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A B S T R A C T

TiO2-II is a high pressure form of titania with a density about 2% larger than that of rutile. In contrast to the common polymorphs anatase, brookite and rutile its
electronic structure and optical properties are poorly characterized. Here we report on a comparative electron-energy-loss-spectroscopy (EELS) study for which high
resolution valence-loss and core-loss EELS data were acquired from nanocrystalline (<75 nm sized) titania particles with an energy resolution of about 0.2 eV.
Electronic structure features revealed from titanium L3,2 and oxygen K electron energy loss near-edge structures show a strong similarity of TiO2-II with both rutile and
brookite, which is attributed to similarities in the connectivity of octahedral TiO6 units with neighboring ones. From combined valence-loss EELS and UV-VIS diffuse
reflectance spectroscopy data the band gap of TiO2-II was determined to be indirect and with a magnitude of ~3.18 eV, which is very similar to anatase (indirect, ~3.2
eV), and distinctly different from rutile (direct, ~3.05 eV) and brookite (direct, ~3.45 eV).
1. Introduction

Titania (TiO2) exists in various polymorphs of which the tetragonal
rutile phase is considered the ground state [1,2]. In addition, anatase and
brookite occur in nature. Rutile, anatase, and brookite can be synthesized
in the form of crystals, fine particles and as various nanomaterials from
solution routes, especially through sol-gel or hydrothermal processing [3,
4]. Considerable efforts have been directed to investigate the effect of
polymorphic phase, degree of crystallinity, morphology, surface area and
size of particles on the various interesting properties and applications of
TiO2, which include solar energy harvesting and hydrogen generation
from photochemical reactions [5–7].

In this respect it is interesting to also consider the high pressure
polymorph TiO2-II which adopts the orthorhombic α-PbO2 type structure
[8] because it can be retained at ambient conditions [9]. In the titania
phase diagram TiO2-II is adjacent to rutile [10]. Its bulk synthesis is
achieved quantitatively and within hours when hydrothermally con-
verting amorphous TiO2 or rutile in the pressure range 5–6 GPa [11,12].
The conversion of amorphous TiO2 particles occurs at rather low tem-
peratures, 250–350 �C, and affords 10 nm–0.1 μm sized crystals [12],
whereas the conversion of bulk (submicron-sized) rutile requires
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temperatures around 650 �C for appreciable kinetics, leading to
micron-sized crystals [11]. The phase boundary between rutile and
TiO2-II at temperature above 500 �C has been determined from both
experiments and thermodynamic calculations [10,13,14].

The comparatively low pressure conditions required for the prepa-
ration of TiO2-II would make it accessible by industrial high pressure
processing. Larger quantity batches of pure TiO2-II can also be obtained
from shock synthesis [15]. Further, metastable TiO2-II has been prepared
under the non-equilibrium conditions of “stagnating flame” synthesis
[16,17], although only as a 70/30% mixture with rutile, and TiO2-II has
been reported as intermediate in high-energy ball milling of anatase [18,
19]. Interestingly, TiO2-II can also be obtained with low yields (<10%)
when dissolving Ti3O5 in sulfuric acid at elevated temperatures [20].
Finally, TiO2-II can be grown as thin films, using atomic layer deposition
on sapphire and Si substrates [21,22].

The optical, electrical, and catalytic properties of TiO2-II have not yet
been well characterized [23]. Most knowledge stems from theoretical
calculations [24–26]. In this manuscript we report a comparative
electron-energy-loss-spectroscopy (EELS) study of all four TiO2 poly-
morphs. The electron-loss near edge structure (ELNES) from core-loss
EELS reflects the electronic structure and coordination environment of
arch 2023
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the corresponding excited atoms (i.e. Ti and O) whereas valence-loss
EELS (VEELS) probes the band gap. A compilation of high energy
resolved EELS data for all four polymorphs will also proof useful for
research concerned with the analysis of mixed phase samples by high
precision nanophase mapping and/or the study of core-shell and grain
boundary situations [27–33].

2. Methods

Samples. The materials employed for this investigation were nano-
crystalline brookite, rutile, TiO2-II and anatase. The three former were
obtained from the hydrothermal conversion of amorphous TiO2 in a high
pressure hydrothermal environment (see supporting information for
details). Anatase (99.8%, nanopowder) was purchased from Sigma-
Aldrich. All materials were pure single-phase as confirmed by powder
X-Ray diffraction data (see supporting information, Fig. S1). Investigated
particles were between ~15 and ~75 nm in lateral size and <30 nm in
thickness (as estimated from low loss EELS data [34], see supporting
information, Fig. S2).

