Reporting delays are different for different statistics. Deaths, which are in many ways
the least biased measure of incidence, suffer from the longest reporting delays. The Swedish
Public Health Agency tried to account for this in their press conference by reporting 7-day
average trends 10 days prior to the latest date. However, in fact, deaths are often reported
with a delay of more than 10 days, and the presentation of this information using a bar plot
gives the false impression of a downward trend even when the cases are rising. Figure 1
displays a screenshot from the daily press conference on 8 May 2020. Once all deaths had
been reported, 80 individuals had died on that date. The black line runs until 28 April.
During this press conference, 69 individuals had been reported dead on 28 April—a number
that would increase to 83 once reporting had finished more than a month later. In other
words, while the Public Health Agency was aware of the reporting delay, they severely
underestimated its magnitude. In fact, this might be the reason that the numbers of daily
deaths have been underestimated by decision makers repeatedly. At the peak of the first
wave, deaths were initially believed to level out at around 60 per day, but after all cases
had been reported more than two weeks later, the actual number was close to 120 [10].
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Figure 1. Screenshot from the daily press conference on 8 May by the Swedish Public Health Agency.
The headline translates to “Number of deceased per day”. The bars show the number of deceased
individuals who have been reported so far, assigned to their true date of death. The sections colored
green show those who have been reported dead within the last 24 hours, while purple-colored bars
represent earlier reported deaths. A 7-day rolling average of daily deaths is plotted as a black line. It
stops on April 28, 10 days before the relevant date, because of the delay in reporting.

Reporting statistics by report date hides the illusory downward trend, but also throws
away potentially useful information about when these newly reported events happened.
Various institutional factors, such as weekends and work holidays, cause regular changes
in reporting delay that are unrelated to the underlying trends in incidence. To rely on such
measures is thus far from optimal. Instead, we propose a method to predict (nowcast) the
actual number of daily deaths, making use of all the available information, including data
about actual death date and the time it took for the death to be reported.

2. Materials and Methods

We propose to use the removal method, developed in animal management [4], to estimate
the actual frequencies on a given day and their uncertainty. The method has a long history,
dating back at least to the 1930s [11]. However, the first refined mathematical treatment of the
method is credited to [12], and more modern derivatives exits today [13]. It is a commonly
applied method today when analyzing age cohorts in fishery and wildlife management.

The removal method has three major advantages over simply reporting moving averages:

• It does not relay any previous trend in the data,
• It allows the generation of prediction intervals for the uncertainty of daily frequencies,
• These uncertainty estimates can be carried over to epidemiological models to in-

crease realism.

A classic example where the method proposed to solve this problem has been used
is in estimating statistics when trapping a closed population of animals [4]. Each day, the
trapped animals are collected and kept. As long as there is no migration, the researcher
will (on average) trap fewer animals each following day, given that a proportion of the
total population is removed. This pattern of a declining number of trapped animals allows
one to draw inference of the underlying population size, under the assumption of equal
probability of catching animals. Our “animal population” is the true number of deaths
(or other events) on a given day. As these numbers (for the specific day) are fixed, they
can be clearly viewed as a closed population. Instead of traps, we have the new reports of
COVID-19 deaths. Using the pattern of declining new reported deaths for a given day, we
can draw inference on how many individuals actually died that day. If we assume that the
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reporting structure is constant over time, we quickly get good estimates of the true number
of deaths.

A formal characterization of the model is available in the Appendix A. Here, we only
include a simple explanation of how the model operates. Suppose, for example, that on day
1, 4 individuals are reported dead for that day. On the second day, 10 deaths are recorded
for day 2. Then, with no further information, it is reasonable to assume that more people
died on day 2.

A simplified version of the model could be described as follows: assume that the delay
structure is such that 10% of the deaths for a given day are reported on the first day and 5%
are reported on the second day. Then, if the first day report is of 20 deaths and the second
day report is also of 20 death, assuming each report is drawn from a binomial distribution
(calculating the likely number of trials needed for 20 successes with a success probability
of 10% and 5% respectively, and where the second draw uses 20 trials less), using Bayes
theorem gives a 95% credible interval that the true number of deaths is within the range
[207, 368] with a mode of 275.

