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Abstract
The codegree threshold ex2(𝑛, 𝐹) of a 3-graph 𝐹 is the
minimum 𝑑 = 𝑑(𝑛) such that every 3-graph on𝑛 vertices
in which every pair of vertices is contained in at least
𝑑 + 1 edges contains a copy of 𝐹 as a subgraph.We study
ex2(𝑛, 𝐹)when 𝐹 = 𝐾−

4 , the 3-graph on 4 vertices with 3
edges. Using flag algebra techniques, we prove that if 𝑛
is sufficiently large, then

ex2(𝑛, 𝐾
−
4 ) ⩽

𝑛 + 1
4

.

This settles in the affirmative a conjecture ofNagle [Con-
gressus Numerantium, 1999, pp. 119–128]. In addition,
we obtain a stability result: for every near-extremal
configuration 𝐺, there is a quasirandom tournament 𝑇
on the same vertex set such that 𝐺 is 𝑜(𝑛3)-close in
the edit distance to the 3-graph 𝐶(𝑇) whose edges are
the cyclically oriented triangles from 𝑇. For infinitely
many values of 𝑛, we are further able to determine
ex2(𝑛, 𝐾

−
4 ) exactly and to show that tournament-based

constructions 𝐶(𝑇) are extremal for those values of 𝑛.
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1 INTRODUCTION

Interest in the extremal theory of hypergraphs dates back to Turán’s celebrated 1941 paper [36].
However, despite significant efforts from the research community, the problem of determining
the Turán density of a given hypergraph 𝐹 is open in all but a small number of cases — see, for
example, Keevash’s survey of the field [18]. The difficulty of the problem has led researchers to
investigate a number of other notions of extremal density, notably the codegree density, which is
studied in this paper. Before we describe our results in detail, we introduce some basic notation.

1.1 Notation

Given a set 𝐴, we write 𝐴(𝑟) for the collection of all unordered 𝑟-tuples from 𝐴. Write [𝑛] for the
set {1, 2, … 𝑛}. A 3-graph or triple system is a pair 𝐺 = (𝑉, 𝐸), where 𝑉 = 𝑉(𝐺) is a set of vertices
and 𝐸 = 𝐸(𝐺) ⊆ 𝑉(3) is a collection of unordered triples, which constitute the edges of 𝐺. We set
𝑣(𝐺) ∶= |𝑉(𝐺)| and |𝐺| ∶= |𝐸(𝐺)|. For notational convenience, we shall often identify a 3-graph
with its edge-set, and write 𝑥1𝑥2 …𝑥𝑟 to denote the set {𝑥1, 𝑥2, … 𝑥𝑟}. Given two 3-graphs 𝐺 and
𝐺′ on a common vertex set 𝑉, their edit distance |𝐺Δ𝐺′| is the size of the symmetric difference of
their edge-sets. The link graph of a vertex 𝑥 in a 3-graph 𝐺 is

𝐺𝑥 ∶= (𝑉(𝐺) ⧵ {𝑥}, {𝑦𝑧 ∶ 𝑥𝑦𝑧 ∈ 𝐸(𝐺)}),

and the joint neighbourhood of a pair {𝑥, 𝑦} is

𝐺𝑥𝑦 ∶= {𝑧 ∶ 𝑥𝑦𝑧 ∈ 𝐸(𝐺)}.

A subgraph of 𝐺 is a 3-graph 𝐻 with 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺). If 𝐺 does not contain a
copy of 𝐹 as a subgraph, we say that 𝐺 is 𝐹-free. The Turán number ex(𝑛, 𝐹) of a non-empty 3-
graph 𝐹 is themaximumnumber of edges in an 𝐹-free 3-graph on 𝑛 vertices, and its Turán density
is the limit 𝜋(𝐹) ∶= lim𝑛→∞ ex(𝑛, 𝐹)∕

(𝑛
3

)
(this is easily shown to exist). In this paper we shall be

interested in variants of the Turán number and the Turán density.
The codegree of a pair 𝑥𝑦 ∈ 𝑉(𝐺)(2) is 𝑑(𝑥, 𝑦) ∶= |𝐺𝑥𝑦|, the number of edges of𝐺 containing the

pair 𝑥𝑦. The minimum codegree of 𝐺, which we denote by 𝛿2(𝐺), is the minimum of 𝑑(𝑥, 𝑦) over
all pairs 𝑥𝑦 ∈ 𝑉(𝐺)(2). The codegree threshold ex2(𝑛, 𝐹) of a non-empty 3-graph 𝐹 is themaximum
of 𝛿2(𝐺) over all 𝐹-free 3-graphs on 𝑛 vertices. A probabilistic averaging argument [24] yields that
the limit

𝜋2(𝐹) ∶= lim
𝑛→∞

ex2(𝑛, 𝐹)

𝑛 − 2

exists; this quantity is called the codegree density of 𝐹. Another straightforward averaging argu-
ment shows that 0 ⩽ 𝜋2(𝐹) ⩽ 𝜋(𝐹) ⩽ 1, and it is known that 𝜋2(𝐹) ≠ 𝜋(𝐹) in general (see also
Section 1.3).
In addition to 3-graphs, we shall also need to consider tournaments in this paper. An oriented

graph is an ordinary graph togetherwith an orientation of its edges. A tournament is an orientation
of a complete graph. In an oriented graph𝑂, we denote by𝑁−

𝑂
(𝑥) and𝑁+

𝑂
(𝑥) the in-neighbourhood

and out-neighbourhood of a vertex 𝑥, respectively, that is, the collection of 𝑦 such that the edge
{𝑥, 𝑦} is oriented into 𝑥 (as 𝑦𝑥) and out of 𝑥 (as 𝑥𝑦), respectively. We write 𝑑−

𝑂
(𝑥) ∶= |𝑁−

𝑂
(𝑥)| and
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1662 FALGAS-RAVRY et al.

F IGURE 1 Configurations in a tournament 𝑇 on the left and right counted by 𝐶𝑇(𝑥, 𝑦) and 𝑅𝑇(𝑥, 𝑦),
respectively.

𝑑+
𝑂
(𝑥) ∶= |𝑁+

𝑂
(𝑥)| for the in-degree and out-degree of 𝑥. Further, we write 𝑑−

𝑂
(𝑥, 𝑌) and 𝑑+

𝑂
(𝑥, 𝑌)

for the number of in- and out-edges of 𝑥, respectively, with the other endpoint being inside the set
𝑌. Note that when the oriented graph 𝑂 is clear from the context, we omit the subscript in the in-
and out-degree notation. For a tournament 𝑇 and an arc 𝑥𝑦 ∈ 𝐸(𝑇), we write 𝐶𝑇(𝑥, 𝑦) to denote
the number of cyclically oriented triangles in 𝑇 that contains both 𝑥 and 𝑦, that is, the number of
vertices 𝑧 ∈ 𝑉(𝑇) such that both 𝑦𝑧 and 𝑧𝑥 are arcs in 𝑇. Similarly, we let

𝑅𝑇(𝑥, 𝑦) ∶= ||{𝑧 ∈ 𝑉(𝑇) ∶ {𝑥𝑧, 𝑧𝑦} ∈ 𝐸(𝑇)}||.
See Figure 1 for an illustration of the configurations counted by these two quantities. Note that
𝑅𝑇(𝑥, 𝑦) is equal to the number of cyclically oriented triangles containing both of 𝑥 and 𝑦 in the
tournament 𝑇′ obtained from 𝑇 by reversing the orientation of 𝑥𝑦.
Motivated by the relation between tournaments and 𝐾−

4 -free 3-graphs described in Construc-
tion 1.2 below, we define a notion of codegree for tournaments: given a tournament 𝑇, we define
its minimum codegree to be

𝛿2(𝑇) ∶= min
𝑥𝑦∈𝑉(𝑇)(2)

𝐶𝑇(𝑥, 𝑦).

We shall use standard Landau notation throughout this paper: for functions 𝑓, g ∶ ℕ → ℝ⩾0 we
write 𝑓 = 𝑜(g) if 𝑓(𝑛)∕g(𝑛) → 0 as 𝑛 → ∞, 𝑓 = 𝑂(g) if lim sup𝑛→∞ |𝑓(𝑛)∕g(𝑛)| is finite, and 𝑓 =
Ω(g) if g = 𝑂(𝑓). Finally, we write 𝑓 = Θ(g) if 𝑓 = Ω(g) and 𝑓 = 𝑂(g) both hold.

1.2 Results

In this paper we study the codegree threshold of 𝐾−
4 ∶= ([4], {123, 124, 134}). This is the unique

(up to isomorphism) 3-graph on 4 vertices with 3 edges, or, alternatively, this is the complete
3-graph on 4 vertices with one edge removed. From the perspective of Turán-type problems, the 3-
graph𝐾−

4 is the smallest non-trivial 3-graph.Moreover𝐾
−
4 -free 3-graphs have a nice interpretation

in terms of their link graphs: a 3-graph is 𝐾−
4 -free if and only if its link graphs are triangle-free.

Determining the codegree threshold for 𝐾−
4 can thus be viewed as a 3-graph generalisation of the

minimum degree version of Mantel’s theorem. In 1999, Nagle [25] made the following conjecture
(see also [5]).

Conjecture 1.1 (Nagle). 𝜋2(𝐾−
4 ) = 1∕4.

The lower bound in Nagle’s conjecture comes from an old construction due to Erdős and
Hajnal [7].
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Construction 1.2 (Erdős–Hajnal tournament construction). Given a tournament 𝑇 on the vertex
set 𝑉, define a 3-graph 𝐶(𝑇) on the same vertex set by setting 𝐸(𝐶(𝑇)) to consist of the elements
of 𝑉(3) that induce a cyclically oriented triangle in 𝑇.

It can be easily checked that no 4-vertex tournament contains more than two cyclically oriented
triangles, whence 𝐶(𝑇) is a 𝐾−

4 -free 3-graph. Also note that 𝛿2(𝑇) = 𝛿2(𝐶(𝑇)). Moreover, if the
tournament 𝑇 is chosen uniformly at random, then 𝛿2(𝑇) = 𝑛∕4 + 𝑜(𝑛) with high probability.
In this paper we settle Nagle’s conjecture in the affirmative.

Theorem 1.3 (Codegree density). 𝜋2(𝐾−
4 ) = 1∕4.

Our proof of Theorem 1.3 relies on flag algebra techniques: using the semi-definite method of
Razborov [27], we establish an asymptotic identity (Lemma 2.8) between densities of subgraphs
on at most seven vertices in𝐾−

4 -free 3-graphs, fromwhich we deduce Nagle’s conjecture. Further,
by analysing this identity, we are able to show that all near-extremal configurations look like the
random tournament construction described above. To make this more precise, let us recall one of
the many equivalent definitions of a quasirandom tournament (for other forms, see Chung and
Graham [3]).

Definition 1.4. A tournament 𝑇 on [𝑛] is 𝛿-quasirandom if for every pair of sets 𝑋,𝑌 ⊆ [𝑛] we
have ∑

𝑥∈𝑋

|𝑑+(𝑥, 𝑌) − 𝑑−(𝑥, 𝑌)| ⩽ 𝛿𝑛2.

Theorem 1.5 (Stability). Let 𝐺 be a 𝐾−
4 -free 3-graph on [𝑛] with 𝛿2(𝐺) ⩾ 𝑛∕4 − 𝑜(𝑛). Then there

exists a 𝑜(1)-quasirandom tournament 𝑇 on [𝑛] such that |𝐺Δ𝐶(𝑇)| = 𝑜(𝑛3).

Finally, we are able to show that tournament-based constructions are extremal for large𝑛 and to
calculate the exact value of the codegree threshold for infinitelymany 𝑛. A skewHadamardmatrix
of order 𝑛 is an 𝑛 × 𝑛 square matrix 𝐴 with ±1 entries such that (i) 𝐴𝐴𝑡 = 𝑛𝐼𝑛 and (ii) 𝐴 + 𝐴𝑡 =
2𝐼𝑛. Here 𝐼𝑛 denotes the 𝑛 × 𝑛 identity matrix and 𝐴𝑡 denotes the transpose of the matrix 𝐴.

Theorem 1.6 (Codegree threshold). For all 𝑛 sufficiently large,

ex2(𝑛, 𝐾
−
4 ) ⩽

⌊𝑛 + 1
4

⌋
.

Further, for all 𝑘 sufficiently large if there exists a skew Hadamard matrix of order 4𝑘 + 4, then for
𝑛 = 4𝑘 + 3 and 𝑛 = 4𝑘 + 2 we have equality in the equation above. Moreover, for all 𝑘 sufficiently
large if 𝑛 = 4𝑘 + 3 and ex2(𝑛, 𝐾−

4 ) = ⌊𝑛+14 ⌋, then every extremal 3-graph for that value of 𝑛 is given
by an Erdős–Hajnal tournament construction and there exists a skew Hadamard matrix of order
𝑛 + 1 = 4𝑘 + 4.

In [38], Seberry (néeWallis) conjectured a strengthening of Hadamard’s conjecture, stating that
there exists a skewHadamardmatrix for any order 𝑛 divisible by 4. It is well known that every (not
necessarily skew) Hadamardmatrix must have order 1, 2 or a multiple of 4. Seberry’s conjecture is
known to hold for 𝑛 < 276, see [39], and for all values of 𝑛 that are of the form 𝑛 = 2𝑡

∏
𝑖∈𝐼(𝑞𝑖 + 1),
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where 𝑡 ∈ ℤ⩾0, 𝐼 ≠ ∅ and 𝑞𝑖 is a prime power congruent to 3 modulo 4 for every 𝑖 ∈ 𝐼, see [34,
Theorem 4.1].

Corollary 1.7. If Seberry’s conjecture is true, then for all 𝑛 sufficiently large

ex2(𝑛, 𝐾
−
4 ) =

⎧⎪⎨⎪⎩
⌊
𝑛+1
4

⌋
if 𝑛 ≡ 2, 3 (mod 4),⌊

𝑛+1
4

⌋
or
⌊
𝑛−3
4

⌋
if 𝑛 ≡ 0, 1 (mod 4).

1.3 Background

In the late 1990s, Nagle [25] and Czygrinow and Nagle [5] made conjectures on the values of
the codegree densities 𝜋2(𝐾−

4 ) and 𝜋2(𝐾4), respectively, where 𝐾4 denotes the complete 3-graph
with 4 vertices. Mubayi [23] determined the codegree density of the Fano plane, and Keevash
and Zhao [19] later extended Mubayi’s work to other projective geometries. The precise codegree
threshold of the Fano plane was determined for large enough 𝑛 by Keevash [17] using hyper-
graph regularity, and DeBiasio and Jiang [6] later gave a second, regularity-free proof of the same
result. Mubayi and Zhao [24] established a number of theoretical properties of codegree density,
while Falgas–Ravry [9] gave evidence that codegree density problems for complete 3-graphs may
not be stable in general. Falgas-Ravry, Marchant, Pikhurko and Vaughan [11] for their part deter-
mined the codegree threshold of the 3-graph 𝐹3,2 = {𝑎𝑏𝑐, 𝑎𝑏𝑑, 𝑎𝑏𝑒, 𝑐𝑑𝑒} for all 𝑛 sufficiently large.
Finally, Lo and Zhao [20] determined the asymptotic order of 1 − 𝜋2(𝐾

(3)
𝑡 ) as 𝑡 → ∞, where 𝐾(3)

𝑡
denotes the complete 3-graph on 𝑡 vertices.
In this paper, we add a new example to this scant list of known non-trivial codegree densities

by showing𝜋2(𝐾−
4 ) = 1∕4. As the smallest non-trivial 3-graph from the perspective of Turán–type

problems,𝐾−
4 has received extensive attention from researchers in the area. Its Turán density is not

known, but is conjectured byMubayi [22] to be 2∕7 = 0.2857…, with the lower bound coming from
a recursive construction of Frankl and Füredi [13]. Matthias [21] and Mubayi [22] proved upper
bounds on 𝜋(𝐾−

4 ), before the advent of Razborov’s flag algebra framework [26], and in particular
his semi-definite method, led to computer-aided improvements by Razborov [27] and Baber and
Talbot [1], with the current best upper bound for 𝜋(𝐾−

4 ) being 0.2868…, see [12].
In addition, ‘smooth’ variants of the Turán density problem for 𝐾−

4 have been studied. Given
𝛿 > 0, the 𝛿-linear density of a 3-graph 𝐺 is the minimum edge density attained by an induced
subgraph of 𝐺 on at least 𝛿𝑣(𝐺) vertices. Erdős and Sós [8] asked whether there is 𝛿 > 0 such that
every large enough 3-graph with positive 𝛿-linear density contains a copy of𝐾−

4 . Füredi observed,
however, that the tournament construction 𝐶(𝑇) of Erdős and Hajnal [7] described in the previ-
ous section with 𝑇 chosen at random gives a negative answer to this question: a density of more
than 1∕4 is required for the existence of a 𝐾−

4 -subgraph. Glebov, Král’ and Volec [15] showed this
1∕4 lower bound is tight, using flag algebraic techniques amongst other ingredients in their proof.
More recently, Reiher, Rödl and Schacht [31] reproved Glebov, Král’ and Volec’s result and estab-
lished the edge density at which weakly quasirandom 3-graphs must contain a copy of 𝐾−

4 , for
various notions of ‘weakly quasirandom’. The extremal problem for𝐾−

4 under both a codegree and
a smoothness assumption had been studied earlier by Kohayakawa, Rödl and Szemerédi (see [25,
31]).
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1.4 Organisation of the paper

In Section 2we introduce our setting of the flag algebra framework, establish the key flag algebraic
identity (Lemma 2.8) and prove Theorem 1.3. In Section 3, we extract some information about
near-extremal configurations from the flag algebraic identity in order to show that their structure
must be close to that of a random tournament construction (Theorem 1.5).
After studying the relation between tournaments and skewHadamardmatrices in Section 4, we

devote Section 5 to determining the codegree threshold of𝐾−
4 and prove Theorem 1.6.We conclude

the paper with some remarks and open problems presented in Section 6.