Electron energy loss spectroscopy. Valence-loss EELS data were acquired
in monochromated STEMmode on a Themis Z TEM equipped with probe
and image aberration correctors. The instrument was operated at 300 kV
accelerating voltage with a dispersion of 10 meV/channel. The conver-
gence and collection angles were 21.4 mrad and 23 mrad, respectively.
The probe current was estimated to be 400 pA. Under these conditions
the zero-loss elastic peak (instrument response function or ZLP) full
width half maximum (FWHM) was typically 0.22 eV. The probe was
scanned at a rate of ~100 pixels per second. Valence-loss spectra were
acquired from particles and particle clusters in random orientations. The
spectra were similar suggesting that orientation effects were not promi-
nent in part because of the large convergence and collection angles
employed. The thickness of all investigated samples was under 0.8 mean
free paths as estimated from low loss data [34]. The low sample thickness
at the specified collection conditions ensured negligible Cherenkov los-
ses. Using a power-law fit, the tail of the zero-loss peak was removed and
the band gap was extracted according to the linear fit method [35].

Core-loss EELS data were acquired on the same instrument as the
valence-loss EELS. A monochromated STEM mode was used with dis-
persions of 10 and 25 meV/channel for Ti and O edges respectively. The
convergence angle was 37 mrad and the collection angle was 23 mrad.
An energy resolution of 0.45 eV as determined by the FWHM of the ZLP,
was obtained. The probe was scanned at a rate of ~200 pixels per second.
The background and plural scattering were removed using a standard
power law fit and Fourier-ratio deconvolution respectively [36]. Then
spectra of each polymorph were fitted with Hartree–Slater ionization
cross-section and a total of seven/two Pseudo-Voigt profiles for Ti L3,2/O
K edges respectively. R2 for all fits was above 0.997 (see supporting in-
formation, Fig. S3). The Hartree-Slater cross section was calculated based
on tabulations of the generalized oscillator strength (GOS) with GMS 3.5
software following the approach of Leapman et al. [37] and Ahn et al.
[38]. Convergence angle correction was included directly within the GOS
integral over momentum transfer by means of the “aperture cross--
correlation” method developed by Kohl [39].

All EELS data were taken using dual-channel acquisition [40] and
electron spectroscopy imaging (ESI) techniques. Imaging and spectros-
copy data were collected using a high-angle annular dark field (HAADF)
detector and a GIF Quantum ER spectrometer respectively. Spectroscopic
data was gain averaged by the natural spectral shift of the mono-
chromated beam and thus had high signal-to-noise ratio (SNR) [41].The
spectra within each spectrum-image data-set were aligned using the ZLP.
Outlying spectral values (X-ray spikes) were set to local median values.
The spectra reported in this work correspond to summations over thin
areas of samples (areas without carbon film and with sample thickness
<30 nm).

UV-VIS diffuse reflectance spectroscopy. UV-VIS diffuse reflectance
measurements were performed at room temperature on finely ground
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samples. Spectra were recorded in the range from 200 to 800 nm with an
Agilent Cary 5000 UV-VIS-NIR spectrometer equipped with a diffuse
reflectance accessory from Harrick. A polytetrafluoroethylene (PTFE)
pellet (100% reflectance) was used as the reference. Band gap values
were approximated from linear extrapolation to zero of Kubelka-Munk
function, [F(r)⋅hυ]n, plotted against photon energy (Tauc plots)
[42–45]. Exponent n equal to 2 and ½ was used for direct and indirect
allowed transitions, respectively. For comparison purposes, all Tauc plots
were arbitrarily normalized.

