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Plasma dynamics at the Schwinger limit and beyond
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Strong field physics close to or above the Schwinger limit are typically studied with vacuum as initial
condition or by considering test particle dynamics. However, with a plasma present initially, quantum relativistic
mechanisms such as Schwinger pair creation are complemented by classical plasma nonlinearities. In this work
we use the Dirac-Heisenberg-Wigner formalism to study the interplay between classical and quantum mechanical
mechanisms in the regime of ultrastrong electric fields. In particular, the effects of initial density and temperature
on the plasma oscillation dynamics are determined. Finally, comparisons with competing mechanisms such as
radiation reaction and Breit-Wheeler pair production are made.
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I. INTRODUCTION

In recent years, much research has been devoted to strong
field physics where various QED effects come into play; see,
e.g., Refs. [1,2] for review articles. A key motivating factor
has been the rapid evolution of laser intensities [1–3]. Nev-
ertheless, in spite of the steady progress, peak electric fields
for current lasers are still well below the critical field strength
Ecr = m2c3/eh̄ ≈ 1.3 × 1018 V/m [4–7]. It should be noted,
however, that there are proposals trying to use plasma-based
schemes in order to magnify present-day laser fields to reach
the Schwinger limit [8]. Whether laboratory-created field
strengths of this magnitude actually can be possible has
been debated in the recent literature; see, e.g., Refs [9–11].
Specifically, field depleting cascade mechanisms have been
put forward as a severe obstacle in Refs [9,10]. However, an
opposing pinch mechanism, effectively focusing the field, has
been identified in Ref. [11]

Research on ultrahigh intensities, i.e., close to or above
the Schwinger limit, has been particularly concerned with
Schwinger pair creation in vacuum [12–16]. Problems of
study include, e.g., understanding the interplay between tem-
poral and spatial variations of the fields [13–15], comparing
different computational schemes [12,14], or optimizing the
geometry of colliding laser pulses to maximize pair creation
[16,17].

For sufficiently strong fields, large number of pairs are
created, leading to plasma currents modifying the original
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fields, such that the back-reaction through Ampère’s law is
relevant [18–31]. Starting the dynamics with a Sauter pulse
[32] or a constant initial electric field, the system will undergo
plasma oscillations, with a plasma frequency proportional to
the peak electric field.

In the present paper we intend to study how the dynamics
is modified when a plasma of high density is present initially.
In this case several new questions enter the picture. How does
the dynamics depend on the plasma temperature and density?
What is the interplay between classical plasma nonlinearities
and those due to quantum relativistic effects? To what extent
can pair creation be blocked if the low-energy states are al-
ready occupied?

Specifically, we will use the Dirac-Heisenberg-Wigner
(DHW) formalism [33] in order to address the above ques-
tions numerically, generalizing results from the linear regime
[34] and/or using prescribed fields [35] into the strong field
self-consistent regime. After theoretical preliminaries are set-
tled, including the issue of charge renormalization, we study
plasma oscillations in an electron-ion plasma focusing on the
homogeneous limit. It is worth noting that with a plasma
present from the start, the energy density necessary for pair
creation can equally well be stored in the plasma current.
In this case the initial electric field is zero, but the plasma
kinetic energy is converted into an electric field of sufficient
magnitude.

No restrictions on the electric field amplitude will be made,
and thus the dynamics will be studied also for field strengths
well beyond the critical field. For a field strength of the order
of the critical field or higher, the plasma oscillations increase
their frequency due to the pair-creation process, at the same
time as they are damped.

This paper is organized as follows: In Sec. II we briefly
discuss the derivation of the DHW formalism and present a
reduced system applicable for electrostatic fields. In Sec. III
we present the calculations relevant to charge renormalization.
Next, the numerical results are presented in Sec. IV. Here
we show the scaling of the damping with the initial electric
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field amplitude and with the plasma parameters, study issues
related to Pauli blocking, and relate our findings to previous
results starting from vacuum. Finally, we discuss potential
competing mechanisms such as radiation reaction in Sec. V
and nonlinear Breit-Wheeler in Sec. VI, and we draw the
conclusions in Sec. VII.

II. THE DHW FORMALISM

The analysis will be based on the DHW formalism, first
presented in Ref. [33]. This formalism is based on a Hartree-
Fock (mean-field) approximation. For an approach developing
a self-consistent kinetic formalism without using the mean-
field approximation, see, e.g., Ref. [36]. As for the DHW
formalism, we note that slightly different derivations have also
been presented by Refs. [12,37,38]. Since the presentation
given in previous works are fully satisfactory, we will not
give details of the derivations here, just point out the main
features:

(1) The derivations is based on a Gauge invariant Wigner
transformation of the Dirac equation, producing a 4 by 4
Wigner matrix (due to the Dirac four spinors). The Wigner
operator Ŵ (r, p, t ), depending on the phase space variables r
and p, is given by

Ŵ (r, p, t )

= −1

2

∫
d3z exp

(
− ip · z − ie

∫ 1/2

−1/2
dλz · A(r + λz, t )

)

× [�̂(r + z/2, t ), ˆ̄�(r − z/2)], (1)

where �̂ represents the Dirac spinor field, ˆ̄� denotes the Her-
mitian conjugate, z is the 3D position variable integrated over
all space, and A is the vector potential. Note that the Wilson-
line factor has been used to ensure the gauge invariance. The
Wigner function W (r, p, t ) is defined as the expectation value
of the Wigner operator

W (r, p, t ) = Trρ̂Ŵ (r, p, t ) =
∑

i

pi〈�i|Ŵ (r, p, t )|�i〉,

(2)

where ρ̂ = ∑
i pi|�i〉〈�i| is the state of the system, and the

sum of the probabilities pi is unity.
(2) In the derivation, the vacuum fluctuations are dropped

in comparison with the electromagnetic mean field, which is a
particularly accurate approximation for strong field problems
[33].

(3) The 16 components of W (r, p, t ) can be split using
various projections, to formulate the theory in a physically at-
tractive way. We have used the standard split of Refs. [12,33],
which divides W (r, p, t ) into phase space functions for quan-
tities like mass, charge density, current density, spin, and
magnetization; see Ref. [33] for the full details.

(4) Since the DHW functions couple to current and charge
sources, the system is closed by Maxwell’s equations; see,
e.g., Ref. [33].

With the closed system in place, further simplifications can
be made depending on the geometry of the electromagnetic
field. For the case of a 1D electrostatic field [39] E = E (z, t )ẑ,

the full system (see Ref. [35]) can be reduced to

Dtχ1(z, p, t ) = 2ε⊥(p⊥)χ3(z, p, t ) − ∂χ4

∂z
(z, p, t ),

Dtχ2(z, p, t ) = −2pzχ3(z, p, t ),

Dtχ3(z, p, t ) = −2ε⊥(p⊥)χ1(z, p, t ) + 2pzχ2(z, p, t ),

Dtχ4(z, p, t ) = −∂χ1

∂z
(z, p, t ) (3)

together with Ampère’s law

∂E

∂t
= − e

(2π )3

∫
χ1 d3 p, (4)

where Dt = ∂/∂t + eE∂/∂ pz and ε⊥ =
√

m2 + p2
⊥, and

where p⊥ is the perpendicular momentum. The variable χ1

is the (phase space) current density jz,

jz = e

(2π )3

∫
χ1 d3 p, (5)

χ2 gives the mass density ρm,

ρm = m

(2π )3

∫
χ2

ε⊥
d3 p, (6)

χ3 gives the spin density, i.e., the angular momentum density
M due to the spin is

M = 1

(2π )3

∫
(ẑ × p)

χ3

2ε⊥
d3 p, (7)

and χ4 gives the charge density ρc,

ρc = e

(2π )3

∫
χ4 d3 p. (8)

Next, we rewrite the system Eq. (3) to simplify the numerical
calculations. In this context it is important to note that χ1 and
χ2 have nonzero vacuum contributions, associated with the
expectation values of the free Dirac field operators (see, e.g.,
Ref. [33,40]), where the vacuum expressions are given by

χ1vac = −2pz

ε
,

χ2vac = −2ε⊥
ε

. (9)

Here ε =
√

m2 + p2, and we introduce new variables
χ̃i(z, p, t ) as the deviation from the vacuum state; i.e., we let

χ̃i(z, p, t ) = χi(z, p, t ) − χivac(p). (10)

Note that χ̃3,4 = χ3,4. Second, we switch to the canonical
momentum. Using the Weyl gauge where the scalar potential
is zero such that E = −∂A/∂t , the z component of the kinetic
momentum is replaced by q = pz + eA. With q as one of
the independent variables, the operator Dt simplifies to Dt =
∂/∂t . Our third modification is to switch to dimensionless
variables. The normalized variables are given by tn = ωct ,
qn = q/mc, pn⊥ = p⊥/mc, En = E/Ecr , An = eA/mc, where
ωc = (mc2/h̄) is the Compton frequency, and we note that
the DHW functions are already normalized. For notational
convenience, we omit the index n in what follows. Finally, we
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consider the homogeneous limit, making the variable χ̃4 = 0.
The equations to be solved numerically now read

∂χ̃1

∂t
(q, p⊥, t ) = 2ε⊥χ̃3 + 2E

ε2
⊥

ε3
,

∂χ̃2

∂t
(q, p⊥, t ) = −2(q − A)χ̃3 − 2(q − A)E

ε⊥
ε3

, (11)

∂χ̃3

∂t
(q, p⊥, t ) = −2ε⊥χ̃1 + 2(q − A)χ̃2

with Ampère’s law

∂E

∂t
= −η

∫
χ1 d2 p, (12)

where the dimensionless factor η = α/π ≈ 2.322 × 10−3.
Note that due to cylindrical symmetry the azimuthal integra-
tion has already been carried out and hence d2 p = p⊥ dq d p⊥.