2 FLAG ALGEBRAS AND THE CODEGREE DENSITY OF 𝑲−
𝟒

Our proof of Theorem 1.3 uses the flag algebra framework introduced by Razborov in [26], and in
particular the semi-definite method first deployed by Razborov in [27]; see also [1, 11, 12, 14] for
expositions of the basic ideas. Such an approach is by nowwell established in extremal hypergraph
theory, and since a treatment of the general theory of flag algebras is outside the scope of this
article, we content ourselves here with giving brisk definitions of some of the standard terms and
concepts of flag algebras that we shall use, and refer an interested reader to the papers cited above
for further details and discussion.
Let  denote the set of all non-isomorphic finite 𝐾−

4 -free 3-graphs, and let 𝑘 denote the sub-
set of  consisting of all non-isomorphic 𝑘-vertex 𝐾−

4 -free 3-graphs. A type 𝜎 is an element of 
together with a labelling of its vertices, that is, a bijection from [𝑣(𝜎)] to 𝑉(𝜎). For a fixed type 𝜎,
we define the set 𝜎 to be the collection of all (up to 𝜎-preserving isomorphism) finite 𝐾−

4 -free
3-graphs with a fixed embedding of 𝜎. The elements of 𝜎 are referred to as 𝜎-flags. A 𝜎-flag can
be thought of as a 3-graph on a partially labelled vertex set, with the labelled vertices inducing
a copy of 𝜎. Note that any 3-graph can be viewed as an ∅-flag, where ∅ is the empty type on 0
vertices. Analogously to the unlabelled case, we let 𝜎

𝑘
denote the set of all 𝑘-vertex 𝜎-flags. For a

𝜎-flag 𝐹, we define its root to be the fixed embedding of 𝜎 in 𝐹.
Fix now an 𝓁-vertex type 𝜎. Given two 𝜎-flags 𝐹 and 𝐺, we let 𝑝(𝐹, 𝐺) to be the probability that

a random extension of the root of𝐺 by 𝑣(𝐹) − 𝓁 unlabelled vertices of𝐺 yields a 𝜎-flag isomorphic
to 𝐹. In the degenerate case 𝑣(𝐹) > 𝑣(𝐺), we define 𝑝(𝐹, 𝐺) = 0. We refer to 𝑝(𝐹, 𝐺) as the 𝜎-flag
density of𝐹 in𝐺. Further, given three 𝜎-flags𝐹1, 𝐹2 and𝐺 such that 𝑣(𝐺) = 𝑣(𝐹1) + 𝑣(𝐹2) − 𝓁, we
let 𝑝(𝐹1, 𝐹2, 𝐺) denote the probability that a randomly chosen set of 𝑣(𝐹1) − 𝓁 unlabelled vertices
of 𝐺 extends the root of 𝐺 to a 𝜎-flag isomorphic to 𝐹1, while the remaining 𝑣(𝐹2) − 𝓁 unlabelled
vertices extend the root of 𝐺 to a 𝜎-flag isomorphic to 𝐹2.
We are now ready to describe the flag algebra 𝜎. Informally, 𝜎 is obtained by taking ℝ𝜎,

that is, the vector space of all formal finite linear combinations of elements of 𝜎, and for every
𝐹 ∈ 𝜎 and 𝑘 ⩾ 𝑣(𝐹) quotienting out the relation∑

𝐺∈𝜎
𝑘

𝑝(𝐹, 𝐺) ⋅ 𝐺 = 𝐹.

We then define a multiplication in 𝜎 by setting

𝐹1 × 𝐹2 ∶=
∑

𝐺∈𝜎
𝑣(𝐹1)+𝑣(𝐹2)−𝓁

𝑝(𝐹1, 𝐹2, 𝐺) ⋅ 𝐺 for every 𝐹1, 𝐹2 ∈ 𝜎 ,
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1666 FALGAS-RAVRY et al.

which then uniquely extend to the whole set 𝜎 by [26, Lemma 2.4]. For brevity, we write  to
denote∅. The averaging operator � ⋅ �𝜎 ∶ 𝜎 →  is defined by

�𝐹�𝜎 = 𝑝𝜎𝐹 ⋅ 𝐹∅,

where 𝐹∅ is the unlabelled 3-graph obtained from the 𝜎-flag 𝐹 by forgetting about its embedding
of 𝜎, and 𝑝𝜎𝐹 is the probability that a random injection from 𝑉(𝜎) to 𝑉(𝐹∅) yields an embedding
of 𝜎 such that the resulting 𝜎-flag is isomorphic to 𝐹.
We now relate flag algebras to asymptotic properties of 3-graphs. We say that a sequence of𝐾−

4 -
free 3-graphs (𝐻𝑛)𝑛∈ℕ with 𝑣(𝐻𝑛) → ∞ is convergent if lim𝑛→∞ 𝑝(𝐹,𝐻𝑛) exists for every 𝐹 ∈  .
Since 𝑝(𝐹,𝐻𝑛) ∈ [0, 1] for every pair (𝐹,𝐻𝑛), Tychonoff’s theorem implies that every sequence
(𝐻𝑛)𝑛∈ℕ has a convergent subsequence. For each convergent sequence of graphs (𝐻𝑛)𝑛∈ℕ, we
define a function 𝜙 ∶  → ℝ, which we call the limit of (𝐻𝑛)𝑛∈ℕ, by letting

𝜙(𝐹) ∶= lim
𝑛→∞

𝑝(𝐹,𝐻𝑛) for every 𝐹 ∈  ,

and extending it to the rest of by linearity. For a given type 𝜎, we define convergence and limits
for 𝜎-flag sequences analogously.
LetHom+(, ℝ) be the set of all algebra homomorphisms 𝜙 from toℝ such that 𝜙(𝐹) ⩾ 0 for

every 𝐹 ∈  . By construction, for every convergent sequence of 3-graphs (𝐻𝑛)𝑛∈ℕ the associated
limit 𝜙 is an element ofHom+(, ℝ). Similarly, given a type 𝜎 we letHom+(𝜎, ℝ) denote the set
of all algebra homomorphisms 𝜓 from𝜎 to ℝ with 𝜓(𝐹𝜎) ⩾ 0 for every 𝐹𝜎 ∈ 𝜎.
Observe that given a fixed embedding of 𝜎 in a 3-graph𝐻𝑛, we have a map 𝜓𝑛 ∶ 𝐹 ↦ 𝑝(𝐹,𝐻𝑛)

sending a 𝜎-flag 𝐹 to its 𝜎-flag density in 𝐻𝑛, which extends by linearity to a map ℝ𝜎 → ℝ. For
a sequence of 3-graphs (𝐻𝑛)𝑛∈ℕ converging to the limit 𝜙 ∈ Hom+(, ℝ) and 𝜎 a type such that
𝜙(�𝜎�𝜎) > 0, we let (𝐏𝜎𝑛) be the sequence of probability distributions on suchmaps 𝜓𝑛 ∶ ℝ𝜎 → ℝ

after turning𝐻𝑛 into a𝜎-flag by selecting an embedding of𝜎 in𝐻𝑛 uniformly at random. Similarly,
let 𝐏𝜎

𝜙
be the unique probability distribution on Hom+(𝜎, ℝ) satisfying

𝔼
𝜓∼𝐏𝜎

𝜙

𝜓(𝑓) =
𝜙
(
�𝑓�𝜎

)
𝜙
(
�𝜎�𝜎

) ∀𝑓 ∈ 𝜎 . (2.1)

Razborov proved the existence and uniqueness of 𝐏𝜎
𝜙
in [26, Theorem 3.5], and further that the

sequence of probability distributions (𝐏𝜎𝑛)𝑛∈ℕ converges weakly to 𝐏
𝜎
𝜙
as 𝑛 → ∞ in [26, Theorem

3.12].

2.1 Tight paths

A crucial step in our proof of the stability result stated in Theorem 1.5 will be constructing an
auxiliary orientation of almost all pairs of the vertices of a𝐾−

4 -free 3-graph𝐻 with large codegree.
In order to do so, we shall use a relation on the vertex pairs of 𝐻 associated with what is known
as tight connectivity.
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F IGURE 2 The 4-vertex types 𝜎0, 𝜎1 and 𝜎2.

F IGURE 3 The set of 𝜎0-flags 
𝜎0
3 .

Definition 2.1. We say that a pair of vertices {𝑎, 𝑏} is tightly connected to a pair {𝑐, 𝑑} by a path of
length 𝓁 if there exists a sequence of distinct 𝓁 + 2 vertices 𝑣1, 𝑣2, … , 𝑣𝓁+2 and 𝓁 edges 𝑒1, 𝑒2, … , 𝑒𝓁
such that 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1, 𝑣𝑖+2} for every 𝑖 ∈ [𝓁], {𝑎, 𝑏} ⊆ 𝑒1 and {𝑐, 𝑑} ⊆ 𝑒𝓁 .

Having a fixed orientation of a given pair of vertices {𝑎, 𝑏} and a tight path 𝑃 of length 𝓁 con-
necting the pair {𝑎, 𝑏} to a pair {𝑐, 𝑑} allows us to propagate the orientation of {𝑎, 𝑏} to {𝑐, 𝑑} in
a rather natural way: there is a unique orientation of the remaining two pairs contained in the
first edge 𝑒1 of 𝑃 so that the three pairs in 𝑒1 form a cyclically oriented triangle, which fixes the
orientation of one pair contained in the next edge of 𝑃. Repeating the procedure 𝓁 times along the
edges of 𝑃 yields an orientation for the pair {𝑐, 𝑑}.
Let us now introduce a flag algebra notion,whichwewill use to capture tight connectivity in the

proof of Theorem 1.5. Fix 𝜎0, 𝜎1 and 𝜎2 to be the 4-vertex types depicted in Figure 2. Note that, up
to labelling of the vertices, 𝜎0, 𝜎1 and 𝜎2 are the only 𝐾−

4 -free 4-vertex types. Let 
𝜎0
3 , 𝜎1

3 and 𝜎2
3

be the sets of 5-vertex 𝜎0-, 𝜎1- and 𝜎2-flags depicted in Figures 3–5, respectively. A straightforward
inspection of these flags yields the following.

Observation 2.2. For any 𝑖 ∈ {0, 1, 2} and any 𝐹𝜎𝑖 ∈ 
𝜎𝑖
3 , the pair {1, 2} is tightly connected to the

pair {3, 4} in 𝐹𝜎𝑖 by a path of length 3.
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1668 FALGAS-RAVRY et al.

F IGURE 4 The set of 𝜎1-flags 
𝜎1
3 . The edge induced by the labelled vertices 1,2,3,4 is represented by a

dashed curve.

F IGURE 5 The set of 𝜎2-flags 
𝜎2
3 . The two edges induced by the labelled vertices 1,2,3,4 are represented by

dashed curves.

For 𝑖 ∈ {0, 1, 2}, we define 𝑖 ∈  to be the following non-labelled expression:

𝑖 ∶=

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣
⎛⎜⎜⎝16 ⋅

∑
𝐹∈

𝜎𝑖
3

𝐹 −
∑

𝐹∈
𝜎𝑖
5

𝐹
⎞⎟⎟⎠
2⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦𝜎𝑖

=

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣
⎛⎜⎜⎝15 ⋅

∑
𝐹∈

𝜎𝑖
3

𝐹 −
∑

𝐹∈
𝜎𝑖
5 ⧵

𝜎𝑖
3

𝐹
⎞⎟⎟⎠
2⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦𝜎𝑖

.

Note that 0, 1 and 2 can be expressed as a linear combination of the elements of 6. We now
relate the expressions 𝑖 to the existence of (short) tight paths.

Proposition 2.3. Let (𝐻𝑛)𝑛∈ℕ be a convergent sequence of 𝐾−
4 -free 3-graphs and let 𝜙 ∈

Hom+(, ℝ) be its limit. If 𝜙(0) = 𝜙(1) = 𝜙(2) = 0 and 𝑛 ∈ ℕ, then for all but 𝑜(𝑣(𝐻𝑛)
4)

quadruples of vertices𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑉(𝐻𝑛) the pair {𝑎, 𝑏} is tightly connected to {𝑐, 𝑑} by a path of length
at most 3.

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑉(𝐻𝑛) be a quadruple of distinct vertices and 𝐸′ the set of edges in 𝐻𝑛 the
quadruple induces. Since𝐻𝑛 is 𝐾−

4 -free, there are, up to symmetry, exactly four possibilities:

1) 𝐸′ = ∅ , 2) 𝐸′ = {𝑎𝑏𝑐} , 3) 𝐸′ = {𝑎𝑏𝑐, 𝑎𝑏𝑑} , and 4) 𝐸′ = {𝑎𝑏𝑐, 𝑏𝑐𝑑} .

In the last case, the edges 𝑎𝑏𝑐 and 𝑏𝑐𝑑 already form a tight path of length 2 between the pairs
{𝑎, 𝑏} and {𝑐, 𝑑}.
For the remaining three cases, our aim will be to find a suitable additional vertex 𝑥 ∈ 𝑉(𝐻𝑛)

such that the subgraph of 𝐻𝑛 induced by {𝑎, 𝑏, 𝑐, 𝑑, 𝑥} contains a tight path from {𝑎, 𝑏} to {𝑐, 𝑑} of
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length 3. Based on 𝐸′, we break down the analysis into Claims 2.4–2.6. As each case can be treated
in a very similar manner, we only deal with the case 𝐸′ = ∅ in detail.

Claim 2.4. There are 𝑜(𝑣(𝐻𝑛)
4) choices of 𝑎, 𝑏, 𝑐, 𝑑 such that {𝑎, 𝑏, 𝑐, 𝑑} induces no edge and {𝑎, 𝑏}

is not tightly connected to {𝑐, 𝑑} by a path of length 3.

Proof. Without loss of generality, we may assume 𝜙(�𝜎0�𝜎0) > 0 as otherwise the total number of
choices of {𝑎, 𝑏, 𝑐, 𝑑} inducing no edge in 𝐻𝑛 is 𝑜(𝑣(𝐻𝑛)

4). Let 𝐏𝜎0𝑛 be the probability distribution
on mappings from ℝ𝜎0 to ℝ that arise from picking a copy of 𝜎0 in 𝐻𝑛 uniformly at random,
that is, choosing a quadruple of vertices 𝑄 uniformly at random conditioned on the event that 𝑄
induces no edges in 𝐻𝑛.
Let 𝜓𝑛 be drawn according to the probability distribution 𝐏

𝜎0
𝑛 , that is, fix a copy of 𝜎0 in 𝐻𝑛

uniformly at random, and let 𝑎, 𝑏, 𝑐 and 𝑑 be the vertices of 𝐻𝑛 corresponding to the 𝜎0 vertices
1–4, respectively. Recall that 𝜓𝑛(𝐹), where 𝐹 ∈ 

𝜎0
5 , corresponds to the probability that a ran-

dom vertex 𝑥 ∈ 𝑉(𝐻𝑛) ⧵ {𝑎, 𝑏, 𝑐, 𝑑} extends {𝑎, 𝑏, 𝑐, 𝑑} into a 𝜎0-flag isomorphic to 𝐹. In particular,∑
𝐹∈

𝜎0
5
𝜓𝑛(𝐹) = 1.

