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In this paper we frst study k × n Youden rectangles of small orders. We have enumerated all Youden rectangles 

for a range of small parameter values, excluding the almost square cases where k = n − 1, in a large scale com-

puter search. In particular, we verify the previous counts for (n, k) = (7, 3), (7, 4), and extend this to the cases 

(11, 5), (11, 6), (13, 4) and (21, 5). 

For small parameter values where no Youden rectangles exist, we also enumerate rectangles where the number of 

symbols common to two columns is always one of two possible values, differing by 1, which we call near Youden 

rectangles. 

For all the designs we generate, we calculate the order of the autotopism group and investigate to which degree a 

certain transformation can yield other row-column designs, namely double arrays, triple arrays and sesqui arrays. 

Finally, we also investigate certain Latin rectangles with three possible pairwise intersection sizes for the columns 

and demonstrate that these can give rise to triple and sesqui arrays which cannot be obtained from Youden rectangles, 

using the transformation mentioned above. 

Keywords: Youden squares, block designs, row-column designs 

1 Introduction 
An (n, k, �) Youden rectangle (sometimes referred to as a Youden square) where n ≥ k is a k × n array 

on n symbols that satisfes the following two conditions: 

1. There is no repeated symbol in any row or column, which we will call the Latin condition. 

2. The number of shared symbols between any two columns is always �, which we will call the 

balance condition. 

Youden rectangles can be represented in different ways. In particular, by switching the roles of rows 

and symbols, one gets a representation in the form of a square matrix, typically with some empty cells. In 

previous literature, the term ‘Youden square’ has sometimes been used for the rectangular format as well, 
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but we shall use the term ‘Youden rectangle’ for the rectangular format, reserving the term ‘square’ for 

the actual square format. 

As indicated by the choice of terminology in the frst part of the defnition, a Youden rectangle can be 

viewed as a special case of a k × n Latin rectangle, which in this setting can be defned as a k × n array on 

n symbols, satisfying the Latin condition. In the present paper, we exclude the square, and almost square 

cases k = n, k = n − 1 as well as k = 1 for Youden rectangles, since for these parameter choices, all 

Latin rectangles trivially also satisfy the second condition. 

Clearly, each row will contain each symbol exactly once, and so the array will also be equireplicate, 

that is, each symbol appears the same number of times, namely k. As is well known, divisibility and 
k(k−1) 

double counting considerations easily give that in order for a Youden rectangle to exist, � = 
n−1 must 

be an integer. 

The reason for the use of the term ‘balance’, is that when treating the columns of a Youden rectangle 

as sets of symbols, these sets form the blocks of a symmetric balanced incomplete block design (SBIBD). 

Conversely, it was proven by Smith and Hartley [30] that the elements in the blocks of any SBIBD can be 

ordered to give a Youden rectangle. In fact, many different orderings are possible, so a single SBIBD will 

give rise to many different Youden rectangles. We have not employed this connection between SBIBDs 

and Youden rectangles in our computational work. 

Alternatively, and equivalently, a Youden rectangle may be defned with more of an SBIBD approach as 

a k×n array on n symbols, where no symbol is repeated in any row, and when viewing the columns as sets 

of symbols, each pair of symbols occurs the same number of times, namely �. The property that all pairs 

of blocks in an SBIBD intersect in the same number of elements is sometimes expressed by saying that 

the design is linked, and more recently rather by saying that the design has constant block intersections. 

Already in the original paper [33] Youden points out that from a statistical point of view Youden rect-

angles suffer from the restricted set of feasible parameters. As one way around this problem we here 

introduce the class of near Youden rectangles. For given values of n and k a near Youden rectangle is 

a Latin rectangle with two allowed block intersection sizes, differing by 1, rather than one single inter-

section size. This relaxation signifcantly increases the set of allowed parameters while in a sense still 

keeping the design as balanced as possible. In Section 2.2 we discuss the theoretical properties of these 

designs in greater detail, and discuss their connections to existing design classes. 

The early history of the study of Youden rectangles was chronicled by Preece [25], and a good starting 

point for further reading is the Youden chapter in the Handbook of Combinatorial Designs [10]. 

Little has been done on complete enumeration of these objects, though in [24] Youden rectangles with 

n ≤ 7 were classifed by Preece, and in [14] we performed a full enumeration of mutually orthogonal (in 

the Latin rectangle sense) triples of Youden rectangles for n ≤ 7. Note that orthogonal Youden rectangles 

should not be confused with multi-layered Youden rectangles, as studied in [26]. In the present paper, our 

main aim has been to perform a complete enumeration of Youden rectangles for as large parameters as 

possible. The current state of knowledge on the number of Youden rectangles is tabulated in [10], which 

goes up to n = 7. 

The rest of the paper is structured as follows. In Section 2 we give some further basic notation and 

formal defnitions. In Section 3 we state the questions guiding our investigation, and describe briefy 

the method and algorithms used together with some practical information regarding the computer calcu-

lations. In Section 4 we present the data our computer search resulted in, in particular the number of 

different Youden rectangles of some small orders. In Section 5, we analyze the constructed objects with 

regards to other types of row-column designs. Section 6 concludes. 
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2 Preliminaries 

2.1 Notions of Equivalence 

We will use {0, 1, . . . , n − 1} as the symbol set. We call a Youden rectangle normalized if it satisfes the 

following conditions: 

(S1) (Ordering among columns) The frst row is the identity permutation. 

(S2) (Ordering among rows) The frst column is 0, 1, 2, . . . , k − 1. 

Two Youden rectangles YA and YB are said to be isotopic if there exists a permutation ˇs of the symbols, 

a permutation ˇr of the rows and a permutation ˇc of the columns such that when applying all three 

permutations to YA, we get YB . The equivalence concept isotopism is perhaps the most natural one when 

studying Youden rectangles, and isotopism classes are also known as transformation sets in this context. 

Two normalized Youden rectangles YA and YB can be isotopic to each other, so grouping Youden 

rectangles according to which normalized rectangle they yield when renaming the symbols in the frst 

column 0, 1, . . . k − 1 in this order, and permuting the columns to satisfy S1 gives a weaker notion of 

equivalence, by saying that YA and YB are equivalent if they yield the same normalized Youden rectangle 

in this way. 

Other concepts of equivalence are also possible, and allowing for exchanging the roles of symbols and 

columns leads to the notion of species (also known as main classes). In the present paper, we will not 

be employing the last mentioned notion of equivalence, and we comment on this choice below. Taking 

transposes (that is, exchanging the roles of columns and rows), or exchanging the roles of symbols and 

rows, however, does not map k × n Youden rectangles to k × n Youden rectangles, and so we do not 

consider these transformations here. 

Making this more formal, the group Gn,k = Sk × Sn × Sn of isotopisms acts on the set of k × n 
Youden rectangles, where Sk corresponds to a permutation of the rows, the frst Sn corresponds to a 

permutation of the columns, and the last Sn corresponds to a permutation of the symbols. Two rectangles 

YA and YB of size k × n are isotopic, and we say that they belong to the same isotopism class if there 

exists a g ∈ Gn,k such that g(YA) = YB . The autotopism group of a Youden rectangle Y is defned as 

Aut(Y ) := {g ∈ Gn,k | g(Y ) = Y }. When presenting examples, we use normalized representatives of 

isotopism classes. For a recent survey on the concept of isotopism in algebra and designs, see [11]. 