Before ending this section, let us briefly discuss what
physics that is included in the coupled system of Eqs. (11)
and (12). Due to the mean-field approximation, as expected,
single-particle Larmor emission will not be contained in the
model, nor will processes involving few particles such as
Breit-Wheeler pair-production be covered. We can note that
by dropping all quantum effects, the model reduces to the 1D
electrostatic limit of the relativistic Vlasov equations. How-
ever, all quantum effects that can be described as a collective
phenomenon are generally included in the model. Specifi-
cally this includes, e.g., collective pair creation, collective pair
annihilation, Pauli blocking, and vacuum effects such as a
finite vacuum polarization [34]. The vacuum contribution also
give rise to the issue of charge renormalization, that will be
discussed in the next section.

III. CHARGE RENORMALIZATION

Generally, the integrals in Ampère’s law in Eq. (12) are
subject to UV divergences, i.e., the integral in effect behaves
as

∫
dε/ε leading to a logarithmic divergence due to the

vacuum contribution. For a numerical solution this could be
solved by a numerical cutoff acting as an effective regular-
ization. To ensure the soundness of the numerical scheme,
however, we must analyze this issue in more detail. From
Eq. (11) we immediately obtain

∂2χ̃3

∂t2
+ 4ε2χ̃3 = −4ε⊥E

ε
+ 2E χ̃2. (13)

For a modest plasma density, with a plama frequency well
below the pair-creation resonance (i.e., ∂t � 2ε), the left-
hand-side operator of Eq. (13) can be inverted to all orders in
an expansion in the small operator (1/ε)∂t . Formally solving
Eq. (13) for χ̃3 we get

χ̃3 = −D−1

(
4ε⊥E

ε
− 2E χ̃2

)
, (14)

where the inverse operator is

D−1 =
[

1 − 1

4ε2

∂2

∂t2
+

(
1

4ε2

∂2

∂t2

)2

+ · · ·
]

1

4ε2
. (15)

Keeping only terms up to ∂2/∂t2, we use Eqs. (14) and (15)
in Eq. (11) to get an equation for the phase space current χ̃1,

which reads

∂χ̃1

∂t
= 2

ε2
⊥

ε2

∂2

∂t2

(
E

4ε3

)
+ 4ε⊥

[(
1 − 1

4ε2

∂2

∂t2

)
Eχ2

4ε2

]
. (16)

Finally, combining Eq. (16) with the time derivative of Am-
père’s law (12), we obtain

∂2E

∂t2

(
1

ηB
+ 2

∫
ε2
⊥

ε5
d3 p

)

= −
∫

2
ε2
⊥

ε2

[
2
∂E

∂t

∂

∂t

(
1

ε3

)
+ E

∂2

∂t2

(
1

ε3

)]
d3 p − ∂ jp

∂t
,

(17)

where we have renamed η = ηB to highlight that this corre-
sponds to the bare value of the coefficient, obtained by using
the bare value of the charge eB, and noting that ηB ∝ e2

B. Here
we have introduced the plasma current

jp =
∫

4ε⊥

[(
1 − 1

4ε2

∂2

∂t2

)
E χ̃2

4ε2

]
d3 p, (18)

which is the part of the current that is proportional to the
mass density. Recall that χ̃2 is defined as the deviation from
the vacuum state, and thus new particles that are created will
also contribute to the plasma current. However, our main
concern here is the vacuum contribution of the left-hand side
of Eq. (17), containing the the integral 2

∫
(ε2

⊥/ε5)d3 p which
has a logarithmic divergence. As deduced in Refs. [21,34], by
introducing a regularization (i.e., a cutoff 
C in momentum
space) and replacing the bare value of the electron charge eB

with the physically measurable one, eR, according to

e2
R = e2

B

1 + e2
B

24π2 ln
(


C
m

) (19)

Ampère’s law gets its standard form. Since ηB ∝ e2
B, this cor-

responds to

1

ηB
+ 2

∫ 
C ε2
⊥

ε5
d3 p = 1

ηB
+ ln 
C

6
→ 1

ηR
. (20)

The remaining part of the vacuum current, written on the
right-hand side of Eq. (17), is nonzero but finite, due to the
temporal variations of ε(t ) = m{1 + p2

⊥ + [q − A(t )]2}1/2.
Moreover, as ηR = α/π � 1, and the dynamics evolve on a
timescale much slower than the Compton scale (i.e., ∂/∂t �
1) the relative importance of the nonvanishing vacuum contri-
bution, known as vacuum polarization, is small.

From a theoretical point of view, when the back-reaction
in Ampère’s law is included, it is important to confirm that
the UV divergences can be handled by a renormalization.
However, for our case to be studied, typically with a numerical
cutoff of the order 
C ∼ 70, and with η = α/2π2, the slow
logarithmic divergence term gives a finite contribution that
in practice is very small, of the order 0.002 of the plasma
current or smaller. Accordingly, for the parameters used here,
the difference between the bare charge and the measurable
one is negligible. It should be stressed, though, that this
conclusion is largely dependent on technical details. For a
much larger numerical cutoff, or for an enhanced value of
the fine-structure constant (as is sometimes used to speed up
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numerical schemes; see, e.g., Ref. [21]), it could very well
be necessary to use the renormalized expression. The above
calculation shows that it is straightforward to do so also when
applying the DHW formalism. However, due to the smallness
of this correction for the parameters of our case, we have not
done this in the numerical calculations that follow.

IV. NUMERICAL RESULTS

A. Preliminaries

Equations (11) and (12) are solved numerically using a
phase corrected staggered leapfrog method [41]. While this
is straightforward in principle, the full problem with three
independent variables χ = χ (q, p⊥, t ) is still numerically de-
manding when run on a standard workstation. One reason
is the strongly relativistic motion (gamma factors sometimes
exceeding 50) requiring a high value of the momentum cutoff
qc in q space of the order of qc ∼ 100. Typical parameters of
the simulations are a time step of the order of �t ∼ 0.001,
parallel momentum step �q ∼ 0.01, and perpendicular mo-
mentum step �p⊥ ∼ 0.1. In spite of the rather good resolution
in parallel momentum, the q dependence of the produced data
tends to look noisy. This is due to the Zitterbewegung effect,
which produces increasingly short scales. Nevertheless, the
dynamics of the larger scales are not sensitive to the small
scale details, i.e., changing �q does not affect the results
presented in this paper.

That the numerical scheme produce sound results is con-
firmed by studying the energy conservation law. An energy
conservation law of the system (11) and (12) can be written in
the form

d

dt

{
E2

2
+ η

∫
[χ̃2 + (q − A)χ̃1] d2 p

}
= 0. (21)

Due to the back-reaction in Ampère’s law, containing both
the conduction current and polarization current [19,21], the
energy density of the electric field is diminished at the same
rate as the kinetic energy of the initial plasma and of the
produced pairs grow. For the numerical resolutions used in
the runs presented below, the total energy of the system is
conserved within a relative error typically less than 10−4.
Note that the total energy includes also the growing rest mass
energy due to particle creation.

As initial conditions in the runs we let E (t = 0) = E0 and
A(t = 0) = 0. Moreover, the normalized background vari-
ables for t = 0 are taken as

χ̃1 = 2q f (q, p⊥)

(1 + q2 + p2
⊥)1/2

,

χ̃2 = 2 f (q, p⊥)ε⊥
(1 + q2 + p2

⊥)1/2
. (22)

Here f (q, p⊥) is a Fermi-Dirac distribution,

f (q, p⊥) = 1

1 + exp[(ε − μ)/T ]
, (23)

where μ is the chemical potential and T is the temperature
(we normalize both μ and T with the electron mass). For
μ 
 T , the chemical potential fulfills μ ≈ EF , where EF

is the Fermi energy, in which case the distribution will be

FIG. 1. The normalized vector potential AN , the dashed lines, and
electric field E , the solid lines, vs the normalized time tn = ωct for
four different values of initial E field E = (0.01, 0.1, 1, 4).

degenerate (i.e., we will have f ≈ 1, i.e., all electron states
filled, for energies smaller than the Fermi energy, and f ≈ 0
otherwise). Naturally, nondegenerate initial distributions are
still possible when using Eq. (23), by letting μ < T . Also,
by picking a large but negative chemical potential, we get a
Maxwell-Boltzmann type of distribution.