Clearly, the pair {1, 2} is tightly connected to {3, 4} by a path of length 3 in any 𝐹 ∈ 
𝜎0
3 . In fact, a

straightforward inspection reveals that the set 𝜎0
3 describes all the possibilities for such a path in

a 𝐾−
4 -free setting. Therefore, the number of tight paths of length 3 between {𝑎, 𝑏} and {𝑐, 𝑑} in𝐻𝑛

is equal to (𝑣(𝐻𝑛) − 4) ⋅
∑

𝐹∈
𝜎0
3
𝜓𝑛(𝐹). Motivated by Construction 1.2, we aim to prove the claim

by showing that this expression is equal to (1 − 𝑜(1)) ⋅ 𝑣(𝐻𝑛)∕16 with probability 1 − 𝑜(1).
Suppose to the contrary that there is 𝜀0 > 0 and an infinite subsequence (𝑛𝑘)𝑘∈ℕ of ℕ such that

for every 𝑘 ∈ ℕ there are (at least) 𝜀0 ⋅ 𝑣(𝐻𝑛𝑘
)4 copies of 𝜎0 in 𝐻𝑛𝑘

such that the corresponding
𝜓𝑛𝑘 satisfies the two following equivalent inequalities:

|||||||
∑

𝐹∈
𝜎0
3

𝜓𝑛𝑘 (𝐹) −
1
16

||||||| ⩾ 𝜀0 ⟺
⎛⎜⎜⎝
∑

𝐹∈
𝜎0
3

𝜓𝑛𝑘 (𝐹) −
1
16

⋅
∑

𝐹∈
𝜎0
5

𝜓𝑛𝑘 (𝐹)
⎞⎟⎟⎠
2

⩾ (𝜀0)
2 .

Fix such a 𝜓𝑛𝑘 . The definition of the flag-algebra multiplication on 𝜎0 in turn yields that

𝜓𝑛𝑘

⎛⎜⎜⎜⎝
⎛⎜⎜⎝
∑

𝐹∈
𝜎0
3

𝐹 −
∑

𝐹∈
𝜎0
5

1
16

⋅ 𝐹
⎞⎟⎟⎠
2⎞⎟⎟⎟⎠ ⩾ (𝜀0)

2 − 𝑜(1) .

As (𝐏𝜎0𝑛𝑘 )𝑘∈ℕ weakly converges to the probability distribution 𝐏
𝜎0
𝜙
associated with 𝜙, we have

lim
𝑘→∞

𝔼
𝜓𝑛𝑘∼𝐏

𝜎0
𝑛𝑘

⎡⎢⎢⎢⎣𝜓𝑛𝑘
⎛⎜⎜⎜⎝
⎛⎜⎜⎝
∑

𝐹∈
𝜎0
3

𝐹 −
∑

𝐹∈
𝜎0
5

1
16

⋅ 𝐹
⎞⎟⎟⎠
2⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ = 𝔼

𝜓∼𝐏
𝜎0
𝜙

⎡⎢⎢⎢⎣𝜓
⎛⎜⎜⎜⎝
⎛⎜⎜⎝
∑

𝐹∈
𝜎0
3

𝐹 −
∑

𝐹∈
𝜎0
5

1
16

⋅ 𝐹
⎞⎟⎟⎠
2⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

Clearly, the limit on the left-hand side must be at least (𝜀0)3; however, the expectation on the
right-hand side is by (2.1) equal to 1

256
⋅ 𝜙(0)

𝜙(�𝜎0�𝜎0 )
= 0, a contradiction. □
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1670 FALGAS-RAVRY et al.

As 𝜙(1) = 𝜙(2) = 0, an analogous argument for embeddings of 𝜎1 and 𝜎2 in (𝐻𝑛)𝑛∈ℕ using
the respective probability distributions (𝐏𝜎1𝑛 ) → 𝐏

𝜎1
𝜙
and (𝐏𝜎2𝑛 ) → 𝐏

𝜎2
𝜙
yields the following.

Claim 2.5. There are 𝑜(𝑣(𝐻𝑛)
4) choices of 𝑎, 𝑏, 𝑐, 𝑑 such that {𝑎, 𝑏, 𝑐, 𝑑} induces one edge 𝑎𝑏𝑐 and

{𝑎, 𝑏} is not tightly connected to {𝑐, 𝑑} by a path of length 3.

Claim 2.6. There are 𝑜(𝑣(𝐻𝑛)
4) choices of 𝑎, 𝑏, 𝑐, 𝑑 such that {𝑎, 𝑏, 𝑐, 𝑑} induces edges {𝑎𝑏𝑐, 𝑎𝑏𝑑}

and {𝑎, 𝑏} is not tightly connected to {𝑐, 𝑑} by a path of length 3.

This concludes the proof of Proposition 2.3. □

2.2 Proof of 𝝅𝟐(𝑲
−
𝟒
) = 𝟏∕𝟒

We shall prove Theorem 1.3 by establishing a specific identity between subgraph densities of
7-vertex 𝐾−

4 -free 3-graphs that holds for any 𝜙 ∈ Hom+(, ℝ). This identity is obtained by an
application of the semi-definite method of Razborov and some computer-aided flag algebra
calculations. Before we can state this identity, we need to introduce a few more definitions.
For each 𝑛 ∈ ℕ, let 𝑇𝑛 be a uniformly random tournament on [𝑛]. It is straightforward to check

that the sequence (𝐶(𝑇𝑛))𝑛∈ℕ is an almost surely convergent sequence of 3-graphs. Indeed, as 𝑛 →
∞, the density of any fixed 𝐹 in 𝐶(𝑇𝑛) almost surely converges to the probability that 𝐹 = 𝐶(𝑇)
when𝑇 is a random tournament on𝑉(𝐹) inwhich pairs are oriented randomly and independently
of each other. Let 𝜙𝑇 denote the limit of (𝐶(𝑇𝑛))𝑛∈ℕ and let

𝑇 ∶= {𝐹 ∈  ∶ 𝜙𝑇(𝐹) > 0}.

We call the elements of 𝑇 tournament-realizable. The definition of 𝑇 readily yields the following.

Observation 2.7. 𝐹 ∈ 𝑇 if and only if there is a tournament 𝑇𝐹 on 𝑉(𝐹) such that 𝐹 = 𝐶(𝑇𝐹).

Wenow continue by introducing the remaining flag algebra notation. Let ∶=  ⧵ 𝑇 be the set
of𝐾−

4 -free 3-graphs that are not tournament-realizable. For every 𝑘 ∈ ℕ, we set 𝑘 ∶=  ∩ 𝑘. Let
𝜏 be the unique 2-vertex type consisting of two labelled vertices 1 and 2. LetN andE be the 3-vertex
3-graphs with 0 and 1 edge, respectively, that is, the (unlabelled)Non-edge and Edge, and similarly
N𝜏 and E𝜏 the unique 3-vertex 𝜏-flags with 0 and 1 edge, respectively. A codegree assumption
𝛿2(𝐻) ⩾ (𝑐 − 𝑜(1)) ⋅ 𝑣(𝐻) implies in the flag algebra language the statement that 𝜙𝜏(E𝜏) ⩾ 𝑐 with
probability 1, where 𝜙𝜏 is drawn from 𝐏𝜏

𝜙
. Equivalently, 𝜙𝜏( 1−𝑐

𝑐
⋅ E𝜏 − N𝜏) ⩾ 0 with probability 1.

Let 𝜄1, 𝜄2, … , 𝜄6 be the six 5-vertex types depicted in Figure 6. For every 𝑖 ∈ [6], we let 𝑘𝑖 ∶= | 𝜄𝑖
6 |,

and fix an arbitrary enumeration 𝐹
𝜄𝑖
1 , 𝐹

𝜄𝑖
2 , … , 𝐹

𝜄𝑖
𝑘𝑖
of the elements of  𝜄𝑖

6 . Note the particular enu-
meration that we will be using in the whole paper is the one used in our ancillary computer
programmes. Similarly, we fix an enumeration of 𝜎𝑖

5 for 𝑖 ∈ {0, 1, 2}.
For 𝑖 ∈ [6], we let 𝑒𝑖 be the 𝑘𝑖-dimensional vector from (𝜄𝑖 )𝑘𝑖 whose 𝑗th coordinate is equal

to 𝐹
𝜄𝑖
𝑗
. By a straightforward computer search, we have 𝑘1 = 191, 𝑘2 = 173, 𝑘3 = 148, 𝑘4 = 135,

𝑘5 = 124 and 𝑘6 = 95 (this can be also checked using Flagmatic, see, for example, [12, 37]).
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F IGURE 6 The 5-vertex types 𝜄𝑖 for 𝑖 ∈ [6] used in the proof of Lemma 2.8.

Next, it is easy to check that 𝜙𝑇(�𝜄2�𝜄2 ) = 𝜙𝑇(�𝜄5�𝜄5 ) = 0. On the other hand, for 𝑖 ∈ {1, 3, 4, 6}we
have 𝜙𝑇(�𝜄𝑖�𝜄𝑖 ) > 0, and so the probability distribution 𝐏𝜄𝑖

𝜙𝑇
onHom+(𝜄𝑖 , ℝ) is well defined. Note

that in this case 𝐏𝜄𝑖
𝜙𝑇
is a purely atomic measure, and | supp(𝐏𝜄𝑖

𝜙𝑇
)| ⩽ 210 (since the right-hand side

is equal to the number of 3-graphs on a labelled set of 5 vertices).
For any proof of 𝜋2(𝐾−

4 ) ⩽ 1∕4, the support of 𝐏𝜄𝑖
𝜙𝑇

restricts arguments used in the proof that
involve 𝜄𝑖-flags. In particular, if such a proof uses �𝑓2�𝜄𝑖 ⩾ 0 for some 𝑓 ∈ 𝜄𝑖 , then clearly wemust
have 𝜓𝜄𝑖 (𝑓) = 0 for all 𝜓𝜄𝑖 ∈ supp(𝐏

𝜄𝑖
𝜙𝑇
).

Recall that 𝐹𝜄𝑖
1 , 𝐹

𝜄𝑖
2 , … , 𝐹

𝜄𝑖
𝑘𝑖
is the fixed enumeration of  𝜄𝑖

6 . We set 𝑑𝑖 to be the dimension of the
subspace of ℝ𝑘𝑖 generated by{

𝑥 ∈ ℝ𝑘𝑖 || ∃𝜓𝜄𝑖 ∈ supp
(
𝐏
𝜄𝑖
𝜙𝑇

)
such that 𝑥𝑗 = 𝜓𝜄𝑖

(
𝐹
𝜄𝑖
𝑗

)
for all 𝑗 ∈ [𝑘𝑖]

}
.

By inspection of the tournaments whose cyclically oriented triangles give rise to a given type 𝜄𝑖
under the Erdős–Hajnal construction, we have that 𝑑2 = 𝑑5 = 0, 𝑑4 = 𝑑6 = 1, 𝑑1 = 4 and 𝑑3 = 6.
Indeed, up to reversing the orientation of all the edges there are exactly 4, 0, 6, 1, 0 and 1 distinct
tournaments on [5] realising the types 𝜄1, 𝜄2, 𝜄3, 𝜄4, 𝜄5 and 𝜄6, respectively. Each such a tournament 𝐽
corresponds to a different kind of embedding of 𝜄𝑗 in 𝜙𝑇 , which we denote by𝐻𝐽 , and determines
a different probability distribution on 

𝜄𝑗
6 given by extending𝐻𝐽 by a single random vertex of 𝜙𝑇 .

By the definition of 𝜙𝑇 , this is in a one-to-one correspondence with adding a new vertex 𝑥 to 𝐽
that has all its edges to 𝑉(𝐽) oriented randomly, and considering the random variable 𝐶(𝐽 ∪ {𝑥}).
Moreover, when viewing each such a probability distribution as a vector inℝ

𝜄𝑗
6 , for every 𝑗 ∈ [6]

the set of the 𝑑𝑗 vectors corresponding to all such distributions on 
𝜄𝑗
6 is linearly independent.

Finally, yet another straightforward computer search yields |𝜏
6 | = 1643. Moreover, exactly 167

elements 𝐹 ∈ 𝜏
6 are such that swapping the labels of 𝜏 (that is, relabelling the vertex 1 to 2 and

vice versa) yields a 𝜏-flag isomorphic to 𝐹. Now observe that the expression �𝐹 × (3E𝜏 − N𝜏)�𝜏
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1672 FALGAS-RAVRY et al.

is invariant under such a swap of the labels of 𝜏 for every 𝐹 ∈ 𝜏. Therefore, there are exactly
(1643 + 167)∕2 = 905 pairwise different expressions of the form �𝐹 × (3E𝜏 − N𝜏)�𝜏 where𝐹 ∈ 𝜏

6 .
Let ∶= {�𝐹 × (3E𝜏 − N𝜏)�𝜏|𝐹 ∈ 𝜏

6 }. The discussion from the previous paragraph yields that|| = 905. Also note that 𝜙(𝐷) ⩾ 0 for every 𝐷 ∈  where 𝜙 is the limit of a sequence of 𝐾−
4 -

free 3-graphs (𝐻𝑛)𝑛∈ℕ with lim inf𝑛→∞
𝛿2(𝐻𝑛)

𝑣(𝐻𝑛)
⩾ 1

4
, and every 𝐷 ∈  can be expressed as a linear

combination of the elements of 7.
We are now ready to state the main lemma of this section.

Lemma 2.8. There exist

(1) positive rationals 𝑐0, 𝑐1, 𝑐2, 𝑤𝐺 for every 𝐺 ∈ 7, and 𝑢𝐷 for every 𝐷 ∈ ,
(2) rational matrices 𝐼𝑖 of sizes (𝑘𝑖 − 𝑑𝑖) × 𝑘𝑖 for 𝑖 ∈ [6] and
(3) positive definite rational matrices 𝑄𝑖 ≻ 0 of sizes (𝑘𝑖 − 𝑑𝑖) × (𝑘𝑖 − 𝑑𝑖) for 𝑖 ∈ [6],

such that the following identity holds in the theory of 𝐾−
4 -free 3-graphs:

N − 3E =
∑
𝐷∈

𝑢𝐷 ⋅ 𝐷

⏟⎴⎴⏟⎴⎴⏟
CODEGREE

+
∑

𝑖∈{0,1,2}

𝑐𝑖 ⋅ 𝑖

⏟⎴⎴⏟⎴⎴⏟
TIGHT−PATH

+
∑
𝑖∈[6]

�𝑒𝑇𝑖 𝐼
𝑇
𝑖 𝑄𝑖𝐼𝑖𝑒𝑖�𝜄𝑖

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
POSITIVE−DEFINITE

+
∑
𝐺∈7

𝑤𝐺 ⋅ 𝐺

⏟⎴⎴⏟⎴⎴⏟
SLACK

. (2.2)

Proof. This is a standard flag algebra computation in the theory of 𝐾−
4 -free 3-graphs, which

was performed with the aid of a computer. Files containing the rational matrices 𝐼1, … , 𝐼6 and
𝑄1,… , 𝑄6, the rationals (𝑢𝐷), 𝑐0, 𝑐1 and 𝑐2, enumerations of 7 and 

𝜄𝑖
6 as well as verifications of

the positive definiteness of the matrices 𝑄𝑖 and the flag algebraic identity claimed by Lemma 2.8
can be found at http://honza.ucw.cz/proj/codeg-k4e/ as well as on the arXiv version of this paper;
see the Appendix for details. □

With Lemma 2.8 in hand, the remainder of the proof of Theorem 1.3 is straightforward.

Proof of Theorem 1.3. Suppose for a contradiction that 𝜋2(𝐾−
4 ) > 1∕4. Then there exist 𝜀0 > 0 and

a sequence of 𝐾−
4 -free 3-graphs (𝐻𝑛)𝑛∈ℕ with 𝑣(𝐻𝑛) → ∞ such that

lim inf
𝑛→∞

𝛿2(𝐻𝑛)

𝑣(𝐻𝑛)
⩾ 1∕4 + 𝜀0.

By compactness, there exists a convergent subsequence (𝐻′
𝑛)𝑛∈ℕ of (𝐻𝑛)𝑛∈ℕ. Let 𝜙0 denote its

limit. A double-counting argument yields that 𝜙0(E) = 𝜙0(�E
𝜏�𝜏) ⩾ 1∕4 + 𝜀0. Therefore,

𝜙0(N − 3E) = 𝜙0(N + E) − 4 ⋅ 𝜙0(E) ⩽ 1 − 4 ⋅
(1
4
+ 𝜀0

)
= −4𝜀0 < 0 . (2.3)

On the other hand, our codegree assumption yields that almost surely 𝜙𝜏0(3E
𝜏 − N𝜏) ⩾ 4𝜀0, where

𝜙𝜏0 is a random homomorphism drawn from 𝐏𝜏
𝜙0
. Therefore, for any non-negative (𝑢𝐷)𝐷∈,

𝜙0

(∑
𝐷∈

𝑢𝐷 ⋅ 𝐷

)
=
∑
𝐷∈

𝑢𝐷 ⋅ 𝜙0(𝐷) ⩾ 0.
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As the evaluation of the remaining three summands in (2.2) is non-negative for any 𝜙 ∈
Hom+(, ℝ), Lemma 2.8 yields that 𝜙0(N − 3E) ⩾ 0 contradicting (2.3). □

3 STABILITY OF CONSTRUCTION 1.2

In order to relate 𝐾−
4 -free 3-graphs to Construction 1.2, we establish the following proposition.