2.2 Near Youden Rectangles 
k(k−1) 

For parameters where � as calculated by � = 
n−1 is not an integer, no Youden rectangle exists. This 

divisibility is quite restrictive and from a statistical design theory perspective it is desirable to include 

more parameter choices here. One natural relaxation is to allow two different column intersection sizes, 

leading us to the following defnition: 

Defnition 2.1. A near Youden rectangle (NYR) is a k × n Latin rectangle where every column-column 
k(k−1) 

intersection has size either �1 = ⌊�⌋, or �2 = ⌈�⌉, where � = 
n−1 . 

An example of a 4 × 6 NYR with column intersection sizes �1 = 2 and �2 = 3 is given in Figure 1. For 

example, the frst column intersects the second, third and fourth columns in 2 symbols, and the remaining 

columns in 3 symbols. 
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0 1 2 3 4 5 

1 0 5 4 3 2 

2 4 0 5 1 3 

3 5 4 0 2 1 

Fig. 1: A 4 × 6 near Youden rectangle. 

If �1 is zero, the resulting designs (when interpreting columns as blocks) may be disconnected, that 

is, the symbol set can be partitioned in two parts S1 and S2 such that the set of columns where the 

symbols in S1 appear is disjoint from the set of columns where the symbols in S2 appear. For example, 

two 7 × 3 Youden rectangles on disjoint symbol sets may be juxtaposed to form a 14 × 3 near Youden 

rectangle. Disconnectedness is undesirable from a statistical design point, but when �1 ≥ 1, all near 

Youden rectangles are connected. 

If we disregard the order of the elements in the columns of an NYR we get an equireplicate block 

design with the same intersection property as the NYR, i.e. pairs of blocks intersect in either �1 or �2 

elements. However, in the study of block designs it has been more common to defne designs in terms 

of covering numbers for pairs of symbols, i.e. the number of blocks which contain the pair of symbols, 

rather than intersection numbers. However, following Fisher’s original proof of Fishers inequality in [12], 

rather than the now more common linear algebraic version, one can easily connect intersection numbers 

and covering numbers. The idea behind Fisher’s proof is to calculate the variance of the intersection 

numbers in terms of the covering numbers, and as a corollary he also gets the result that in an SBIBD 

the intersection number is constant. This argument can also be done in the other direction, describing the 

variance of the covering numbers in terms of the intersection numbers. Instead of doing this from scratch 

we will use an identity given by Tsuji in [31], though we note that similar identities were used earlier in 

[8]. We here state the identity in a less general form, adapted to our current situation. 

Theorem 2.2 (Lemma 1 in [31]). Let lp,q denote the number of columns which contain the pair {p, q} 
and mi,j the size of the intersection of the i:th and j:th columns. With � as already defned, we then have 

� � � 

X X 

2 (k − 1)2 

(lp,q − �)2 = mi,j − 1 + 2 mi,j 
n − 2 

p,q i,j 
� �� 

k(k − 1) k − 1 nk(k − 1) 
+ 1 − 2 + 

n − 1 n − 2 (n − 1)(n − 2) 

where the frst sum is over 2-subsets of symbols and the second is over 2-subsets of columns. 

Next we note that we can determine the number of column pairs with a given intersection size in a 

NYR, and that these intersection sizes are nicely distributed. 
j k 

k(k−1) 
Proposition 2.3. Let A be a k × n near Youden rectangle with column intersection sizes �1 = 

n−1 
l m 

k(k−1) 
and �2 = . Then any column c intersects n1 = �2(n − 1) − k(k − 1) other columns in �1n−1 

symbols and n2 = −�1(n − 1) + k(k − 1) other columns in �2 symbols. 

Proof: We fx an arbitrary column c and count the sum total S of the sizes of the intersections between c 

and all the other columns. Suppose c intersects n1 columns in �1 symbols and intersects n2 columns in 
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�2 symbols. Counting by columns, we then get S = �1n1 + �2n2. 

Counting by symbols present in column c, we get S = k(k − 1), since c contains k symbols and A is 

equireplicate with replication number k, that is, each of the k symbols in c appears k − 1 times outside of 

c. 

Equating the different counts, and using that n1 +n2 = n−1 and �1 +1 = �2, we get a linear equation 

�1n1 + �2(n − 1 − n1) = k(k − 1) in the variable n1, with solution n1 = �2(n − 1) − k(k − 1). It 

follows that n2 = −�1(n − 1) + k(k − 1), and since the choice of c was not used, these values are equal 

for all columns c. 

Theorem 2.2 together with Proposition 2.3 gives the following: 

Theorem 2.4. If D is the block design obtained from a k × n NYR, then any pair of symbols is covered 

by either �1 or �2 blocks in D. 

Proof: Let us frst note that the left hand side of the identity in Theorem 2.2 is a multiple of the variance 

of the covering numbers. The average covering number is �, which is not an integer. Hence the smallest 

possible variance would be achieved if all covering numbers are one of �1 and �2. Since the variance is a 

convex function this minimum is also unique. 

Using the values of n1 and n2 from Proposition 2.3 we can compute the right hand side of the identity 

in Theorem 2.2. Using �i and ni for the covering numbers and their multiplicity in the left hand side 

produces the same value. 

Hence the unique way to achieve the identity in Theorem 2.2 is to have all covering numbers equal to 

one of �1 and �2, with the stated frequencies for those two numbers. 

Thus the block design coming from a NYR has both intersection numbers and covering numbers taking 

only two possible values, doing so in the way that minimises the variance of those numbers. The block 

designs appearing here are in fact members of a known class, introduced by John and Mitchell in 1977 

[15] called regular graph designs. The name comes from a property of their concurrence matrices which is 

in fact the dual of our Proposition 2.3. The class of regular graph designs, which includes non-symmetric 

designs, was later generalised to cases where equal replication is not possible, by Cheng and Wu in [9]. 

As far as we know, Theorem 2.4 has however not been noticed in the literature on regular graph designs. 

Analogous to how Smith and Hartley [30] connect SBIBDs to Youden rectangles we can obtain near 

Youden rectangles from regular graph designs by ordering the blocks and their elements. In fact, as 

observed e.g. by Bailey in Chapter 11.10 of [4], it is possible to order the elements of the blocks to 

become the columns of a row-column design for any equireplicate incomplete-block design with the same 

number of symbols as blocks. 

Here we may also note that other types of designs where one allows the covering numbers, or intersec-

tion numbers to be non-constant have been studied. Bose and Nair [6] introduced and studied partially 

balanced incomplete block designs (PBIBD). The particular case where there are just two different values 

for the number of repetitions of pairs in a PBIBD was studied for example by Bose and Shimamoto in [7], 

and symmetric PBIBDs have also been studied, e.g., by Lawless and Stanton in [16]. Looking instead at 

sizes of intersections between blocks, the subclass of balanced incomplete block designs (BIBDs) where 

the block intersections only have two different sizes has been studied under the name quasi-symmetric 

designs, for example by Shrikande and Sane in [29]. Duals (exchanging the role of blocks and symbols) 

of PBIBDs have been studied under the name of linked block designs (LB), with different relaxations, see, 

e.g., [13, 20, 28]. 
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3 Generating Data 
In this section, we describe our computational work in general terms. 

