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Abstract: Phytoestrogens have been suggested to have an anti-proliferative role in prostate cancer,
potentially by acting through estrogen receptor beta (ERβ) and modulating several hormones. We
primarily aimed to investigate the effect of a phytoestrogen intervention on hormone concentrations
in blood depending on the ERβ genotype. Patients with low and intermediate-risk prostate cancer,
scheduled for radical prostatectomy, were randomized to an intervention group provided with
soybeans and flaxseeds (∼200 mg phytoestrogens/d) added to their diet until their surgery, or a
control group that was not provided with any food items. Both groups received official dietary
recommendations. Blood samples were collected at baseline and endpoint and blood concentrations
of different hormones and phytoestrogens were analyzed. The phytoestrogen-rich diet did not affect
serum concentrations of testosterone, insulin-like growth factor 1, or sex hormone-binding globulin
(SHBG). However, we found a trend of decreased risk of increased serum concentration of estradiol
in the intervention group compared to the control group but only in a specific genotype of ERβ
(p = 0.058). In conclusion, a high daily intake of phytoestrogen-rich foods has no major effect on
hormone concentrations but may lower the concentration of estradiol in patients with prostate cancer
with a specific genetic upset of ERβ.

Keywords: prostate cancer; phytoestrogens; isoflavones; lignans; testosterone; estradiol; sex hormone-
binding globulin; insulin-like growth factor 1
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1. Introduction

The natural cause of prostate cancer is varying and, in some ways, poorly understood,
and several hormones are believed to play a role in the prostate and the development of the
disease. Firstly, androgens, especially testosterone, have been shown to play a vital function
in the prostate [1]. Testosterone is converted to dihydrotestosterone (DHT) in the prostate,
and transcriptional activity can be exerted by DHT binding to the androgen receptor, which
is important in the progression of prostate cancer [2]. Secondly, sex hormone-binding
globulin (SHBG) is a transport glycoprotein for steroid hormones with the highest affinity
for androgens in the prostate [3]. Thirdly, insulin-like growth factor 1 (IGF-1) regulates
the growth and development of several tissues in the body, including the prostate [4].
Nevertheless, studies have found conflicting results regarding the association between
serum concentrations of testosterone [5], SHBG [5,6], and IGF-1 [4] and the development of
prostate cancer. Lastly, estrogen receptor alpha and estrogen receptor beta (ERβ) have been
associated with proliferative and anti-proliferative effects in prostate cancer, respectively [7].

Phytoestrogens are plant compounds with structural similarities to estrogens, espe-
cially estradiol, that can both induce or inhibit estrogenic effects due to their high binding
affinity to ERβ [8,9]. By binding to the ERβ, phytoestrogens may increase prostate cancer
differentiation [10,11], not only directly, but also by downregulating the androgen receptor
and thus androgen-driven proliferation. Phytoestrogens are divided into three main classes:
isoflavones (e.g., daidzein, genistein, glycitein), which can be found in soybeans; lignans
(e.g., secoisolariciresinol, lariciresinol), which can be found in flaxseeds; and coumestans
(e.g., coumestrol), which can be found in bean sprouts [8,12]. Isoflavones and lignans are
metabolized by the gut microbiota [12]. Equol is formed from daidzein and secoisolari-
ciresinol, and plant lignans are converted to the mammalian lignan enterodiol, which is
subsequently transformed into enterolactone by the gut microbiota. The metabolism of
phytoestrogens may depend on factors impacting the gut microbiota, e.g., the intake of
antibiotics [13].

An increased intake of phytoestrogens has been associated with a decreased incidence
of prostate cancer in some studies [14]. In patients with prostate cancer, several studies
suggest an association between an increased intake of phytoestrogens and potentially
positive effects in terms of, e.g., reduced proliferation markers [15–18]. Some studies have
also found effects of phytoestrogens on hormone blood concentrations, such as testosterone,
estradiol, and IGF-1 [18–20]. However, the results are heterogeneous, and the scientific
evidence is insufficient to advise patients with prostate cancer to increase their intake of
phytoestrogens [21]. In our previous case-control study, we observed that a high intake
of phytoestrogens reduced the risk of prostate cancer in men with a specific polymorphic
variation (TC/CC carriers) in the promoter region of ERβ [22]. These findings prompted
us to investigate the hypothesis that this genotype of ERβ had a favorable effect when
patients with prostate cancer increased their intake of phytoestrogens and the potential
mechanism of hormones in this. Here, we primarily investigated the effect of a diet rich
in phytoestrogens on hormone concentrations in blood depending on the genotype of
ERβ. Secondarily, we investigated concentrations of phytoestrogens in the blood and the
relationships between phytoestrogen and hormone concentrations in blood.