Proposition 3.1. Let𝐻 = (𝑉, 𝐸) be an 𝑛-vertex 3-graph such that:

(i) every 7-vertex subgraph of𝐻 is tournament-realizable,
(ii) for all but 𝑜(𝑛4) choices of 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑉 the pair {𝑎, 𝑏} is tightly connected to {𝑐, 𝑑} by a path of

length at most 3 and
(iii) all but 𝑜(𝑛2) pairs of vertices of𝐻 have codegree at least 𝑛∕4 − 𝑜(𝑛).

Then there is an oriented graph �⃗� on the vertex set 𝑉 such that:

(1) �⃗� has at least 𝑛2∕2 − 𝑜(𝑛2) arcs,
(2) if 𝑢, 𝑣, 𝑤 ∈ 𝑉 span a transitive triangle in �⃗�, then 𝑢𝑣𝑤 ∉ 𝐸 and
(3) for all but 𝑜(𝑛2) arcs 𝑢𝑣 in �⃗� there are at least 𝑛∕4 − 𝑜(𝑛) vertices 𝑤 ∈ 𝑉 such that {𝑢, 𝑣, 𝑤}

induces a cyclically oriented triangle in �⃗�.

Proof. We shall use the assumption on the existence of tight paths of length at most 3 in order to
define an orientation for almost every pair of vertices {𝑢, 𝑣} ⊆ 𝑉(2). For two vertices 𝑢 and 𝑣, we
write 𝑢 → 𝑣 to denote the fact that we place an arc in �⃗� that goes from 𝑢 to 𝑣.
By Assumption (ii), there exists a pair {𝑎, 𝑏} ⊆ 𝑉 such that {𝑎, 𝑏} is tightly connected to {𝑐, 𝑑} by

a path of length at most 3 for all but 𝑜(𝑛2) pairs {𝑐, 𝑑} ⊆ 𝑉. Fix such a pair {𝑎, 𝑏}.
We start by placing an arc 𝑎 → 𝑏 in �⃗�. Now, for every pair {𝑐, 𝑑} tightly connected to {𝑎, 𝑏} by a

path of length at most 3, we define the orientation of {𝑐, 𝑑} in �⃗� as follows: let 𝑃𝑐𝑑 be an arbitrarily
chosen tight path between {𝑎, 𝑏} and {𝑐, 𝑑} of length at most 3, and let 𝑆𝑐𝑑 denote the set of all
pairs of vertices that are contained in some edge of 𝑃𝑐𝑑. In other words, 𝑆𝑐𝑑 is the 2-shadow of 𝑃𝑐𝑑.
As we have noted in Section 2.1, there exists a unique orientation 𝑂 of the pairs in 𝑆𝑐𝑑 such that
𝑎 → 𝑏, and every edge of 𝑃𝑐𝑑 induces a cyclically oriented triangle. We orient the pair {𝑐, 𝑑} in �⃗�
according to its orientation in 𝑂. Note that by our choice of {𝑎, 𝑏}, the oriented graph resulting
from this procedure will satisfy Property (1).
Let us first show that the orientation �⃗� we have just described is well defined, that is, that the

orientation of a pair {𝑐, 𝑑} does not depend on the particular choice of the tight path 𝑃𝑐𝑑. Indeed,
given any two tight paths 𝑃𝑐𝑑 and 𝑃′𝑐𝑑 from {𝑎, 𝑏} to {𝑐, 𝑑} of length atmost 3, the subgraph induced
by 𝑉(𝑃𝑐𝑑) ∪ 𝑉(𝑃′

𝑐𝑑
) has at most 6 vertices. Therefore, it is tournament-realizable by Assumption

(i) on 𝐻. Let 𝑆′
𝑐𝑑
be the set of pairs of vertices contained in some edge of 𝐸(𝑃𝑐𝑑) ∪ 𝐸(𝑃′

𝑐𝑑
). As in

the previous paragraph, there exists a unique orientation of the pairs in 𝑆′
𝑐𝑑
such that 𝑎 → 𝑏 and

every edge of 𝐸(𝑃𝑐𝑑) ∪ 𝐸(𝑃′
𝑐𝑑
) induces a cyclically oriented triangle (the existence is guaranteed

by the tournament realizability, the uniqueness by the tightness of the paths). In particular, 𝑃𝑐𝑑
and 𝑃′

𝑐𝑑
define the same orientation for {𝑐, 𝑑} in �⃗�.

Next, we claim that if three vertices 𝑢, 𝑣, 𝑤 ∈ 𝑉 span a transitive triangle in �⃗�, then 𝑢𝑣𝑤 ∉
𝐸(𝐻). The argument is very similar to the one in the previous paragraph. Without loss of general-
ity, suppose that the arcs on {𝑢, 𝑣} and {𝑢, 𝑤} are oriented as 𝑢 → 𝑣 and 𝑢 → 𝑤 in �⃗�. Let 𝑃𝑢𝑣 and
𝑃𝑢𝑤 be (some) tight paths of length at most 3 from {𝑎, 𝑏} to {𝑢, 𝑣} and {𝑢, 𝑤}, respectively. Since the
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1674 FALGAS-RAVRY et al.

induced subgraph 𝐹 ∶= 𝐻[𝑉(𝑃𝑢𝑣) ∪ 𝑉(𝑃𝑢𝑤)] has at most 7 vertices, it is tournament-realisable by
Assumption (i). In particular, there is a tournament 𝑇𝐹 with 𝑎 → 𝑏 realising 𝐹. The presence of
the tight paths implies that 𝑢 → 𝑣 and 𝑢 → 𝑤 in 𝑇𝐹 , so 𝑢𝑣𝑤 ∉ 𝐸(𝐹) and hence also 𝑢𝑣𝑤 ∉ 𝐸(𝐻).
It remains to establish Property (3). Fix 𝜀0 > 0 and suppose for a contradiction therewere at least

𝜀0 ⋅ 𝑛
2 arcs such that each of them is contained in fewer than (1∕4 − 𝜀0)𝑛 cyclically oriented trian-

gles in �⃗�. Since the arc density of �⃗� is 1 − 𝑜(1), at least 𝜀0∕2 ⋅ 𝑛2 of these arcs must be contained in
at least (3∕4 + 𝜀0∕2)𝑛 transitive triangles in �⃗�. By Property (2) of �⃗� that we have established in the
previous paragraph, these transitive triangles correspond to non-edges of𝐻. Thus we have found
(𝜀0∕2) ⋅ 𝑛

2 pairs in𝐻 with codegree at most (1∕4 − 𝜀0∕2)𝑛 contradicting Assumption (ii). □

The main result of this section is the following flag algebra version of Theorem 1.5.

Theorem 3.2. Let (𝐻𝑛)𝑛∈ℕ be a sequence of 𝐾−
4 -free 3-graphs. If

lim inf
𝑛→∞

𝛿2(𝐻𝑛)

𝑛
= 𝜋2(𝐾

−
4 ) =

1
4
,

then (𝐻𝑛)𝑛∈ℕ converges to 𝜙𝑇 .

Proof. Fix any sequence (𝐻𝑛)𝑛∈ℕ of 𝐾−
4 -free 3-graphs with 𝛿2(𝐻𝑛) ⩾ 𝑛∕4 − 𝑜(𝑛). By compact-

ness, pass to a subsequence (𝐻′
𝑛)𝑛∈ℕ convergent to some limit 𝜙. Let 𝑉𝑛 denote the vertex set

of 𝐻′
𝑛 and set 𝑣𝑛 ∶= |𝑉𝑛|. Our aim is to use Proposition 3.1 and assign to each element of the

sequence a nearly-complete oriented graph. However, we will first ‘clean-up’ the sequence (𝐻′
𝑛)

using standard regularity tools.
As established in the proof of Theorem 1.3, 𝜙(N − 3E) ⩾ 0. On the other hand, our codegree

assumption yields 𝜙(N − 3E) ⩽ 0, and hence 𝜙(N − 3E) = 0. Now Properties 1–4 from Lemma 2.8
guarantee that the 𝜙-evaluation of each of the four summands in (2.2) is non-negative. In partic-
ular, 𝜙(N − 3E) = 0 and Identity (2.2) together imply that the 𝜙-evaluation of all four summands
on the right-hand side of (2.2) must be equal to 0.
Recall that 7 is the set of all 7-vertex 3-graphs that are not tournament-realizable. Since𝑤𝐺 > 0

for every 𝐺 ∈ 7 (Property 1 in Lemma 2.8), the ‘SLACK’ summand in (2.2) evaluating to zero
under 𝜙 implies that 𝜙(𝐺) = 0 for every 𝐺 ∈ 7. Therefore, there are at most 𝑜(𝑣𝑛7) induced 7-
vertex subgraphs in 𝐻′

𝑛 that are not tournament-realizable. Applying the induced version of the
Hypergraph Removal Lemma of Rödl and Schacht [33, Theorem 6], we can add or remove 𝑜(𝑣𝑛3)
edges in 𝐻′

𝑛 for each 𝑛 ∈ ℕ in order to obtain a modified sequence of 3-graphs (𝐻′′
𝑛 )𝑛∈ℕ such

that in fact every induced 7-vertex subgraph of𝐻′′
𝑛 is tournament-realizable. (Note this implies in

particular that𝐻′′
𝑛 remains 𝐾

−
4 -free for every 𝑛 ∈ ℕ.)

Since |𝐸(𝐻′′
𝑛 )Δ𝐸(𝐻

′
𝑛)| = 𝑜(𝑣𝑛

3), the sequence (𝐻′′
𝑛 )𝑛∈ℕ is also convergent and its limit is𝜙. Thus

it is enough to show that the limit of (𝐻′′
𝑛 )𝑛∈ℕ is equal to 𝜙𝑇 . Also, by construction, the codegree

assumption on 𝐻′
𝑛 and averaging imply that all but 𝑜(𝑣𝑛

2) pairs of vertices in 𝐻′′
𝑛 have codegree

at least 𝑣𝑛∕4 − 𝑜(𝑣𝑛).
As we noted above, the ‘TIGHT-PATH’ summand in (2.2) must 𝜙-evaluate to zero. Since 𝑐𝑖 >

0 for every 𝑖 ∈ {0, 1, 2} (Property 1 in Lemma 2.8), this implies that 𝜙(0) = 𝜙(1) = 𝜙(2) = 0.
Proposition 2.3 then yields that {𝑎, 𝑏} is tightly connected to {𝑐, 𝑑} by a path of length at most 3 for
all but 𝑜(𝑣4𝑛) choices of 𝑎, 𝑏, 𝑐, 𝑑.
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We have thus verified in the three paragraphs above that the elements of (𝐻′′
𝑛 )𝑛∈ℕ satisfy Con-

ditions (i)–(iii) of Proposition 3.1. Applying it, we assign to each 3-graph𝐻′′
𝑛 an oriented graph �⃗�𝑛

on 𝑉𝑛 satisfying Properties (1)–(3) from Proposition 3.1.
Now, every triple of vertices {𝑢, 𝑣, 𝑤} inducing an edge in𝐻′′

𝑛 either corresponds to a cyclically
oriented triangle of �⃗�𝑛, or contains one of the 𝑜(𝑣𝑛2) pairs that do not span an arc in �⃗�𝑛. Since
all but 𝑜(𝑣𝑛2) pairs from 𝑉(𝐻′′

𝑛 ) have codegree 𝑣𝑛∕4 + 𝑜(𝑣𝑛), the density of cyclically oriented
triangles in �⃗�𝑛 must be at least 1∕4 − 𝑜(1).
On the other hand, a simple application of the Cauchy–Schwarz Inequality (see (4.1) below)

shows that the density of cyclically oriented triangles in any oriented graph is at most 1∕4 + 𝑜(1).
Therefore, for all but 𝑜(𝑣𝑛3) triples {𝑢, 𝑣, 𝑤} ⊆ 𝑉(𝐻′′

𝑛 ), {𝑢, 𝑣, 𝑤} induces a cyclically oriented
triangle in �⃗�𝑛 if and only if it induces an edge in𝐻′′

𝑛 .
Let 𝑇𝑛 be obtained from �⃗�𝑛 by adding the 𝑜(𝑣𝑛

2) missing arcs with arbitrary orientations.
Clearly, Property (3) of �⃗�𝑛 from Proposition 3.1 does transfer to 𝑇𝑛, and hence, (𝑇𝑛)𝑛∈ℕ is a
sequence of 𝑜(1)-quasirandom tournaments by a result of Coregliano and Razborov [4, Theo-
rem 3.2]. A classical result of Chung and Graham [3, Theorem 1 (P1)] states that for any fixed
tournament 𝑆, the proportion of 𝑣(𝑆)-vertex subsets of 𝑉𝑛 inducing in 𝑇𝑛 a copy of 𝑆 is asymptot-
ically equal to the expected density of 𝑆 in a random tournament. In particular, for any 3-graph
𝐹, the proportion of 𝑣(𝐹)-vertex subsets of 𝑉𝑛 inducing in 𝐶(𝑇𝑛) a copy of 𝐹 is asymptotically
𝜙𝑇(𝐹). In other words, 𝜙𝑇 is the limit of (𝐶(𝑇𝑛))𝑛∈ℕ. As �⃗�𝑛 differs from 𝑇𝑛 on 𝑜(𝑣2𝑛) arcs, we
have |𝐸(𝐶(𝑇𝑛))Δ𝐸(𝐻′′

𝑛 )| = 𝑜(𝑣3𝑛). Hence, 𝜙 = 𝜙𝑇 . It follows that 𝜙𝑇 is the only possible accumu-
lation point of the original sequence (𝐻𝑛)𝑛∈ℕ, so (by compactness again) the sequence (𝐻𝑛)𝑛∈ℕ
converges to 𝜙𝑇 . □

4 TOURNAMENTSWITH LARGE CODEGREE ANDHADAMARD
MATRICES

In this section, we relate tournaments 𝑇 that have 𝛿2(𝑇) close to 𝑣(𝑇)∕4 to skewHadamardmatri-
ces. Recall from the introduction that a skewHadamardmatrix of order𝑛 is an𝑛 × 𝑛 squarematrix
𝐴with±1 entries such that (i)𝐴𝐴𝑡 = 𝑛𝐼𝑛 and (ii)𝐴 + 𝐴𝑡 = 2𝐼𝑛. Here 𝐼𝑛 denotes the 𝑛 × 𝑛 identity
matrix and 𝐴𝑡 denotes the transpose of the matrix 𝐴.
Let 𝑡(𝑛) be the largest minimum codegree in an 𝑛-vertex tournament, that is,

𝑡(𝑛) ∶= max{𝛿2(𝑇) ∶ 𝑇 a tournament on [𝑛]}.

Proposition 4.1. 𝑡(𝑛) ⩽ ⌊𝑛+1
4
⌋ for every 𝑛 ∈ ℕ.

Proof. Let 𝑛 = 4𝑘 + 𝑟 with 𝑟 ∈ {0, 1, 2, 3}, and let 𝑇 be a tournament on [𝑛]. Set 𝑢 ∶= ⌊𝑛−1
2
⌋ ⋅⌈𝑛−1

2
⌉. Double-counting and applying the Cauchy–Schwarz inequality, we have that the number|𝐶(𝑇)| of cyclically oriented triangles in 𝑇 satisfies:

2 |𝐶(𝑇)| +(𝑛
3

)
=
∑
𝑥∈[𝑛]

𝑑−(𝑥)𝑑+(𝑥) ⩽ 𝑛𝑢. (4.1)
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1676 FALGAS-RAVRY et al.

Since
(𝑛
2

)
⋅ 𝛿2(𝑇) ⩽ 3 |𝐶(𝑇)|, rearranging the terms in (4.1) yields the following estimate:

𝛿2(𝑇) ⩽

⌊
3 |𝐶(𝑇)|(𝑛

2

) ⌋
⩽
⌊ 3𝑢
𝑛 − 1

−
𝑛 − 2
2

⌋
. (4.2)

The right-hand side of (4.2) is equal to 𝑘 + 1 if 𝑟 = 3, and 𝑘 otherwise. □

The proof above implies that for 𝑛 ≡ 3 (mod 4), the upper bound of 𝑛+1
4

on 𝛿2(𝑇) can only be
attained if 𝑇 is highly regular. Explicitly, we have the following corollary.

Corollary 4.2. If 𝑇 is an 𝑛-vertex tournament with 𝛿2(𝑇) =
𝑛+1
4
, then 𝑑−(𝑣) = 𝑑+(𝑣) = 𝑛−1

2
,

𝐶𝑇(𝑣, 𝑤) =
𝑛+1
4
and 𝑅𝑇(𝑣, 𝑤) =

𝑛−3
4
for every distinct 𝑣, 𝑤 ∈ 𝑉(𝑇).

