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Radiation reaction effects in relativistic plasmas: The electrostatic limit
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We study the evolution of electrostatic plasma waves, using the relativistic Vlasov equation extended by
the Landau-Lifshitz radiation reaction, accounting for the back-reaction due to the emission of single particle
Larmor radiation. In particular, the Langmuir wave damping is calculated as a function of wave number, initial
temperature, and initial electric field amplitude. Moreover, the background distribution function loses energy in
the process, and we calculate the cooling rate as a function of initial temperature and initial wave amplitude.
Finally, we investigate how the relative magnitude of wave damping and background cooling varies with the
initial parameters. In particular, it is found that the relative contribution to the energy loss associated with
background cooling decreases slowly with the initial wave amplitude.
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I. INTRODUCTION

Over the past few decades, there has been increasing in-
terest in intense field plasma physics. This has been driven in
part by technological development (see Ref. [1] for the current
high-intensity laser world record and Refs. [2,3] for the pro-
jected performance of upcoming facilities), by experimental
findings (e.g., Ref. [4,5]), and by theoretical concerns (e.g.,
Refs. [6,7]).

Electrons are nowadays accelerated to the strongly rela-
tivistic regime rather routinely, see, e.g., Refs. [6–8]. As is
well known, strongly accelerated relativistic electrons emit
Larmor radiation. Unless the emitted photons are very hard,
this process will be well described by the relativistic gen-
eralization of Larmor’s formula. As a consequence of this
self-interaction of the electron with its own field, there is an
effective recoil force on the electrons that should be added to
the Lorentz force of the external electromagnetic field.

The nature of the recoil force, also known as radiation re-
action, has been studied extensively for a long time, see, e.g.,
Refs. [9,10]. In the classical regime, excluding the strongest
field intensities, a key result is given by the Abraham-Lorentz-
Dirac (LAD) equation. However, the LAD equation is famous
for the unphysical runaway solutions. Treating the recoil force
as a small perturbation to the Lorentz force, however, the
unphysical solutions can be removed, in which case we are
left with the Landau-Lifshitz (LL) equation for the radiation
reaction. A tutorial review where many related aspects are
covered is given in Ref. [11]

*haidar.al-naseri@umu.se
†gert.brodin@umu.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

The Landau-Lifshitz equation has been solved exactly for
some restricted field geometries, see, e.g., Refs. [12], for the
one-particle system. Numerically, the LL radiation reaction
has been implemented in particle-in-cell (PIC) simulation by
Refs. [13,14]. Moreover, a quantum generalization of LL ra-
diation reaction has been implemented in PIC simulations in
Refs. [14,15]. For a comparison between classical and quan-
tum radiation reaction in PIC simulations, see Ref. [14].

For kinetic theories of a many-particle system, Hakim et al.
were the first to derive radiation reaction correction to the
Vlasov equation [16]. Radiation reaction–corrected Vlasov
equations have also been derived in Refs. [11,17,18]. The
focus of the above-mentioned works was to derive kinetic
evolution equations of the system rather than analyzing the
resulting dynamics. A kinetic study of Landau damping influ-
enced by radiation reaction effects was presented in Ref. [19].
Hydrodynamic models of relativistic plasmas including radi-
ation reaction have also been studied, see, e.g., Refs. [20–23].

In this work, we focus on the effects of radiation reaction
in the presence of electrostatic waves. For this purpose, we
add the Landau-Lifshitz expression for the radiation reaction
to the Lorentz force in the relativistic Vlasov equation. The
influence of radiation reaction on Langmuir waves is then
studied. As expected, the radiation reaction induces wave
damping, and the damping is computed numerically as a
function wave number, initial temperature, and initial electric
field amplitude. In particular, it is found that the normalized
energy loss rate (with respect to the initial energy) decays
with a factor ∼2/3 with increasing amplitude for a low or
modest temperature. This decrease is found to be a direct
consequence of the transition from a sinusoidal wave profile
(in the low-amplitude regime) to a sawtooth profile (in the
strongly relativistic limit).

Moreover, it is found that wave damping occurs simulta-
neously as the background electron distribution loses kinetic
energy, i.e., the radiation reaction induces electron cooling.
The magnitude of the cooling is studied as a function of
the initial temperature and the initial electric field. Generally,
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the Larmor radiation takes energy from two sources, wave
damping and the background electron distribution. The rel-
ative magnitude of these contributions is investigated, and it
is found that electron cooling dominates for high background
temperature and strong electric fields, whereas the opposite
ordering applies in the low-temperature weak-field regime.

The organization of the paper is as follows: In Sec. II, the
basic equations are presented, simplifications for the present
case of electrostatic waves are made in Sec. II A, and re-
sults for the low-temperature regime are derived in Sec. II B.
Section III is devoted to numerical studies concerning the de-
pendence of wave damping on the wave number (Sec. III A),
the scaling of the cooling rate (Sec. III B) with amplitude and
temperature, and the relative magnitude of cooling and wave
damping (Sec. III C). Our results are discussed in Sec. IV.
Finally, there is an Appendix, where the magnitude of wave
damping due to radiation reaction is addressed in relation to
collisional damping.