If, in the example above, 60 deaths are reported during the second day to have
happened during day 1, and on the third day, only 40 are reported for day 2, we now have
conflicting information. From the first-day reports, it seemed like more people had died
during day 2, but the second day-reports gave the opposite indication. The model we
propose systematically deals with such data and handles many other sources of systematic
variation in reporting delay. In fact, the Swedish reporting lag follows a calendar pattern.
The number of events reported during weekends is much smaller. To account for this, we
allow the estimated proportions of daily reported cases to follow a probability distribution
taking into consideration what type of day it is.

Since the pre-print version of this study was published, an article on COVID-19
nowcasting for Germany has appeared [14]. The underlying framework is similar to
that employed in this paper, but they model reporting delay with a Poisson (or negative
binomial) distribution rather than a binomial distribution. In addition, two nowcasting
studies published before the pandemic [15,16] use a Poisson (or negative binomial) count
as their likelihood. If the true number of deaths on a given day is small, the Poisson
approximation of the binomial count will be wrong (given unbounded support). However,
for a moderate to large number of deaths, the Poisson approximation is reasonable, given
the law of rare events. To model the underlying pandemic, [14,15] used Brownian motion
and [16] used splines, while we are using Gaussian processes with Matérn covariance
(of which Brownian motion is a special case). The effect of this on nowcasting accuracy
depends on how informative the data are; if a large proportion of cases are being reported in
the first days (the likelihood is very informative), then all methods should perform similarly.
On the other hand, if only a small part of cases are being reported early, the smoothness
of the underlying processes will have a larger effect on the prediction [17]. The estimated
function of the latent processes is differentiable approximately once for Sweden and twice
for the UK, indicating that the latent epidemic is smoother than Brownian motion.

3. Applying the Model to COVID-19 in Sweden and the UK

In this section, we use the model to nowcast daily COVID-19 deaths in Sweden and
the UK. We use data published by the Swedish Public Health Agency and by the UK
Government. The Swedish data are published in daily snapshots. An archive of these
snapshots is required to calculate reporting delays, and is included in the Supplementary
Materials. For the UK, the coronavirus data API allows access to historical reports [18].
We calculate the posterior distribution, prediction median and 95% prediction intervals
of the expected deaths from the reported deaths on each specific day. The method and
algorithm is thoroughly described in the Appendix A. In addition, Appendix B includes
the description of a more computationally efficient algorithm that employs a Laplace-like
approximation of the full model. During the pandemic, this approximation was used in a
nowcast of Swedish death rates that was published online every day [19].
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To get accurate estimates, we apply two institution-specific corrections. First, we only
count workdays as constituting reporting delay, as very few deaths are reported during
weekends. Second, we apply a constant bias correction to account for the fact that Swedish
deaths come from two distinct populations with different reporting delay trends: deaths in
hospitals and deaths in elderly care.

Figure 2 shows a suggestion of how the model could be used to aid decision-making.
We apply the model to the latest statistics from Sweden and the UK. The graph shows
reported and predicted deaths (with uncertainty intervals) as bars, and a dashed line
plots the 7-day (centered) moving average. A version of the plot for Sweden but without
predictions was used in the Public Health Agencyś daily press briefings during the first
wave. As expected, the model provides estimates of actual deaths considerably above the
reported number of deaths for the latest dates. Note that the model predicts additional
deaths above the moving average line.

When comparing the two countries, we see that in Sweden, on average, 7% of deaths
are reported in the first two days of reporting, while 15% of the remaining cases are reported
in the following two days. In contrast, in the UK, 25% of cases are reported in the first two
days of reporting, and 50% of the remaining cases are reported in the following days. This
suggests that the UK is better equipped to detect sudden increases in deaths and respond
promptly based on this information.

0

10

20

30

Mar 08
Mar 15

Mar 22
Mar 29

Apr 05
Apr 12

Apr 19
Apr 26

May 03

Death date

N
um

be
r o

f d
ea

th
s

Sweden

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Mar 08
Mar 15

Mar 22
Mar 29

Apr 05
Apr 12

Apr 19
Apr 26

May 03

Death date

United Kingdom

Model prediction Reported dead 7-day moving average

Figure 2. Reported Swedish and UK COVID-19 deaths as of 6 May 2021 and model predictions.