B. Plasma oscillation dynamics

In Fig. 1 the electric field and vector potential are plotted
for different values of E0, μ, and T . To be able to show
the evolution of A in the same plot as E , we have normal-
ized the vector potential once more, displaying AN = E (t =
0)A(t )/Apeak, where Apeak is the peak absolute value of A(t ).
Even in the upper panel, with a comparatively modest field
strength, E (t = 0) = 0.01Ecr , μ = 1 and T = 0.1, we have
nonlinear relativistic motion with Apeak = 1.85 (essentially
once the motion becomes relativistic, Apeak corresponds to the
peak gamma factor during an oscillation cycle, averaged over
all particles). In spite of the relativistic motion, the deviation
from linear behavior is not clearly visible in the temporal field
profile, although a careful analysis would show a harmonic
content in the spectrum. However, changing the initial electric
field to E (t = 0) = 0.1Ecr (still with μ = 1 and T = 0.1), the
moderately relativistic motion turns into strongly relativistic
oscillations (with Apeak = 15.9. The oscillation is still per-
fectly periodic, as seen in the second panel of Fig. 1, but now
there is a clear sawtooth profile of the electric field. This effect
comes from the strong relativistic motion, where the gamma
factors are much larger than unity for most of the oscillation,
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except at the turning points. As a result, for most of the oscil-
lations, all particles move close to the speed of light, giving a
current that is more of less constant until it changes direction.
Given this, the sawtooth profile of the electric field is a direct
consequence of Ampère’s law. Moreover, due to the strong
relativistic motion, the effective (nonlinear) plasma frequency
is much lower, due to the high gamma factors giving the
electrons a large effective mass.

However, the results in the two upper panels do not deviate
much from a computation based on the relativistic Vlasov
equation (in the standard classical version of plasma physics;
see, e.g., Ref. [40] for a comparison of quantum and classical
versions of the Vlasov equation). To see quantum relativistic
physics, we need to approach the Schwinger critical field,
i.e., let E (t = 0) ∼ 1. In the third panel, we have used E (t =
0) = 1, μ = 1.5, and T = 0.2. Here we still see a sawtooth
profile for the electric field as expected, since Apeak = 67.2.
However, we now also have pronounced decrease of the vector
potential for each oscillation. While the electric field also
decreases, we note that A decreases more rapidly than E . With
E = −∂A/∂t the more rapid decrease of A is consistent with
an increase in the plasma frequency. While the energy loss
of the electric field due to pair production is clearly seen, the
increase in plasma frequency (due to the increased number
density) is even more pronounced. The latter effect is seen
both in the relation between E and A, and by observing the
gradual change in time period between successive peaks.

Finally, in the fourth panel, by picking E (t = 0) = 4, μ =
4 and T = 0.2, corresponding to Apeak = 39.7 we have dis-
played the dynamics of the plasma oscillation in a regime
well beyond the Schwinger critical field. The curve might
look surprisingly similar to the third panel with E (1 = 0) = 1,
with the same type of energy loss and decrease in frequency.
However, from the temporal scale we see that here the oscil-
lation frequency is much higher, due to the higher value of
the electron number density. Hence the energy loss due to pair
production is indeed more rapid with a higher initial electric
field, as expected.

That the energy loss and frequency increase is the result
of electron-positron pair production can be confirmed by in-
vestigating the evolution of the total particle (electron and
positron) number density n. In terms of the normalized χ

variables, n can be expressed as [35]

n = 1

(2π )3

∫
1

ε
[ε⊥χ̃2 + (q − A)χ̃1]d2 p. (24)

Plotting the quantity n(t )/n(t = 0) in Fig. 2, for the same
initial data used in the four panels of Fig. 1, we see that there is
as a gradual increase of particles in panels 3 and 4, consistent
with the energy loss and increase of plasma frequency seen in
the corresponding panels of Fig. 1.

At the same time, it is also of some interest to note the fast
but small-scale oscillations of n seen in panels 1 and 2. At the
peak of the number density in the oscillation cycle, the particle
data is noisy, due to Zitterbewegung creating small scales in
momentum space. The increase in particle density, however,
is reversible, and thus there is no long-term gradual particle
increase. Thus, in what follows, when we speak of pair pro-
duction, we will be referring to the accumulative process seen

FIG. 2. The total particle number density n(t ) over time for
four different initial values of the electric field E (t = 0) =
(0.01, 0.1, 1, 4).

in panels 3 and 4, rather than the reversible small-amplitude
oscillations seen in panels 1 and 2.

Interestingly, the damping of the electric field is relatively
modest even when the pair creation is rather high, as seen
when comparing the third and fourth panels of Figs. 1 and 2.
The reason is that the energy loss by creating low-energy
pairs is of the order of two rest mass energies, whereas the
characteristic energy of the plasma particles is much higher,
larger by a factor γchar. Here the characteristic value of the
γ factor typically is ∼35 (with the corresponding peak value
γpeak ∼ 70). As a result significant creation of low-energy
pairs can take place without heavy damping.

Furthermore, in regard to Fig. 2, while the relative increase
in number density is somewhat higher in panel 3 as compared
to panel 4, the pair production is considerably more rapid for
the higher field, as can be seen when comparing the temporal
scales. Finally, we note that there is a saturation of the number
density in panels 3 and 4. For a lower field intensity, the de-
creasing field strength is a partial explanation, but for a higher
field strength, the saturation of the damping is mostly due to
the created pairs filling the available low-energy states (Pauli
blocking). In this context, see, e.g., Refs. [21,31], where the
difference between scalar and spinor QED is studied, starting
from vacuum. We will come back to the issue of the energy
spectrum of the created pairs; see Figs. 3 and 7.

For the case of a plasma initially present, there is no
need to have the initial energy stored in the electric field.
Starting instead with a sufficiently strong plasma current, that
is with a kinetic energy density of the order ∼ε0E2

cr/2, the
kinetic energy will be converted into an electric field, and
the pair production will set in. In Fig. 4 the evolution of
the electric field and the vector potential is plotted for the
initial conditions of pd = 70, E = 0, μ = 3, and T = 0.2.
Here pd is the kinetic drift momentum of the electrons relative
to the stationary ions; i.e., in Eq. (23), we have replaced

ε →
√

1 + p2
⊥ + (pz − pd )2. For comparison, the results are

compared with similar oscillations starting from no initial
drift but with E = 1, μ = 1.5, and T = 0.2. Once the kinetic
energy has been converted into an electric field of the order of
the Schwinger critical field, the pair creation dynamics shows
a similar type of damping and frequency up-shift as seen in the
plots starting from an electric field and a zero current. A few
differences between the two sets of curves, although relatively

035204-5



GERT BRODIN et al. PHYSICAL REVIEW E 107, 035204 (2023)

FIG. 3. The number density n(q) = ∫
d p⊥ p⊥/ε[ε⊥χ2 + (q −

A)χ1] as a function of the canonical momentum q is plotted for E = 4
for two cases: μ = 4 and T = 0.02 (top panel) and μ = −10 and
T = 5 (bottom panel).

minor ones, can be noted. The most obvious is that the number
of pairs created is a bit larger in the case with no initial
drift (lower panel). As a result, the damping of the plasma
oscillation is somewhat less pronounced (upper and middle
panel). This is not a result of much physical significance,
though, as the exact details of the evolution depend on the
combination of all initial parameters. It was necessary to pick
a higher value of μ and hence a higher plasma density, for the
case of a drifting plasma, in order to get peak electric field of
the same order. Nevertheless, the overall conclusion is that the
qualitative dynamics is independent of the initial phase chosen
for the plasma oscillation.

FIG. 4. The electric field (upper panel), vector potential (middle
panel), and number density (lower panel) for a plasma with an initial
current. The dotted line (blue) corresponds to the initial parameters
E = 0, μ = 3, T = 0.2, and pd = 70. The solid line (brown) corre-
sponds to initial values E = 1, μ = 1.5, T = 0.2, and pd = 0.