3.1 Guiding Questions 
Our approach is complete enumeration by computer for as large parameter values as possible, and unless 

otherwise stated, we save all generated data. In particular, we not only record the number of Youden 

rectangles found, but we save the objects themselves. 

With some exceptions due to size restrictions, the data generated is available for download at [2] and [1]. 

Further details about the organization of the data are given there. 

The following questions serve as guides for what data to generate. 

(Q1) How many isotopism classes of k × n Youden rectangles are there? 

(Q2) What is the order of the autotopism group of each k × n Youden rectangle? 

(Q3) If some condition is relaxed, how many objects satisfying the relaxed conditions are there? 

3.2 Feasible parameter combinations 
k(k−1) 

A necessary (but not suffcient) condition for the existence of a Youden rectangle is that � = 
n−1 is an 

integer. We exclude k = 1, k = n−1 and k = n, as being trivial, since all Latin rectangles for those values 

are Youden rectangles. We call non-trivial parameter values satisfying the divisibility condition feasible. 

The smallest feasible parameter combinations for nontrivial Youden rectangles are given in Table 1. Note 

that if (k, n) are feasible parameters for a Youden rectangle, then so are (n − k, n). 

n\k 3 4 5 6 7 8 9 10 11 12 16 

7 E E 

11 E E 

13 E X 

15 X X 

16 E? X 

19 X X 

21 E X 

23 X X 

Tab. 1: All feasible parameter combinations for Youden rectangles with 7 � n � 23. An E indicates full enumeration 

in the present paper, and an X indicates feasible parameters but no complete enumeration. 

We have attempted to generate the Youden rectangles for all parameter combinations in Table 1, but in 

the remaining cases the number of partial objects was too large and the computation had to be stopped 

due to lack of storage space. The fact that we could handle one case for n = 21 illustrates the fact that 

growing n is not the only challenge for complete enumeration, but rather an interplay between n and k. 

For parameter sets where there do not exist Youden rectangles, we have enumerated k × n near Youden 

rectangles, where the intersection sizes between symbol sets in columns (as noted above) are either �1 = 
j k l m 

k(k−1) k(k−1) 
or �2 = . 

n−1 n−1 
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For near Youden rectangles there are no simple divisibility conditions which have to be satisfed, like 

the ones for SBIBDs, and as we shall see we fnd numerous examples for all small parameters. However, 

a theorem of Brown [8] implies that for n = 17, k = 6, near Youden rectangles do not exist. So, while 

near Youden rectangles are much less restricted than Youden rectangles, the existence question is still 

non-trivial. 

3.3 Implementation and Execution 

We generated all non-isotopic rectangles by consecutively adding all possible columns, while observing 

that none of the conditions were violated. At suitable points, we reduced our list of partial objects by 

isotopism. Also, at selected stages, the list of partial objects was culled by running checks on whether 

they were at all extendible to a full Youden rectangle. We note here that using the defnition in terms of 

constant sized column intersections, rather than the defnition in terms of each symbol pair appearing a 

constant number of times, makes it possible to reduce the list of partial objects much more effectively. We 

also observe that for partial objects, it is not possible (at least not straightforwardly) to reduce the list of 

partial objects with respect to species (main classes). At this stage, therefore, it is natural to employ the 

equivalence notion of isotopism. 

The algorithms used were implemented in C++ and run in a parallelized version on the Kebnekaise 

supercomputer at High Performance Computing Centre North (HPC2N). 

The algorithm is divided into two parts. The frst extends a given partial rectangle with k rows and t 

columns by one column, such that the new rectangle satisfes both the Latin condition and the balance 

condition. More specifcally, we frst add a column with k different symbols. We then check that in the 

extended k × (t + 1) rectangle, no symbols appear more than once in any row. We also check that the 

number of shared symbols between the added column and the t frst columns is �. In the case of generating 

near Youden rectangles, we instead check that all intersection sizes with the new column fall into one of 

the two allowed values. By checking all possible added columns, we fnd all extensions of the given k × t 
rectangle. 

The second part of the algorithm checks whether a received k × (t + 1) rectangle could be chosen as a 

normalized representative of an isotopism class. 

When a full Youden rectangle has been received, we check the order of the autotopism group. The 

group of possible autotopism actions on a k × n Youden rectangle is Sk × Sn × Sn, so potentially, the 

number of actions we need to check is k! · n! · n!. 
Since we consider normalized rectangles this number can be reduced to n · k! · (n − k)!, since once 

we have chosen the frst column (n options) and row permutation ˇr (k! options) we fx k symbols in the 

symbol permutation ˇs (so (n − k)! options remain). 

The running time grows quickly as the rectangle parameters grow. We completely enumerated Youden 

rectangles of sizes 3× 7, 4× 7, 5 × 11 and 4× 13 in a few minutes on a standard desktop computer. On the 

other hand, computation on sizes 6×11 and 5×21 required high performance computers and signifcantly 

more time. Using a parallelized version of the algorithms, enumerating 6 × 11 Youden rectangles took 

about 6000 core hours, which is a bit less than 1 year. The 5 × 21 case required several hundred core 

years. 

Our methods and code can be applied to larger parameter values as well, but the number of partial 

rectangles, which is far larger than those for complete rectangles, become unmanageable. The running 

time per partial object has not been the bottleneck for our program, so there has been no reason to employ 
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(n, k, �) (7,3,1) (7,4,2) 

#YR 1 6 

|Aut| 
1 0 2 

3 0 3 

21 1 1 

Tab. 2: The number of Youden rectangles with n = 7 sorted by autotopism group order. 

(n, k, �) (11,5,2) (11,6,3) 

#YR 79 416 995 467 440 

|Aut| 

1 77 694 995 421 832 

2 1 423 40 831 

3 199 4 454 

4 45 124 

5 4 121 

6 38 62 

10 3 3 

12 7 10 

55 1 1 

60 2 2 

Tab. 3: The number of Youden rectangles with n = 11 sorted by autotopism group order. 

more sophisticated generation methods or equivalence checks. Instead the number of partial objects for 

large parameters became so large that disc space became the limiting factor. 

4 Basic Computational Results 
We now turn to the results and analysis of our computational work. 

4.1 The Number of Youden Rectangles 

Our frst result is an enumeration of Youden rectangles. In Tables 2 to 5, we present data on the number 

of non-isotopic Youden rectangles, sorted by the order of the autotopism groups. 

It is relevant to compare these numbers with the number of Latin rectangles. When no reduction at all 

is applied, there are 782 137 036 800 Latin rectangles of size 4 × 7, and only 512 Youden rectangles of 

the same size (note that this number is not given in any of the tables in the present paper). In [18], the 

numbers of reduced n × k Latin rectangles are given for k ≤ n, 1 ≤ n ≤ 11, that is, the number of 

Latin rectangles whose frst row is the identity permutation and the frst column is 0, 1, . . . , k − 1, and 

there are 1 293 216 reduced Latin rectangles of size 4 × 7. Finally, there are 1398 4 × 7 non-isotopic Latin 

rectangles [17], to be compared with only 6 non-isotopic Youden rectangles of the same size. As we can 

see, the proportion of Latin rectangles that additionally satisfy the balance condition is small. 