II. BASIC EQUATIONS

For sufficiently strong electromagnetic fields, the relativis-
tic Vlasov equation for electrons needs to be updated [6–8,24].
For field strengths well below the Schwinger critical field,
electron-positron pair production due to the Schwinger mech-
anism can be neglected. However, photon emission by single
electrons due to nonlinear Compton scattering may become
significant in case the product χa2

0 is not too small. Here we
have introduced the quantum nonlinearity parameter χ [6]
covariantly written as

χ = 1

Ecrc

√
FμνuνFμσ uσ ,

which is typically much smaller than unity. Moreover, we
have introduced the “laser strength” a0 = eE/mω (roughly
the relativistic gamma factor due to electron quiver velocity
for large electric fields E , in which case a0 is larger than
unity). Here ω is the wave frequency; Fμν the electromagnetic
field tensor; uμ the four-velocity; c the speed of light in a
vacuum; Ecr = m2c3/|e|h̄ the Schwinger critical field, with m
and e being the electron mass and charge, respectively; and,
finally, h̄ is the reduced Planck constant. Note that e is the
negative electron charge as opposed to the positive elementary
charge.

Many works (see the recent reviews [6–8] for long lists of
papers) have studied nonlinear Compton scattering for a small
electron number density, such that the driving electromagnetic
fields can be taken as solutions to Maxwell’s equations in vac-
uum, in which case the properties of the emission spectra are
of main concern. However, in cases where the electron number
density is higher, the plasma dynamic for strong fields is far
from trivial. Importantly, in cases where the energy radiated
by the electrons is not very small, the electron equation of
motion (given by the Lorentz force in the external field) needs
to be corrected by the radiation reaction force [13–15].

While there is ongoing research on how to extend the
classical expression by LL to include QED physics as well
as higher-order classical effects (see, e.g., Refs. [6–8]), in the
regime where radiation reaction can be considered a small per-
turbation, the LL expression is well established [6–8]. Since

we will here consider this particular regime, we adopt the LL
expression given by Refs. [9,10,12],

F = e3ε

6πε0m2c5

(
∂t + p

ε
· ∇x

)[
E + c2p

ε
×B

]

+ e4

6πε0m2c4

[
E×B + B×

(
B×c2p

ε

)
+ E

(
cp
ε

· E
)]

− 2e4ε

3c7m4
p

[(
E + c2p

ε
×B

)2

−
(

cp
ε

· E
)2

]
, (1)

where we have introduced the particle energy ε =
mc2

√
1 + p2/m2c2 and ε0 is the permittivity of free space.

Given Eq. (1), the relativistic Vlasov equation, with the
radiation reaction F as a correction to the Lorentz force, can
be written as follows:[

∂

∂t
+ p

ε
· ∇

]
f + e

(
E + cp

ε
×B

)
· ∇p f + ∇p · (F f ) = 0.

(2)

Note here that particle conservation demands the correc-
tion term to be written ∇p · (F f ) rather than F · ∇p f , since,
contrary to nondissipative forces such as the Lorentz force,
∇p · F �= 0. It should be stressed that after introducing the
radiation reaction in the Vlasov equation, the Maxwell-Vlasov
system will not be energy-conserving anymore, as the macro-
scopic current −e

∫
(p f /εd3 p will not resolve the motion of

individual particles, leading to the emission of high-frequency
Larmor radiation, constituting the missing piece in the energy
balance. In this work, we will ignore the effects of the gen-
erated high-frequency radiation on the collective dynamics,
apart from what is already captured by the radiation reaction.
The basic assumption is that any additional influence is a
higher-order effect that is not crucial until the radiation reac-
tion becomes comparable in magnitude to the Lorentz force.

A. Kinetic theory for electrostatic fields

From now on we will consider the one-dimensional elec-
trostatic limit with E = E (z, t )ẑ, in which case the radiation
reaction force reduces to

F = e3ε

6πε0m2c5

[(
∂E

∂t
+ pz

ε

∂E

∂z

)
ez

+c2eE2 pz

ε2
ez − eE2ε2

⊥
m2c2ε2

p,

]
(3)

where ε⊥ = mc2
√

1 + p2
⊥/m2c2. As a consequence, in the

electrostatic one-dimensional limit, the relativistic Vlasov
equation including radiation reaction is given by

[
∂

∂t
+ pz

ε

∂

∂z

]
f + eE

∂ f

∂ pz
− 1

p⊥

∂

∂ p⊥

(
e4E2ε2

⊥ p2
⊥

6πε0m4c5ε2
f

)

+ e3

6πε0m2c5

∂

∂ pz

[(
ε
∂E

∂t
+ pz

∂E

∂z

)
f − eE2 pz p2

⊥
εm2

f

]
= 0.

(4)
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To prepare for numerical calculations, we introduce the fol-
lowing normalized variables:

tn = ωptzn = ωpz

c
pn = p

mc

εn = ε

mc2
fn = m3c3

n0
f En = eE

mcωp
, (5)

where ωp ≡
√

n0e2/ε0m and n0 is the unperturbed electron
number density. Applying the normalization of Eq. (5) in
Eq. (4) we get(

∂

∂tn
+ pzn

εn

∂

∂zn
+ En

∂

∂ pzn

)
fn− 1

p⊥n

∂

∂ p⊥n

(
2δε2

⊥n p2
⊥nE2

n

3εn
fn

)

+ 2δ

3

∂

∂ pzn

[(
εn

∂En

∂tn
+ pzn

∂En

∂zn
− E2

n pzn p2
⊥n

εn

)
fn

]
= 0,

(6)

where δ = reωp/c and re is the classical electron radius, that
is, re = e2/4πε0mc2 in the SI unit system. We note that except
for extremely high-density plasmas (like, for example, the
central parts of neutron stars), δ � 1 applies, which will be
used throughout the paper. Finally, the radiation reaction–
corrected Vlasov Eq. (6) is complemented by Ampère’s law
to obtain a closed system,

∂En

∂tn
= −

∫
d3 pn

pzn

εn
fn. (7)

Equations (6) and (7) describe the dynamical evolution of
the system. In addition, initial conditions for the system must
fulfill Gauss law, which in normalized units read

∂En

∂zn
=

∫
d3 pn fn − 1, (8)

where the constant of unity comes from the background of
immobile ions.