C. Analytical estimates

In order to gain some qualitative understanding, let us
make certain analytical estimates of the pair-creation process.
While we are interested in the dynamics with an initial plasma
present, let us first consider the pair-creation rate starting from
vacuum. As long as the available particle states are free to be
filled, the pair-creation rate dn/dt , is given by (see Refs. [5,6])

dn

dt
= 1

4π3c

(
eE

h̄

)2

exp

(
−πEcr

E

)
. (25)

For electrical fields well above the critical field, in normalized
units, we thus have

dn

dt
∼ E2

4π3
, (26)

which should be applicable as an order of magnitude estimate
also for E � Ecr . Since the created particles will move close
to the speed of light soon after creation, the current generated
from the pairs can be written as j ∼ ∫ t

0 (dn/dt ′)dt ′, such that

dE

dt
∼ − α

π2

∫ t

0
E2 dt ′. (27)

Taking the time derivative of Eq. (27),replacing the estimate
with an equality, using dE/dt as an integrating factor, the
resulting equation turns out to be separable and can there-
fore be solved exactly by elementary means. If we ignore
the uncertainty implied in Eq. (27), the time Tp to com-
pletely convert the electric field energy to particle energy is
given by Tp = √

(3/2)Iπ/(αE0)1/2, where the integral I is
given by I = ∫ 1

0 (1 − x3)−1/2 dx ≈ 1.4. This estimate for the
conversion time is consistent with the results presented in
Refs [31,42,43]. Noting that Tp constitutes a quarter of an
oscillation cycle, the implied oscillation frequency is of the
order

ω = 1√
6I

(αE0)1/2 ∼ 0.3(αE0)1/2, (28)

where E0 is the initial electric field. It can be noted that
the above estimate is in very good agreement with Fig. 10
below, which is a obtained from a numerical computation
starting from vacuum (the period time for E0=100 is around
TP ≈ 18, which is within 10% accuracy of the given estimate;
see Sec. IV E for details) Naturally, the oscillation frequency
with a plasma present can be substantially higher (if we have
sufficient number of particles initially present) than the “ini-
tial vacuum frequency” given here. However, in the case the
oscillation frequency due to the initial plasma is much higher
than Eq. (28), the particles created during an oscillation cycle
will be close to negligible compared to those present initially.

Moreover, given the frequency scale, we can estimate the
peak γ factors during an oscillation. We denote the peak
value with γp and note that typically γ ∼ pz. Naturally, this
estimate is particularly accurate for the peak value γp during
an oscillation cycle, but it should be noted that pz 
 1 and
pz 
 p⊥ holds for the majority of the particles and for the
majority of an oscillation cycle. As a result, we can estimate
γp ∼ ∫ T

0 E (t ) dt ∼ E0/ω. Thus it follows that the average γ
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factor during a cycle 〈γ 〉 will roughly be

〈γ 〉 ∼ γp

2
∼ E0

2ω
∼ 3

2

(
E0

α

)1/2

. (29)

Moreover, the number density n0 that have been created imply
a plasma frequency ω2

p (with ω2
p ≡ 4παn/m, not accounting

for the relativistic frequency lowering of the frequency. As
is well known, the oscillation frequency will differ from the
plasma frequency due to relativistic effects, which is captured
by replacing the mass with the effective mass, i.e., by making
a substitution m → m〈γ 〉. Thus, using the above estimates we
obtain

ω2
p ∼ ω2〈γ 〉 ∼ 1

6α1/2E3/2
0 . (30)

With a plasma initially present, if the value of ω2
p at t = 0 is

much larger than ∼α1/2E3/2
0 /6, naturally the influence on the

plasma dynamics due to the Schwinger mechanism will be
comparatively modest. Nevertheless, the accumulated effect
during a large number of periods may still be noticeable.

Next we assume, for the sake of the argument, that the
initial plasma number density n0 = n(t = 0) is of the same
order as the Schwinger induced contribution after an oscilla-
tion period. This case is considered in the two lower panels of
Figs. 1 and 2, and as a consequence we see that the plasma
density roughly increases by a factor 2 during the first oscil-
lation period. While this implies a substantial increase in both
the plasma density and the oscillation frequency, interestingly
we see that the damping of the plasma oscillation still is
relatively modest, as shown by the electric field evolution.
To understand this, for simplicity we concentrate on the spe-
cific case with E (t = 0) ∼1, in which case the pairs will be
generated with initial energies � 2m. Thus for each created
pair, the plasma oscillation energy will decrease by an amount
of the order ∼2m. However, subsequent acceleration of the
pairs just converts the electrostatic plasma oscillation energy
into kinetic plasma oscillation energy. As a result, no further
damping occurs due to acceleration of the created pairs. Thus
we can estimate the relative drop in plasma oscillation energy
during a period as

δW

W
∼ δn0

〈γ 〉(n0 + δn0)
∼ δn0

(n0 + δn0)

2α1/2

3E1/2
, (31)

where δn0 is the change in number density after an oscillation
cycle. This shows that even with a substantial increase in
particle number density and wave energy, i.e., with δn0 ∼ n0 ,
the decrease in wave energy during an oscillation is only a
few percent for E of the order unity. Moreover, for E > 1 , the
damping of the plasma oscillation amplitude will not increase
with the initial electric field, but rather the opposite. Naturally,
for E < 1, the exponential dependence included in Eq. (25)
will suppress the influence of the Schwinger mechanism.

As seen in Figs. 1 and 2, and confirmed by the present
analysis, the change in oscillation frequency is a much more
pronounced effect than the plasma oscillation damping (i.e.,
the energy loss as captured by the decreasing peak electric
field), which explains why the vector potential A falls off more
rapidly than the electric field. As an order of magnitude esti-
mate, the relative increase in frequency during an oscillation

FIG. 5. The electric field damping (squares) and frequency in-
crease (dots) for E (t = 0) = 1, μ = 1.5 and T = 0.2, where a line
equal to unity is drawn for comparison. The electric field dots are
evaluated at successive peaks, and the frequencies are computed as
ω = 2π/Tp, with the time period Tp computed for successive peak
values of the electric field. The frequencies are normalized against
the frequency for the first oscillation period (with Tp = 462).

period is

δω

ω
∼ δn0

(n0 + δn0)
∼ E1/2

α1/2

δW

W
. (32)

The above scaling can be deduced using ω2 ∼ ω2
p/〈γ 〉 to-

gether with δω/ω ∼ −δ〈γ 〉/〈γ 〉, as follows from Eq. (29),
given that changes of the electric field amplitude is propor-
tional to α1/2 from Eq. (31).

In order to illustrate the validity of the estimates provided
here, next we compare the magnitude of the frequency in-
crease with the magnitude of the damping rate. That the
frequency upshift is indeed a more pronounced effect than
the damping [larger by a factor E1/2α−1/2, as described by
Eq. (32)] is illustrated in Fig. 5, where the pair-creation damp-
ing and frequency up-shift have been evaluated for the same
parameters as in panel 3 of Fig. 1. We note that the electric
field is reduced by roughly 10% after five oscillation periods,
whereas the frequency has been nearly doubled during the
same time. Although in the next subsection we will study
wave damping in more detail, we note that the scaling relation
(32) can be used to provide a rough estimate for the corre-
sponding frequency upshift.

D. Plasma oscillation damping

The damping of plasma oscillations and the increase in
plasma frequency, due to electron-positron pair-production, is
the main focus of our work. While the estimates provided in
the previous subsection will give a rough idea of the scaling,
important effects such as Pauli blocking preventing pairs from
being created is not accounted for.

First of all, we would like illustrate the mechanism of
Pauli blocking. This mechanism is always present in the DHW
formalism. However, whether or not it is an important feature
dynamically, depends on the number of free states where pairs
can be created. In particular, a degenerate initial distribution
will block the low-energy states in momentum space, which is
the region where particles are most easily created. This feature
is on display in Fig. 3. In the upper panel we have considered
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FIG. 6. The damping of the electric field � as a function of three
different parameters. In the top panel we plot � vs μ for E = 1 and
T = 1. For the second panel, we plot � vs the temperature T for E =
1 and μ = 1.5. For the third panel, we vary T but compensate with
varying μ to keep the number density fixed. Finally, in the bottom
panel, we plot � vs initial electric field for T = 0.4 and μ = 1.5.

a degenerate distribution with μ = 4 and T = 0.02, where all
the low-energy electron states are filled, preventing further
pair creation in the filled region. As shown, due to a strong
initial field E0 = 4, pairs are still created at a high rate, but the
low-energy region is perfectly blocked, as seen by comparing
the momentum distribution n(q) after an oscillation period
with the the initial momentum distribution. Specifically, it
should be noted that the two curves coincide (no further pair-
creation) for a low or modest parallel momentum. By contrast,
for an initial distribution far from degeneracy, μ = −10 and
T = 5, the corresponding comparison (lower panel of Fig. 3)
shows that the blocking is not a feature, i.e., new pairs are
created everywhere in momentum space.

With the basic mechanism of Pauli blocking established,
we will next study how the pace of the damping scales with
the plasma parameters (the temperature and the chemical po-
tential) as well as the initial electric field strength. We define
the relative one-period electric field damping � as

� = |E (Tp) − E (t = 0)|
E (t = 0)

, (33)

where Tp is the period time of the first oscillation. In Fig. 6
the damping � is plotted for different values of E , μ, and
T . In the upper panel of Fig. 6, we use the initial electric
field E (t = 0) = 1, a temperature T = 1, and a varying μ.
We see that there is a clear decay in the damping rate with
increasing chemical potential. The main reason for the decay
in damping with μ is due to the increase in plasma frequency,
since the level of damping is computed after a plasma pe-

riod, but the energy loss rate is only weakly dependent of
the plasma frequency. In the second panel, where μ is fixed
but the temperature is varied, there is a similar effect, as the
particle density grows with T for a fixed μ. In principle, we
could expect a reversal of this mechanism for low temperature,
as there would be no free low-energy states to create pairs for
a fully degenerate system. While this mechanism certainly is
present in principle, we cannot see the effect for this value
of μ, as the particle density is too low to block a sufficient
volume in momentum space.