We note again that the 3 × 7 and 4 × 7 Youden rectangles were completely classifed by Preece [24], 

and that our enumerative results are in accordance with his classifcation. 



Small Youden Rectangles, Near Youden Rectangles, and Their Connections to Other Row-Column Designs 9 

(n, k, �) (13,4,1) 

#YR 20 

|Aut| 
1 12 

3 7 

39 1 

Tab. 4: The number of Youden rectangles with n = 13, k = 4 sorted by autotopism group order. 

(n, k, �) (21,5,1) 

#YR 3 454 435 044 

|Aut| 

1 3 454 384 100 

2 37 394 

3 13 349 

5 14 

6 109 

7 4 

9 55 

14 6 

18 7 

21 1 

42 3 

63 1 

126 1 

Tab. 5: The number of Youden rectangles with n = 21, k = 5 sorted by autotopism group order. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 

1 4 5 6 2 9 10 11 0 7 8 12 3 

2 5 7 8 9 11 0 3 4 12 1 6 10 

3 6 8 9 10 0 7 4 12 1 11 2 5 

Fig. 2: The 4 × 13 Youden rectangle Y with |Aut(Y )| = 39. 

The most common autotopism group order for Latin rectangles is 1 (see [18]). From the tables, we 

see that clearly the most common autotopism group order for Youden rectangles is also 1, but that there 

are also rare examples of rather symmetric Youden rectangles. One such example, a Youden rectangle 

of size 4 × 13, whose autotopism group order is 39 is presented in Figure 2. The autotopism group acts 

transitively on the columns of this Youden rectangle, that is, for any pair C1 and C2 of columns, there is 

an autotopism that takes C1 to C2. 

As is well known, taking a (n, k, �) difference set as frst column and producing the remaining columns 

by developing this frst column, that is, consecutively adding 1 to each entry, will produce a Youden 

rectangle. The autotopism group of the resulting Youden rectangle will then act transitively on the set of 

columns. We conclude that for n = 7, 11, 13, the very symmetric Youden rectangles we found, where 

the order of the autotopism group is divisible by the number of columns, correspond to those Youden 

rectangles generated from difference sets. The situation for n = 21 seems to be a bit more involved, since 

we see autotopism groups of orders 21, 42 (in fact, three such), 63 and even 126. A complete analysis of 

these Youden rectangles is beyond the scope of this paper, and we leave this as an open question. 

For larger parameters, that is, where there exist more than one corresponding SBIBD, it would also 

have been interesting to group Youden rectangles according to which SBIBD they give if the ordering in 

the columns is ignored. 

4.2 Near Youden Rectangles 

In Tables 6 to 10, we list complete data for the number of isotopism classes of near Youden rectangles 

(NYR) from n = 5 to n = 9 for sets of parameters where there are no Youden rectangles, sorted by the 

order of the autotopism groups. We also display the number of NYRs which are self-conjugate as Latin 

rectangles, i.e., if we interchange the roles of columns and symbols we get a NYR in the same isotopism 

class. 

We have excluded the cases k = 1, k = n − 1 and k = n, since as observed above, for these cases all 

Latin rectangles are Youden rectangles as well. We also excluded the case k = 7, n = 9, for which the 

number of partial rectangles was deemed too large for a straight-forward run of our program. 

In Tables 11 to 14, we list data for the number of isotopism classes of near Youden rectangles from 

n = 10 to n = 13 for as large k as was feasible, with the same restrictions on parameter values as for 

n = 5, . . . , 9. 

Observation 4.1. There exist NYRs for all parameters with n ≤ 10. 

This follows from our enumeration together with the observation that if a k × n NYR is completed to 

an n × n Latin square then the new n − k rows also form an (n − k) × n NYR. 

We note that for k = 2 any NYR may be interpreted as a 2-regular graph. Such graphs can be easily 

enumerated by hand, and our data for this case is verifed by such a manual count. 
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(n, k, �1, �2) (5,2,0,1) (5,3,1,2) 

# NYR 

#self-conjugate 

1 

1 

2 

2 

|Aut| 2 0 1 

10 1 1 

Tab. 6: The number of near Youden rectangles with n = 5 sorted by autotopism group order. 

(n, k, �1, �2) (6,2,0,1) (6,3,1,2) (6,4,2,3) 

#NYR 

#self-conjugate 

2 

2 

2 

2 

34 

29 

|Aut| 

1 0 0 9 

2 0 0 11 

4 0 0 5 

6 0 2 3 

12 1 0 4 

18 0 0 1 

36 1 0 1 

Tab. 7: The number of near Youden rectangles with n = 6 sorted by autotopism group order. 

(n, k, �1, �2) (7,2,0,1) (7,5,3,4) 

# NYR 

# self-conjugate 

2 

2 

5 205 

2 778 

|Aut| 
1 0 4 889 

2 0 307 

4 0 8 

14 1 1 

24 1 0 

Tab. 8: The number of near Youden rectangles with n = 7 sorted by autotopism group order. 
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(n, k, �1, �2) (8,2,0,1) (8,3,0,1) (8,4,1,2) (8,5,2,3) (8,6,4,5) 

# NYR 3 4 285 6 688 21 956 009 

# self-conjugate 3 3 212 3 608 11 000 012 

|Aut| 

1 0 0 173 6 204 21 905 896 

2 0 0 78 381 48 865 

3 0 0 0 37 0 

4 0 0 15 29 1 208 

5 0 0 0 0 24 

6 0 2 0 18 0 

8 0 0 11 6 144 

10 0 0 0 0 6 

12 0 0 0 5 0 

16 1 1 4 5 36 

24 0 0 0 2 0 

30 1 0 0 0 0 

32 0 0 4 0 6 

48 0 1 0 1 0 

64 1 0 0 0 4 

Tab. 9: The number of near Youden rectangles with n = 8 sorted by autotopism group order. 

(n, k, �1, �2) (9,2,0,1) (9,3,0,1) (9,4,1,2) (9,5,2,3) (9,6,3,4) 

# NYR 4 11 5 342 2 757 904 731 801 066 

# self-conjugate 4 11 2 955 1 388 084 98 054 401 

|Aut| 

1 0 3 4 881 2 750 174 731 727 683 

2 0 1 355 7 148 69 733 

3 0 1 20 290 3 079 

4 0 0 54 177 312 

6 0 4 15 86 213 

8 0 0 3 7 0 

9 0 1 3 6 16 

12 0 0 8 6 18 

18 1 0 2 8 5 

36 1 0 0 1 4 

40 1 0 0 0 0 

54 0 1 0 0 1 

72 0 0 1 1 0 

108 0 0 0 0 2 

324 1 0 0 0 0 

Tab. 10: The number of near Youden rectangles with n = 9 sorted by autotopism group order. 
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(n, k, �1, �2) (10,2,0,1) (10,3,0,1) (10,4,1,2) (10,5,2,3) 

# NYR 

# self-conjugate 

5 

5 

80 

59 

9 722 

5 388 

1 913 816 

962 300 

|Aut| 

1 0 48 9 288 1 907 844 

2 0 23 331 5 952 

3 0 4 72 0 

4 0 0 9 0 

5 0 0 2 4 

6 0 2 2 0 

10 0 3 9 16 

12 0 0 9 0 

20 1 0 0 0 

42 1 0 0 0 

48 1 0 0 0 

100 1 0 0 0 

144 1 0 0 0 

Tab. 11: The number of near Youden rectangles with n = 10 sorted by autotopism group order. 