Model Performance

To judge whether the model is accurate, we need to compare it to a benchmark. The
moving average of reported deaths is not useful, since it is biased for deaths that occurred
within the last week. Instead, we create a benchmark prediction by a normal distribution
where the mean and standard deviation are taken from the historical lags from the last
two weeks of reported numbers. For a death date 2 days ago, we add the mean of deaths
reported after 3 days, 4 days, etc. We use the sum of standard deviations to generate the
prediction intervals, assuming that lags are independent across days. The exact calculation
is described in the Appendix A.

Figure 3 depicts three randomly chosen dates for Sweden and the UK, respectively,
where the model is compared to the benchmark. Both are tasked with predicting the total
number of individuals who have died on the given dates and have been reported within
30 days of that date. As time progresses, more deaths are reported, and the dashed gray
line approaches the horizontal line. Meanwhile, model uncertainty decreases. Swedish
data suffer from considerably longer reporting delays and do not converge until the end of
the 30 days, while British statistics converge faster.
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Figure 3. Model accuracy over time for three randomly chosen dates, compared to the constant
benchmark. The gray dots indicate the actual number of reported dead until that point in time. The
solid line indicates the total number that will have been reported after 30 days.

Figure 4 shows model performance compared to the benchmark for three difference
performance metrics. All graphs are based on predictions of reported deaths within 30 days
and show how performance increases as more data are reported. Each data point is the
average of all dates where predictions can be evaluated. CRPS is a measure of accuracy
that rewards precision; it is a proper scoring rule, like the continuous probability rank score
or the Brier score [20]. The central plot shows the width of the prediction intervals, and the
rightmost one the proportion of prediction intervals that cover the true value.

With only one observation (and 29 reporting days left), the CRPS difference for Sweden
is 4.93. The difference decreases with more data. With 18 reporting days left or less, the
average CRPS difference is below 1. For the UK, the difference starts at 51.79 but decreases
quickly, reaching a difference below 1 already with 23 days left. In other words, it is during
the first days, when the least amount of data is available and prediction the hardest, that
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the model really performs well. During this period, the model predictions more often cover
the truth while simultaneously reporting tighter uncertainty intervals.
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Figure 4. Average (January 2020 to May 2021) model and benchmark accuracy as more information
becomes available.

4. Discussion

The model proposed here can estimate trends in surveillance data with reporting
delays, such as the daily COVID-19 reports in Sweden or the UK. To generate accurate
estimates of the actual event frequencies based on these reports is highly relevant and can
have large implications for interpretations of trends and the evolution of disease outbreaks.
In both countries, delays in reporting increase during the holidays and need to be accounted
for to generate valid predictions for these periods. The method and algorithm proposed
overcomes major shortcomings in the daily, real-time interpretation of COVID-19 statistics.
It also provides valuable measures of uncertainty around these estimates, showing users
how large the range of possible outcomes can be.

Whenever case statistics are collected from multiple sources and attributed to its actual
event date in the middle of a public health emergency, similar reporting delays to those
discussed here will necessarily occur. The method described thus has implications and



Int. J. Environ. Res. Public Health 2023, 20, 3040 8 of 14

value beyond the two cases reported, and can be used in any situation where nowcasts
of disease event frequencies are of relevance to public health. As we build a stronger
pandemic defense for the future, real-time performance indicators will likely play a crucial
role. Taking measurement issues explicitly into account will provide significant advantages
and help to coordinate the beliefs of decision makers towards the true state.

An interesting avenue could be to use the model together with a model estimating
the transmission of a pandemic pathogen to see how reporting delays could impact the
understanding of various scenarios, varying the strength of the pandemic the type of
reporting delay. For example, if a pathogen starts to spread right before a holiday season,
the increasing reporting delay could impact assessments.