For notational convenience, in what follows, we will drop
the subscript n on the normalized variables. The total energy
density Wtot in the system is the sum of the electrostatic energy
and the kinetic and rest mass energy, that is,

Wtot = E2

2
+

∫
d3 p ε f . (9)

Since we have energy loss in the system due to the Larmor
high-frequency radiation, the total energy is not conserved.
Taking the time derivative of Eq. (9) and using Eq. (6) we get

∂Wtot

∂t
+ ∂S

∂z
= 2δ

3

∫
d3 p

[
pz

(
∂E

∂t
+ pz

ε

∂E

∂z

)
− E2 p2

⊥

]
f ,

(10)

where the energy flux S is

S =
∫

d3 p pz f . (11)

We note that the right-hand side of Eq. (10) is negative def-
inite, as should be expected since this term represents the
energy loss due to short-scale electromagnetic degrees of
freedom not resolved by the macroscopic current computed
in Eq. (7). The negative sign of this term can be formally
proven, noting that the time derivative of the electric field can

be moved outside the momentum integral. Then the use of
Eq. (7) is enough to assure the sign of the first term of the
right-hand side of Eq. (10), and the second term is explicitly
negative to start with. As can be seen from Eq. (6) and also
from Eq. (10), the relative loss rate induced by radiation reac-
tion for the electrostatic geometry is largely governed by the
parameter δ. This parameter is generally small, even for very
high densities. Specifically, we have δ ∼ 10−6 for plasmas of
solid density, δ ∼ 10−5 for the compressed core of inertial
confinement fusion plasmas, and δ ∼ 5×10−4 for the electron
plasma of white dwarf stars. Nevertheless, as will be shown
in the Appendix, for strong electric fields the loss rate due
to radiation can be larger than the collisional damping, and
thus even a small dissipative loss can be significant. Since the
case δ � 1 is of main interest, the energy loss given by the
right-hand side of Eq. (10) will be viewed as a small pertur-
bation. In this regime, the wave damping rate will be linear
in δ. For computational convenience, we will typically pick
values of δ a bit higher than what is motivated by common
plasma regimes. Obviously, the linear scaling with δ allows
for a straightforward translation to any density. As we will
see in the next sections, the perturbative approach means that
Eq. (10) will be of help when evaluating the damping rate of
Langmuir waves.

B. The low-temperature limit

Before we take on the more general case, it is instructive to
first consider the low-temperature limit. For a sufficiently low
temperature, kinetic effects can be neglected and the evolution
equations can be simplified. For this purpose, we define the
following moments over momentum space:

n(z, t ) =
∫

d3 p f

P(z, t ) =
∫

d3 p
pz f

n(z, t )

and assume that the spread in momentum (temperature) is low
enough such that we can make the approximation

h(P(z, t )) ≈
∫

d3 p
h(pz ) f

n(z, t )
,

where h(pz ) is an arbitrary function of pz. Next, integrating
Eq. (6) over momentum, we immediately obtain the continuity
equation

∂n

∂t
= − ∂

∂z

(
Pn√

1 + P2

)
. (12)

Furthermore, we multiply Eq. (6) with pz, integrate over mo-
mentum space, and apply the low-temperature approximation.
Rewriting the derivatives on the electric field using Maxwell’s
equations, we get the cold momentum equation with radiation
reaction included, which can be written

∂P

∂t
= E − ∂

∂z

√
1 + P2 − 2

3
δP. (13)

Finally, applying the low-temperature approximation to Am-
pere’s law, we obtain

∂E

∂t
= − Pn√

1 + P2
. (14)
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FIG. 1. The electric field E over time for δ = 0.005 using the
low-temperature limit.

The energy conservation law for the system Eqs. (12)–(14)
can be written as

∂W

∂t
+ ∂S

∂z
= −δ

2

3

P2n√
1 + P2

, (15)

where, in the cold limit, the energy density and energy flux are
given by

W = 1
2 E2 + n

√
1 + P2 (16)

and S = nP, respectively. We note that the third loss term in
Eq. (10) vanishes in the cold limit, and the surviving loss
term in Eq. (15) is a combination of the two previous ones
in Eq. (10).

Before studying the dynamics of Langmuir waves in more
detail in the next section, let us first illustrate some features
for the simple case of no spatial dependence, i.e., we drop all
terms with spatial derivatives in Eqs. (12)–(14). Starting with
the initial values E (t = 0) = E0 = 3, P(t = 0) = 0, n(t =
0) = 1, and letting δ = 0.005, the system Eqs. (12)–(14) is
solved numerically in the homogeneous limit. The result for
the electric field is displayed in Fig. 1. The first thing to note is
the sawtooth profile of the electric field, which is a result of the
relativistic amplitude. With the peak electric field of the order
E ∼ 3, the peak relativistic gamma factors are γ ∼ 9 (for E >

1, the peak value of the momentum scale as P ∼ E2), and for
most of the plasma oscillation cycle the electron velocities are
close to the speed of light, in which case the current is more
or less constant (since the number density is conserved), and
thus the sawtooth profile follows from Ampere’s law. Second,
we note that the loss rate is a few percentages per oscillation
cycle, which is well in accordance with Eq. (15), taking into
account that the loss rate of (2/3)δ is magnified by a factor
〈P2/

√
1 + P2〉 ∼ 〈γ 〉 ∼ 4–5, where the last estimate refers

to the data of Fig. 1. Here 〈. . . 〉 denotes averaging over an
oscillation cycle. Third, by comparing the time period for the
first and last oscillation cycle, we note that the wave frequency
is increasing. This is a natural consequence of the decreased
wave amplitude, as the relativistic gamma factor γ averaged
over a wave cycle decreases with the wave amplitude, and the
wave frequency scale as ω2 ∝ 1/〈γ 〉.