(n, k, �1, �2) (11,2,0,1) (11,3,0,1) (11,4,1,2) 

# NYR 

# self-conjugate 

6 

6 

852 

501 

1 598 

865 

|Aut| 

1 0 759 1 597 

2 0 75 0 

3 0 12 0 

6 0 5 0 

11 0 1 1 

22 1 0 0 

48 1 0 0 

56 1 0 0 

60 1 0 0 

180 1 0 0 

192 1 0 0 

Tab. 12: The number of near Youden rectangles with n = 11 sorted by autotopism group order. 
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(n, k, �1, �2) (12,2,0,1) (12,3,0,1) (12,4,1,2) 

# NYR 

# self-conjugate 

9 

9 

11 598 

6 183 

262 

167 

|Aut| 

1 0 11 174 182 

2 0 333 46 

3 0 35 16 

4 0 13 4 

6 0 27 10 

8 0 2 0 

12 0 5 4 

18 0 3 0 

24 1 4 0 

54 1 0 0 

64 1 0 0 

70 1 0 0 

72 0 2 0 

120 1 0 0 

144 1 0 0 

216 1 0 0 

768 1 0 0 

388 1 0 0 

Tab. 13: The number of near Youden rectangles with n = 12 sorted by autotopism group order. 
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(n, k, �1, �2) (13,2,0,1) (13,3,0,1) 

# NYR 

# self-conjugate 

10 

10 

169 262 

86 362 

|Aut| 

1 0 167 541 

2 0 1 626 

3 0 69 

6 0 24 

13 0 1 

26 1 0 

39 0 1 

60 1 0 

72 1 0 

80 1 0 

84 1 0 

144 1 0 

252 1 0 

300 1 0 

320 1 0 

1296 1 0 

Tab. 14: The number of near Youden rectangles with n = 13 sorted by autotopism group order. 

We see that for fxed n and growing k, at least for n = 7, n = 11 and n = 13, the number of near 

Youden rectangles grows faster than the number of Youden rectangles. The same holds for fxed k and 

growing n. As with Youden rectangles, most of the small near Youden rectangles have trivial autotopism 

groups. 

We also note that for small n we always fnd self-conjugate near Youden rectangles, even though their 

number is typically smaller than the number of all near Youden rectangles. 

Question 4.2. Assume that a near Youden rectangle exists for given n and k. Does there always exist a 

self-conjugate near Youden rectangle for the same parameter combination? 

5 Relations to Triple Arrays and Related Row-Column Designs 
In this section, we present data and give some new theoretical results on the connection between Youden 

rectangles and double, triple and sesqui arrays. 

5.1 Theoretical background 

A (v, e, �rr, �cc, �rc : r×c) triple array is an r×c array on v symbols satisfying the following conditions: 

(TA1) No symbol is repeated in any row or column. 

(TA2) Each symbol occurs e times (the array is equireplicate). 

(TA3) Any two distinct rows contain �rr common symbols. 
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(TA4) Any two distinct columns contain �cc common symbols. 

(TA5) Any row and column contain �rc common symbols. 

If we relax condition (TA5), which is sometimes called adjusted orthogonality, the array is called a 

double array, and if condition (TA5) is expressly forbidden to hold, but all other conditions hold, we 

have a proper double array. If we relax condition (TA4), the array is called a sesqui array, and an array 

satisfying every condition except (TA4) we call a proper sesqui array. Our use of the term proper in this 

context should not be confused with how it is sometimes used to stress that the blocks of a block design 

all have the same size. Triple arrays were introduced by Agrawal [3], though examples were known 

previously, and a good general introduction to triple and double arrays is given in [19]. Sesqui array were 

introduced in [5]. 

In discussing these designs we will fnd a new class of Latin rectangles useful. 

k(k−1) 
Defnition 5.1. A Latin rectangle with integer parameters (n, k, �), with � = calculated from n 

n−1 
and k as for a Youden rectangle, where the column intersections have sizes � − 1, � and � +1 is called a 

triple-intersection Latin rectangle. 

Note that these objects are defned only for such (n, k, �) that allow Youden rectangles with these 

parameters, and that we require the intersection sizes to actually take on all these three values. 

In [27] it was suggested that triple arrays could be constructed by taking an arbitrary Youden rectangle, 

removing one column and all symbols present in that column, and then exchanging the roles of columns 

and symbols. The argument employed used distinct representatives. However, in [32], the method was ob-

served to be fawed, as the distinct representatives argument did not work, and an explicit counterexample 

was given. For ease of reference, we phrase the construction as follows. 

Construction 5.2. For a given Youden rectangle Y and a column C0, let A be the array received from Y 

by frst removing column C0 and all occurrences in Y of symbols present in C0, and then exchanging the 

roles of columns and symbols. 

We say that a Youden rectangle Y is compatible with an array A if Y gives A via this construction for 

some suitable choice of column, and we say that Y yields A. 

Construction 5.2 was further investigated in [22], yielding among other the following results, reformu-

lated to suit the terminology employed in the present paper: 

Theorem 5.3 (Proposition 2 in [22]). Using Construction 5.2, any Youden rectangle always yields an 

array that satisfes conditions (TA1), (TA2) and (TA4), regardless of the choice of column. 

In particular, when applied to a (n, k, �) Youden rectangle, Construction 5.2 yields an equireplicate 

r × c = k × (n − k) array on v = n − 1 symbols, with replication number e = k − � and column 

intersection size �cc = �. We see then that Construction 5.2 may never (by defnition of a proper sesqui 

array) yield a proper sesqui array, but it is possible that we would get the transpose of a proper (n− k) × k 
sesqui array. 

Theorem 5.4 (Theorem 3 in [22]). Using Construction 5.2, any Youden rectangle with � = 1 always 

yields a proper double array for any choice of column. 

Theorem 5.5 (Theorem 7 in [22]). For any triple array T with v = r + c − 1 and �cc = 2, there exists a 

Youden rectangle (with k = r, n = v + 1, � = 2) that yields T using Construction 5.2. 
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It was also conjectured in [22] that Theorem 5.5 would hold for triple arrays with �cc larger than 2. 

When applying Construction 5.2 to near Youden rectangles or triple-intersection Latin rectangles, re-

moving a column together with all the symbols present in that column will leave a k × (n − 1) equirepli-

cate array with some empty cells. For a near Youden rectangle, the empty cells are distributed so that 

the number of empty cells in a column is either �1 or �2. For a triple intersection Latin rectangle, the 

corresponding numbers of empty cells are � − 1, � or � + 1. If more than one value occurs for the num-

ber of empty cells in a column, the array will not be equireplicate after exchanging the roles of columns 

and symbols, since the number of appearances of a symbol in the resulting array will be the number of 

non-empty cells in the corresponding column. 