In order to investigate the effect of blocked low-energy
states on the damping rate, in the third panel we vary the
temperature. However, varying the temperature while keeping
μ fixed leads to an increased plasma frequency. Thus, in order
to focus only on the shape of the electron distribution, we
instead keep the number density fixed, which requires us to
lower the chemical potential μ when increasing T . Contrary
to the second panel in Fig. 6, we now see an increase in � with
temperature. In agreement with the results shown in Fig. 3,
this can be explained as a partial pair-production blocking
for the colder system, with fewer empty low-energy states
available where pairs can be produced.

Finally, in the fourth panel of Fig. 6, for μ = 1.5 and T =
0.4, we see a rapid increase in � as the initial electric field
approaches and pass the critical field. At first one may be a
bit surprised to see the saturation in damping occurring for
E (t = 0) ∼ 3–4. However, it should be noted that the energy
loss rate after a cycle is ∝E2�, such that even if � is more
or less saturated, the pair-production rate continue to increase
with the field ∝E2.

Next, there is a question where in the momentum space
the new pairs are produced. In Fig. 7 contour curves over
the integrand in Eq. (24) is shown, n(p⊥, pz ), where we have
switched back to kinetic momentum pz rather than canonical
momentum q. The upper panel shows the contour curves for
the initial Fermi-Dirac distribution. A quarter of a plasma
period later, we can clearly distinguish the initial particle dis-
tribution. As can be seen, the initial particles has been shifted a
distance ≈A(t ) in the pz direction, but with a more or less con-
served shape. However, in addition to the original particles,
a contribution from electron-positron pairs have been added,
accelerated by the fields to have a much larger parallel mo-
mentum than perpendicular momentum. For a more detailed
discussion about the parallel and perpendicular momentum
distribution of the produced pairs see Ref. [44]. Note that
after a quarter period, the produced pairs have larger negative
pz momentum than the original particles. In the lower panel,
after a half cycle, the symmetry has been restored, as the
produced pairs are located on both sides (in parallel momen-
tum space) of the original particles. As the pair-production
process continues, eventually it will be difficult to separate
the original particles from the newly produced ones, as the
produced particles will outnumber the original ones.

Before we end the discussion of the pair-creation dynamics
in the presence of plasma, let us point out that there are
interesting papers of relevance in this context by Refs. [45,48].
First, in Ref. [45], the authors consider an initial plasma in
the context of Schwinger pair-production. However, rather
than studying an electrostatic field, they compute the damping
of an electromagnetic wave due to the energy loss through
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FIG. 7. Color mappings of the momentum distribution of
the total particle density n(pz, p⊥) at three different times t =
(0, Tp/4, Tp/2) for E0 = 1, μ = 1.5, and T = 0.2.

the Schwinger mechanism. However, in contrast to our study,
that paper considered a cold plasma with a delta function for
the initial momentum distribution, which limits the potential
applicability to rather modest plasma densities (with a small
Fermi momentum) and temperatures.

Finally, in Ref. [48], production of pairs by electrostatic
waves in plasma was studied using a relativistic quantum
fluid model assuming that the electric field varies slowly in
comparison with the Compton frequency. While the overall
pair production rate used in hydrodynamics based on the
Schwinger theory (proportional to exp[−πEcr/(E )]) is con-
sistent with the DHW formalism, the kinetic details (e.g.,
where in momentum space the pairs are created) are important
for the plasma oscillation properties. More specifically, many
features seen in our treatment such as Pauli blocking, cannot
be covered in a hydrodynamic approach. Nevertheless, the
more modest computational demands makes hydrodynamical
studies a good complement to kinetic treatments, which is
illustrated by the fact that the spatial influence also could be
covered in Ref. [48].

E. The initial vacuum regime

Up to now we have considered pair-creation dynamics in
the presence of a plasma. By contrast, previous works of a
similar nature, e.g., Refs. [21,22,25–29,31], have been focus-
ing on pair-creation dynamics when starting from a vacuum
state. In this case, naturally one cannot begin by postulating a
plasma oscillation with a fixed amplitude as initial condition,
as there is no initial plasma. Instead one has to use an external

electric field starting up the process, either in the form of a
time-dependent Sauter pulse [32] or by imposing a constant
external field at t = 0. In spite of these differences, once the
plasma is created, many of the features seen in the present
paper when considering a plasma are the same as those seen
in previous works starting from vacuum. In particular, the
plasma oscillation amplitude tend to diminish gradually and
the plasma oscillation frequency increases due to pairs being
gradually created [18,19,21].

However, starting from vacuum is numerically more chal-
lenging than studying the physics of a high-density plasma,
due to the very large parallel momenta induced by a field close
to the Schwinger limit, unless the initial plasma density and
thereby plasma frequency is high. As a result, most previous
numerical works have simplified the numerical schemes in
various ways. For example, some works (e.g., Refs. [19,22])
limited the treatment to include no perpendicular momentum
dependence in the calculation. While several of the previous
works (e.g., Ref. [21]) account also for the dependence on per-
pendicular momenta, importantly, most previous calculations
starting from vacuum and including the back-reaction through
Ampère’s law have simplified the numerics by using a fine-
structure constant that is much larger than the actual value. As
it turns out, this choice limits the peak parallel momentum
rather drastically. This is not entirely unproblematic when
a complex dynamical situation is studied. While the basic
physical mechanisms does not change when using a magnified
α, the relative importance of the dynamical mechanisms will
not stay the same.

In order to compare with previous works, particularly
Ref. [21], we have started the dynamics with an external
Sauter pulse [46] of the form

Aex(t ) = A0

[
1 + tanh

(
t − t0

τ

)]
, (34)

Eex(t ) = − A0

τ cosh2
( t−t0

τ

) (35)

and used the actual value of the fine-structure constant α =
0.007297 with η = α/(2π )2. Starting the numerical computa-
tion at t = 0, we let t0 = −2 in all our runs, to include a short
build-up phase of the Sauter pulse. For the above case, the
tendency is that almost all pair creation happens in the very
first initial stage, much shorter than a plasma period, before
any plasma oscillations can be seen.

This is illustrated in Fig. 8, where we consider a pulse
with A0 = 10 and τ = 0.5. As can be seen in the upper
panel, the self-consistent field is strong (peak electric field
around 0.6Ecr), but no visible pair creation is done by the
self-consistent field that is responsible for the plasma os-
cillation. In particular, the peak electric field of the Sauter
pulse is far from recovered, and the extra pair creation that
takes place after the initial phase is more or less negligi-
ble, as seen from the constant number density in the lower
panel.

As our next step, in order to illustrate the influence of a
modified value of α on the dynamics, we consider an en-
hanced value of the fine-structure constant. For this purpose,
we match the parameters of Ref. [21], also accounting for
the charge renormalization (with a cutoff value 
C = 25), the
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FIG. 8. The induced electric field (i.e., without including the ex-
ternal field of the initial Sauter pulse) (upper panel) and the induced
number density (lower panel). The parameter values for the Sauter
pulse are A0 = 10 and τ = 0.5

magnified value of the coefficient in Ampère’s law become
η = 0.26 [as compared to η = α/(2π2) ≈ 0.3697 × 10−3]. In
Fig. 9 the electric field and pair density is shown for a Sauter
pulse with initial parameters A0 = 10 and τ = 0.5. With a
peak field of E ∼ 15, and a similar oscillation frequency and
decay in the upper panel as previously found by Ref. [21],
there is close resemblance to results computed for a mag-
nified value of α. In the lower panel of Fig. 9, we see the
evolution of the number of pairs. While much of the particles
are created by the initial Sauter pulse, there is subsequent
significant pair creation due to the plasma field (generated
by the back-reaction), accompanied by further damping of the
electric field. However, as is apparent from a comparison with
Fig. 8, the dynamics depend rather sensitively on the value
of α.

FIG. 9. The induced electric field (i.e., without including the ex-
ternal field of the initial Sauter pulse) (upper panel) and the induced
number density (lower panel). The parameter values for the Sauter
pulse are A0 = 10 and τ = 0.5 and the enhanced value α = 4 for the
fine-structure constant.

FIG. 10. The electric field profile starting from a an initial
value E (t = 0) = 100Ecr using the actual value of α. The result is
compared with the curve computed in Ref. [30], using the same
parameters. The data from [30] have been extracted using the online
tool WebPlotDigitizer [49].