Finally, we note that the energy loss rate per wave cy-
cle decreases only slightly from cycle to cycle (compare the
peak-to-peak changes of the electric field for the first and last

wave cycle), as can be expected for a small value of δ. This
property will be used in the next section to solve the governing
equations, Eq. (6) and Eq. (7), perturbatively.

III. NUMERICAL RESULTS

In this section, we will perform a systematic numerical
analysis to study how electrostatic plasma waves are affected
by radiation reaction. This will include a dependence of the
wave damping on wave number, temperature, and on the ini-
tial electric field amplitude. Moreover, we will investigate the
cooling of the background electron distribution, which is a
process induced by radiation reaction that accompanies wave
damping.

A. Dependence of wave damping on the wave number

Before analyzing the case with a finite temperature, we first
would like to study the energy loss of Langmuir waves for
a cold plasma, in particular the dependence of the loss rate
on the wave number, based on the cold governing Eqs. (12)–
(14). These equations have been solved numerically using a
modified version of the Lax-Wendroff method [25], with the
following initial conditions:

E (t = 0) = E0 cos(kz)

n(t = 0) = 1 − kE0 sin(kz)

P(t = 0) = −E0 sin(kz). (17)

The damping rate can be computed, keeping kE0 < 1, to as-
sure that the initial density is always positive. Next, we define
the spatially integrated energy loss rate �c as

�c = 1∫
W dz

∫
dW

dt
dz. (18)

Here the integral is carried out over all space, or, alternatively,
for the case of a spatially periodic function, we can limit the
spatial integration to a single wavelength. The energy loss rate
defined in Eq. (18) is the instantaneous one, which should
be expected to vary in the nonlinear regime. However, the
variation with time is typically rather modest, as displayed in
Fig. 2 for the case of E0 = 1, k = 0.95, and δ = 0.02. We note
that the energy loss rate is decreasing slowly, indicating that
particles are pushed away from the regions of a higher electric
field by the ponderomotive force, decreasing the energy loss
rate [cf. Eq. (15)]. However, for the present numerical runs,
we note that typically the difference between the minimum
and the maximum loss rate is not larger than ∼10%, even for
nonlinear initial conditions.

Next, we should be aware that systems that are nonlinear,
cold, and spatially varying (nonzero k), tend to undergo wave
breaking eventually [26]. When wave breaking occurs, the
single-valued fluid momentum becomes two valued, due to
one electron fluid element overtaking another. At this point,
the fluid description ceases to be applicable. It should be noted
that wave breaking can occur at an even lower amplitude in
warm fluid theory, as described by the Coffey criterion, see
Ref. [27]. In the present subsection, where we limit ourselves
to cold fluid theory, we solve Eqs. (12) and (14) in order
to evaluate the energy loss rate up to the point where wave
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FIG. 2. The evolution of the energy loss rate in the cold limit
[given by spatial integration over the right-hand side of Eq. (15)] as
a function of time, for E0 = 1, k = 0.95, and δ = 0.02.

breaking sets in, and the fluid limit ceases to be applicable. In
Fig. 3, the electric field profile is shown right before wave
breaking sets in, note the almost infinite spatial derivative
indicating wave breaking is about to occur. Here the initial
conditions are a harmonic spatial profile given by Eq. (17)
with the initial electric field E0 = 1, k = 0.95, and δ = 0.02.

Next, we study the energy loss rate 〈�c〉 of Eq. (18), aver-
aged over time, as a function of wave number k. Here 〈�c〉
is computed as the average loss rate from t = 0 up to the
wave-breaking time TW , i.e.,

〈�c〉 = 1

Tw

∫ TW

0
�c(t )dt .

In Fig. 4 we see the energy loss rate for different wave num-
bers for initial electric field E0 = 10 (first panel) and for E0 =
3 (second panel). The general feature is a decline of the loss
rate with wave number in both cases. The reason for the de-
cline is that the loss rate is proportional to P2n/

√
1 + P2 [see

Eq. (15)] and that for higher spatial gradients, the maximum
momentum is limited by the spatial variations. Specifically,
particles will not experience an accelerating force in the same
direction for as long, decreasing the peak momentum of par-
ticles. This interpretation can be confirmed by studying the

FIG. 3. The spatial dependence of the electric field just before
wave breaking occurs at t = 1.2. The used parameters were E0 = 1,
k = 0.95, and δ = 0.02.

FIG. 4. The energy loss rate 〈�c〉 of a Langmuir wave for δ =
0.02 as a function of wave number k for two values of the initial
electric field amplitude, for E0 = 10 (upper panel) and for E0 = 3
(lower panel).

spatial profile of the momentum distribution. For this purpose,
in Fig. 5 we have plotted the peak momentum just before wave
breaking occurs, Pwb = max [P(z)]. As can be seen, Pwb is a
decreasing function of the wave number k, in agreement with
the decreasing loss rate. Furthermore, we see that the loss rate
is considerably larger for a stronger electric field, as should
be expected from the nonlinear dependence of the loss rate on
momentum. Here it is important to note that P scales as E2 for
larger fields well beyond the linear regime.

