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A B S T R A C T   

Objective: In this work, we evaluated a model for the translation of atherosclerotic disease features onto healthy 
carotid ultrasound images. 
Methods: An un-paired domain-to-domain translation model – the cycle Generative Adversarial Network 
(cycleGAN) – was trained to translate between carotid ultrasound images of healthy arteries and images of 
pronounced disease. Translation performance was evaluated using the measurement of wall thickness in original 
and generated images. In addition, we explored disease translation in different tissue segments (subcutaneous 
tissue, muscle, lumen, far wall, and deep tissues), using structural similarity index measure (SSIM) maps. 
Results: Features of pronounced disease were successfully translated to the healthy images (1.2 (0.33) mm vs 0.43 
(0.07) mm, p < 0.001), while overall anatomy was retained as SSIM value was equal to 0.78 (0.02). Exploration 
of translated features showed that both arterial wall and subcutaneous tissues were modified in the translation, 
but that the subcutaneous tissue was subject to distortion of the anatomy in some cases. The image quality 
influenced the disease translation performance. 
Conclusion: The results show that the model can learn a mapping between healthy and diseased images while 
retaining the overall anatomical contents. This is the first study on atherosclerosis disease translation in medical 
images. 
Significance: The concept of translating disease onto existing healthy images may serve purposes such as edu-
cation, cardiovascular risk communication in health conversations, or personalized modelling in precision 
medicine.   

1. Introduction 

Atherosclerosis leads to thickened arterial walls and focal plaques, 
and it is the major cause of cardiovascular disease (CVD), with a very 
high incidence of related deaths [1]. Ultrasound imaging of the carotid 
arteries is commonly used to assess disease stage, progression, and CVD 
risk, based on measurements of the carotid arterial wall thickness (cIMT) 
and the presence and composition of focal plaques [2]. 

In this work, we aim to evaluate a model to simulate this disease on a 
personalized level. We train a model to take images of a healthy person’s 
carotid artery and generate a new image with features of pronounced 
disease but with preserved anatomical features. In general, such 
generated images could be used for educational purposes and simula-
tions. In specific, recently, our group showed that presenting an image of 

a patient’s carotid artery disease severity increases a patient’s adherence 
to treatment and lowers risk factors [3,4]. Therefore, such generated 
images could be used as a tool in primary prevention and CVD risk 
communication within a health conversation [4]. 

The problem we want to solve is equivalent to translating features 
from one image domain to another. So-called domain-to-domain trans-
lation methods (deep learning models) have been proposed for similar 
tasks in medical imaging applications. E.g., the cycle generative adver-
sarial network (cycleGAN) has been used to generate authentic speckle 
pattern features in simulated B-mode images [5], and to generate 
authentic musculoskeletal images [6], both from simple simulated im-
ages. GANs have also been used to translate features of super-resolution 
images onto images of low-resolution [7] and for the generation of 
different stages of tumour growth in ultrasound mammographic images 
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[8]. Moreover, our group also recently applied a modified 3D cycleGAN 
model to generate authentic ultrasound image sequences of contracting 
skeletal muscles from simplified simulated sequences (video) [9]. To the 
best of our knowledge, the idea of disease injection to existing ultra-
sound images using deep learning is not yet explored. 

In this work, we evaluate the 2D cycleGAN model [10] to solve this 
task, where translation between images of two domains with different 
feature distributions was obtained while retaining content of the orig-
inal images [11–13]. 

2. Methods 

2.1. Datasets 

Longitudinal ultrasound B-mode images of the common carotid ar-
teries were retrospectively included in this work from the VIPVIZA study 
[4]. The VIPVIZA study is an intervention study for primary cardio-
vascular disease prevention. The study enrolled 3532 healthy in-
dividuals with sub-clinical atherosclerosis of ages 40, 50, and 60 s. For 
each subject, multiple carotid ultrasound images were acquired at end- 
diastole (approximately-five consecutive heartbeats) from four different 
standardized projections (120-, 150-, 210- and 240-degrees Meijer arc) 
from both the left and right arteries. In total, approximately 140 000 (5 
heartbeats × 4 projections × 3500 subjects × 2 examinations) images 
were available within the VIPVIZA study. The study conformed to the 
Declaration of Helsinki and was approved by the Swedish Ethical Re-
view Authority. 