Proof. Since |𝐶(𝑇)| meets the upper bound form Proposition 4.1, we must have equality in both
estimates (4.1) and (4.2). Note that 3𝑢∕(𝑛 − 1) − (𝑛 − 2)∕2 is exactly 𝑘 + 1, without rounding. In
particular, every vertex has both in-degree and out-degree exactly 𝑛−1

2
, and every pair of vertices

has codegree exactly 𝑛+1
4
. Fix a pair {𝑣, 𝑤} ∈ 𝑉(𝑇)(2), and assume without loss of generality it is

oriented as 𝑣𝑤 in 𝑇. Since 𝑑−(𝑣) + 𝑑+(𝑤) = 𝑛 − 1, we have by the inclusion–exclusion principle
that

𝑅𝑇(𝑣, 𝑤) = (𝑛 − 2) − 𝑑−(𝑣) − 𝑑+(𝑤) + 𝐶𝑇(𝑣, 𝑤) = (𝑛 − 2) − (𝑛 − 1) +
𝑛 + 1
4

=
𝑛 − 3
4

. □

When is the upper bound in Proposition 4.1 tight? For 𝑛 ≡ 3 (mod 4), this question is very
closely related to the existence of a skew Hadamard matrix of order 𝑛 + 1. As we have mentioned
in the introduction, skew Hadamard matrices are known to exist for infinitely many orders, and
conjectured to exist for any order divisible by four.

Proposition 4.3. For𝑛 ≡ 3 (mod 4), 𝑡(𝑛) = 𝑛+1
4
if and only if there exists a skewHadamardmatrix

of order 𝑛 + 1.

Proof. Fix 𝑛 = 4𝑘 + 3 and 𝑇 a tournament on [𝑛]with 𝛿2(𝑇) = ⌊𝑛+14 ⌋. By Corollary 4.2, all in- and
out-degrees in 𝑇 are equal to 2𝑘 + 1 and all codegrees are equal to 𝑘 + 1. An old result of Reid
and Brown [28, Theorems 1 and 2] yields that such a tournament exists if and only if there exists
a skew Hadamard matrix of order 4𝑘 + 4. For the sake of completeness, we sketch how one can
obtain a skewHadamardmatrix from such a tournament (that is, the ‘only if’ direction). Note that
all the steps can also be applied in the reverse order to establish the ‘if’ direction.
Let 𝐴 be the adjacency matrix of 𝑇 with 𝐴𝑖𝑖 = 0, 𝐴𝑖𝑗 = +1 if 𝑖𝑗 ∈ 𝑇 and 𝐴𝑖𝑗 = −1 if 𝑗𝑖 ∈ 𝑇.

Now fix a pair {𝑖, 𝑗} ∈ [𝑛](2) with 𝑖 < 𝑗 and, say, 𝑗𝑖 ∈ 𝐸(𝑇). Consider the 2 × (𝑛 − 2)-submatrix
𝑀 ∶= 𝐴({𝑖, 𝑗}, [𝑛] − {𝑖, 𝑗}). By Corollary 4.2, this submatrix has exactly 𝑘 + 1 columns (1, −1)𝑇 ,
corresponding to the exactly 𝑘 + 1 vertices 𝑣 with 𝑖𝑣, 𝑣𝑗 ∈ 𝐸(𝑇). The row of𝑀 indexed by 𝑖 has a
further 2𝑘 + 1 − (𝑘 + 1) = 𝑘 entries equal to 1, so the column (1, 1)𝑇 appears in𝑀 exactly 𝑘 times.
Likewise, the column (−1, −1)𝑇 appears exactly 𝑘 times in𝑀, and finally, the column (−1, +1)𝑇

appears 𝑅𝑇(𝑖, 𝑗) = 𝑘 times. Thus, the scalar product of the rows 𝑖 and 𝑗 in𝐴 is equal to−(𝑘 + 1) +
𝑘 + 𝑘 − 𝑘 = −1.
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Now append to 𝐴 a row indexed by 0 with all entries set to 1, and then a column indexed by 0
whose first entry is 0 and all of whose other entries are set to −1. This yields an (𝑛 + 1) × (𝑛 + 1)
matrix𝐶 satisfying𝐶 = −𝐶𝑡 (so𝐶 is skew-symmetric) and𝐶𝐶𝑡 = 𝑛𝐼𝑛+1 (for the latter, observe that
any pair of distinct rows is orthogonal). Consider now the (𝑛 + 1) × (𝑛 + 1)matrix𝐻 ∶= 𝐶 + 𝐼𝑛+1.
Then𝐻 is a square matrix with ±1 entries such that𝐻 +𝐻𝑡 = 𝐶 + 𝐶𝑡 + 2𝐼𝑛+1 = 2𝐼𝑛+1 and

𝐻𝐻𝑡 = (𝐶 + 𝐼𝑛+1)(𝐶
𝑡 + 𝐼𝑛+1) = 𝐶𝐶𝑡 + 𝐼𝑛+1 + 𝐶 + 𝐶𝑡 = (𝑛 + 1)𝐼𝑛+1 .

Thus𝐻 is a skew Hadamard matrix of order 𝑛 + 1. □

Clearly, knowing the exact value of 𝑡(4𝑘 + 3) for some 𝑘 ∈ ℕ allows us to also give good bounds
on 𝑡(𝑛) for 𝑛 close to 4𝑘 + 3. We summarise our knowledge of 𝑡(𝑛) in the following proposition.

Proposition 4.4. Fix a non-negative integer 𝑘. If there exists a skew Hadamard matrix of order
4𝑘 + 4, then

(1) 𝑘 + 1 ⩾ 𝑡(4𝑘 + 4) ⩾ 𝑘,
(2) 𝑡(4𝑘 + 3) = 𝑘 + 1,
(3) 𝑡(4𝑘 + 2) = 𝑘 and
(4) 𝑘 ⩾ 𝑡(4𝑘 + 1) ⩾ 𝑘 − 1.

Proof. All four upper bounds on 𝑡(𝑛) follow from Proposition 4.1, so we only need to establish the
lower bounds.
Suppose that there exists a skew Hadamard matrix of order 4𝑘 + 3. Proposition 4.3 establishes

the lower bound in (2). Let 𝑇𝑘 be an optimal tournament on 4𝑘 + 3 vertices. Deleting an arbi-
trary vertex from 𝑇𝑘 yields a (4𝑘 + 2)-vertex tournament 𝑇−

𝑘
satisfying 𝛿2(𝑇−

𝑘
) ⩾ 𝑘, proving (3).

Similarly, deleting two arbitrary vertices from 𝑇𝑘 yields a tournament 𝑇=
𝑘
on 4𝑘 + 1 vertices with

𝛿2(𝑇
=
𝑘
) ⩾ 𝑘 − 1, proving (4).

It remains only to show that 𝑡(4𝑘 + 4) ⩾ 𝑘. Fix an arbitrary vertex 𝑥 ∈ 𝑉(𝑇𝑘), and let 𝑇+
𝑘
be a

(4𝑘 + 4)-vertex tournament constructed from 𝑇𝑘 in the following way: add a new vertex 𝑦 to 𝑇𝑘,
orient the arc 𝑥𝑦 arbitrarily and give each pair 𝑣𝑦 with 𝑣 ∈ 𝑉(𝑇𝑘) ⧵ {𝑥} the orientation opposite
to the orientation of 𝑣𝑥 (that is, if 𝑣𝑥 ∈ 𝑇𝑘, then 𝑦𝑣 ∈ 𝑇+

𝑘
, and if 𝑥𝑣 ∈ 𝑇𝑘, then 𝑣𝑦 ∈ 𝑇+

𝑘
).

We claim that 𝛿2(𝑇+
𝑘
) ⩾ 𝑘. By the assumption on 𝑇𝑘, it is enough to check that all the pairs

containing 𝑦 are in at least 𝑘 cyclically oriented triangles. Firstly, consider a pair 𝑣𝑦 for some 𝑣 ∈
𝑉(𝑇𝑘) ⧵ {𝑥}. Since 𝑣𝑦 is oriented in the opposite direction to 𝑣𝑥, there are 𝑅𝑇𝑘 (𝑣, 𝑥) = 𝑘 cyclically
oriented triangles in 𝑇+

𝑘
containing 𝑣 and 𝑦, as desired. Finally, consider the pair 𝑥𝑦. Without loss

of generality, we oriented it as𝑥𝑦, so every one of the 2𝑘 + 1 in-neighbours of𝑥 is an out-neighbour
of 𝑦. Therefore, 𝐶𝑇+

𝑘
(𝑥, 𝑦) = 2𝑘 + 1 > 𝑘, which concludes the proof. □

5 THE CODEGREE THRESHOLD OF 𝑲−
𝟒

We now turn our attention to determining the exact value of ex2(𝑛, 𝐾−
4 ) for infinitely many 𝑛. The

main result of this section is the following.

Theorem 5.1. Let 𝐺 be a𝐾−
4 -free 3-graph on 𝑛 vertices and with 𝛿2(𝐺) = 𝑛∕4 − 𝑜(𝑛). Then there is

a tournament 𝑇 on 𝑉(𝐺) such that |𝐺| ⩽ |𝐶(𝑇)|. Moreover, if |𝐺| = |𝐶(𝑇)|, then 𝐺 = 𝐶(𝑇).
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1678 FALGAS-RAVRY et al.

Before proving Theorem 5.1, let us apply it to determine the codegree threshold of 𝐾−
4 .

Proof of Theorem 1.6. Theorem 5.1 implies that tournament constructions have the largest number
of edges over all near-extremal constructions. In particular if 𝐺 is a 𝐾−

4 -free 3-graph on 𝑛 vertices
and 𝑛 is sufficiently large, then there exists a tournament 𝑇 on 𝑛 vertices such that

𝛿2(𝐺) ⩽

⌊
3|𝐺|(𝑛
2

) ⌋ ⩽

⌊
3|𝐶(𝑇)|(𝑛

2

) ⌋
⩽
⌊𝑛 + 1

4

⌋
, (5.1)

where the last inequality follows from (4.2). This gives the claimed upper bound on ex2(𝑛, 𝐾
−
4 ).

Proposition 4.4 implies that we have equality for 𝑛 = 4𝑘 + 3 and 𝑛 = 4𝑘 + 2 if there exists a skew
Hadamard matrix of order 4𝑘 + 4.
Conversely, note that by Proposition 4.3, for 𝑛 = 4𝑘 + 3 the last inequality in (5.1) is an equality

if and only if there exists a skew Hadamard matrix of order 4𝑘 + 4 and 𝑇 is an 𝑛-vertex tourna-
ment with 𝛿2(𝑇) = 𝑡(𝑛). Furthermore, by the codegree regularity for such tournaments observed
in Corollary 4.2, we have ⌊ 3|𝐺|

(𝑛2)
⌋ = ⌊ 3|𝐶(𝑇)|

(𝑛2)
⌋ only if |𝐺| = |𝐶(𝑇)|. By the ‘moreover’ part of The-

orem 1.6 and (5.1), it follows that 𝛿2(𝐺) =
𝑛+1
4

only if 𝐺 = 𝐶(𝑇). In particular, for 𝑛 = 4𝑘 + 3

sufficiently large, if ex2(𝑛, 𝐾−
4 ) =

𝑛+1
4
, then every codegree-extremal 3-graph for that value of 𝑛 is

given by an Erdős–Hajnal tournament construction, and there exists skew Hadamard matrices of
order 𝑛 + 1. □

5.1 Proof of Theorem 5.1

Throughout the remainder of this section, we assume that 𝑛0 ∈ ℕ is sufficiently large, and 𝑛 ⩾ 𝑛0.
Let 𝐺 be a 𝐾−

4 -free 3-graph on [𝑛] with 𝛿2(𝐺) =
𝑛
4
− 𝑜(𝑛), and 𝑇 a tournament on [𝑛] that max-

imises |𝐺 ∩ 𝐶(𝑇)| (or, equivalently, minimises |𝐺 ⧵ 𝐶(𝑇)|). The definition of 𝑇 implies, amongst
other things, that we cannot increase the size of the intersection |𝐺 ∩ 𝐶(𝑇)| by reversing the
orientation of an arc 𝑥𝑦 in 𝑇. In terms of the joint neighbourhoods of {𝑥, 𝑦}, this means

|(𝐺 ∩ 𝐶(𝑇))𝑥𝑦| ⩾ |𝐺𝑥𝑦 ∩ {𝑧 ∶ 𝑥𝑧, 𝑧𝑦 ∈ 𝑇}|. (5.2)

We begin our proof by showing that the symmetric difference of 𝐺 and 𝐶(𝑇) is small.

Claim 5.2. |𝐺Δ𝐶(𝑇)| = 𝑜(𝑛3).

Proof. By Theorem 1.5, there exists a tournament 𝑇′ such that

|𝐺 ⧵ 𝐶(𝑇)| ⩽ |𝐺 ⧵ 𝐶(𝑇′)| ⩽ |𝐺Δ𝐶(𝑇′)| = 𝑜(𝑛3).

The second of the two inequalities in (4.2) shows that𝐶(𝑇) and𝐶(𝑇′), being tournament construc-
tions, can have at most

(𝑛
3

)
∕4 + 𝑂(𝑛2) edges each. On the other hand, the codegree condition on

𝐺 tells us that 𝐺 must have at least
(𝑛
2

)
⋅ 𝑛∕4−𝑜(𝑛)

3
=
(𝑛
3

)
∕4 − 𝑜(𝑛3) edges. Therefore, when 𝑛 is
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F IGURE 7 The arcs 𝑦𝑧 in the sets 𝐵−
𝑥 , 𝐵

+
𝑥 and 𝐵

∓
𝑥 .

sufficiently large, we have

|𝐶(𝑇) ⧵ 𝐺| = |𝐶(𝑇)| − |𝐺| + |𝐺 ⧵ 𝐶(𝑇)| = 𝑜(𝑛3),

and hence also |𝐺Δ𝐶(𝑇)| = 𝑜(𝑛3). □

Next, we show that 𝑇 must be a quasirandom tournament.

Claim 5.3. 𝑇 is 𝑜(1)-quasirandom.

Proof. Since |𝐺Δ𝐶(𝑇)| = 𝑜(𝑛3), |𝐺| = (𝑛
3

)
∕4 + 𝑜(𝑛3) and 𝛿2(𝐺) = 𝑛∕4 − 𝑜(𝑛), there are only 𝑜(𝑛2)

pairs of vertices 𝑥 and 𝑦 that have |𝑛∕4 − 𝐶𝑇(𝑥, 𝑦)| = Ω(𝑛). Therefore, 𝑇 is 𝑜(1)-quasirandom
by [4, Theorem 3.2]. □

Let 𝐵 ∶= 𝐺 ⧵ 𝐶(𝑇), and 𝑀 ∶= 𝐶(𝑇) ⧵ 𝐺 be the 3-graphs consisting of the bad and missing
triples, respectively. Our aim is to show that |𝑀| ⩾ |𝐵|. Before we can do so, we need to prove
some auxiliary results on the degrees and codegrees in 𝐵 and𝑀.
Fix an arbitrary vertex 𝑥 ∈ 𝑉(𝐺), and partition the arcs in 𝑇 corresponding to the pairs from 𝐵𝑥

into three oriented graphs as follows (see also Figure 7):

𝐵−
𝑥 ∶= {𝑦𝑧 ∈ 𝑇 ∶ 𝑥𝑦𝑧 ∈ 𝐺, {𝑦, 𝑧} ⊆ 𝑁−

𝑇 (𝑥)},

𝐵+
𝑥 ∶= {𝑦𝑧 ∈ 𝑇 ∶ 𝑥𝑦𝑧 ∈ 𝐺, {𝑦, 𝑧} ⊆ 𝑁+

𝑇 (𝑥)} and

𝐵∓
𝑥 ∶= {𝑦𝑧 ∈ 𝑇 ∶ 𝑥𝑦𝑧 ∈ 𝐺, 𝑦 ∈ 𝑁−

𝑇 (𝑥), 𝑧 ∈ 𝑁+
𝑇 (𝑥)}.

Our aim in the next few claims is to show that all these three oriented graphs contain only 𝑜(𝑛2)
arcs, which (since 𝑥 is arbitrary) will imply that all links graphs in 𝐵 are sparse (Corollary 5.12).
Let 𝑋− be the collection of those vertices 𝑦 ∈ 𝑁−

𝑇 (𝑥) that have out-degree Ω(𝑛) in 𝐵
−
𝑥 .

Claim 5.4. |𝑋−| = 𝑜(𝑛).