B. Cooling due to radiation reaction

Generally speaking, radiation reaction provides a mech-
anism for the transfer of (electron) kinetic energy to high-
frequency EM radiation. However, except for the cold case
T = 0, not all of the electron kinetic electron energy is asso-
ciated with the wave motion. Most previous studies (as seen,
e.g., in Ref. [22]) have found a cooling of the background
distribution due to radiation reaction. However, as shown by
Ref. [28] in the regime of quantum radiation reaction, also
heating of the background distribution is possible. To study

FIG. 5. The variation of peak momentum before wave breaking,
Pwb, with wave number k for E0 = 3 and δ = 0.02.
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the energy transfer in more detail, in this subsection we focus
on the cooling of the background distribution due to classical
radiation reaction.

First, we need to consider some preliminaries in order to set
up a perturbative approach making use of δ � 1, applicable
when the radiation reaction can be used as a small correction
to the external Lorentz force. Considering the homogeneous
limit, k = 0, we solve the relativistic Vlasov by making a
formal change of variables. For this purpose, we introduce the
canonical momentum

q = pz + A(t ), (19)

where A(t ) is the normalized vector potential, in which case
the relativistic Vlasov equation (dropping radiation reaction)
Eq. (6) becomes

∂

∂t
f (q, p⊥, t ) = 0, (20)

together with Ampére’s law,

∂E (t )

∂t
= A(t )

∫
d3 p

1

ε
f (q, p⊥, t = 0), (21)

where ε =
√

1 + p2
⊥ + [q − A(t )]2. Note that a term has been

dropped in Eq. (21) after integration, due to f being an even
function of q. Solving Eq. (21) (together with E = −∂A/∂t)
for E (t = 0) = E0, we can then use the resulting temporal
profile, E (t ), as our input in a perturbative scheme. As our
initial background distribution [which is preserved to zeroth
order in canonical momentum coordinates, see Eq. (20)] we
will consider a Maxwell-Jüttner distribution f0, i.e., we let

f0 = 1∫
e−

√
1+p2

⊥+q2/Eth p⊥d p⊥dq
e−

√
1+p2/Eth , (22)

where the thermal energy is Eth =
√

1 + p2
th − 1 and pth is the

normalized thermal momentum.
Strictly speaking, even if we begin with a thermody-

namic background distribution as in Eq. (22), as soon as
the generation of high-frequency radiation starts, we do not
have a well-defined temperature in the thermodynamic sense.
Still, counting all of the kinetic energy not associated with
the oscillatory net drift as thermal, we can nevertheless de-
fine an effective temperature associated with the evolving
background distribution in order to produce a quantitative
description.

At t = 0, we can thus define the initial (normalized) tem-
perature T0 as

T0 = 2

3

[∫
(ε − 1) f p⊥d p⊥dq

]
, (23)

where the initial drift momentum is P = ∫
p f p⊥d p⊥dq = 0

(with the normalized density conserved, i.e., n = 1). For the
moment, we still ignore the effect of radiation reaction and
assume that the dynamic is governed by the Vlasov equation,
such that Eq. (20) applies. Defining the temperature as a
function of time according to

T (t ) = 2

3

(∫ {√
1 + [pz + A(t )]2 + p2

⊥ − 1

}
f p⊥d p⊥dq

)
,

(24)

FIG. 6. Trel as a function of time t . In the first panel we have
E0 = 3, δ = 0.01, and pth = (0.1, 0.3, 0.5). In the second panel we
have pth = 0.3, δ = 0.01, and E0 = (1, 2, 3).

since pz + A(t ) = q, we see from Eq. (20) that this implies
temperature conservation, dT/dt = 0.

Next, we turn to the case with radiation reaction included.
Assuming the added term to be a small correction, we let
f = fv + δ f , where fv is a solution to the unperturbed Vlasov
equation. We only follow the evolution as long as δ f � fv ,
that is, we limit ourselves to the initial cooling phase. Un-
der these conditions, applying Eq. (6) perturbatively, we can
define T = T0 + δT , where T0 is the (constant) initial tem-
perature, and the temperature change δT ≡ (2/3)δWc) (where
δWc is the change of the background kinetic energy) is given
by

δT = 2

3

∫
[
√

1 + q2 + p2
⊥ − 1]δ f p⊥d p⊥dq, (25)

together with

δ f =
∫ t

0
−∇ p̃ · (Frad fv (q, p⊥, t = 0))dt ′. (26)

Inserting the expression for Eq. (26) into Eq. (25), after a
partial integration we can derive an expression for the rate of
change of the effective temperature

δWc =
∫ t

0

3

2

dT

dt ′ dt ′ =
∫ t

0

dWc

dt ′ dt ′, (27)

where the rate of change of the background kinetic energy is

dWc

dt
= 2δ

3

∫
p⊥d p⊥dq

[
q
∂E

∂t

− (1 + p2
⊥ + q2 − qA)

ε2
E2 p2

⊥

]
ε fv
εq

, (28)

with ε =
√

1 + p2
⊥ + (q − A)2 as before, and we have intro-

duced the notation εq =
√

1 + p2
⊥ + q2.

In the upper panel of Fig. 6 the evolution of the normal-
ized temperature Trel = (T0 + δT )/T0 is displayed for initial
electric field E0 = 3 and δ = 0.01 for different initial temper-
atures. We can see that the relative temperature decrease is
only somewhat stronger for a higher temperature. While the
relative difference in the cooling rate due to the difference
in initial thermal energy is fairly modest, in absolute terms,
naturally, the cooling is much more pronounced for a higher
initial temperature.
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FIG. 7. Trel for δ = 10−5, pth = 0.1, and E0 = 20.

In the lower panel of Fig. 6, the evolution of the normalized
temperature is shown for different values of the initial electric
field, E0, for pth = 0.1. As is obvious, the cooling rate shows
a very strong dependence on the initial electric field. Roughly
speaking, the temperature loss rate is proportional to E2

0 , as
can be expected from Eq. (28).