While the use of a magnified fine-structure constant has
been rather common in the research literature when starting
from vacuum, some works (e.g., Refs. [26,30]) have used
the actual value. Specifically, we now compare our results
with those of [30]. Here the authors started from a homoge-
neous electric field as initial condition (rather than a Sauter
pulse). This is a numerically challenging problem, due to large
relativistic factors (requiring a large volume in momentum
space) combined with the distinct separation of timescales,
with the Compton scale being much shorter than the plasma
oscillation time scale. However, for very strong initial fields,
the problem turns out to be less demanding computationally,
as the separation in timescales is not equally pronounced. To
confirm the agreement with previous works in this regime,
we have used a very strong initial field E (t = 0) = 100Ecr ,
together with the actual value of α, and compared the electric
field profile with the curve shown in Ref. [30] using the
same parameters; see Fig. 10. While there is a small but
visible difference between the two curves, the deviation is not
larger than should be expected with regard to the numerical
precision.

As the dynamics when the back-reaction is prominent (for
a discussion of when back-reaction can be neglected; see, e.g.,
Refs. [42,43]) tend to depend on the actual value of the fine-
structure constant, it would be of interest to systematically
reconsider many of the studies made using a magnified value
of α. Since this tends to be computationally demanding, and
our main focus has been on the regime with an initial plasma,
a more complete study of the initial vacuum regime is outside
the scope of the present paper.

V. RADIATION REACTION

In this section we will consider potential mechanisms that
have been omitted, but may compete with the processes con-
sidered up to now. In the overall dynamics, the main effects of
pair production is a frequency increase of the plasma oscilla-
tions, together with damping. The present DHW model is an
accurate description of the mean-field physics, but processes
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converting energy from coherent degrees of freedom to non-
coherent degrees of freedom is not covered. For high plasma
densities, we note that in principle it is possible that certain
incoherent processes outside the mean-field description can
be suppressed due to many-particle effects. For a concrete ex-
ample illustrating the interplay between long-scale collective
phenomena and short-scale incoherent processes; see, e.g.,
Fig. 1 in Ref. [47].

Specifically, single-particle radiation emitted by accel-
erated particles can be suppressed when the generated
frequencies ωe fulfill N ≡ nc3/ω3

e 
 1, indicating that a large
number of electrons N simultaneously interact with the same
photon quanta. A precise estimate of the characteristic fre-
quency ωe would require substantial research, considering that
the emission depend on the details of the particle distribution
and may vary significantly during the oscillation period. Here
we just note that soft emission (with ωe � ωc) generally will
have N 
 1, in which case collective interaction captured
in the mean-field description will suppress single-particle ef-
fects. However, due to field strengths of the order the critical
field, and a spread in perpendicular momentum not much
smaller than m, a significant part of the emitted spectrum
is likely to have frequencies ωe of the order ωc or possibly
higher, implying N < 1, in which case single-particle emis-
sion gives an extra energy loss mechanism for the plasma
oscillations not captured by the DHW model. Accordingly, in
what follows, we will assume that single-particle emission is
present and estimate the energy loss of the plasma oscillations
based on this.

Next we note that the single-particle photon emission
implies an effective friction-like force, where the standard
expression is referred to as the Landau-Lifshitz force [50].
Here we limit the discussion to classical radiation reaction.
Although the regime of study is well outside the classical
limit of validity, this would suffice to produce an order of
magnitude estimate. Moreover, it should be noted that more
general QED calculations [51,52] involve large perpendicular
momentum and electromagnetic fields, i.e., those calculations
are not applicable to the electrostatic geometry with predom-
inately large parallel momentum. This force scales as γ 2 and
tend to be important when the field is strong enough to induce
large particle energies. However, to a large degree, this effect
is suppressed in a 1D electrostatic geometry, when the large
gamma factor only comes from the motion parallel to the
field. However, also in this case there is a finite contribution
that survives, due to the particle spread in momentum. Using
the classical Landau-Lifshitz expression [50] for the radiation
reaction force Frad, with the present normalizations and the
given field geometry, the expression reduces to

Frad = 2ε

3
α

[(
∂E

∂t
+ E2 pz

ε2

)
ẑ − E2ε2

⊥
ε2

p
]
. (36)

Next, we estimate the energy density loss due to the par-
ticle self-interaction during a plasma period. Dropping the
term proportional to the time derivative of the electric field
in Eq. (36) (as this contribution is considerably smaller in
the strong field regime of interest here), the energy loss rate

d�W/dt of the plasma oscillation energy is given by [53]

d

dt
�W = 〈Frad · v〉 ≈ 2

3
4πα2n0E2〈p2

⊥〉. (37)

Here 〈...〉 denotes averaging over the particle distribution. It
can be noted that the number density n0 is related to the
oscillation frequency (as seen, e.g., in Fig. 1), according to
4παn0 = ω2

p ∼ ω2γ , where n0 is the number density in the
laboratory frame, and γ is the characteristic relativistic factor
of the particles averaged over a wave period. Using Eq. (37),
the relative energy loss �WP/W during an oscillation period
can be estimated as

�WP

W
∼ 4πα2n0

ω
∼ α

ω2
p

ω
. (38)

Here we have used
∫

(E2(t )dt/E2(t = 0)) ∼ 3/ω (a sinu-
soidal field profile averaged over a cycle gives a numer-
ical factor π/ω, whereas an ideal sawtooth profile gives
2π/3). Moreover, we have estimated 〈p2

⊥/m2〉 ∼ 1/2 for the
plasma parameters typically used. Using ω2

p/ω ∼ ωγ , and
the Lorentz-force equation d pz/dt = E , we can estimate γ ∼
pz ∼ E/ω and hence

�WP

W
∼ αE . (39)

Thus for E of the order of the critical field, the energy loss
per oscillation period scales as α rather than

√
α as for the

Schwinger mechanism. While this suggests that radiation re-
action gives a smaller effect, comparing with Fig. 6 we see
that for the actual value of α, we cannot be certain.

On the other hand, we note that an estimate based on the
classical expression (36) tends to overestimate the loss rate
as compared to a more accurate calculation based on QED;
see e.g., [54]. This is captured in the so-called Gaunt factor
G, which describes the quantum reduction in the energy loss
rate. This is usually used in cases with large perpendicular
momenta (for which a general field appears as a crossed
field), while in our case we have large longitudinal momen-
tum instead. Nevertheless, Fig. 14 of Ref. [54], where the
standard G(χe) is plotted, suggests that the quantum corrected
result significantly reduces the classical estimate for χe :=√

−(Fμν pν )2/(mEcr ) = E p⊥/mEcr ∼ 0.5–1. Here Fμν is the
electromagnetic field tensor and pν is the 4-momentum.

Naturally, for electric field strengths well below the critical
field, the exponential suppression of the pair-creation rate will
make radiation losses dominant. For further results concern-
ing field depletion due to radiation losses, see, e.g., Ref. [55].

To conclude, we expect that for fields of the order of the
critical field, the inclusion of radiation reaction would not
significantly modify the plasma oscillation dynamics, even
though the damping due to pair creation is not necessar-
ily stronger than that due to radiation losses (compare, e.g.,
Fig. 1). For the case when both mechanisms are small, how-
ever, to leading order the plasma oscillation energy loss can
be computed perturbatively as the sum over two separate
mechanisms while disregarding the other. Importantly, the
frequency up-shift due to the increasing number density, as
induced by pair creation, is a much more pronounced effect
than the damping [compare Eq. (32)], and this has no cor-
respondence due to radiation reaction. Nevertheless, although
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radiation reaction does not change the plasma number density,
there will still be a frequency increase due to the decreasing
(average) gamma factors, as induced by the energy loss, al-
though that effect is one order higher in α, as compared to the
frequency increase due to the Schwinger mechanism.

Finally, it should be noted that there is also a possibil-
ity that mechanisms such as Breit-Wheeler pair production
could affect the dynamics. In this case, similar dynamics as
studied here can be expected, i.e., a frequency up-shift due
to the produced pairs; see, e.g., Ref [56]). In the literature,
electromagnetic field geometries has often been studied, in
which case avalanche processes involving Breit-Wheeler pair
production tend to be an important mechanism [9]. However,
as indicated by Ref. [10], for a field geometry corresponding
to our case, where the particles are accelerated in a given di-
rection, the avalanche processes are not necessarily as strong.
In the next section, we will look more closely at the potential
contribution of Breit-Wheeler pair production.