The ultrasound images were acquired using the CardioHealth Station 
ultrasound system with a linear 7 MHz probe (Panasonic Healthcare 
Corporation of North America, Newark NJ, USA). Images had 8-bit 
resolution and size was 464x435 (field-of-view 40x38 mm, depth ×
width) and were down-sampled using cubic-splines interpolation to 
400x400 for training purposes. The equivalent resolution was approxi-
mately 0.1 mm/px. 

2.1.1. Selection of images 
Healthy images (defined as Domain A) had thin cIMT (range 0.3–0.5 

mm, mean 0.45 mm, N = 2319). Images with pronounced disease 
(defined as Domain B) had thick cIMT (range 1.1–2.0 mm, mean 1.2 
mm, N = 2071). Images for training and testing were randomly selected 
from the two domains at an 80:20 ratio. The clinical characteristics of 
the two domain data sets are given in Table 1. Fig. 1A and B show 
example images of both domains. 

2.2. The CycleGAN model 

Generative adversarial networks (GANs) have gained popularity for 
their ability to generate realistic-looking synthetic medical image data 
[10,14–16]. Domain-to-domain translation models are a branch of GANs 
that allow the translation of images from one domain to another with 
different feature distributions while retaining content [11–13,17]. 

When the images of two domains are not paired, the cycleGAN model 
offers a solution for this task. In this work, a cycleGAN model [10] was 
trained to translate between domain A (no atherosclerosis) and domain 
B (pronounced atherosclerosis) datasets. 

The architecture of cycleGAN [10] comprises two GANs working in 
the opposite direction i.e., transformation from G1(xA)→xB and trans-
formation G2(xB)→xA. In this study, the cycleGAN was trained for 180 
epochs (determined empirically based on a stopped reduction of the 
training loss). We experimented with ResNet [18] as well as U-Net ar-
chitecture as the generator of the cycleGAN. We found that the ResNet 
architecture gave a superior performance, and hence we used a gener-
ator with the ResNet architecture. 

The default setting for up-sampling in the generator part uses 
transpose convolution. The default method down-samples the image 4 
times and then extracts the feature using the ResNet18 model. Following 
this, the model up-samples the features by a factor of 4 using transposed 
convolution. In our implementation, we replaced the transpose convo-
lution by sub-pixel convolution layer [19]. The benefit of the sub-pixel 
convolution layer is that it replicates the channels of the image and 
shuffles the pixels in each replica. It has been demonstrated to give an 
advantage in the case of image super-resolution [19]. 

2.3. Evaluation and exploration of disease translation 

The disease translation was evaluated (on the test data) by 
comparing the cIMT of the input and the generated output image pairs. 
The cIMT was manually measured in the input and output images 
(randomly presented and blinded to the operator). Next, features of the 
disease translation were explored by quantifying the structural simi-
larity index measure (SSIM) map between the input–output image pairs 
[20]. The SSIM ranges from 0 to 1 (low to high similarity). The 
authenticity of generated images was assessed by two carotid ultrasound 
experts (CG and EN) who, presented blindly and in random order, 
classified 50 real and 50 generated images as real or generated. 

Association between image quality and SSIM was quantified by 
Pearson’s correlation coefficient. Image quality was estimated as 
contrast tissue-to-lumen, CTL =(|Ilumen − Itissue|)/|Itissue|, where the lumen 
and tissue intensities were computed as the mean intensities in the 
corresponding muscle and lumen ROIs, respectively. 

3. Results 

3.1. Evaluation of disease translation 

The cycleGAN model was trained to translate between two carotid 
ultrasound image sets: domain A – healthy (thin arterial wall, carotid 
intima-media (cIMT) < 0.5 mm, N = 1855), and domain B – pronounced 
atherosclerotic disease (thick cIMT, >1.1 mm N = 1656) (Fig. 1A, B). 
Fig. 1C and 1D show an example of one originally healthy and the 
corresponding generated image with pronounced disease. The cIMT was 
0.43 (0.07) mm and 1.2 (0.33) mm in the test images of the original 
input and generated output images (Fig. 1F, p < 0.001). Thus, the 
healthy images with thin cIMT were successfully translated to pro-
nounced disease with thick cIMT (similar to that of the training data for 
domain B, 1.12 (0.18) mm). cIMT was not possible to measure in N = 41 
(15 %) images due to poor image quality. The domain experts classified 
the generated images as real images in 67 % and 75 % of the cases. 