Up to now, we have mostly used values of δ of the order
δ ∼ 10−2. While δ � 1 still applies, such values correspond
to very high densities, not possible in a laboratory plasma
context. Since we have been mainly interested in properties
independent of δ, e.g., the scaling of the energy transfer with
temperature and initial amplitude, picking a somewhat larger
value of δ is not necessarily a problem. However, let us in-
vestigate an example relevant to inertial confinement fusion
[29]. In this case, we may have electron number densities of
the order n ∼ 1033 m−3, corresponding to δ ≈ 10−5, and an
electron temperature of the order T ∼ 25 keV corresponding
to pt ≈ 0.1. In Fig. 7 we follow the temperature evolution
during roughly a half plasma period, for E0 = 20, δ = 10−5,
and pth = 0.1. The steep temperature drops occur two times
per cycle when the absolute value of the electric field is
close to its maximum. As can be seen, for the given initial
data the temperature drops roughly 0.5% during a plasma
period, i.e., after a modest number of oscillation cycles, ∼140,
corresponding to a time ∼10−15 s, the temperature will have
dropped roughly a factor of two.

A major question regarding cooling, not yet addressed, is
the relative magnitude of the thermal energy drop in relation
to the wave-damping energy loss. We will wait to consider this
particular issue until we have studied wave damping in more
detail.

C. Wave damping in the homogeneous limit

When the temperature is low, the energy loss induced by
radiation reaction comes mainly in the form of wave damping
rather than cooling of the background distribution. Generally,
however, the effects of cooling and wave-damping can be
comparable in magnitude, and we need to separate the differ-
ent contributions for a detailed description. For a small δ, such
that a perturbative approach is applicable, we can combine the
total energy loss rate given by the right-hand side of Eq. (10)
with the cooling expression Eq. (28) to identify the energy loss
that corresponds to wave damping. Since the energy loss rate
tends to vary during an oscillation cycle, naturally the loss

FIG. 8. The dots show the damping �H plotted as a function of
initial amplitude E0 using pth = 0.3 and δ = 0.005 (upper panel).
For the lower panel, the damping �H is plotted as a function of pth

for E0 = 3 and δ = 0.005. The triangles show the period-time Tp for
the same parameters as used for the damping as read off on the right-
hand side axis.

rate should be evaluated during a full oscillation cycle, i.e.,
during 0 � t � Tp, where Tp is the period time of the plasma
oscillation. Using δWtot = δWw + δWc (where δWtot is the total
energy loss and δWw the wave energy loss), with

δWtot =
∫ Tp

0

2δ

3

∫
p⊥d p⊥dq

(
pz

∂E

∂t
− E2 p2

⊥

)
fvdt (29)

and δWc = δWc(t = Tp) computed from Eq. (27) as in the
previous subsection, the wave damping rate can be expressed
as

�H = δWtot − δWc

W0Tp
. (30)

Here W0 = E2
0 /2 is the initial wave energy and fv denotes the

solution to Eq. (6), where the radiation reaction is dropped, in
agreement with the perturbation scheme.

Using the same background distribution as in the previous
section, see Eq. (22), we study the dependence of wave damp-
ing on the initial temperature and wave amplitude. The scaling
of �H with the initial values of the plasma is displayed in
Fig. 8. In the upper panel, using the dots, we show the depen-
dence of �H on the initial electric field amplitude. Somewhat
surprisingly, perhaps, we see that the loss rate decreases with
amplitude. To understand this, we note that the loss rate is
normalized against the initial wave energy, and computed for
a fixed unit time.

Examining the expression for the loss rate Eq. (29) in the
low-temperature limit, after a little algebra, it can be seen
that the expression tends to scale as the energy density (∝E2)
[compare the low-temperature result Eq. (15)], suggesting that
the relative loss rate �H , normalized against the initial energy,
should be more or less independent of the wave amplitude.
However, what has not been accounted for by such a simple
consideration, is the change in the temporal waveform. The
sinusoidal profile for low amplitude has an average 〈E2(t )〉 =
(1/2)E2

0 over a wave period, whereas the average for a per-
fect sawtooth profile, as in the extreme nonlinear regime, is
〈E2(t )〉 = (1/3)E2

0 . The drop in loss rate seen in the upper
panel of Fig. 8 is slightly lower, where the deviation can
be considered as a thermal correction to the low-temperature
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FIG. 9. �c as a function of the initial amplitude E0 for δ = 0.005
and pth = (0.1, 0.3, 0.6) and the low-temperature solution “ODE.”

result. However, it should be noted that while the relative loss
rate per unit time drops (as displayed in Fig. 8), the absolute
loss rate per wave period actually grows. The reason is the
increase in period time with amplitude. The right-hand verti-
cal axis of the upper panel of Fig. 8 shows the simultaneous
change of the period time of the oscillation using triangles.
Due to the normalization, in the absence of relativistic ef-
fects, the period time would be Tp = 2π , but for the larger
amplitudes, we can note a substantial relativistic increase in
the period time. In the upper panel, we have used pth = 0.3
and δ = 0.005. We note that for E0 � 1, we have �H ≈ 0.03.
Here the relativistic gamma factors of the particles are close to
unity. For the larger electric fields, recalling that the drift mo-
mentum scales as P ∝ E2, we have strong relativistic effects.
As Tp ∝ 1/

√〈γ 〉 [due to ε in the denominator of Eq. (21)]
it is not surprising that the period time Tp deviates from the
nonrelativistic result by almost an order of magnitude for large
amplitudes.