VI. NONLINEAR BREIT-WHEELER PAIR PRODUCTION

While we have so far not considered thermal photons, they
would be a natural part of a physical system with fermions
as described above. Hard photons could also be emitted by
the fermions via nonlinear Compton scattering. In this sec-
tion we will calculate some analytical approximations for
nonlinear Breit-Wheeler pair production. While the fields we
have consider so far oscillate, we will for simplicity consider
an electric field with a single maximum. This should suffice
as our main goal here is to find out how the probability
scales, rather than finding precise results. Indeed, when the
probability for this process is large, i.e., when it is important
compared to Schwinger pair production, it would be very
difficult to find precise results, because we would need to
include higher orders in α, but it is not know how to do that
for this type of fields, and the electric field is not a simple
background field but determined by back-reaction. So, the
best we can do at the moment is to find an estimate for
when this becomes important, which we do by considering
how many Breit-Wheeler pairs are produced during one (half)
cycle. Thus, with these motivating arguments, we consider a
general linearly polarized symmetric time-dependent single-
pulse field, A3(−t ) = −A3(t ), A3(t ) = f (ωt )/γ , where γ =
1/a0 = ω/E is the Keldysh parameter and a0 is the classical
nonlinearity parameter. (This notation holds for the current
section, but differs from previous sections, where we used γ

to denote the Lorentz factor.) We expect the process to mainly
be a “tunneling” process rather than a multiphoton absorption
process. We have performed the calculation using the WKB
method as explained in [57], and we refer to that paper for
more details. The WKB method for time-dependent electric
fields, e.g., rotating, has also been studied recently in [58]. In
this section we use units where the electron mass m = 1. The
initial photon has momentum k. We consider an arbitrarily
polarized photon, with polarization vector initially described
as a superposition of two basis polarization 4-vectors

εμ = cos
(ρ

2

)
ε (‖)
μ + sin

(ρ

2

)
eiλε (⊥)

μ , (40)

where

ε (‖)
μ = 1

�
{0,−k‖, 0, k⊥} ε (⊥)

μ = {0, 0, 1, 0} (41)

for a photon with kμ = {�, k⊥, 0, k‖}. The polarization vector
ε (‖)
μ has a component parallel to the electric field, while ε (⊥)

μ

is perpendicular to both the photon momentum and the field.
The probability can be calculated with WKB as explained in
[57]. The result is expressed as

P = N · M, (42)

where

N = {1, cos λ sin ρ, sin λ sin ρ, cos ρ} (43)

is the Stokes vector and we call M the Mueller vector (these
are not Lorentz 4-vectors). The various integrals are per-
formed using the saddle-point method. For the momentum
integrals we have a saddle point where the electron-positron
pair share the photon momentum equally, for the canon-
ical momentum of the electron this means p⊥ = k⊥/2 =√

k2
1 + k2

2/2 and p‖ = k3/2, where � = |k| = 2
√

p2
⊥ + p2

‖ ,

and m⊥ = √
1 + p2

⊥ is an effective mass. We find

M =
√

παω3/2{1 + 3p2
⊥, 0, 0, 1 − p2

⊥}
8
√

2A′(t̃ )�p⊥m2
⊥
√
J1

×
[

(J1 − p2
⊥J2)m2

⊥J2 − p2
⊥J 2

A

−
J1 − p2

⊥J2 + 2p‖JA + m2
⊥ p2

‖
p2

⊥
J2

1 + m2
⊥ p2

‖
p4

⊥

ω

p⊥A′(t̃ )

]−1/2

× exp

[
− 4

ω

(
J0 − �ũ

2

)]
, (44)

where the J functions are given by the following time inte-
grals:

Jn=1

2

∫ ũ

0
du

(
[m2

⊥ + (A − p‖)
2]

1
2 −n + [m2

⊥ + (A + p‖)
2]

1
2 −n

)
,

(45)

JA = 1

2

∫ ũ

0
du

(
A − p‖

[m2
⊥ + (A − p‖)2]

3
2

− A + p‖

[m2
⊥ + (A + p‖)2]

3
2

)
,

(46)

where u = −iωt > 0 is a rescaled complex time variable,
i.e., the integration contour is over a finite interval along the
positive imaginary time axis. For the antisymmetric fields we
consider, the potential is purely imaginary along this integra-
tion contour, so we can write A(t ) = i f̃ (u)/γ , where f̃ (u) is
now a real function. The integration limit, ũ, is determined by

f̃ (ũ) =
√

1 + p2
‖

p2
⊥
γ . (47)

Note that, in contrast to the perpendicular case (p‖ = 0) con-
sidered in [57], ũ depends in general on the momentum. Note
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that Jn and JA are real. We have

J1 = 1

p⊥

∂J0

∂ p⊥
+ p2

‖

p3
⊥

ω

A′(t̃ )
, (48)

J2 = − 1

p⊥

∂J1

∂ p⊥
− p2

‖

p⊥(p4
⊥ + m2

⊥ p2
‖ )

ω

A′(t̃ )
, (49)

and

JA = ∂J1

∂ p‖
− p‖ p⊥

p4
⊥ + m2

⊥ p2
‖

ω

A′(t̃ )
. (50)

These relations are very useful in cases where we can calculate
J0 analytically, since then the other integrals are obtained by
simply differentiating. In the perpendicular case, k‖ = 0, we
recover immediately the results in [57]. However, to obtain
estimates for the present paper, we need to consider photons
with k‖ �= 0. In fact, most particles have much larger parallel
momentum components. As the general result (44) is not
particularly illuminating, we will consider various limits.

A. LCF limit

Consider first the locally constant field (LCF) limit, γ � 1.
In order to obtain the pre-exponential factor we need to ex-
pand the integrals to next-to-leading order, J ≈ c1γ + c3γ

3.
We find

lim
γ�1

M =
√

παE2(0){1 + 3p2
⊥, 0, 0, 1 − p2

⊥}
8
√−E ′′(0)�p⊥m⊥

×
exp

{ − 2
E (0) [m

2
⊥arccot(p⊥) − p⊥]

}
√

arccot(p⊥)[m2
⊥arccot(p⊥) − p⊥]

, (51)

where we have assumed that the field has a maximum at t = 0.
This agrees with what one finds by starting with Eq. (6) in
[59] for nonlinear Breit-Wheeler in a constant electric field,
replacing the volume factor by a time integral, V0 → ∫

dt ,
and the constant field with a locally constant field, E → E (t ),
and then performing this time integral with the saddle-point
method. This prescription for how to go from a constant-field
result to a LCF approximation has been applied to Schwinger
pair production in [60]. Note that in this limit the result
only depends on p‖ via �. We have E ′′(0) = Eω2 f ′′′(0),
where f ′′′(0) = d3

u f (u)|u=0 is O(1) [e.g., f ′′′(0) = −2 for a
Sauter pulse, f (u) = tanh(u)]. Hence, with E = E (0) and
γ = ω/E = 1/a0 as independent parameters, the probability
scales as

P = αA
√

EF (p⊥)e−G(p⊥ )/E , (52)

where

A = k⊥√
k2

⊥ + k2
‖

a0. (53)

We will argue that A is an important parameter for estimating
the size of the probability. This can also be expressed as
(compare with the case of null fields [61])

A = χ

b0
, (54)

where χ =
√

−(Fμνkν )2 and b0 = κk, where κ = {ω, 0, 0, 0}
is the wave vector of the field. The fact that A is a relevant
parameter beyond the LCF limit considered in this subsection
can already be seen by noting that (47) can be expressed as

f̃ (ũ) = 1

A . (55)

Although one can only expect the saddle-point approxima-
tion to be precise for sufficiently small E , one can expect it
to still give an order of magnitude estimate for E � 1. So,
if k⊥, k‖ ∼ 1 and a0 is sufficiently large then we could have
αa0 ∼ 1, which would make the probability large, which in
turn would mean that we would need to take higher orders in α

into account. However, in the system that we have focused on
above, the fermions typically have momenta that are almost
parallel to the field, i.e., p‖ 
 p⊥. We can use the Lorentz-
force equation to estimate p‖ ∼ a0 as a typical momentum. If
the photon considered in this section has been emitted by such
a fermion, we also expect the photon to have a momentum
almost parallel to the field. For k‖ = 2p‖ ∼ a0 and k⊥ ∼ 1 we
have

A ∼ a0

k‖
∼ 1, (56)

which is not large, and then there is no large factor to com-
pensate for α � 1 in (52). Thus, for the system we consider,
where the particles tend to have large parallel momentum, the
Breit-Wheeler process would be less important. However, as
(51) has been derived with γ � 1 as expansion parameter,
i.e., implicitly assuming that no other parameter is too small
or large, we will derive a new result specifically for the limit
p‖ ∼ a0 
 1 in order to confirm this. But first we consider an-
other limit which allows us to make another nontrivial check
of (44).

B. Plane-wave limit

Next we consider the limit where both the perpendicular
and the parallel momentum components are large, or where
only the perpendicular component is large. We find

lim
p⊥∼p‖
1

M =
α
√

πχ{3, 0, 0,−1} exp
{ − 4A

χ
(ũ − A2JPW)

}
32A

√
ũ f̃ ′(ũ)(ũ − A2JPW)(Aũ f̃ ′(ũ) − 1)

,

(57)

where χ =
√

−(Fμνkν )2 = Ek⊥ = 2E p⊥ and

JPW =
∫ ũ

0
du f̃ 2(u). (58)

Thus,

P = α
√

χFPW(A)e−GPW (A)/χ . (59)

This agrees with the result for nonlinear Breit-Wheeler in a
plane wave instead of E (t ) [see Eq. (166) in [57]] but with A
instead of just a0. Thus, we again see that it is A rather than
just a0 that is the relevant parameter.