Nevertheless, the method also has some limitations. As presented, the model assumes
that all deaths are reported in the same manner. For Sweden, disease prevention and
control is coordinated at the regional level, and institutional reporting differences likely
vary systematically between regions. For example, it is easy to see that the Swedish region
Västra Götaland follows a different reporting structure than Stockholm. Building a model
for each region separately would most likely give better results and make the assumptions
more reasonable. Unfortunately, we do not currently have access to the high-resolution
data required to do so.

Moreover, deaths are reported from two distinct populations that seem to follow
different trends. When the first version of this paper was written, daily deaths in elderly
care were reported with a longer delay and seemed to be decreasing more slowly than
hospital deaths. However, statistics offer only aggregate numbers, prohibiting us from
modeling these two distinct processes separately.

Other systematic patterns can be addressed with the aggregate data we have used.
We noted a clear decline in proportions of deaths reported during the two first working
days of each week in Sweden. For example, for 2 April 2020, ≈30% of deaths were reported
within the first two working days, whereas for 18 May 2020, only ≈10% were reported
during this period. A likely explanation is that reporting routines were adapted to normal
work schedules. Such systematic changes in reporting delay will hurt model accuracy if
not explicitly modeled. Since the model places more weight on recent information, the
negative impact of one-off institutional changes decreases with time, however. Continuous
changes in reporting delay that are not modeled will induce persistent bias and decrease
performance. This is true for any prediction model, as well as the benchmark used here. By
explicitly modeling the variation in reporting delay, the performance advantage over the
benchmark model would only increase.

5. Conclusions

In this paper, we provide a method to accurately nowcast daily COVID-19 statistics
that are reported with delay. By systematically modeling the delay, policymakers can
avoid dangerously illusory downward trends. Our model also gives precise uncertainty
intervals, making sure that users of these statistics are aware of the fast-paced changes that
are possible during a pandemic. By improving the accuracy and speed of data reporting,
our proposed methodology helps to alleviate one of the key problems underscored by the
Lancet commission on COVID-19 [2].

Supplementary Materials: The following supporting information can be downloaded at: https:
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Appendix A. Model

We use a Bayesian version of the removal model that assumes an over-dispersed
binomial distribution for the daily observations of COVID-19 deaths in Sweden. The
reason for using a Bayesian approach is that it is relativity easy to incorporate external
information. It allows us, for instance, to include a latent Gaussian process to model the
underlying pandemic.

Appendix A.1. Notation

Before presenting the model, we describe some notation used throughout the ap-
pendix. For an m × n matrix, r we use the following broadcasting notation: rk,j:l =
[rk,j, rk,j+1, . . . , rk,l ].

Further, x|y ∼ π(.) implies that the random variable x, if we condition on y, follows
the distribution π(.).

The relevant variables in the model are the following:

Variable Name Dimension Description
d T × 1 di is the number of deaths that occurred on the day i.

r T × T rij is number of death recorded for day i at day j. Note that rij
for i < j is not defined.

p T × T pij is the probability of that a death for day i not yet recorded is
recorded at day j. Note that pij for i < j is not defined.

α K× 1 latent prior parameter for p
β K× 1 latent prior parameter for p

αH 2× 1 parameter for the probability, p for holiday adjustment
βH 2× 1 parameter for the probability, p for holiday adjustment
µ T × 1 µi is the intensity of the expected number of deaths at day i
σ2 1× 1 variation of the random walk prior of the log intensity
φ 1× 1 overdispersion parameter for the negative binomial distribution
p0 1× 1 probability of reporting for a low reporting event
π 1× 1 probability of a low reporting event

Appendix A.2. Likelihood

The most complex part of our model is the likelihood, i.e., the density of the observa-
tions given the parameters. Here, the data consist of the daily report of recorded deaths
for the past days. This can conveniently be represented by an upper triangular matrix, r,
where ri,j represents the number of new reported deaths for day i reported at day j. This
matrix is displayed in Table A1.

https://github.com/adamaltmejd/covid_reporting_delay_prediction
https://github.com/adamaltmejd/covid_reporting_delay_prediction
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Table A1. The matrix describes how the data are structured.