3. Results and discussion

3.1. Structural relations

The structures of the four TiO2 polymorphs anatase, brookite, rutile,
and TiO2-II are all based on octahedral TiO6 units. They have been
described and related numerous times [2,46], and we only provide a
summary. Anatase and rutile are tetragonal (space groups I41/amd and
P42/mnm, respectively) and brookite and TiO2-II are orthorhombic
(space groups Pbca and Pbcn, respectively). The local symmetry of TiO6

polyhedra decreases from D4d (anatase), D2h (rutile), C2 (TiO2-II), to C1
(brookite). All structures can be considered as being built from chains of
edge-condensed TiO6 units. In anatase these chains correspond either to
zigzag chains along the [100] direction or screws along the 41 axes in the
tetragonal crystal structure (we chose the latter, Fig. 1a). In brookite and
TiO2-II they correspond to zigzag chains along the orthorhombic c di-
rection (Fig. 1b and c), and in rutile they correspond to linear chains that
run along the tetragonal c direction (Fig. 1d). The distance between Ti
atoms in these chains is around 3 Å.

The chains are connected to neighboring ones through common oc-
tahedron edges and/or corners. Corner sharing results in next-nearest
Ti–Ti neighbors at two distinct distances, around 3.5 Å when Ti–O–Ti
angles are bent (around 130�) and 3.8 Å when Ti–O–Ti angles are close to
linear (around 160�). The latter situation arises only in conjunction with
simultaneous edge connectivity. In anatase chains are connected so that
each octahedron shares edges with two octahedra from different adjacent
chains (same short Ti–Ti distance, 3 Å), Fig. 1a. In addition, each octa-
hedron experiences (linear) corner connectivity with octahedra from
neighboring chains at a Ti–Ti distance ~3.8 Å (Fig. 1a). In brookite
zigzag chains – located as isolated moieties in layers A, B, C, D parallel to
the bc plane – are alternately connected via common corners (“bent
connectivity”) and edges to adjacent layers (AcBeCcDeA) along the
orthorhombic a direction (Fig. 1b). (Lower case letters c and e refer to
corner-end edge-connectivity, respectively). Again, the edge-link in-
troduces a short Ti–Ti contact (2.95 Å), and in the edge-linked layer there
are in addition two linear corner-connections (3.79 Å) (Fig. 1).

The TiO2-II structure is topologically very similar to brookite, only
that adjacent layers are exclusively connected via common corners, i.e.
AcBcA (Fig. 1c). Rutile is built from layers containing linear strands
which are connected via common corners. Thus, TiO2-II is also closely
related to rutile and the relationship has been described in detail by
Andersson and Galy [47]. Density increases by about 12% across the
series anatase (3.895 g/cm3) – brookite (4.13 g/cm3, þ6%) – rutile
(4.274 g/cm3, þ3.5%) – TiO2-II (4.35 g/cm3, þ1.8%).

3.2. Core-loss EELS analysis

Core-loss EELS refers to the creation of a core hole via excitation of an
inner shell electron due to perturbations caused by highly energetic
primary electrons generated in the TEM. In titana, the transitions of in-
terest for this study include electrons from the Ti 2p shell to unoccupied
3d orbitals (Ti L3,2 edge) or electrons from a O 1s shell to the 2p orbital
that is hybridized with the Ti 3d states (O K edge). Ti L3,2 ELNES spectra
of the four polymorphs obtained by us are shown in Fig. 2. Anatase and
rutile have been investigated numerous times and our spectra are in good
agreement with previous EELS [33,48–54] and high-resolution XAS



Fig. 1. Crystal structures of anatase (a), brookite (b), TiO2-II (c), and rutile (d). The first two rows show the chains of edge-condensed TiO6 octahedra as building units
and their connectivity. Capital letters in (b) and (c) denote layers containing building units and lower case letters denote their connectivity, corner and edge-
condensed. The bottom row emphasizes the connectivity of a TiO6 unit (within a chain fragment of three octahedra) with neighboring ones. For clarity, the linear
corner-links in anatase and brookite (dTi-Ti � 3.8 Å) are depicted as two figures, one showing only the Ti atoms (green spheres) of linear corner-linked octahedra (left)
and one that only shows the octahedra of linear corner links (i.e. the octahedra of the other links were removed, right).