For near Youden rectangles Proposition 2.3 implies that the resulting array will never be equireplicate. 

However, the following theorem follows rather easily from results in [22]. 

Theorem 5.6. For any (v, e, �rr, 1, �rc : r × c) triple array T with v = r + c − 1, there is a compatible 

r × (v − c) triple-intersection Latin rectangle Y with column intersection sizes 0, 1 and 2. 

The proof of this theorem uses the following result, where the RL-form R of a triple array T mentioned 

in the cited source is the array that results from exchanging the roles of columns and symbols in T . 

Theorem 5.7 (Corollary 1 in [22]). In the RL-form R of a triple array T with v = r + c − 1, for any 

two columns C1 and C2, the sum of the number of common non-empty rows and the number of common 

symbols of C1 and C2 is constant, namely e, the replication number. 

Proof Proof of Theorem 5.6: Since the parameters of T are not all independent of each other (in partic-

ular, when v = r + c − 1, it holds that �cc = r − e, see [19]), we may also observe that when exchanging 

the roles of symbols and columns in a T , there will be r − e = �cc empty cells in each column in R (the 

number of rows in T in which the corresponding symbol does not appear). Reasoning similarly, there will 

be r − �cc empty cells in each row of R (the number of columns in T where the corresponding symbol 

does not appear). 

For �cc = 1, Theorem 5.7 then implies that in R, each pair of columns shares 0 symbols (when their 

empty cells lie in the same row) or 1 symbol (when their empty cells lie in different rows). 

With this information, given a triple array T , we can construct a Youden rectangle Y compatible with 

T by frst exchanging the roles of columns and symbols in T , yielding the array R, and then adding a new 

column C0 with a set S of r new symbols, s1, s2, . . . sr in this order. To fll the empty cells in row i in R, 

we then use the r − 1 symbols S \ {si}, in any order. This is the right number of symbols, since there are 

r − 1 empty cells in every row of R, and there will be no repeated symbol in any row or column. 

The intersections between columns in Y may now have three different sizes. As observed above, pairs 

of columns in R shared either 0 symbols or 1 symbol, and after adding symbols to form Y , these numbers 

may have gone up by at most 1, since only one new symbol was added in each column. 

An example of the construction in the above proof is given in Figure 3. Since Theorem 5.6 shows that 

the same transformation that we applied to Youden rectangles could yield interesting row-column designs 

when applied to a triple-intersection Latin rectangle, we have also included this in our computational 

studies. 

5.2 Computational Results for Youden Rectangles 
In this section, we report on how many Youden rectangles yielded triple arrays, proper double arrays, or 

transposes of proper sesqui arrays, for all parameters (n, k, �) for which we have complete data, except 
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0 2 1 4 5 6 8 7 10 

11 3 8 5 6 7 9 1 2 

5 7 4 9 3 11 0 10 8 

1 0 3 2 10 4 6 9 11 
(a) A 4 × 9 triple array T . 

0 2 1 3 4 5 7 6 8 

7 8 1 3 4 5 2 6 0 

6 4 2 0 1 8 3 7 5 

1 0 3 2 5 6 7 4 8 
(b) The corresponding array R with the roles of symbols and rows 

in T interchanged 

9 0 2 1 10 3 4 5 7 6 11 8 12 

10 9 7 8 1 11 3 4 5 2 6 12 0 

11 6 9 10 4 2 0 12 1 8 3 7 5 

12 1 0 3 2 5 9 6 10 11 7 4 8 
(c) A triple-intersection Latin rectangle compatible with T . 

Fig. 3: Example of the construction in the proof of Theorem 5.6. 

for (21, 5, 1) Youden rectangles, where the computing time required was too great. 

We ran checks even for properties guaranteed by Theorems 5.3, 5.4 and 5.5. Computational results 

were compatible with those of these theorems, which can be taken as an independent indication of the 

correctness of the computations. 

5.2.1 Triple Arrays 
Among the possible parameters for Youden rectangles for which we have complete data, there are just 

two sets of parameters where there is a chance of producing triple arrays, namely (11, 5, 2) and (11, 6, 3). 
All Youden rectangles with � = 1 are excluded by Theorem 5.4, and (7, 4, 2) would give a 4 × 3 triple 

array, the existence of which was excluded in [19]. 

In Table 15 for triple arrays and Table 17 for proper double arrays we give the following information: 

1. The number of Youden rectangles that give a triple or double array via Construction 5.2 for at least 

one of its columns. 

2. The total number of columns for which the construction yields a triple or double array (that is, 

Youden rectangles counted with ‘multiplicities’). 

3. The number of non-isotopic triple or proper double arrays we observe appearing as a result of this 

operation. 

The 5 × 6 triple arrays (and by taking transposes, also the 6 × 5 triple arrays) were completely classifed 

into 7 isotopism classes in [23]. As predicted by Theorem 5.5, all 7 triple arrays appear in Table 15. 
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(n, k, �) # compatible YR # compatible columns # TA 

(11,5,2) 52 52 7 

(11,6,3) 826 826 7 

Tab. 15: The number of Youden rectangles giving triple arrays. 

Observation 5.8. Each of the Youden rectangles with n = 11 that yields a triple array does so using a 

unique column. 

The 7 different triple arrays do not appear equally often. With classes numbered as in [23], the triple 

arrays appear with the frequencies given in Table 16. The orders of the autotopism groups of the triple 

arrays (in the row labelled TA |Aut|) are taken from [23]. It seems that it is easier to produce those triple 

arrays that have smaller autotopism groups. 

TA class 1 2 3 4 5 6 7 

TA |Aut| 60 12 12 6 4 3 3 

# 5 × 6 YR 3 5 5 8 11 10 10 

# 6 × 5 YR 23 62 62 115 168 198 198 

Tab. 16: The number of Youden rectangles giving each of the 7 classes of 5 × 6 triple arrays. 

We investigated the autotopism group orders of the Youden rectangles that produced triple arrays, but 

we observed no obvious patterns. 

5.2.2 Proper Double Arrays 

We also checked which Youden rectangles produced proper double arrays, and the results are given in 

Table 17. As predicted by Theorem 5.4, we see that all Youden rectangles with � = 1 produced proper 

double arrays, for each column. For other values of �, there is some indication that the proportion of 

compatible Youden rectangles decreases with growing �, and that the most common case is that even in a 

compatible Youden rectangle, only one column is compatible. 

(n, k, �) # compatible YR # compatible columns # DA 

(7,3,1) 1 7 1 

(7,4,2) 6 18 2 

(11,5,2) 44 012 64 949 17 642 

(11,6,3) 31 782 790 32 335 774 24 663 

(13,4,1) 20 260 192 

Tab. 17: The number of Youden rectangles giving proper double arrays. 

We note also that for parameter pairs (n, k, �1), (k, n − k, �2), the double arrays produced by the frst 

have dimensions k × (n − k) and taking transposes yields an (n − k) × k double array, and vice versa. 

Despite this, we see different numbers of double arrays appearing through the construction both for the 
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pair (7, 3, 1), (7, 4, 2) and the pair (11, 5, 2), (11, 6, 3). This would seem to indicate that there are double 

arrays that cannot be constructed using Construction 5.2. 