Reported Date

D
ea

th
D

at
e r11 r12 · · · · · · r1T

r22 · · · · · · r2T
r33 · · · r3T

. . .
...

rTT

We assume that given the true number of deaths on day i, di, that for each reported
day j, the remaining deaths di −∑

j−1
k=1 ri,k are each recorded with probability pij, i.e.,

ri,j|di, r1,1:j.p ∼ Bin(di −
j−1

∑
k=1

ri,k, pi,j).

Typically, in removal sampling, one would set the probability of reporting uniformly,
i.e., pi,j : = p. However, for these data, this is clearly not realistic given weekly patterns in
reporting—there is very little reporting during the weekends. Instead, we assume that we
have k different probabilities. Further, to account for over-dispersion, we assume that each
probability, rather being a fixed scalar, is a random variable with a Beta distribution. The
Beta distribution has two parameters: α and β. This results in the following distribution for
the probabilities:

pi,j|α, β, αH , βH ∼ Beta(αH
j αmin(j−i,k), βH

j βmin(j−i,k)).

Here, if j ∈ H, then day j is a holiday or weekend, and the parameters above are

αH
j =


αH

1 αH
2 if {j ∈ H} ∪ {j− 1 ∈ H},

αH
1 if {j ∈ H} ∪ {j− 1 ∈ Hc},

αH
2 if {j ∈ Hc} ∪ {j− 1 ∈ H},

1 else,

and

βH
j =


βH

1 βH
2 if {j ∈ H} ∪ {j− 1 ∈ H},

βH
1 if {j ∈ H} ∪ {j− 1 ∈ Hc},

βH
2 if {j ∈ Hc} ∪ {j− 1 ∈ H},

1 else.

These extra parameters are created to account for the under-reporting that occurs
during weekend and holidays.

Finally, we add an extra mixture component that allows for very low reporting.

Appendix A.3. Priors

For the α and β parameters, we use an (improper) uniform prior. For deaths, d,
one could imagine several priors, ideally based on some sort of epidemiological model.
However, here, we simply assume a log-Gaussian Cox process [21]. Instead of a Pois-
son distribution, we use a negative binomial to handle possible over-dispersion. The
latent Gaussian processes is defined by its covariance function. We use a Whittle-Matern
covariance function. This results in the following mode:

log(µ) ∼ N(0, Σ),

di|µi ∼ NegBin(µi, φ).
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This model is created to create a temporal smoothing between the reported deaths. For
the hyperparameter σ2, we impose an inverse Gamma distribution; this prior is suitable
here because it guarantees that the process is not constant (σ2 = 0), which we know is not
the case.

Appendix A.4. Full Model

Putting the likelihood and priors together, we get the following hierarchical Bayesian
model:

σ2 ∼ Γ(1, 0.01)

φ ∼ Γ(1, 0.01)

αk ∼ U[0, ∞]

βk ∼ U[0, ∞]

αH
k ∼ U[0, ∞]

βH
k ∼ U[0, ∞]

log(µi)− log(µi− 1) ∼ N(0, σ2)

di|µi ∼ NegBin(µi, φ)

pi,j|α, β, αH , βH ∼ Beta(αH
j αmin(j−i,k), βH

j βmin(j−i,k))

ri,j|di, r1,1:j, p ∼ πBin(di −
j−1

∑
k=1

ri,k, p0) + (1− π)Bin(di −
j−1

∑
k=1

ri,k, pi,j),

where and j ≤ i and i = 1, . . . , T.

Appendix B. Inference

We generate inference about the number of deaths through the posterior distribution
of d given the observations r. To sample from this distribution, we use the Markov Chain
Monte Carlo method [22]. We employ a blocked Gibbs sampler, which generates samples
in the following sequence:

• First, we sample α, β, αH , βH |d, r. Using the fact that one can integrate out p in the
model, d|α, β, αH , βH , r, λ follows a Beta-Binomial distribution. Here, we also use an
adaptive MALA [23] to sample from these parameters.

• To sample d|α, β, αH , βH , r, λ, we assume that each death, di is conditionally indepen-
dent, and use a Metropolis Hastings random walk.

• To sample λ|d, σ2, we again use an adaptive MALA.
• Finally, we sample σ2|d,and p0, π directly, since this distribution is explicit, and φ

using an MH-RW.