Table 1 
Subject and image characteristics of the training data domains A and B 
Values represent mean and standard deviations.   

Domain A 
(no disease) 

Domain B 
(pronounced disease) 

p 

Image sets 
N subjects 210 170  
N images 2319 2071  
N training images 1855 1656  
N test images 464 415  
Ultrasound measurements 
cIMT, mm 

min–max, mm 
0.45 (0.9)  

0.3–0.5 

1.2 (0.20) 
1.1–2.0  

Plaque present No Yes  
Clinical risk factors 
Low density lipo protein, (LDL) 3.51 (1.01) 3.83 (1.06)  0.003 
High-density lipoprotein (HDL) 1.30 (0.39) 1.25 (0.39)  0.18 
Systolic blood pressure, mmHg 127 (18) 133 (17)  0.002 
Diastolic blood pressure, mmHg 83 (12) 83 (11)  0.45 
Age, years 50.6 (7.6) 59.2 (2.8)  <0.001 
Sex, (female:men), % 50:50 30:70  <0.001 
Body-mass-index (BMI) 29 (5.6) 28 (5.0)  0.04 
Framingham risk score (FRS) 10.4 (8.2) 20.7 (12.4)  <0.001  
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3.2. Exploration of disease translation 

The translated features of the disease were explored using the SSIM 
between original and generated image pairs (Fig. 1E) in the full image, 
subcutaneous, muscle, lumen, arterial wall, and deep tissues, respec-
tively (Fig. 1G, H). The SSIM showed a low similarity in the far wall, 
indicating that the model had modified this region in the generated 
image as compared to the original. The SSIM for the entire image was 
0.78 (0.02). The far carotid wall and the subcutaneous tissue had lower 
SSIM as compared to the muscle, carotid artery lumen, and the deep 
tissue (Fig. 1H, p < 0.001). Fig. 2A-C shows additional examples of 
original and generated images with successfully translated disease. 

There were a few cases where the underlying anatomy was distorted 
in the subcutaneous tissues of the generated images (Fig. 2D-F). Two 
regions with distortions could be observed: 1) the outer left and right 
tissues had reduced similarity for all generated images, and 2) in a few 
cases, the anatomy of the original image was distorted in the subcu-
taneous tissue segment (N = 22, ~5% of the test images). 

3.3. Influence of image quality on disease translation 

Motivated by the large range of SSIM of the far wall (0.25–0.70, 
Fig. 1H) and the observed 15 % dropout in cIMT measurements, we 
analysed if the image quality could account for this variation. Image 

quality was quantified using the ratio between wall echogenicity 
(average pixel intensity of the wall tissue) and the echogenicity of the 
lumen – Contrast tissue-to-lumen (CTL). The correlation between CTL 
and SSIM in the different tissues was: subcutaneous 0.08 (p = 0.16), 
muscle − 0.11 (p = 0.073), blood − 0.11 (p = 0.61), far wall − 0.46 (p <
0.001), deep tissue − 0.10 (p = 0.09), respectively. These results show 
that image quality only influenced the translation of disease features in 
the far wall tissues significantly. Thus, high noise in the lumen (low CTL) 
resulted in less translated disease features (high SSIM). Fig. 2G-I shows 
an example of how poor contrast influenced the translation. 