In the lower panel of Fig. 8, the dots show the dependence
of �H on the thermal momentum pth for initial electric field
E0 = 3 and δ = 0.005. The reason for the decay in �H with
pth is that for a higher temperature, a gradually higher frac-
tion of the energy loss comes from cooling the distribution
rather than from wave damping. The triangles again show the
simultaneous variation of the period time Tp on the vertical
right-hand axis. As is well known, both a relativistic tempera-
ture and a relativistic wave amplitude increase the period time
of the plasma oscillation, as confirmed by the smooth increase
of the period time with thermal momentum.

Finally, in Fig. 9, the dependence of the energy loss rate
�H on initial wave amplitude E0 is shown in the cold limit,
as well as for three different nonzero values of the thermal
momentum. For pth = 0.1, we see that for such a low thermal
momentum, the loss rate deviates from the cold (T = 0) re-
sult only very slightly, with the different data points more or
less overlapping. For larger thermal momentum, and a small
electric field amplitude, the loss rate decreases with pth [as
expected from the second term of Eq. (29)]. For low thermal
momentum, the curves show a consistent decline of �H with
initial amplitude. This decline with amplitude is consistent
with a transition from 〈E2(t )〉 = (1/2)E2

0 for a low-amplitude
sinusoidal profile to 〈E2(t )〉 = (1/3)E2

0 for a strongly nonlin-
ear sawtooth profile. However, for a high thermal momentum,

FIG. 10. The ratio R (cooling energy loss over total energy loss)
as a function of initial field amplitude E0 using δ = 0.0005 and pth =
0.3, 0.5.

pth = 0.6, the scaling is radically different. Instead of the
damping decreasing with initial amplitude, there is a steady
increase of �H with E0. A key factor here is that in this
regime, much of the energy loss in Eq. (28) and Eq. (29)
comes from the term ∝ p2

⊥E2 rather than the terms ∝∂E/∂t .
For a modest amplitude, the terms in Eq. (28) and Eq. (29)
∝p2

⊥E2, describing the temperature loss and the total energy
loss, respectively, cancel to a good approximation. Thus the
energy loss is mainly due to cooling, and the difference be-
tween the terms contributes very little to the wave-damping
rate. However, in the strong-field regime, this is no longer
true, and much of the wave damping comes from the two latter
terms of the radiation reaction in Eq. (3).

With the two sources of energy loss, wave damping and
cooling, studied separately, we compare the magnitude of the
different sources to the high-frequency radiation energy. For
this purpose, we define the ratio R of background cooling
relative to the total radiated energy, given by

R = δWc

δWtot
= δWc

δWc + δWw

, (31)

where the different contributions are computed after a period
time Tp with the aid of Eq. (29) and Eq. (27).

The ratio R is displayed in Fig. 10 as a function of initial
amplitude for two different values of the thermal momentum.
We see that the cooling as a source of energy for the high-
frequency emission becomes more prominent for a higher
temperature, as expected. Moreover, it can be seen that the
relative contribution from cooling is decaying slowly with
the initial amplitude. This may seem to contradict previous
findings, as it has been found that the cooling grew strongly
with E0 (lower panel of Fig. 6), whereas the wave damping ei-
ther decayed (lower temperature) or grew moderately (higher
temperature) with E0 (see, Fig. 9). However, it is natural to
normalize the wave energy loss against the initial wave energy
to get a wave damping rate, whereas the cooling energy loss
naturally is normalized against the initial temperature to get
a cooling rate. While the cooling rate displayed in the lower
panel of Fig. 6 shows a strong increase with E0, it is still
slightly slower than the growth of the wave energy density
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with initial amplitude (∝E2
0 ). Hence the scaling displayed in

previous figures is indeed consistent with a slight decrease of
R with E0, as shown in Fig. 10.

IV. DISCUSSION AND CONCLUSION

In the present work, we have studied the influence of radia-
tion reaction on Langmuir waves by extending the relativistic
Vlasov equation to include the Landau-Lifshitz form of the
particle self-interaction. As expected, it is found that the Lang-
muir waves are damped, with an overall scaling proportional
to δ = ωpre/c, i.e., proportional to the square root of the
electron number density. The reason the damping rate is not
linear in the number of particles radiating is that the temporal
scale s normalized against the plasma frequency, which in
itself scales as

√
n0

An energy conservation law containing the loss rate has
been deduced, together with an equation for the temperature
evolution, which helps facilitate the damping rate as a function
of initial temperature, initial amplitude, and wave number.
Somewhat surprisingly, the normalized energy loss rate (to
the initial wave energy) shows a slow decay with initial-
amplitude, unless the temperature is high, in which case the
damping rate tends to grow with-amplitude. The decrease in
wave damping for low temperatures is a direct consequence
of the transition from a sinusoidal wave profile for low ampli-
tudes to a sawtooth profile in the large-amplitude relativistic
regime.

In addition to the damping rate of Langmuir waves, it is
found that the kinetic energy of the background distribution
diminishes during the evolution. The relative cooling rate
(normalized against initial temperature) has a modest depen-
dence on the initial temperature, with a slightly higher relative
cooling rate for a higher initial temperature. However, there is
a relatively strong dependence of the cooling rate on the wave
amplitude. In particular, a stronger amplitude gives a cooling
that almost, but not quite, scales as ∝E2

0 . This behavior is
quantified in the ratio R, describing how much of the emitted
high-frequency radiation comes from the background kinetic
energy, as opposed to the fraction that comes from wave
damping. Here we see only a weak dependence on E0. Since
the wave energy loss is ∝E2

0 in the crudest of approximations,
the same goes for the cooling of the background distribution.