Simplified Model

In order to make the model run quickly and update daily, we present a simplified
version of the model. Running the full MCMC algorithm each day is both slow and
sometimes leads to poor mixing (this effect is due to the latent Gaussian processes, defined
by equation log(µi)− log(µi− 1) ∼ N(0, σ2)). Here, due to the fact that di is a discrete
unknown, we cannot use RStan [24], which would have been ideal. Instead, we make a
Box–Cox approximation of the latent processes:

√
d ∼ N (µ, Σ),
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where we assume the square root of the number of deaths follows a Matérn process [25].
However, as we do not observe the number of deaths, we also make a normal approximation
of the capture removal likelihood, and the approximated model is thus

√
d ∼ N (µ, Σ),

√
di|ri,i:j ∼ N

(
µ̂ij, σ̂2

ij

)
.

Since the approximate distribution of
√

d is a Gaussian process, prediction and confi-
dence bounds are explicit. In more detail:

• We fit α, β for the retain sampling, treating di as known after 30 days, using a MAP
estimate.

• We then run an MCMC chain on the likelihood part of di for the fixed parameters in
the previous step;

di|ri,i:j ∝ BB(ri,i:j, diα, β).

This MCMC has no mixing problem as each di is independent of each other and one
can adapt each chain separately. Note that this is the model from the previous section
but with no prior on di, i.e., no log-Gaussian Cox processes.

• Since the number of deaths approximately follows a Poisson distribution, we make a
Box–Cox transformation and assume that the square root of the number of deaths is
approximately normal: √

d ∼ N (µ, Σ).

To link the catch retain model to the Box–Cox model, we make a normal approximation
of the posterior distribution. We approximate the posterior distribution with

√
di|ri,i:j ≈ N

(
µ̂ij, σ̂2

ij

)
.

where µ̂ij and σ̂2
ij are the MCMC estimate of the posterior mean and variance ob-

tained from above. This is roughly a Monte Carlo Laplace approximation. The latent
parameters (µ, Σ) are fitted using maximum likelihood.

• Using the above model, we get an explicit posterior distribution of the square root of
the number of deaths. In order to generate predictions of the number of deaths, we
simulate the square number of deaths, setting negative values to zero.

Appendix C. Model Benchmark

In this section, we describe the benchmark model in detail and present additional
comparisons of the model to the benchmark.

The benchmark model simply takes the sum of average historical reporting lags for
the preceding 14 days. As before, rij is the number of deaths that happened on day i and
were recorded on day j. To predict the number of people who died on a given day, we first
calculate lag averages:

r̂i,i+L =
∑14

k=i−14 rk−L,k

14
, (A1)

where r̂i,i+L is the average number of deaths reported with a lag of L days, based on the 14
reports closest preceding day i. If we are looking at data released 28 April 2020 and call this
day 0, the latest death date that we have 10-day (L = 10) reporting lag observation for is
r−10,0. The average for Lag(0, 10) is therefore taken over the 14 days between r−24,−14 and
r−10,0 (4 April 2020 and 18 April 2020). The average is then taken over all available reports.

In the comparisons, we aim at predicting the total number of deaths that will have
been reported within 14 days of the death date. To do so, we sum over the average lag
that has yet to be reported. If we are predicting the number of people who have yet to be
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reported dead for day −3, we already know the true values for r−3,−3, r−3,−2, r−3,−1, and
r−3,0, so we only need to predict r−3,1 . . . r−3,10. The prediction is then

Benchmark(i, j) =
j

∑
l=i

ri,l +
14

∑
l=j

r̂i,l . (A2)

To calculate confidence intervals, we simply use a normal assumption with standard
deviations of the reporting lags, assuming independence, i.e., this is just the square root of
the sum of Var(r̂).

Figure A1 presents additional statistics comparing the model to the benchmark over
time and over the week. We see that both model and benchmark performances drop during
similar periods, but that also, during these times, the model performance is usually higher.
Over the week, especially in the UK, the benchmark seems to have some trouble with
Fridays, likely because weekend reporting drops have not been explicitly modeled.
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Figure A1. Mean CRPS as the pandemic progresses.
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