We note that on the basis of these data, we can answer in the negative a question posed in [22], namely 

whether every Youden rectangle gives a double array using Construction 5.2 for some column. We phrase 

this as an observation. For examples for v = 11, see Figure 4. 

Observation 5.9. There are Youden rectangles that cannot be used to produce double arrays by removing 

a column and all the symbols in that column, and then interchanging the roles of symbols and columns. 

0 1 2 3 4 5 6 7 8 9 10 

1 0 5 6 7 10 4 9 3 8 2 

2 5 0 9 8 3 10 4 6 1 7 

3 6 8 10 0 1 2 5 7 4 9 

4 7 9 0 10 8 5 3 2 6 1 
(a) An 11 × 5 Youden rectangle which does not give a double array 

for any column 

0 1 2 3 4 5 6 7 8 9 10 

1 0 9 4 7 8 10 5 3 6 2 

2 3 4 7 5 6 1 8 10 0 9 

3 6 7 1 8 4 5 9 2 10 0 

4 7 0 9 10 1 2 3 6 5 8 

5 8 6 10 0 9 7 2 4 3 1 
(b) An 11 × 6 Youden rectangle which does not give a double array 

for any column 

Fig. 4: Examples for Observation 5.9. 

5.2.3 Transposes of Proper Sesqui Arrays 
Using Construction 5.2, we checked for transposes of proper sesqui arrays, and the results are presented 

in Table 18. 

(n, k, �) # compatible YR # compatible columns # SAT 

(7,3,1) 0 0 0 

(7,4,2) 1 3 1 

(11,5,2) 0 0 0 

(11,6,3) 8 234 8 234 34 

(13,4,1) 0 0 0 

Tab. 18: The number of Youden rectangles giving transposes of proper sesqui arrays. 

We observe that transposes of sesqui arrays are relatively rare, and that the compatible (11, 6, 3) Youden 

rectangles are only compatible for one single column each. The one compatible (7, 4, 2) Youden rectangle 
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0 1 2 3 4 5 6 

1 2 3 4 6 0 5 

2 4 5 6 0 3 1 

3 5 6 1 2 4 0 

S S D S 

0 1 4 

1 4 2 

2 3 5 

3 5 0 
(b) The trans-

(a) The Youden rectangle. posed sesqui 

array. 

Fig. 5: The unique 4 × 7 Youden rectangle compatible with the transpose of a sesqui array, with compatible columns 

marked by S, and a column compatible with a double array marked by D. 

0 1 2 3 4 5 6 7 8 9 10 

1 0 3 7 6 8 9 10 5 2 4 

2 5 7 9 0 3 1 8 10 4 6 

3 6 8 10 9 1 2 4 0 7 5 

4 7 6 0 8 9 10 1 2 5 3 

T D D D D 

Fig. 6: Example of a 5 × 11 Youden rectangle with maximum compatibility with respect to triple and proper double 

arrays. The column marked with T is compatible with a triple array, and the four columns marked with D are 

compatible with proper double arrays. 

is given in Figure 5, together with the resulting transposed sesqui array. 

5.2.4 Compatibility with Several Designs 

In our data, we found some specimens of Youden rectangles exhibiting very good compatibility properties. 

To begin with, in Figure 5, we give a (7, 4, 2) Youden rectangle which is compatible both with transposes 

of sesqui arrays, and with a proper double array. 

Further, some of the Youden rectangles that gave triple arrays of dimensions 5 × 6 and 6 × 5 also gave 

proper double arrays for some other columns. Examples with maximum number of columns compatible 

with double arrays are given in Figures 6 and 7. 

Even for Youden rectangles with � 6= 1, we found Youden rectangles that for each column are compat-

ible with some proper double array. 

In Figure 8, we give the unique 4 × 7 Youden rectangle where each column is compatible with a double 

array. For any column, the resulting double array is isotopic to the one given in Figure 8(b). The Youden 

rectangle in Figure 8(a) has the largest autotopism group order, i.e., 21, and the autotopism group acts 

transitively on the columns. As observed above, this Youden rectangle can therefore be produced from 

a difference set. The double array has an autotopism group of order 3, which acts transitively on the 

columns. 

For n = 11, the situation is a bit more complicated. In Figure 9, we give the two 5 × 11 examples we 

found, and in Figure 10, we give the unique 6 × 11 example. 

The Youden rectangle in Figure 9(a) has an autotopism group of order 55, which acts transitively on 

the columns, and so comes from a difference set. All columns yield a double array isotopic to the one 
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0 1 2 3 4 5 6 7 8 9 10 

1 0 4 10 5 7 8 2 3 6 9 

2 3 6 9 7 8 0 10 1 5 4 

3 6 9 5 10 0 4 1 2 8 7 

4 7 3 6 8 9 2 5 10 1 0 

5 8 7 0 3 2 10 6 9 4 1 

D T 

Fig. 7: Example of a 6 × 11 Youden rectangle with maximum compatibility with respect to triple and proper double 

arrays. The column marked with T is compatible with a triple array, and the column marked with D is compatible 

with a proper double array. 

0 1 2 3 4 5 6 0 1 3 

1 2 4 5 3 6 0 1 2 5 

2 4 3 6 5 0 1 2 4 0 

3 5 6 1 0 2 4 3 5 4 
(a) The Youden rectangle. (b) The double ar-

ray. 

Fig. 8: The unique 4 × 7 Youden rectangle where each column is compatible with a double array. 

0 1 2 3 4 5 6 7 8 9 10 

1 2 5 6 7 3 8 9 4 10 0 

2 5 3 8 9 6 4 10 7 0 1 

3 6 8 7 0 4 9 1 10 2 5 

4 7 9 0 5 10 1 3 2 6 8 
(a) 

0 1 2 3 4 5 6 7 8 9 10 

1 0 5 6 7 3 4 2 9 10 8 

2 5 0 8 9 4 10 6 1 3 7 

3 6 8 0 10 7 2 9 4 5 1 

4 7 9 10 0 8 5 3 6 1 2 
(b) 

Fig. 9: The only two 5 × 11 Youden rectangles where each column is compatible with a proper double array. 
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0 1 2 3 4 5 6 7 8 9 10 

1 2 6 4 7 8 3 5 9 10 0 

2 6 3 7 5 9 4 8 10 0 1 

3 4 7 8 9 0 5 10 1 2 6 

4 7 5 9 10 1 8 0 2 6 3 

5 8 9 0 1 6 10 2 3 4 7 

Fig. 10: The unique 6 × 11 Youden rectangle where each column is compatible with a proper double array. 

0 1 2 3 4 6 

1 2 5 6 7 8 

2 5 3 8 9 4 

3 6 8 7 0 9 

4 7 9 0 5 1 

Fig. 11: The double array produced from the 5 × 11 Youden rectangle with autotopism group order 55 given in 

Figure 9(a). 

in Figure 11. The autotopism group order of this double array is 5, and it acts transitively on 5 of the 

columns, but keeps column 5 fxed. 