One can understand this using a Lorentz boost as fol-
lows. In terms of the two orthonormal vectors k̂ = k/|k| and
ε‖ (the spatial components of ε (‖)

μ ) the electric field can be
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expressed as

E(t ) = 1

�
(k‖k̂ + k⊥ε‖)E (t ), (60)

so the field components parallel and perpendicular to the
photon momentum are given by

E‖ = k‖

�
E E⊥ = k⊥

�
E . (61)

Note that, e.g., k‖ gives the momentum component parallel to
the electric field, while E‖ gives the component of the electric
field that is parallel to the photon momentum. In order to
get rid of the large parameter, we boost along the photon
momentum to a frame where the photon momentum is [63]
O(1). In this new frame the perpendicular components of the
field are given by

E ′
⊥ = γLE⊥ B′

⊥ ≈ −γLk̂ × E⊥, (62)

where γL = 1/
√

1 − v2 is the Lorentz factor of the boost,
while the parallel components remain the same, E ′

‖ = E‖ and
B′

‖ = 0. Since we need to boost with a speed v close to the
speed of light, γL 
 1, and hence the perpendicular com-
ponents are much larger than the parallel components, and
the field in the new frame is approximately null, E′2 − B′2 ≈
E′ · B′ ≈ 0. Moreover, in this new frame the argument of the
field is approximately lightlike,

ωt → γLω(t ′ + k̂ · x′) = ω′(t ′ + k̂ · x′). (63)

Thus, in the new frame the field is basically a plane wave,
and the corresponding “classical nonlinearity parameter” is
the ratio of the field strength and frequency in this frame,

a′
0 := E ′

ω′ = E⊥

ω
= k⊥√

k2
⊥ + k2

‖

a0 = A. (64)

Thus, this Lorentz transformation shows that when we have
a large perpendicular momentum we expect the probability to
be approximately equal to the corresponding result for Breit-
Wheeler in a plane wave with classical nonlinearly parameter
given by A, and this is indeed what we found in (57). Since
(57) has the same functional form as for a plane wave, we
already know from the literature its various limits and special
cases. For large A, (57) reduces to

lim
A
1

lim
p⊥∼p‖
1

M = 3αA√
πχ f ′(0)2{3, 0, 0,−1}
32

√−2 f ′′′(0)
e− 8

3χ f ′ (0) ,

(65)

which agrees with the LCF approximation that one can obtain
by starting with results for a constant-crossed field [64–66].
We again see that a large A can compensate for α � 1, but a
large a0 may not be enough if k‖ 
 k⊥.

C. Large longitudinal limit

Now we return to the limit that is most relevant for the
previous sections, i.e., where a0 
 1 and where the particles
have a large longitudinal momentum because they have been
accelerated by the field, or because they have been produced
by particles with such a momentum. If the momentum is

mostly due to the Lorentz force then we have

P‖ ∼ E�t ∼ E

ω
= a0, (66)

where we have used 1/ω as a typical timescale. At least in
the saddle-point regime, we expect the produced fermions in
trident to have momentum on the same order of magnitude
as the initial electron’s momentum, which also means that
the intermediate photon has a similar momentum scale. It is
therefore justified to consider nonlinear Breit-Wheeler for a
photon with momentum k‖ ∼ a0. We find

lim
p‖∼a0
1

M = α
√

πE{1 + 3p2
⊥, 0, 0, 1 − p2

⊥}
16

√
2p⊥m⊥ f̃ ′(ũ)

√
S1

×
[

p̂2
‖ m2

⊥
(
m2

⊥S1S2 − p2
⊥S2

A

)

− ( p̂2
‖ m2

⊥S2 + p2
⊥[S1 + 2 p̂‖SA])

p⊥

f̃ ′(ũ)

]− 1
2

× exp

[
− 2

E

(
m2

⊥S1 − p2
⊥

p̂‖
ũ

)]
, (67)

where p̂‖ = p‖/a0 ∼ O(1), f̃ (ũ) = p̂‖/p⊥,

S1 =
∫ ũ

0
du

p̂‖

p̂2
‖ + f̃ 2(u)

, (68)

S2 =
∫ ũ

0
du

p̂‖[ p̂2
‖ − 3 f̃ 2(u)]

[ p̂2
‖ + f̃ 2(u)]3

, (69)

and

SA =
∫ ũ

0
du

f̃ 2(u) − p̂2
‖

[ p̂2
‖ + f̃ 2(u)]2

. (70)

Although this looks more complicated compared to the other
limits, we can immediately see that (67) is independent of a0

[with p̂‖ as an independent O(1) parameter], and the probabil-
ity scales as

P = α
√

EFlong(p⊥, p̂‖)e
−Glong(p⊥,p̂‖ )/E . (71)

This agrees with what we found by taking the large p‖ limit of
the LCF or plane-wave limits. Thus, this confirms the tentative
conclusions made in the previous subsections. In particular,
there is no large parameter in this limit to compensate for
α � 1, and so the Breit-Wheeler probability is suppressed by
a factor of α.

We can understand these results using a Lorentz boost sim-
ilar to the plane-wave case. However, in this case we should
boost parallel to the electric field in order to reduce the large
longitudinal momentum to p′

‖ ∼ O(1). For such a boost there
is no change in the direction or strength of the electric field
and there is no induced magnetic field. The only change on
the field is that the argument becomes lightlike

ωt → γLω(t ′ ± z′) = ω′(t ′ ± z′). (72)

Thus, in the new frame we have a field on the form Ez′ (t ′ + z′).
Schwinger pair production in such a field has been studied in
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[67,68]. We can define a classical nonlinearity parameter in
the new frame as

a′
0 := E ′

ω′ = a0

γL
. (73)

But in order for k′
‖ ∼ O(1) we need γL ∼ k‖ ∼ a0, which

means a′
0 ∼ O(1). Thus, this Lorentz boost does two things:

it makes k′
μ ∼ O(1) and gives a a′

0 ∼ O(1). Since A ∼ 1
too, using A as a more general nonlinearity parameter also
works in this limit. There is therefore no large factor that can
compensate for α � 1. Note that this Lorentz-boost argument
does not rely on the saddle-point approximation, so we might
expect that the same argument would imply that the probabil-
ity is relatively small in a larger parameter regime.

In this section we have considered nonlinear Breit-Wheeler
pair production. Another process that would be directly rel-
evant to check as a competing process is the nonlinear
trident process, e− → e−e−e+. It is possible to derive similar
results for this process, but the results will be presented else-
where. However, the main message about how the probability
scales is similar. Indeed, we can use the same Lorentz-
transformation arguments as above. Thus, it is again A that
is the relevant parameter (defined with the initial electron
momentum). For large A, trident at O(α2) would to leading
order scale as (αA)2. If this is not small then one would need
to include higher orders, but it tends to be small for the system
we have considered here.

VII. CONCLUSION

The main purpose of this study has been to study self-
consistent plasma dynamics for ultrastrong field strengths. It
is seen that for fields strengths of the order Ecr or larger,
electron-positron pair production leads to a pronounced in-
crease in the plasma oscillation frequency, and also damping
of the amplitude. The scaling of the damping with the plasma
parameters has been investigated numerically. In particular,
for a fixed chemical potential μ, pair production is suppressed
for higher temperatures. This is because the mechanism de-
pends sensitively on the plasma density, which is increased
with higher temperature (for a fixed μ). However, if the par-
ticle number density is kept fixed instead, there is a slight

increase in the damping with temperature. This is because
more low-energy states will be available for pair creation.

For numerical convenience, we have picked fairly high
plasma densities in our study, since the code can be executed
on a PC in this case. However, from the point of view of
laboratory experiments, the case with μ and T much less
than unity is of most interest. While we have not probed
this regime here, the scaling behavior displayed in Fig. 6 still
applies. Nevertheless, extended simulations (run on a parallel
computer) must be made for detailed quantitative predictions
in the regime where both μ � 1 and T � 1 applies.

For field strength well beyond Ecr , the dynamics is similar
to the case E ∼ Ecr , but the processes is considerably more
rapid. Moreover, starting with an electron-positron plasma
as initial condition, the process can evolve in the opposite
direction. That is, instead of Schwinger pair production, we
can have collective Schwinger annihilation, leading to an in-
crease in the oscillation amplitude. While this process is much
faster than collisional annihilation, it still competes with pair
production taking place in the part of momentum space that is
not filled with electrons and positrons. Thus, as far as we have
seen, pair annihilation is typically not a dominant mechanism.

For strong fields, certain processes not covered by the
DHW formalism are potentially important. This includes ra-
diation reaction and nonlinear Breit-Wheeler pair production.
While these processes tend to be important for electromag-
netic field geometry, the estimates given in Secs. V and VI in-
dicate that there is a regime of self-consistent dynamics where
the Schwinger mechanism is the main feature. In particular,
this holds for electric fields of the order of the Schwinger crit-
ical field (or somewhat larger), and for a field geometry where
the particle momentum is mainly parallel to the electric field.

In conclusion, the DHW formalism is very well suited
for studies of collective strong field plasma dynamics. Future
problems of interest based on this approach include extensions
to nonhomogeneous systems, electromagnetic fields [45,69],
and magnetized plasmas.
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