Fig. 2. Ti L3,2 ELNES spectrum of TiO2-II in comparison with anatase, rutile and
brookite. The upper axis depicts energies relative to the "c" whiteline of the
L3 edge.
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studies, [49,55–57]. Ti 2p XAS and L3,2 ELNES spectra are characterized
by four white lines, here labelled c, d, e, f with increasing energy loss. The
low intensity pre-peaks a, b are usually attributed to spin-forbidden
transitions [54,56]. The (c,d) and (e,f) doublets reflect the L3 and L2
edges, respectively, separated by the ~5.5 eV spin-orbit coupling of the
Ti 2p core electrons, whereas the doublet feature reflects the octahedral
t2g – eg crystal field splitting (about 2 eV). However, note that because of
the intricacies of the Ti 2p core hole (many electron and multiplet
3

(correlation) effects due to strong Coulomb interactions between poorly
screened 3d electrons and 2p core hole) [50,57,58], the “true” t2g – eg
splitting is rather extracted from the O K edge, see analysis below.

Most important is the split of the L3 eg peak (into d and d’), whichmay
reveal additional fine-structuring in very high energy resolution experi-
ments (<0.2 eV) [59]. This d,d’ splitting does not seem to be connected
to the symmetry lowering of the octahedral environment from Oh to D2h
(for which its size, about 1 eV, is simply too large) [54,60], but rather
expresses long range band/crystal structure effects, i.e., is caused by next
nearest neighbor interactions [59,61]. Directly calculating Ti L3,2 ELNES
spectra from first principles for more detailed interpretation remains
notoriously difficult [27,58].

Differences in the d,d’ split feature is the most significant variation in
the Ti L3,2 ELNES spectra of TiO2 polymorphs. Despite the lack of a
fundamental explanation it has been suggested that the d,d’ split feature
should allow for unambiguous discrimination of TiO2 polymorphs [53]
and spatially resolved EELS is being increasingly applied for the analysis
of nanocrystalline multiphase samples [28,62], core-shell structures [31]
or grain boundary structures [27,33]. The largest d,d’ difference is seen
for rutile and anatase, where intensities seem reversed. For brookite d,d’
intensities appear roughly equal, and TiO2-II places itself between
brookite and rutile. In order to make a meaningful comparison, we fitted
the seven spectral constituents a – f with Pseudo-Voigt functions. A
similar strategy was applied by Ruus et al. for the evaluation of XAS
spectra [55]. The results are shown in Table 1, for details see Method
section and Fig. S3. With this, the differences between the spectra
become more quantitative. The key information is summarized in
Table 2: (i) The intensity ratio of the L3 eg split (d/d’) is very similar for
brookite and TiO2-II (around 0.42) whereas it is considerably larger for
rutile and anatase (around 0.7). (Note, that the crude inspection of d,d’
intensities suggested a large difference between rutile and anatase). (ii)
The size of the eg split is very similar for rutile and TiO2-II (around 1.15
eV) whereas it is considerably smaller for anatase and brookite (around
0.96 eV). (iii) The intensity ratio of the L3 t2g – eg split (c/(d þ d’)) in-
creases along TiO2-II – brookite – anatase – rutile.

As initially indicated, the d,d’ split reflects electronic/crystal



Table 1
Positions, areas and FWHM (in eV) of Ti and O ELNES profile features of anatase, rutile, brookite and TiO2-II. All positions are relative to the strongest feature of the
respective edge. All areas are normalized with respect to c and A, respectively.

Anatase Rutile Brookite TiO2-II

Ti L3,2 edge
position area FWHM position area FWHM position area FWHM position area FWHM

a �1.42(8) 0.10(2) 0.42(9) �1.44(5) 0.12(2) 0.45(5) �1.40(5) 0.20(3) 0.54(5) �1.37(7) 0.13(2) 0.46(7)
b �0.85(2) 0.06(2) 0.19(3) �0.85(1) 0.07(1) 0.21(2) �0.84(1) 0.09(2) 0.21(2) �0.82(2) 0.09(2) 0.22(3)
c 0.000(2) 1.000(8) 0.29(1) 0.000(1) 1.000(5) 0.29(1) 0.000(1) 1.000(6) 0.31(1) 0.000(1) 1.000(6) 0.30(1)
d 1.663(5) 1.16(4) 0.40(1) 1.70(1) 1.04(2) 0.64(1) 1.541(9) 0.90(5) 0.52(1) 1.447(5) 0.94(2) 0.49(1)
d’ 2.60(1) 1.67(4) 0.68(1) 2.843(6) 1.54(2) 0.59(1) 2.52(2) 2.15(5) 0.81(1) 2.596(7) 2.22(3) 0.77(1)
e 5.271(3) 1.83(1) 0.56(1) 5.360(2) 2.075(9) 0.65(1) 5.296(2) 1.98(1) 0.65(1) 5.305(2) 1.85(1) 0.61(1)
f 7.462(3) 4.84(3) 1.02(1) 7.760(2) 4.13(2) 1.09(1) 7.496(2) 4.50(2) 1.07(1) 7.522(3) 4.89(2) 1.16(1)