The Youden rectangle in Figure 9(b) has an autotopism group of order 60, which acts transitively on 

two groups of columns, with 5 and 6 columns, respectively. All columns in the group with fve columns 

yield the double array in Figure 12(a), and all columns in the group with six columns yield the double 

array in Figure 12(b). The autotopism group order of these double arrays are 12 and 10, respectively, and 

the group action for the frst one is transitive on the columns, while the autotopism group for the second 

one acts transitively on all columns except the second column, which is fxed. 

Finally, the Youden rectangle in Figure 10 has an autotopism group of order 55, which acts transitively 

on the columns, and so comes from a difference set. All columns yield the same double array, given in 

Figure 13, which has an autotopism group of order 5, which acts transitively on the columns. 

It is interesting to note that the Youden rectangles in Figures 8–10 that produce a single double array 

(up to isotopism) for all columns have autotopism groups that act transitively on the columns. For an 

investigation of this topic, we refer the interested reader to [21]. 

0 1 2 5 6 9 0 1 2 3 7 8 

1 5 4 0 3 7 1 0 3 4 9 5 

2 3 6 4 0 8 2 5 6 9 8 0 

3 6 8 7 9 1 3 6 5 7 2 4 

4 7 5 9 8 2 4 7 8 6 1 9 

Fig. 12: The double arrays produced from the 5 × 11 Youden rectangle with autotopism group order 60 given in 

Figure 9(b). 
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0 1 2 3 5 

1 2 6 4 8 

2 6 3 7 9 

3 4 7 8 0 

4 7 5 9 1 

5 8 9 0 6 

Fig. 13: The double array produced from the 6 × 11 Youden rectangle with autotopism group order 55 given in 

Figure 10. 

(n, k) (7,3) (7,4) 

# TILR 43 872 

|Aut| 
1 18 756 

2 21 101 

3 1 10 

4 0 3 

6 2 1 

14 1 1 

Tab. 19: The number of triple-intersection Latin rectangles (TILR) with n = 7 sorted by autotopism group order. 

5.3 Computational Results for triple-intersection Latin Rectangles 

As we noted earlier, triple-intersection Latin rectangles both provide the missing source for the � = 1 
triple arrays and could potentially lead to additional row-column designs. In order to investigate this 

connection we have also generated all triple-intersection Latin rectangles with n = 7, but for larger n we 

deemed full enumeration infeasible. The number of such rectangles is given in Table 19, sorted by the 

order of the autotopism groups. 

In Table 20 we give the number of such rectangles that are compatible with some proper double array. 

The maximum number of columns which are compatible with a double array is 2. Among the resulting 

non-isotopic double arrays for (7, 3, 1) and (7, 4, 2), we see three different double arrays, when taking 

transposes into account. The rectangles in Figure 14 are examples where the two compatible columns 

yield non-isotopic arrays, as indicated by subscripts. 

(n, k, �) # compatible TILR # compatible columns # DA 

(7,3,1) 6 8 2 

(7,4,2) 97 104 2 

Tab. 20: The number of triple-intersection Latin rectangles (TILR giving proper double arrays. 

For triple-intersection Latin rectangles we have also found two examples which are compatible with 

proper sesqui arrays, as indicated in Table 21. We also found transposes of proper sesqui arrays in the 

case 4 × 7, as indicated in Table 22, and here the maximum number of compatible columns was three. We 

include all the resulting sesqui arrays here (in normalized form) in Figures 15 and 16, since such arrays 
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0 1 2 3 4 5 6 

1 2 0 5 3 6 4 

2 3 4 6 0 1 5 

3 4 5 2 6 0 1 

D2 D1 

0 1 2 3 4 5 6 

1 0 3 5 6 4 2 

2 3 4 6 0 1 5 

D1 D3 

Fig. 14: Two examples of triple-intersection Latin rectangles with two columns that are compatible with non-isotopic 

proper double arrays. Subscripted D indicate the resulting non-isotopic double arrays, taking transposes into account. 

are scarce in the literature. We note that we only fnd two non-isotopic sesqui arrays S1 and S2, when 

taking transposes into account, and that S1 in fact recurs from Figure 5(b). 

(n, k, �) # compatible TILR # compatible columns # SA 

(7,3,1) 2 2 2 

(7,4,2) 0 0 0 

Tab. 21: The number of triple-intersection Latin rectangles (TILR) giving proper sesqui arrays. 

(n, k, �) # compatible TILR # compatible columns # SAT 

(7,3,1) 0 0 0 

(7,4,2) 73 78 2 

Tab. 22: The number of triple-intersection Latin rectangles giving transposes of proper sesqui arrays. 

6 Concluding remarks 
With the computing time and storage available to us at present, we have exhausted the possibilities of 

complete enumeration of Youden rectangles. A further line of inquiry might be to enumerate some re-

stricted class of Youden rectangles, satisfying some stronger conditions. Such conditions would have to go 

beyond the structure of the symbol intersections between columns, since by only employing the balance 

condition, we can only distinguish between non-isotopic SBIBDs. 

The new class of objects which we have named near Youden rectangles (with only two column inter-

section sizes �1 and �2) shows some promise with regard to two desirable properties. First, they exist 

for far more parameter combinations than Youden rectangles. Second, they always have pairs of symbols 

covered either �1 or �2 times where |�1 − �2| = 1, so it may be expected that they perform reasonably 

well regarding statistical optimality. In a sense, they are as balanced as they can be. Investigating the 

statistical properties of these designs is beyond the scope of this paper. 

In relation to near Youden rectangles, we would like to pose the following question: 

Question 6.1. For which combinations of k and n do near Youden rectangles exist? 

As we noted earlier a result by Brown [8] implies that for n = 17, k = 6 a near Youden rectangle does 

not exist. 
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0 1 2 3 4 5 6 0 1 2 3 4 5 6 

1 2 0 4 5 6 3 
0 1 3 4 

1 2 4 0 5 6 3 
0 1 3 4 

2 3 4 5 6 1 0 
1 2 4 5 

2 3 1 4 6 0 5 
1 2 4 5 

2 3 5 0 2 0 5 3 
S1 S2 

(a) S1 (b) S2 

Fig. 15: The triple-intersection Latin rectangles of size 3 × 7 that give proper sesqui arrays, together with the corre-

sponding sesqui arrays. 

0 1 2 3 4 5 6 

1 0 3 4 5 6 2 

2 3 5 6 0 1 4 

3 4 6 5 2 0 1 

S1 S1 S2 (b) ST 
1

(c) ST 
2 

Fig. 16: Example of a triple-intersection Latin rectangle of size 4 × 7 that gives transposes of proper sesqui arrays 

for three compatible columns, together with the corresponding non-isotopic transposed sesqui arrays ST 
1 and S T 

2 . 

In relation to triple, double and sesqui arrays, we would like to pose the following questions: 

Question 6.2. For a given set of parameters, how many double arrays are there that cannot be constructed 

from any Youden rectangle by removing a column and all the symbols in that column, and then exchanging 

the roles of symbols and columns? 

Question 6.3. For a given set of parameters, can every double, triple, and (transpose of) sesqui array be 

obtained from a Youden rectangle or a triple-intersection Latin rectangle by Construction 5.2? 

Here one could of course extend the set of allowed intersection sizes in the Latin rectangle all the way 

up to k, so the focus is on whether a small span of intersection sizes suffces. 

We hope to return to these questions in future work. 
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