In the present work, we have limited ourselves to elec-
trostatic waves, but it is of much interest to also cover
electromagnetic waves. A principal difference is that for
electrostatic waves, the maximum electric field amplitude is
limited by the electron number density, whereas for electro-
magnetic waves, there is no direct upper bound. Moreover,
in an electrostatic geometry, the particle acceleration tends
to be approximately parallel to the velocity, which limits the
magnitude of the radiation reaction.

As a result, radiation reaction in an electromagnetic context
may take place in a regime, where the radiation reaction is
close to comparable with the Lorentz force, in contrast to the
case studied here. In such a regime, models extending the
Landau-Lifshitz force, such as, e.g., the resummed Lorentz-
Abraham-Dirac theory [30,31] and/or the quantum corrected
theory [32,33] may be of interest, as well as further quantum
extensions; see, e.g., Refs. [34–36].

APPENDIX

Naturally, radiation reaction is not the only mechanism
that may lead to a damping of electrostatic waves and/or
influence the temperature of the background distribution. In
this Appendix we will consider the influence from collisional
damping that may compete with radiation reaction. First, we
note that we are considering a perturbative regime, δ � 1,
where the relativistic Vlasov equation holds to zero order.
Thus, as long as additional effects also are small enough to
be studied perturbatively, we can compute their contribution
independently in a manner to what has been done and add the
new contributions to the wave damping and/or temperature
change of the background distribution. Naturally, for a long
run time, such an approach will eventually break down, but it
will suffice to make predictions regarding the initial stages of
the evolution. In general, for dense plasmas and relatively high
field strengths, there are numerous ways in which the relativis-
tic Vlasov equation may be modified, see, e.g., the reviews
given in Refs. [34,36]. However, the modifications of most
interest are those involving dissipative mechanisms, since they
are the ones that can induce wave damping and changes in the
background temperature. The most basic mechanism of this
sort is collisions. To formally address this, we add a term to
the right-hand side of Eq. (2),

(
∂ f

∂t

)
c

=
(

∂ f

∂t

)
c,ee

+
(

∂ f

∂t

)
c,ie

,

where the index “c” denotes the collisional contribution. The
first term of the right-hand side represents the contribution
from electron-electron collisions, whereas the second term
represents the contribution from electron-ion collisions. Many
specific expressions for the collisional contributions have been
given in the literature (see, e.g., [37,38]), but here we will
mainly be concerned with order-of-magnitude estimates. Let
us first consider electron-electron interactions. We can then
note that as long as the temperature is small, the contributions
from electron-electron collisions will be much smaller than
the contribution from electron-ion collisions. This is because
the motion of electrons in relation to the stationary ions will be
faster than their motion in relation to each other. Specifically,
for the calculations made in Sec. III A, where the temperature
was zero, the effect of electron-electron collisions vanishes
identically. For the rest of the numerical calculations, where
the plasma is homogenous, to the leading order, the electron
background is a thermal distribution with a net drift. Since a
net drift does not affect mutual electron-electron collisions,
the corresponding contribution vanishes identically also in
this case. For the calculation scheme in general [considering
arbitrary solutions to Eq. (6)], there might still be a finite con-
tribution from electron-electron collisions. However, we will
not consider this further, as the magnitude of this contribution
will never be larger than that from electron-ion collisions.
Next, we turn our attention to electron-ion collisions, which,
as we will see, can give a contribution that may be significant.
As we are interested in the case where the electron motion
in the wave field is relativistic, we use the differential cross
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section dσ/d for Mott scattering [37],

dσ

d
= r2

e m2c2

4 sin4
(

θ
2

)
p2β2

[
1 − β2 sin2

(
θ

2

)]
, (A1)

where θ is the scattering angle and β = v/c. Next, we study
the characteristic frequency scales, νei for the electron-ion
collisions, and we use νrr ∼ (2δ/3)ωp as the characteristic
scale for radiation reaction. Forming the ratio ζ = nuei/νrr

gives

ζ = νei

νrr
∼ nσv

(2δ/3)ωp
, (A2)

where σ is the total cross section integrated over the solid
angle and v is the characteristic velocity of electrons relative
to the ions. For a moment, let us ignore the well-known
problem of the diverging contribution associated with small
angle Colomb scattering, and focus on order of magnitude
estimates, using σ ∼ r2

e m2c2/4p2β2 for the total cross section.
This gives us

ζ ∼ 3nrem2c5v

8ω2
p p2v2

= 3

32π

c3

γ 2v3
. (A3)

Next, we note that the above expression tends to underes-
timate the relative contribution from electron-ion collisions.
Due to the integrated contribution from many small-angle
collisions (with a small-angle cut-off corresponding to an im-
pact parameter of the order of the Debye-length), the overall
magnitude of the term is magnified by the Colomb logarithm
ln λ ∼ 10, in which case the ratio is closer to

ζ ∼ 1

3

c3

γ 2v3
. (A4)

The regime of most interest, as far as radiation reaction is con-
cerned, is the strong-field regime, with the normalized electric
field E > 1. In this case the peak value γp of the gamma factor
is γp ∼ E2

0 and the average of the square is 〈γ 2〉 ∼ E4
0 /4.

Moreover, v ∼ c for most of the oscillation cycle [39]. Thus,
for sufficiently electric field amplitudes, let us say E0 > 3–4,
we have ζ � 1 and there is little need to include the contri-
bution from collisional effects. However, for modest electric
field amplitudes, E0 � 1, clearly ζ  1 and the collisional
influence is the dominating source of wave damping. In the
intermediate regime E0 ∼ 1, radiation reaction and collisional
effects can be simultaneously important. In this case, a pertur-
bative calculation of the collisional contribution can be made,
and the result for the collisional wave damping can be added
to the findings presented here.
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