O K edge
position area FWHM position area FWHM position area FWHM position area FWHM

A 0.000(2) 1.000(5) 0.72(1) 0.000(3) 1.000(6) 0.75(1) 0.000(3) 1.000(7) 0.77(1) 0.000(3) 1.000(6) 0.75(1)
B 2.613(3) 1.51(2) 1.02(1) 2.820(4) 1.77(2) 0.97(1) 2.653(4) 1.94(4) 1.17(2) 2.694(4) 1.69(2) 1.06(1)

Table 2
Relations between some Ti and O ELNES features for anatase, rutile, brookite and
TiO2-II.

feature Anatase Rutile Brookite TiO2-II

d/d’ Ti L3 0.70(8) 0.68(5) 0.42(1) 0.42(6)
(d’-d) 0.94(1) 1.14(1) 0.98(2) 1.15(1)
c/(d þ d’) 0.35(6) 0.39(4) 0.33(7) 0.32(3)

(f-e) Ti L2 2.191(5) 2.400(3) 2.200(3) 2.217(3)

(B-A) O K (true t2g-eg) 2.613(4) 2.820(5) 2.653(6) 2.694(5)
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structure differences of the polymorphs stemming from next nearest
neighbor interactions, i.e. of the octahedral chain structural unites (cf.
Fig. 1). Given the structural similarity of TiO2-II to both brookite and
rutile it is then not surprising that quantification of the split feature
would reveal similarities to these polymorphs.

The O K ELNES spectra of the four polymorphs are shown in Fig. 3.
Here differences between the polymorphs are much less apparent. As
mentioned above, the two main peaks (A, B) reflect the “true” t2g – eg
Fig. 3. O K ELNES spectrum of TiO2-II in comparison with anatase, rutile
and brookite.
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spitting of the polymorphs. Here TiO2-II (2.69 eV) aligns with anatase
and brookite (2.61 and 2.65 eV, respectively), whereas the splitting is
distinctly larger for rutile (2.82 eV), cf. Table 2 [54,55]. A second set of
bands is seen in the 537–548 eV range. In the octahedral MO picture,
these transitions involve higher lying (antibonding) a1g (Ti4s-O2p-σ) and
t1u (Ti4p-O2p-π) states [52,54]. The latter would split into two and three
components for tetragonal and orthorhombic distortions, respectively.
Apparently, the MO picture does not describe fully the features of the O K
ELNES spectra. In contrast with Ti L3,2 ELNES spectra O K spectra can be
computed highly satisfactorily from first principles calculations of the O
2p-projected unoccupied DOS (above the Fermi level) [54]. Here we
would expect greatest similarities for orthorhombic TiO2-II and brookite.
3.3. Band gap analysis

The size and nature (direct or indirect) of the band gap for rutile and
anatase are widely reported in the literature [28,44,63,64]. For brookite
reports are much more sparse and also more inconsistent [64–69]. For
TiO2-II information is essentially limited to computational findings [24,
25], apart from a recent thin film study [23]. Generally, reported band
gaps scatter somewhat depending on the particle size and morphology of
the polymorphs, but also on the measurement method and data analysis
for band gap extraction [44,45,64]. It appears established that rutile has
a direct band gap of ~3.0 eV and anatase an indirect band gap of ~3.2
eV. Brookite, in the form of thin films, was reported with a direct band
gap of ~3.45 eV [69]. DFT electronic structure calculations indicate an
indirect band gap with a size around 2.63 eV (using LDA and GGA
functionals) [24,25] or 4.09 eV (using the B3LYP functional) [25].