Proof. Fix 𝑦 ∈ 𝑋− and let 𝑌+ ∶= 𝑁+
𝐵−𝑥
(𝑦) denote the out-neighbourhood of 𝑦 in 𝐵−

𝑥 . We now con-
sider the effect of reversing the orientation of 𝑦𝑥 ∈ 𝑇. Let𝑇𝑅 be the resulting tournament. For each
𝑤 ∈ 𝑌+, the triple 𝑥𝑦𝑤 now belongs to 𝐺 ∩ 𝐶(𝑇𝑅), hence |(𝐺 ∩ 𝐶(𝑇))𝑥𝑦| ⩾ |𝑌+| = Ω(𝑛) by (5.2).
Clearly, the joint neighbourhood (𝐺 ∩ 𝐶(𝑇))𝑥𝑦 is a subset of 𝑁+

𝑇 (𝑥) ∩ 𝑁−
𝑇 (𝑦). Also note that

𝑌+ ⊆ 𝑁−
𝑇 (𝑥) ∩ 𝑁+

𝑇 (𝑦). Since both𝑌
+ and (𝐺 ∩ 𝐶(𝑇))𝑥𝑦 have sizesΩ(𝑛), the 𝑜(1)-quasirandomness
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1680 FALGAS-RAVRY et al.

of 𝑇 (see [3, Theorem 1 (P8)]) yields that

1
2
⋅ |𝑌+| ⋅ |(𝐺 ∩ 𝐶(𝑇))𝑥𝑦| − 𝑜(𝑛2) = Ω(𝑛2)

pairs (𝑤, 𝑧) ∈ 𝑌+ × (𝐺 ∩ 𝐶(𝑇))𝑥𝑦 are oriented as 𝑤𝑧 in 𝑇.
For each such a pair, we have that 𝑦𝑤𝑧 ∈ 𝐶(𝑇). On the other hand, 𝑦𝑤 ∈ 𝐵−

𝑥 and thus 𝑥𝑦𝑤 ∈ 𝐺.
Since 𝑥𝑦𝑧 ∈ 𝐺 and 𝐺 is 𝐾−

4 -free, we have 𝑦𝑤𝑧 ∈ 𝐶(𝑇) ⧵ 𝐺 = 𝑀. We conclude that each vertex
𝑦 ∈ 𝑋− is incident to at least Ω(𝑛2) missing triples of this form. Summing over all 𝑦 ∈ 𝑋−, we
have

|𝑋−| × Ω(𝑛2) = ||{𝑦𝑤𝑧 ∈ 𝑀 ∶ 𝑥𝑦𝑧 ∈ 𝐺 ∩ 𝐶(𝑇), 𝑦𝑤 ∈ 𝐵−
𝑥 , 𝑦 ∈ 𝑋−}|| ⩽ |𝐺Δ𝐶(𝑇)| = 𝑜(𝑛3),

which, after division by Ω(𝑛2), yields the claimed bound |𝑋−| = 𝑜(𝑛). □

A symmetric argument yields that |𝑋+| = 𝑜(𝑛), where 𝑋+ is the set of vertices 𝑧 ∈ 𝑁+
𝑇 (𝑥)with

in-degree at least Ω(𝑛) in 𝐵+
𝑥 .

By definition, every vertex outside of 𝑋− ∪ 𝑋+ has out-degree 𝑜(𝑛) in 𝐵−
𝑥 and in-degree 𝑜(𝑛) in

𝐵+
𝑥 . Therefore, the number of arcs in 𝐵

−
𝑥 and in 𝐵

+
𝑥 is 𝑜(𝑛

2).

Corollary 5.5. |𝐵−
𝑥 | = 𝑜(𝑛2) and |𝐵+

𝑥 | = 𝑜(𝑛2).

We now turn out attention to the cross-arcs 𝐵∓
𝑥 . We begin with the following simple claim.

Claim 5.6. For every 𝑦𝑧 ∈ 𝐵∓
𝑥 and every 𝑤 such that 𝑧𝑤,𝑤𝑦 ∈ 𝑇, at least one of the triples

𝑤𝑦𝑧,𝑤𝑥𝑦,𝑤𝑥𝑧 is in𝑀.

Proof. Clearly,𝑤𝑦𝑧 ∈ 𝐶(𝑇). If 𝑥𝑤 ∈ 𝑇, then also𝑤𝑥𝑦 ∈ 𝐶(𝑇), while if𝑤𝑥 ∈ 𝑇, then𝑤𝑥𝑧 ∈ 𝐶(𝑇).
Either way, the set 𝑥𝑦𝑧𝑤 induces two triples in 𝐶(𝑇). Since 𝑥𝑦𝑧 ∈ 𝐺 ⧵ 𝐶(𝑇) and 𝐺 is 𝐾−

4 -free, at
least one of 𝑤𝑦𝑧,𝑤𝑥𝑦,𝑤𝑥𝑧must be in 𝐶(𝑇) ⧵ 𝐺 = 𝑀. □

Let 𝑋−
2 be the collection of 𝑦 ∈ 𝑁−

𝑇 (𝑥) having a linear out-degree in 𝐵
∓
𝑥 , that is, 𝑑

+
𝐵∓𝑥
(𝑦) = Ω(𝑛).

We shall focus on ‘typical’ elements of𝑋−
2 bymoving to a subset𝑌 ⊆ 𝑋−

2 , where 𝑦 ∈ 𝑌 if and only
if the following three properties are satisfied:

(i) 𝑦 is incident with 𝑜(𝑛) arcs in 𝐵−
𝑥 ∪ 𝐵+

𝑥 ,
(ii) |𝑑+(𝑦,𝑁+

𝑇 (𝑥)) − 𝑑−(𝑦,𝑁+
𝑇 (𝑥))| = 𝑜(𝑛) and

(iii) |𝑀𝑦| = 𝑜(𝑛2).

First of all, we show that the set 𝑌 is not much smaller than 𝑋−
2 .

Claim 5.7. |𝑌| = |𝑋−
2 | − 𝑜(𝑛).

Proof. By Corollary 5.5, only 𝑜(𝑛) vertices of 𝑋−
2 can be incident to linearly many arcs in

𝐵−
𝑥 ∪ 𝐵+

𝑥 (in fact, the vertices in 𝑋−
2 are by definition incident to no arc in 𝐵+

𝑥 ). Further, the 𝑜(1)-
quasirandomness of𝑇 yields that only 𝑜(𝑛) of vertices of𝑋−

2 can fail to satisfy Property (ii). Finally,|𝑀| = 𝑜(𝑛3) by Claim 5.2, hence there can be only 𝑜(𝑛) vertices 𝑦 ∈ [𝑛] with a quadratic degree
in𝑀, that is, having |𝑀𝑦| = Ω(𝑛2). □
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For each 𝑦 ∈ 𝑌, let 𝑍𝑥𝑦 be the collection of vertices 𝑧 ∈ 𝑁+
𝑇 (𝑥) such that 𝑦𝑧 ∈ 𝐵∓(𝑥). Note that|𝑍𝑥𝑦| = Ω(𝑛) by definition of𝑋−

2 ⊇ 𝑌. Next, we define𝑊𝑥𝑦 to be the collection of𝑤 ∈ 𝑁+
𝑇 (𝑥) such

that 𝑤𝑦 ∈ 𝑇. By definition, 𝑊𝑥𝑦 = 𝐶(𝑇)𝑥𝑦 . Moreover, Property (ii) of 𝑦 ∈ 𝑌 yields that |𝑊𝑥𝑦| ⩾
𝑑+
𝐵∓𝑥
(𝑦) − 𝑜(𝑛) = Ω(𝑛).

By the 𝑜(1)-quasirandomness of 𝑇, there are Ω(𝑛2) pairs (𝑤, 𝑧) ∈ 𝑊𝑥𝑦 × 𝑍𝑥𝑦 that are oriented
as 𝑧𝑤 in 𝑇. For such pairs, Claim 5.6 yields that |{𝑤𝑥𝑦,𝑤𝑦𝑧} ∩ 𝑀| ⩾ 1. We use this fact to prove
that the codegree of 𝑥𝑦 in𝑀 must be large.

Claim 5.8. |𝑀𝑥𝑦| ⩾ |𝑊𝑥𝑦| − 𝑜(𝑛) for every 𝑦 ∈ 𝑌.

Proof. Given a vertex 𝑦 ∈ 𝑌, let𝑊′
𝑥𝑦 ⊆ 𝑊𝑥𝑦 consist of those vertices 𝑤 ∈ 𝑊𝑥𝑦 satisfying:

(a) |𝑀𝑤𝑦| = 𝑜(𝑛) and
(b) 𝑑−𝑇 (𝑤, 𝑍𝑥𝑦) ⩾ |𝑍𝑥𝑦|∕2 − 𝑜(𝑛).

By Property (iii) of 𝑌, only 𝑜(𝑛) vertices in 𝑊𝑥𝑦 can have linear degree in 𝑀𝑦 . Further, the
𝑜(1)-quasirandomness of 𝑇 yields that only 𝑜(𝑛) vertices in𝑊𝑥𝑦 have in-degree from 𝑍𝑥𝑦 below|𝑍𝑥𝑦|∕2 − 𝑜(𝑛). Hence, |𝑊′

𝑥𝑦| = |𝑊𝑥𝑦| − 𝑜(𝑛).
However, for each 𝑤 ∈ 𝑊′

𝑥𝑦 , there are Θ(|𝑍𝑥𝑦|) = Ω(𝑛) vertices 𝑧 ∈ 𝑍𝑥𝑦 such that we have
both 𝑧𝑤 ∈ 𝑇 (by (b)) and 𝑤𝑦𝑧 ∉ 𝑀 (by (a)). Therefore, 𝑤𝑥𝑦 ∈ 𝑀 by Claim 5.6 (or more precisely
the consequence of Claim 5.6 noted above Claim 5.8), and thus |𝑀𝑥𝑦| ⩾ |𝑊′

𝑥𝑦| = |𝑊𝑥𝑦| − 𝑜(𝑛) as
claimed. □

As the next step in the proof, we show that most of the codegree of such pairs 𝑥𝑦, where 𝑦 ∈ 𝑌,
lies inside 𝐵.

Claim 5.9. |𝐵𝑥𝑦 ∩ 𝑁+
𝑇 (𝑥)| = 𝑑(𝑥, 𝑦) − 𝑜(𝑛) for every 𝑦 ∈ 𝑌.

Proof. Let 𝑦 ∈ 𝑌. Clearly, |𝐶(𝑇)𝑥𝑦| − |𝑀𝑥𝑦| + |𝐵𝑥𝑦| = 𝑑(𝑥, 𝑦). Since 𝐶(𝑇)𝑥𝑦 = 𝑊𝑥𝑦 , Claim 5.8
readily yields that |𝐵𝑥𝑦| = 𝑑(𝑥, 𝑦) − 𝑜(𝑛). Moreover, since 𝑦 is incident with 𝑜(𝑛) arcs in 𝐵−

𝑥 and
𝐵+
𝑥 (by Property (i) in the definition of 𝑌), the vast majority of the codegree of the pair 𝑥𝑦 must

come from arcs incident to 𝑦 that lie in 𝐵∓
𝑥 . Since 𝑦 ∈ 𝑁−

𝑇 (𝑥), the other endpoints of those arcs are
from 𝑁+

𝑇 (𝑥). □

Since most of the codegree of 𝑥𝑦 is in 𝐵, 𝐺 ∩ 𝐶(𝑇) cannot have many edges containing 𝑥𝑦.

Corollary 5.10. |(𝐺 ∩ 𝐶(𝑇))𝑥𝑦| = 𝑜(𝑛) for every 𝑦 ∈ 𝑌.

We are now ready to prove that |𝐵∓
𝑥 | = 𝑜(𝑛2). By symmetry, it is enough to show that only 𝑜(𝑛)

vertices from 𝑁−
𝑇 (𝑥) can be incident to linearly many edges of 𝐵

∓
𝑥 .

Claim 5.11. |𝑋−
2 | = 𝑜(𝑛).

Proof. Suppose for a contradiction that |𝑋−
2 | = Ω(𝑛). Thus, by Claim 5.7, we have |𝑌| = Ω(𝑛). By

Claim 5.9 and Property (i) of 𝑌, at least 𝑑(𝑥, 𝑦) − 𝑜(𝑛) ⩾ 𝑛∕4 − 𝑜(𝑛) of the elements 𝑧 ∈ 𝐵𝑥𝑦 cor-
respond to arcs 𝑦𝑧 ∈ 𝐵∓

𝑥 with 𝑧 ∈ 𝑁+
𝑇 (𝑥). We conclude that there are at least |𝑌| ⋅ (𝑛∕4 − 𝑜(𝑛)) =

Ω(𝑛2) arcs from 𝑌 ⊆ 𝑁−
𝑇 (𝑥) to 𝑁

+
𝑇 (𝑥).
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1682 FALGAS-RAVRY et al.

Let 𝑋+
2 ⊆ 𝑁+

𝑇 (𝑥) be the set of vertices with in-degree Ω(𝑛) in 𝐵∓
𝑥 . Clearly, |𝑋+

2 | = Ω(𝑛). Argu-
ments analogous to those in the proofs of Claims 5.7–5.9 yield the existence of a subset 𝑍 ⊆ 𝑋+

2 of
size |𝑋+

2 | − 𝑜(𝑛) such that every 𝑧 ∈ 𝑍 satisfies:

∙ |𝑑+(𝑧,𝑁−
𝑇 (𝑥)) − 𝑑−(𝑧,𝑁−

𝑇 (𝑥))| = 𝑜(𝑛),
∙ |(𝐺 ∩ 𝐶(𝑇))𝑥𝑧| = 𝑜(𝑛) and
∙ |𝑀𝑥𝑧| ⩾ |𝑈𝑥𝑧| − 𝑜(𝑛), where 𝑈𝑥𝑧 is the collection of vertices 𝑢 ∈ 𝑁−

𝑇 (𝑥) with 𝑧𝑢 ∈ 𝑇.

Now observe that the Property (ii) of 𝑦 ∈ 𝑌 can be rewritten as |𝑊𝑥𝑦| = |𝑁+
𝑇 (𝑥)|∕2 − 𝑜(𝑛). Thus

for all 𝑦 ∈ 𝑌 we have

|𝑁+
𝑇 (𝑥)| − |𝐵𝑥𝑦 ∩ 𝑁+

𝑇 (𝑥)| = |𝑁+
𝑇 (𝑥) ⧵ 𝐵𝑥𝑦| ⩾ |𝐶(𝑇)𝑥𝑦| = |𝑊𝑥𝑦| ⩾ |𝑁+

𝑇 (𝑥)|
2

− 𝑜(𝑛) .

Rearranging the terms and applying Claim 5.9 and the codegree assumption yield

|𝑁+
𝑇 (𝑥)| ⩾ 2|𝐵𝑥𝑦 ∩ 𝑁+

𝑇 (𝑥)| + 𝑜(𝑛) ⩾ 2𝑑(𝑥, 𝑦) + 𝑜(𝑛) ⩾ 𝑛∕2 − 𝑜(𝑛).

A symmetric argument for a vertex 𝑧 ∈ 𝑍 yields that |𝑁−
𝑇 (𝑥)| ⩾ 𝑛∕2 − 𝑜(𝑛), whence both 𝑁+

𝑇 (𝑥)
and 𝑁−

𝑇 (𝑥) have size 𝑛∕2 + 𝑜(𝑛).
By Corollary 5.10, only 𝑜(𝑛2) pairs (𝑦, 𝑧) ∈ 𝑌 × 𝑁+

𝑇 (𝑥) extend 𝑥 to an edge 𝑥𝑦𝑧 ∈ 𝐺 ∩ 𝐶(𝑇). On
the other hand, by Property (i) of 𝑌, for 𝑦 ∈ 𝑌 most of the codegree of the pair 𝑥𝑦 in 𝐵, which
is at least 𝑛∕4 − 𝑜(𝑛) by Claim 5.9, must be from arcs 𝑦𝑧 ∈ 𝑇 with 𝑧 ∈ 𝑁+

𝑇 (𝑥). Since there are
𝑛∕4 + 𝑜(𝑛) such arcs 𝑦𝑧 by Property (ii) of 𝑌 and since, as proved above, |𝑁+

𝑇 (𝑥)| = 𝑛∕2 + 𝑜(𝑛),
we conclude that all but 𝑜(𝑛) vertices from 𝑁+

𝑇 (𝑥) ∩ 𝑁+
𝑇 (𝑦) lie in 𝐵𝑥𝑦 .

Consider now the tournament 𝑇′ obtained from 𝑇 by reversing the orientations of all the arcs
𝑦𝑥, where 𝑦 ∈ 𝑌, and all the arcs 𝑥𝑧, where 𝑧 ∈ 𝑍. This has the following effect on ‘good’ and
‘bad’ triples:

(1) all the ‘bad pairs’ 𝑦𝑧 ∈ 𝐵𝑥 with (𝑦, 𝑧) ∈ 𝑌 × 𝑍 become ‘good’ pairs, that is, 𝑥𝑦𝑧 ∈ 𝐶(𝑇′) ∩ 𝐺,
(2) all the ‘good pairs’ 𝑦𝑧 ∈ (𝐶(𝑇) ∩ 𝐺)𝑥 with 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑁+

𝑇 (𝑥) or 𝑦 ∈ 𝑁−
𝑇 (𝑥) and 𝑧 ∈ 𝑍

become ‘bad’ pairs with respect to 𝐶(𝑇′) and
(3) all other ‘good’ triples (that is, all apart those corresponding to pairs from (2) above) from

𝐶(𝑇) ∩ 𝐺 remain in 𝐶(𝑇′) ∩ 𝐺 .