4. Discussion 

This study showed that the cycleGAN model can translate image 
features of pronounced atherosclerotic disease (thickened cIMT) onto 
images of healthy carotid arteries. The overall high similarity (SSIM) 
indicates that the main image features, i.e., the underlying anatomy, 
were retained. In contrast, the lower SSIM of the subcutaneous and far 
wall tissues indicate that these were adapted with the disease. The dis-
ease adaptation of the far wall was expected due to the selection of the 
datasets. The slight modification to the subcutaneous tissue was likely 
related to artifact generation by the method (see Fig. 2E-F). Noise in the 
lumen of the images (low CTL) was found to reduce the translation of 
disease features (higher SSIM). Such noise is commonly seen in carotid 

Fig. 1. A: Examples of training images with no atherosclerotic disease (domain A, cIMT < 0.5 mm and no plaques). B: Examples of training images with pronounced 
disease (domain B, cIMT > 1.1 mm and plaques present). C: Original image (healthy, thin wall, Domain A). D: Generated image with translated disease (thick wall) 
with overall anatomy retained. E: Similarity map (SSIM) between the two images. A low value indicates disease adaptation to this segment. F: Wall thickness (cIMT) 
of the original and generated images. G: Illustration of segmented regions. H: Similarity (SSIM) in segmented regions between original and generated image pairs (N 
= 460 images). 
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Fig. 2. A-C: An example with successful disease translation and retained anatomy, as indicated by the horizontal red region of the far wall in C. D-F: An example 
where the generator model has distorted the underlying anatomy of the subcutaneous tissue as indicated by red regions in the F. G-I: An example of how contrast 
influenced the disease translation. The original image G had two regions with low and high contrast (contrast tissue-to-lumen, CTL). It can be seen in the SSIM map I 
that no disease was translated to the low-contrast region. 

Fig. 3. A-C and D-F: Two examples of disease removal by the reverse generator.  
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ultrasound images but can be reduced using harmonic imaging se-
quences [21]. The classification by the domain experts showed that the 
generated images were visually perceived as real images in a majority of 
the cases. 

The performance of the reverse generator of the cycleGAN that is 
trained to generate healthy images from images with pronounced dis-
ease was also assessed (Fig. 3). The cIMT was 0.56 (0.12) and 1.36 (0.29) 
mm for the input and generated images (Fig. 3AB, p < 0.001). The SSIM 
for the entire image was 0.64 (0.07). Thus, the performance of the 
reverse generator for disease removal had similar performance as the 
disease generation generator. 

The concept of translating disease onto existing ultrasound images is 
new, but in other medical image modalities it has recently been 
demonstrated. E.g. cycleGAN models were used to generate pathological 
images from normal optical coherence tomography (OCT) images of the 
eye [22], and the Ad cycleGAN model was proposed to generate COVID- 
19 positive chest X-ray images from normal images [23]. 

The cycleGAN model was trained on relatively limited data, which 
could influence the performance. In addition, translation between only 
two stages of the disease was adapted. While the chosen model only can 
perform one-to-one mapping – here between healthy and diseased 
states, models that support the generation of different stages of disease 
or outcomes could be achieved by adding data constraints and allowing 
one-to-many mapping models e.g. [24,25]. 

This work presents a proof-of-concept on the generation of disease 
into healthy carotid ultrasound images. There are several potential ap-
plications of this concept. First, it may be used to simulate images of 
disease for education or for injection of disease into an existing image of 
a healthy subject for risk communication in a health conversation - to 
improve adherence to prescribed treatment [4]. Second, the current 
understanding of image features of atherosclerotic disease concerns 
mainly morphological features (e.g., cIMT), and a data-driven disease 
generation model may provide new insights on additional image fea-
tures in different stages of the disease beyond the currently used mea-
surements. Third, models that can learn a mapping between healthy and 
diseased domains, open new dimensions for personalized disease pre-
diction modelling [26] and should be evaluated in future studies. 
Finally, the model could also be used to generate diseased or healthy 
images for data augmentation purposes, to improve the training of deep 
learning models on atherosclerosis and ultrasound images. 

5. Conclusion 

Translation of atherosclerotic disease onto existing ultrasound im-
ages of healthy carotid arteries was demonstrated. The proposed concept 
may be useful in education, simulations, or primary prevention to boost 
risk communication in a health conversation on CVD risk. 
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[4] U. Näslund, N. Ng, A. Lundgren, E. Fhärm, C. Grönlund, H. Johansson, B. Lindahl, 
B. Lindahl, K. Lindvall, S.K. Nilsson, M. Nordin, S. Nordin, E. Nyman, J. Rocklöv, 
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