UV-VIS diffuse reflectance spectroscopy is limited for band gap
determination when it comes to strongly absorbing materials. The
Kubelka-Munk (KM) theory used for the evaluation of reflectance spectra
assumes a linear relationship between intrinsic scattering and absorption
coefficients (s and α) and theoretical ones (usually denoted as S and K
respectively), which is not the case for strongly absorbing materials [70,
71]. Certain corrections can be made to the KM function [44,71,72], but
their use is often not properly reported, leading to discrepancies in the
published data. In this paper, we use the unmodified KM function. Band
gap studies using valence loss EELS data can be challenging because
multiple scattering deconvolution, nonzero collection angle correction
and removal of zero loss peak (ZLP) need to be correctly performed
during data reduction steps [73–77]. Proper beam monochromation for
easier ZLP removal, aberration correction for best spatial resolution and
careful choice of data collection area on a sample for minimization of
Cherenkov radiation help to achieve best energy and spatial resolution of
the data and thus allow relatively precise bad gap determination.

Fig. 4 shows the valence loss EELS spectra of the four polymorphs and
Fig. 5 shows the KM function F(R) extracted from the diffuse reflectance



Fig. 4. Low loss EELS spectra of TiO2-II in comparison with anatase, rutile
and brookite.

Fig. 5. Kubelka-Munk function F(R) ¼ (1 – R2)/2R (where R ¼ reflectance) of
bulk TiO2-II in comparison with anatase, rutile and brookite.

Table 3
Band gap values (in eV) for anatase, rutile, brookite and TiO2-II extrapolated
from EELS spectra, the Kubelka-Munk function F(R), and Tauc plots (calculated
for direct and indirect allowed transitions). Bold numbers refer to the proper
assignment of direct and indirect band gap.

EELS F(R) UV-VIS direct UV-VIS indirect

Anatase 3.20(2) 3.30(1) 3.40(1) 3.22(2)
Rutile 3.09(2) 3.00(2) 3.07(3) 2.99(3)
Brookite 3.44(1) 3.37(2) 3.48(3) 3.28(1)
TiO2-II 3.18(2) 3.29(3) 3.45(5) 3.20(5)
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UV-VIS measurements. F(R) ¼ (1-R)2/2R represents a pseudo absorption
coefficient [42]. The band gap from the valence loss EELS spectra was
obtained with the intersection of a linear fit to the intensity rise and
x-axis after ZLP and background removal as described in the Methods
section. The band gap from the UV-VIS spectra was obtained from Tauc
plots and considering both an indirect and a direct allowed transition
case (see supporting information, Fig. S4, for detailed information). The
band gaps are compiled in Table 3. One recognizes excellent agreement
between the valence loss EELS and UV-VIS gaps when assuming indirect
band gaps for anatase and TiO2-II and direct band gaps for rutile and
brookite. The band gap of TiO2-II (indirect, ~3.18 eV) is slightly nar-
rower than that of anatase (indirect, ~3.2 eV). Our (bulk) value is lower
than that reported for TiO2-II thin films (3.28–3.36 eV) [23]. Band gaps
for both anatase and rutile are broadly consistent with widely reported
literature values (indirect ~3.2 and direct ~3.05 eV respectively). The
band gap for brookite was confirmed to be the largest among titania
5

polymorphs studied here (direct, ~3.45 eV) and agrees with reported
values for both brookite thin films and nanocrystals (reported as direct
~3.45 eV and indirect ~3.40 eV respectively) [66,69].

4. Conclusions

The electronic structure and band gap of TiO2-II with the α-PbO2

structure was characterized with EELS and UV-VIS diffuse reflectance
spectroscopy. High resolution valence-loss and core-loss EELS data were
acquired in monochromated STEM mode on a probe and image aberra-
tion corrected microscope. This system enabled the recording of spectra
with an energy resolution of about 0.2 eV thus providing detailed near-
edge fine structure and band gap data alongside with nanometer scale
image resolution. The titanium L3,2 and oxygen K electron ELNES spectra
of TiO2-II show a strong similarity with both rutile and brookite, which
reflects similarities in the connectivity of octahedral TiO6 units with
neighboring ones. Although ELNES differences of TiO2 are rather small
they appear distinct enough for the high precision nanophase mapping,
core-shell or grain boundary studies of mixed phase samples. The band
gap of TiO2-II was determined to be indirect and with a size of about 3.18
eV, which is very similar to anatase (indirect, ~3.2 eV), suggesting that
TiO2-II possesses a similarly high photocatalytic activity as anatase. Both
forms are clearly distinguished from rutile and brookite which have
direct band gaps with sizes ~3.05 and 3.45 eV, respectively.
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