Note that there might be some new missing triples 𝑥𝑦𝑧 ∈ 𝐶(𝑇′) ⧵ (𝐺 ∪ 𝐶(𝑇)) but they are irrel-
evant for our argument. Our aim is to show that |𝐺 ∩ 𝐶(𝑇′)| ⩾ |𝐺 ∩ 𝐶(𝑇)| +Ω(𝑛2) (thereby
contradicting our assumption that 𝑇 maximises |𝐺 ∩ 𝐶(𝑇)|).
Indeed, by 𝑜(1)-quasirandomness of 𝑇, there are at least |𝑌| ⋅ |𝑍|∕2 − 𝑜(𝑛2) = Ω(𝑛2) arcs 𝑦𝑧 ∈

𝑇 with (𝑦, 𝑧) ∈ 𝑌 × 𝑍. Moreover, all but 𝑜(𝑛2) of those pairs 𝑦𝑧 lie in 𝐵𝑥.
On the other hand, for all 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍, Corollary 5.10 and an analogous argument for 𝑍

show |(𝐺 ∩ 𝐶(𝑇))𝑥𝑦| = 𝑜(𝑛) and |(𝐺 ∩ 𝐶(𝑇))𝑥𝑧| = 𝑜(𝑛), and hence

|𝐶(𝑇′) ∩ 𝐺| − |𝐶(𝑇) ∩ 𝐺| = Ω(𝑛2) − |𝑌|⋅max
𝑦∈𝑌

|(𝐺 ∩ 𝐶(𝑇))𝑥𝑦| − |𝑍|⋅max
𝑧∈𝑍

|(𝐺 ∩ 𝐶(𝑇))𝑥𝑧| = Ω(𝑛2).

This contradicts our assumption that 𝑇 was a best fit tournament. Thus |𝑋−
2 | = 𝑜(𝑛), as

claimed. □
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A symmetric argument yields that only 𝑜(𝑛) vertices from 𝑁+
𝑇 (𝑥) can have a linear degree

𝐵∓
𝑥 . Therefore, |𝐵∓

𝑥 | = 𝑜(𝑛2). Since our choice of 𝑥 was arbitrary, this latter result together with
Corollary 5.5 allows us to conclude that all the link graphs of 𝐵 must be sparse.

Corollary 5.12. For every 𝑥 ∈ [𝑛], we have |𝐵𝑥| = 𝑜(𝑛2).

We now show that 𝑇 must be asymptotically balanced and that𝑀 has low vertex degrees, that
is, that for every vertex 𝑥 the in-degree and the out-degree of 𝑥 in 𝑇 are almost equal, and that
there are few triples of𝑀 containing 𝑥.

Claim 5.13. For every 𝑥 ∈ [𝑛], |𝑑+𝑇 (𝑥) − 𝑑−𝑇 (𝑥)| = 𝑜(𝑛) and |𝑀𝑥| = 𝑜(𝑛2).

Proof. The link graph 𝐺𝑥 has minimum degree 𝑛∕4 − 𝑜(𝑛), which it inherits from 𝛿2(𝐺) = 𝑛∕4 −
𝑜(𝑛). In particular, |𝐺𝑥| ⩾ 𝑛2∕8 − 𝑜(𝑛2). On the other hand, |𝐵𝑥| = 𝑜(𝑛2) byCorollary 5.12. Finally,
the 𝑜(1)-quasirandomness of 𝑇 yields that

|𝐶(𝑇)𝑥| = 1
2
⋅ 𝑑+𝑇 (𝑥)(𝑛 − 1 − 𝑑+𝑇 (𝑥)) + 𝑜(𝑛2) ⩽

𝑛2

8
+ 𝑜(𝑛2).

Since

|𝐺𝑥| = |𝐶(𝑇)𝑥| − |𝑀𝑥| + |𝐵𝑥|,
both parts of the statement follows. □

We now show that for every pair of distinct vertices 𝑥, 𝑦 the codegree of 𝑥𝑦 in 𝐵 is small.

Claim 5.14. For every pair of distinct vertices 𝑥, 𝑦 in [𝑛], we have |𝐵𝑥𝑦| = 𝑜(𝑛).

Proof. Fix 𝑥 ∈ [𝑛]. Suppose that there exists a vertex 𝑦 such that |𝐵𝑥𝑦| = Ω(𝑛), and, without loss
of generality, suppose that 𝑥𝑦 in 𝑇. Let us divide the vertices in 𝐵𝑥𝑦 into three sets:

𝐵+
𝑥𝑦 ∶= {𝑧 ∈ 𝐵𝑥𝑦 ∶ {𝑥𝑧, 𝑦𝑧} ⊆ 𝑇},

𝐵−
𝑥𝑦 ∶= {𝑧 ∈ 𝐵𝑥𝑦 ∶ {𝑧𝑥, 𝑧𝑦} ⊆ 𝑇} and

𝐵±
𝑥𝑦 ∶= 𝐵𝑥𝑦 ⧵

(
𝐵−
𝑥𝑦 ∪ 𝐵+

𝑥𝑦

)
= {𝑧 ∈ 𝐵𝑥𝑦 ∶ {𝑥𝑧, 𝑧𝑦} ⊆ 𝑇}.

It is enough to show that all three sets have size 𝑜(𝑛).
Suppose first that |𝐵+

𝑥𝑦| = Ω(𝑛). Let𝑊−
𝑥𝑦 be the collection of 𝑤 ∈ [𝑛] such that {𝑤𝑥,𝑤𝑦} ⊆ 𝑇.

By Claim 5.13 and the inclusion–exclusion principle, we have

|𝑊−
𝑥𝑦| ⩾ 𝑛 − 2 − 𝑑+(𝑥) − 𝑑+(𝑦) + |𝐵+

𝑥𝑦| ⩾ Ω(𝑛).

By 𝑜(1)-quasirandomness of 𝑇, there are at least 1
2
|𝑊−

𝑥𝑦| ⋅ |𝐵+
𝑥𝑦| − 𝑜(𝑛2) pairs (𝑤, 𝑧) ∈ 𝑊−

𝑥𝑦 × 𝐵+
𝑥𝑦

such that 𝑧𝑤 ∈ 𝑇. For each such a pair, both 𝑤𝑥𝑧 and 𝑤𝑦𝑧 lie in 𝐶(𝑇). However, since 𝑥𝑦𝑧 ∈ 𝐵
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1684 FALGAS-RAVRY et al.

and 𝐺 is 𝐾−
4 -free, at least one of the triples 𝑤𝑥𝑧,𝑤𝑦𝑧must lie in𝑀, and hence,

|𝑀𝑥| + |𝑀𝑦| ⩾ |𝑊−
𝑥𝑦| ⋅ |𝐵+

𝑥𝑦|
2

− 𝑜(𝑛2) = Ω(𝑛2),

contradicting the vertex-degree bound in 𝑀 established in Claim 5.13. Therefore, |𝐵+
𝑥𝑦| = 𝑜(𝑛).

A symmetric argument yields that |𝐵−
𝑥𝑦| = 𝑜(𝑛).

Finally, we turn our attention to the collection𝐵±
𝑥𝑦 . Suppose, for the sake of a contradiction, that|𝐵±

𝑥𝑦| = Ω(𝑛). Then, by (5.2), we have also |(𝐺 ∩ 𝐶(𝑇))𝑥𝑦| = Ω(𝑛). Fix a pair of vertices (𝑤, 𝑧) ∈
(𝐺 ∩ 𝐶(𝑇))𝑥𝑦 × 𝐵±

𝑥𝑦 .
If 𝑧𝑤 ∈ 𝑇, then 𝑤𝑥𝑧 induces a cyclically oriented triangle in 𝑇 which must be a missing triple;

indeed, note that 𝑥𝑦𝑤, 𝑥𝑦𝑧 ∈ 𝐺. Similarly if 𝑤𝑧 ∈ 𝑇, then 𝑦𝑤𝑧 ∈ 𝑀. Analogously to the case of
bounding |𝐵+

𝑥𝑦|, 𝑥 or 𝑦 must have its degree in𝑀 being at least

|𝐵±
𝑥𝑦| ⋅ |(𝐺 ∩ 𝐶(𝑇))𝑥𝑦|

2
= Ω(𝑛2)

contradicting Claim 5.13. □

With these results in hand, we are now ready to prove the crucial claim needed to finish the
proof of Theorem 5.1.

Claim 5.15. For every bad edge 𝐸𝐵 ∈ 𝐵 there are at least 𝑛∕4 − 𝑜(𝑛)missing edges 𝐸𝑀 ∈ 𝑀 such
that |𝐸𝐵 ∩ 𝐸𝑀| = 2.

Proof. Let 𝐸𝐵 = 𝑥𝑦𝑧 ∈ 𝐵 be an arbitrary bad edge. Without loss of generality, the pairs from 𝐸𝐵
are oriented as 𝑥𝑦, 𝑦𝑧, 𝑥𝑧 in 𝑇. Now consider a vertex 𝑤 ∈ 𝐶(𝑇)𝑥𝑧.
By definition, we have 𝑧𝑤,𝑤𝑥 ∈ 𝑇. If 𝑤𝑦 ∈ 𝑇, then {𝑤𝑥𝑧,𝑤𝑦𝑧} ⊆ 𝐶(𝑇), and since 𝐺 is 𝐾−

4 -
free and 𝑥𝑦𝑧 ∈ 𝐺, at least one of the triples 𝑤𝑥𝑦,𝑤𝑥𝑧 must lie in 𝑀. Similarly, if 𝑦𝑤 ∈ 𝑇, then
{𝑤𝑥𝑧,𝑤𝑥𝑦} ⊆ 𝐶(𝑇) and at least one of the triples lies in𝑀. In either case, each𝑤 ∈ 𝐶(𝑇)𝑥𝑦 yields
a triple containing 𝑤 that lies in 𝑀 and intersects 𝐸𝐵 in two vertices. However, by the codegree
assumption on 𝐺 and Claim 5.14, we have

|𝐶(𝑇)𝑥𝑧| ⩾ |𝐺𝑥𝑦| − |𝐵𝑥𝑦| = 𝑛∕4 − 𝑜(𝑛)

choices of such a vertex 𝑤. This finishes the proof of the claim. □

Let us now finish the proof of Theorem 5.1. Provided that 𝑛 is sufficiently large, Claim 5.15
yields at least |𝐵| ⋅ 𝑛

5
pairs (𝐸𝐵, 𝐸𝑀) ∈ 𝐵 ×𝑀 with |𝐸𝐵 ∩ 𝐸𝑀| = 2. Moreover, each 𝐸𝑀 = 𝑥𝑦𝑧 ∈ 𝑀

can feature in at most |𝐵𝑥𝑦| + |𝐵𝑦𝑧| + |𝐵𝑥𝑧| of these pairs, which by Claim 5.14 is at most 𝑜(𝑛).
Therefore,

𝑜(𝑛) ⋅ |𝑀| ⩾ |𝐵| ⋅ 𝑛
5
,

thus if there is at least one bad edge, then |𝑀| > |𝐵|.We conclude that |𝐶(𝑇)| ⩾ |(𝐺)|with equality
only if 𝐺 = 𝐶(𝑇). □
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6 CONCLUDING REMARKS

6.1 Better lower bounds for 𝐞𝐱𝟐(𝒏,𝑲−
𝟒
)?

We have shown in Theorem 1.6 that ex2(𝑛, 𝐾−
4 ) ⩽ ⌊𝑛+14 ⌋, and that this upper bound is tight when

𝑛 = 4𝑘 + 3 or 4𝑘 + 2 and there exists a skew Hadamard matrix of order 4𝑘 + 4. Short of proving
Seberry’s (and hence Hadamard’s) conjecture, what is the best general lower bound one can give
on ex2(𝑛, 𝐾−

4 )?
Taking a tournament 𝑇 on [𝑛] uniformly at random and considering the Erdős–Hajnal con-

struction 𝐶(𝑇) yields a lower bound of 𝑛
4
− 𝑂(

√
𝑛 log 𝑛) via a standard Chernoff bound on the

probability that a given pair has low codegree and a union bound over all pairs. One can do a little
better, however, by exploiting results about the distribution of primes congruent to 3 (mod 4).
Indeed, suppose that 𝑐 > 0 is such that for every 𝑛 sufficiently large, there exists an integer

𝑚 with 𝑛 < 𝑚 ⩽ 𝑛 + 𝑛𝑐 such that there exists a skew Hadamard matrix of order 𝑚. Then, as
shown in Proposition 4.4, there is a tournament 𝑇 on 𝑚 − 1 vertices such that 𝛿2(𝐶(𝑇)) =

𝑚
4
.

Now delete a set of (𝑚 − 1 − 𝑛) vertices of 𝑇 chosen uniformly at random to obtain a new tourna-
ment 𝑇′ on 𝑛 vertices exactly. Taking Chernoff bounds for the hypergeometric distribution (see,
for example, [16, Lemma 2]) and a union bound over all pairs yields that w.h.p.

ex2(𝑛, 𝐾
−
4 ) ⩾ 𝛿2(𝐶(𝑇

′)) ⩾
𝑛
4
− 𝑂

(√
(𝑚 − 𝑛) log 𝑛

)
=

𝑛
4
− 𝑂

(
𝑛𝑐∕2+𝑜(1)

)
.

As stated in the introduction, Seberry’s conjecture is known to hold for all values of𝑚 of the form
𝑚 = 2𝑡

∏
𝑖∈𝐼(𝑞𝑖 + 1), where 𝑡 ∈ ℤ⩾0 and 𝑞𝑖 is a prime power congruent to 3 (mod 4) for all 𝑖 ∈ 𝐼

(see [34, Theorem 4.1]). In particular it holds for all 𝑚 such that 𝑚 − 1 is a prime congruent to 3
(mod 4). Now it is known [2, Theorem 3(I)] that for 𝑛 ∈ ℕ, there exists a prime𝑚 − 1 congruent to
3 (mod 4) in the interval𝑛 ⩽ 𝑚 − 1 ⩽ 𝑛 + 𝑛0.55+𝑜(1). Togetherwith the argument in the paragraph
above, this implies

ex2(𝑛, 𝐾
−
4 ) ⩾

𝑛
4
− 𝑂

(
𝑛0.275+𝑜(1)

)
.

We believe, however, that the correct bound should be of the form 𝑛∕4 − 𝑂(1), and we propose
the following problem, which can be viewed as a weakening of Seberry’s conjecture.

Problem 6.1. Show that there exists a constant 𝐶 > 0 such that for any 𝑛 ∈ ℕ there exists a
tournament 𝑇 on 𝑛 vertices with 𝛿2(𝑇) ⩾

𝑛
4
− 𝐶.

6.2 Codegree density and smooth Turán density

Asmentioned in Section 1.3, the codegree density of𝐾−
4 coincideswith various ‘smooth’ or ‘weakly

quasirandom’ versions of Turán density, and the near-extremal constructions are the same. What
ismore, the conjectured value of the still unknown codegree density of𝐾4 is the same as the values
of several of its ‘weakly quasirandom’ Turán densities, as shown by Reiher, Rödl and Schacht [29,
31] (see also [30, 32]). Again the (random) extremal constructions are the same. It is natural to
ask whether there is any relationship in general between the codegree density of a 3-graph and its
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1686 FALGAS-RAVRY et al.

‘smooth’ Turán densities. The 3-graph 𝐹3,2 = {𝑎𝑏𝑐, 𝑎𝑏𝑑, 𝑎𝑏𝑒, 𝑐𝑑𝑒} has 𝜋2(𝐹3,2) = 1∕3, as proved
in [11], but has trivial, zero density for all notions of smooth Turán density, so such a relationship
would have to take the form of a one-sided upper bound.
Tomake this discussionmore precise, let us consider the weakest notion of weak quasirandom-

ness: a 3-graph 𝐺 on 𝑛-vertices is said to be 𝐾1,1,1-weakly quasirandom (wqr) with parameters
(𝜀, 𝑝) if for all subsets 𝑋 ⊆ 𝑉(𝐺), ||𝐺[𝑋]| − 𝑝

(|𝑋|
3

)| ⩽ 𝜀𝑛3. A sequence of 3-graphs (𝐺𝑛)𝑛∈ℕ with|𝑉(𝐺𝑛)|→ ∞ as 𝑛 → ∞ is then said to be 𝐾1,1,1-wqr with density 𝑝 if each 𝐺𝑛 is 𝐾1,1,1-wqr with
parameters (𝑝, 𝜀𝑛) and 𝜀𝑛 → 0. The 𝐾1,1,1-wqr Turán density of a 3-graph 𝐹 is the infimum over
all 𝑝 ⩾ 0 such that in every 𝐾1,1,1-wqr sequence (𝐺𝑛)𝑛∈ℕ with density at least 𝑝, all but finitely
many of the 𝐺𝑛 contain a copy of 𝐹 as a subgraph. Stronger notions of weak quasirandomness
and associated Turán densities (which are lower bounded by the 𝐾1,1,1-wqr Turán density) exist,
see [31]. Our question above in its strongest form thus asks.

Question 6.2. Is the codegree density of a 3-graph 𝐹 always an upper bound on its 𝐾1,1,1-wqr
Turán density?

Shortly after the first draft of this paper was written, Falgas-Ravry and Lo [10] gave a positive
answer to Question 6.2 when 𝐾1,1,1-wqr is replaced by a slightly stronger form of weak quasiran-
domness. One reason to believe the answer to Question 6.2 might be positive is that it would be
enough to show that one can extract from any𝐾1,1,1-wqr 3-graph with density 𝑝 a ‘large’ subgraph
in which ‘most’ of the pairs have codegree density 𝑝. This follows from an argument of [10]; we
give here a simpler proof of this fact tailored to the present setting.

Proposition 6.3. Let 𝐹 be a 3-graph and 𝜀 > 0 be fixed. Then there exist 𝜂 > 0 and 𝑛0 ∈ ℕ such
that if 𝐺 is a 3-graph on 𝑛 ⩾ 𝑛0 vertices in which all but 𝜂𝑛2 pairs of vertices have codegree at least
(𝜋2(𝐹) + 𝜀)𝑛, then 𝐺 must contain a copy of 𝐹.

Proof. Let𝐺 be a 3-graph in which all but 𝜂𝑛2 pairs of vertices have codegree at least (𝜋2(𝐹) + 𝜀)𝑛.
Add at most 𝜂𝑛3 triples to 𝐺 to obtain a new 3-graph 𝐺′ on 𝑛 vertices with 𝛿2(𝐺′) ⩾ (𝜋2(𝐹) + 𝜀)𝑛.
Provided that 𝑛0 is sufficiently large, 𝛿2(𝐺′) > ex2(𝑛, 𝐹) +

𝜀
2
𝑛.

As shown by Mubayi and Zhao in [24, Proposition 1.4], the codegree density function exhibits
supersaturation, which in our case implies that 𝐺′ contains 𝐶𝜀𝑛

𝑣(𝐹) copies of 𝐹, where 𝐶𝜀 > 0 is a
constant depending on 𝜀. Now let us remove the triples from𝐺′ ⧵ 𝐺. Each of these is adjacent to at
most 𝑣(𝐹)! ⋅ 𝑛𝑣(𝐹)−3 copies of 𝐹 in 𝐺′. Thus there must remain at least (𝐶𝜀 − 𝜂𝑣(𝐹)!) ⋅ 𝑛𝑣(𝐹) copies
of 𝐹 in𝐺. Taking 𝜂 = 𝜂(𝜀, 𝐹) sufficiently small, this is strictly positive, establishing our claim. □

Proposition 6.3 says, in essence, that allowing for 𝑜(𝑛2) pairs to have low codegree does not
change the codegree threshold by more than 𝑜(𝑛). Finally, let us note that embarrassingly we do
not know the answer to the following question.

Question 6.4. Let (𝐺𝑛)𝑛∈ℕ be a sequence of 𝐾1,1,1-wqr 3-graphs with density 𝑝 > 0. Must there
exist a sequence of subgraphs (𝐻𝑛)𝑛∈ℕ with 𝐻𝑛 ⊆ 𝐺𝑛, 𝑣(𝐻𝑛) → ∞ and 𝛿2(𝐻𝑛)∕𝑣(𝐻𝑛) bounded
away from zero?

In other words, does a smooth distribution of the edges in a 3-graph imply the existence of a
reasonably large subgraph with high internal codegree density? Although the instinctive reaction
of many researchers we have consulted was that the answer to Question 6.4 should be negative,
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a counterexample seems hard to come by: the quasirandomness condition pulls in the direction
of random constructions, where it is difficult to control the codegree of subgraphs on 𝑂(log 𝑛)
vertices, while the necessity to have no large subgraphwith large internal codegree density pushes
us towards structured constructions, which fail to be sufficiently quasirandom. Whether positive
or negative, we expect that an answer to Question 6.4 would thus be quite interesting.
We note that Falgas-Ravry and Lo [10] gave a positive answer to Question 6.4 albeit again

only for a stronger notion of weak quasirandomness than𝐾1,1,1-wqr. However, they also provided
examples of 𝐾1,1,1-wqr graphs in which the order of a largest subgraph with non-zero minimum
codegree only grew as the inverse of the error parameter 𝜀, suggesting that the situation is not
entirely obvious one way or the other.

6.3 Turán problems with codegree conditions

The codegree-extremal construction for 𝐾−
4 is quite different from the recursive construction of

Frankl and Füredi which is conjectured to be extremal for the Turán problem (indeed the later
construction has pairs of vertices with codegree zero). A natural question is what happens if we
interpolate between the two problems. Explicitly, for 𝑐 ∈ [0, 𝜋2(𝐹)], let ex𝛿2⩾𝑐(𝑛, 𝐹) denote the
maximum number of edges in an 𝐹-free 3-graph on 𝑛 vertices with minimum codegree at least
𝑐(𝑛 − 2) (if such a 3-graph exists).

Problem 6.5. Determine the asymptotic behaviour of ex𝛿2⩾𝑐(𝑛, 𝐾−
4 ) for 𝑐 ∈ [0, 1∕4].

Write 𝑓(𝑐) for the limit of ex𝛿2⩾𝑐(𝑛, 𝐾−
4 )∕

(𝑛
3

)
as 𝑛 → ∞ (it can be shown this limit exists).

The function 𝑓(𝑐) is non-increasing in [0, 𝜋2(𝐹)] and takes values in [0, 𝜋(𝐹)]. We have shown
𝑓(1∕4) = 1∕4, and Mubayi conjectured in [22, Conjecture 2] 𝑓(0) = 2∕7. We can give a lower
bound for 𝑓(𝑐) in the range (0, 1∕4) as follows.
Let 𝐻6 denote the 3-graph on [6] with edges {123, 234, 345, 145, 125, 136, 356, 256, 246, 146}.

This 3-graph was constructed by Frankl and Füredi [13] and has the property that the link graph
of every vertex is a cycle on 5-vertices; in particular,𝐻6, its blow-ups and its iterated blow-ups are
all 𝐾−

4 -free. Given 𝑐 > 0, let 𝑡 = ⌊ log(1∕4𝑐)
log 6

⌋. Add all triples from a balanced blow-up of 𝐻6 on 𝑛

vertices, then repeat this construction inside each of the 6 parts, iterating this procedure a total
of 𝑡 times. Finally, inside each of the 6𝑡 parts of size (1 + 𝑜(1))𝑛∕6𝑡 that remain place a 𝐶(𝑇) con-
struction. This gives a 𝐾−

4 -free 3-graph with minimum codegree (1∕4 + 𝑜(1))𝑛∕6𝑡 ⩾ (𝑐 + 𝑜(1))𝑛
and (2∕7 − 6−2𝑡∕28 + 𝑜(1))

(𝑛
3

)
edges.

Corollary 6.6. 𝑓(𝑐) ⩾ 2
7
− 1

28
6−2⌊log(1∕4𝑐)∕ log 6⌋.

Note that our lower bound is not a continuous function of 𝑐; however, as it does not seem
possible to shift in a continuous way from a 𝐶(𝑇) (codegree-extremal) construction to an iterated
blow-up of 𝐻6 (the conjectured extremal construction for Turán density), this is a behaviour we
could plausibly encounter.

APPENDIX A: DESCRIPTION OF THE SUPPLEMENTARY COMPUTER PROGRAMS

We split the task of a formal verification of our proof of Lemma 2.8 into six steps (A.1–A.6), where
each stepwill be accompaniedwith a small scriptwritten in SAGE [35] that performs the described

 14697750, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12722 by U

m
ea U

niversity, W
iley O

nline L
ibrary on [14/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1688 FALGAS-RAVRY et al.

task. Note that we also have independent implementations in C of each of the tasks listed below,
which do run faster, however, they are lengthier and verifying their correctness is somewhat
more tedious.
Before we continue, let us briefly recall some notation from Section 2. For two 3-graphs𝐻 and

𝐺, 𝑝(𝐻,𝐺) denotes the probability that a random 𝑣(𝐻)-vertex subgraph of 𝐺 is isomorphic to 𝐻.
Also recall that for a 𝑘-vertex type 𝜎 and a fixed 𝜎-flag 𝐹, the value 𝑝𝜎𝐹 denotes the probability that
a random injection from [𝑘] to 𝐹∅ yields a 𝜎-flag that is isomorphic to 𝐹. Finally, for two 𝜎-flags
𝐹1 and 𝐹2 and a (𝑣(𝐹1) + 𝑣(𝐹2) − 𝑣(𝜎))-vertex 𝜎-flag 𝐻, 𝑝(𝐹1, 𝐹2,𝐻) denotes the probability that
a random partition of the unlabelled vertices of 𝐻 into two parts of respective sizes 𝑣(𝐹1) − 𝑣(𝜎)
and 𝑣(𝐹2) − 𝑣(𝜎) yields 𝜎-flags isomorphic to 𝐹1 and 𝐹2.
To simplify the following presentation, let us define the so-called flag pair density. Given a pair

of 𝜎-flags 𝐹1 and 𝐹2, and a 3-graph 𝐺 with 𝑣(𝐹1) + 𝑣(𝐹2) − 𝑣(𝜎) vertices, the flag pair density
𝑝(𝐹1, 𝐹2, 𝐺) is defined as ∑

𝐹∈𝜎
𝑣(𝐺)

𝐹∅=𝐺

𝑝𝜎𝐹 ⋅ 𝑝(𝐹1, 𝐹2, 𝐹).

For a 3-graph 𝐺 satisfying 𝑣(𝐺) > 𝑣(𝐹1) + 𝑣(𝐹2) − 𝑣(𝜎), we generalise the above and define the
flag pair density 𝑝(𝐹1, 𝐹2, 𝐺) as follows:

𝑝(𝐹1, 𝐹2, 𝐺) ∶=
∑

𝐻∈𝑣(𝐹1)+𝑣(𝐹2)−𝑣(𝜎)

𝑝(𝐻, 𝐺) ⋅ 𝑝(𝐹1, 𝐹2,𝐻).

A.1 The list of 7-vertex 𝐾−
4 -free 3-graphs

We identify 3-graphs on the vertex set [𝑘]with the collection of their edges.We order the collection
of such 3-graphs in the lexicographic order inherited from the order on [𝑘].
Given 𝑘, we generate the list of 𝑘-vertex 𝐾−

4 -free 3-graphs on the vertex set [𝑘] that are lexico-
graphicallyminimalwithin their isomorphism class in the followingway:we iteratively go over all
the labelled 𝑘-vertex 𝐾−

4 -free 3-graphs 𝐺 such that the vertex subset [𝑘 − 1] induces some lexico-
graphically minimal (𝑘 − 1)-vertex 𝐾−

4 -free 3-graph, and include in the list exactly those 3-graphs
𝐺 that are lexicographically minimal. We note that our SAGE script outputs the list in the same
order and format as Flagmatic 1.5.1 does.
For 𝑘 = 7, generating this list readily yields that |7| = 8157. Moreover, the maximum number

of edges of a 7-vertex𝐾−
4 -free 3-graph is 15, and the number of 3-graphs in7 with exactly 2, 3, 4,...,

14 and 15 edges is equal to 3, 9, 32, 102, 304, 752, 1451, 2022, 1909, 1118, 374, 70, 8 and 1, respectively.
SAGE script: gen7.sage
Output file: graph_lists/list7

A.2 The lists of 6-vertex 𝜄𝑖-flags, 𝑖 ∈ [6], and the corresponding pair densities

Firstly, for every𝐹 ∈ 6we consider all possible injections of [5] into𝑉(𝐹) and generate the appro-
priate lists  𝜄𝑖

6 . Then, for every 𝐺 ∈ 7, we consider all the injections 𝑚 ∶ [5] → 𝑉(𝐺) together
with the partitions of 𝑉(𝐺) ⧵ 𝑚([5]) into two non-empty parts. This allows us to directly compute
the coefficients 𝑝(𝐹1, 𝐹2, 𝐺) for every expression of the form

�𝐹1 × 𝐹2�𝜄𝑖 =
∑
𝐹∈

𝜄𝑖
7

𝑝
𝜄𝑖
𝐹 ⋅ 𝑝(𝐹1, 𝐹2, 𝐹) ⋅ 𝐹

∅ =
∑
𝐺∈7

𝑝(𝐹1, 𝐹2, 𝐺) ⋅ 𝐺.

As in the previous subsection, we output this data in the same format as Flagmatic 1.5.1 does.
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SAGE script: gen_flags.sage
Output files: flagmatic_flags-pruned.rat and graph_lists/list6_iotaX for 𝑋 ∈ [6]

A.3 The codegree expressions 𝐷 ∈  as linear combinations of 7

Similarly to the previous section, we first generate the list 𝜏
6 by considering all the possible injec-

tions of [2] into the elements of 6. For each 𝐹 ∈ 𝜏
6 we then compute the coefficients 𝑝(𝐹, 𝐸

𝜏, 𝐺)
and 𝑝(𝐹,𝑁𝜏, 𝐺) for the expressions

�𝐹 × 𝐸𝜏�𝜏 =
∑
𝐺∈7

𝑝(𝐹, 𝐸𝜏, 𝐺) ⋅ 𝐺 and �𝐹 × 𝑁𝜏�𝜏 =
∑
𝐺∈7

𝑝(𝐹,𝑁𝜏, 𝐺) ⋅ 𝐺.

As we have noted in Section 2.2, although the set 𝜏
6 has size 1643, the symmetry of the type 𝜏

yields that || = 905.
SAGE script: codeg.sage
Output file: ineq_codeg

A.4 The tight-path expressions 0, 1 and 2 as linear combinations of 7

For the 4-vertex types 𝜎𝑖 with 𝑖 ∈ {0, 1, 2} edges, we generate the lists 𝜎𝑖
5 by considering all the

possible injections of [4] into the elements of 5, and then identify the corresponding elements of
𝑖 ⊆ 

𝜎𝑖
5 . Next, in a similar fashion as in the two previous sections, we compute for every 𝐹1, 𝐹2 ∈


𝜎𝑖
5 and 𝐺 ∈ 7 the coefficients 𝑝(𝐹1, 𝐹2, 𝐺) in

�𝐹1 × 𝐹2�𝜎𝑖 =
∑
𝐹∈6

𝑝(𝐹1, 𝐹2, 𝐹) ⋅ 𝐹 =
∑
𝐹∈6

𝑝(𝐹1, 𝐹2, 𝐹) ⋅
∑
𝐺∈7

𝑝(𝐹, 𝐺) ⋅ 𝐺 =
∑
𝐺∈7

𝑝(𝐹1, 𝐹2, 𝐺) ⋅ 𝐺.

SAGE script: tightpath.sage
Output file: ineq_tightpath

A.5 The size of the set 𝑇 ∩ 7 is equal to 247

Firstly, we generate all the 456 non-isomorphic tournaments on 7-vertices. Next, for each such a
tournament 𝑇, we construct the 3-graph 𝐶(𝑇), and check whether it is isomorphic to 𝐶(𝑇′) for
some other tournament 𝑇′. It turns out that |𝑇 ∩ 7| = 247. Observe that for the sole purpose of
verifying (2.2), it is enough to compute the size of 𝑇 ∩ 7. Indeed, any identity of the form (2.2)
may have a positive slack on at most |7 ⧵ 𝑇| = 7910 coordinates by complementary slackness,
and the identity for our particular choice of 𝑄𝑖 , 𝐼𝑖 , 𝑐𝑗 and 𝑢𝐷 , where 𝑖 ∈ [6], 𝑗 ∈ [3] and 𝐷 ∈ ,
has a positive slack on exactly 7910 coordinates.
SAGE script: ext7.sage

A.6 Verifying the identity (2.2) stated in Lemma 2.8

Given the input data for the entries of the matrices 𝐼𝑖 and 𝑄𝑖 , where 𝑖 ∈ [6], the positive rationals
𝑐0, 𝑐1, 𝑐2 and 𝑢𝐷 for𝐷 ∈ , we firstly check the positive definiteness of every𝑄𝑖 . Next, we compute
the right-hand side of (2.2) and compare its 8157 coefficients one by one with the left-hand side
of (2.2). Finally, we verify that there are exactly 7910 coordinates with a positive slack.
SAGE script: lemma28.sage
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