2. Materials and Methods
2.1. Study Population and Study Design

The design of the PRODICA (the impact of DIet and individual genetic factors on
tumor proliferation rate in men with PROstate CAncer) study and the randomization
process have been described in detail elsewhere [23]. Men diagnosed with prostate cancer
cT1–cT2 (prostate-specific antigen (PSA) < 20, International Society of Urological Pathology
(ISUP) grade < 4) and scheduled for radical prostatectomy were invited to participate in
the study at the Department of Urology at Sahlgrenska University Hospital in Gothenburg,
Sweden. Patients with ongoing hormone therapy, physical or psychiatric disorders, cog-
nitive dysfunction, and allergy to the intervention foods were not included in the study.
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During the inclusion meeting, the participants met a dietitian from the study administra-
tion, filled out a questionnaire, height and weight were measured, and blood samples were
collected before they were randomized to an intervention or a control group (Figure 1).
The study dietitian used an envelope containing folded notes, half for the intervention
group and the other half for the control group, to randomize the participants. Within
seven days before the time of surgery, blood samples were collected, and the participants
were instructed to fill out a similar questionnaire in proximity to the time of surgery
(preferably 1 to 2 days before). The study period aimed to be at least 6 weeks, but for
some patients the surgery was scheduled earlier. Nevertheless, patients with at least two
weeks to scheduled surgery were included in the study. However, if already included
patients had surgery within two weeks after the inclusion, they were not excluded from
the study. The patients were recruited between 1 February 2016, and 12 October 2022, and
the last blood sample was collected in November 2022. In the PRODICA study, tumor
proliferation is the primary outcome and hormone concentrations are predeclared sec-
ondary outcomes [23]. The study was registered at ClinicalTrials.gov (NCT02759380, https:
//clinicaltrials.gov/ct2/show/NCT02759380?cond=NCT02759380&draw=2&rank=1; ac-
cessed on 26 March 2023) on 3 May 2016 after our pilot study (n = 10) was finished.
Except for some administrative changes, we made no major changes to the study pro-
tocol after the pilot study [23]. The study was approved by the Ethical Review Board
in Gothenburg (registration number 410–14, amendment numbers T124-15; 2020-02471;
2021-03320, 2021-05878-02).
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Figure 1. Design of the PRODICA (the impact of DIet and individual genetic factors on tumor
proliferation rate in men with PROstate CAncer) study. During the inclusion meeting, participants
were randomized to an intervention or a control group, filled out a questionnaire, and blood samples
were collected. A similar questionnaire was filled out and blood samples were collected again within
seven days before the time of surgery. The intervention was intended to last approximately 6 weeks.

2.2. Intervention and Control Diets

Both groups received written dietary recommendations based on the national dietary
guidelines issued by the Swedish National Food Agency [24]. The dietitian went through
the guidelines orally with the participants at the inclusion meeting. The participants were
instructed to avoid dietary supplements, but no other dietary restrictions were given.
During the inclusion meeting, the participants in the intervention group were provided
with the amounts of soybeans and flaxseeds that were planned to suffice until the scheduled
surgery. The participants received a schedule on the amounts of the intervention foods to

https://clinicaltrials.gov/ct2/show/NCT02759380?cond=NCT02759380&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT02759380?cond=NCT02759380&draw=2&rank=1
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eat [23], serving suggestions, and recipes. Intake of the food items was gradually increased
during the first nine days and thereafter included a daily intake of 28 g flaxseeds, 47 g
green soybeans, and 28 g roasted yellow soybeans (corresponding to an estimated amount
of 100 mg isoflavones and 100 mg of lignans and thus 200 mg of phytoestrogens [25]).
Participants randomized to the intervention groups among the first 18 participants received
crushed flaxseeds, but thereafter participants received whole flaxseeds instead due to the
content of cyanogenic glycosides in flaxseeds [26], as explained in detail elsewhere [23].
Both groups were aware of which group they were allocated to, but the control group did
not know what the intervention diet consisted of.

2.3. Blood Samples

Blood samples were collected and handled according to standard procedures [23]
and were thereafter stored at −80 ◦C before being sent for genotyping analysis (whole
blood), analysis of hormones (serum), and analysis of phytoestrogens (plasma). Analysis
and selection of single nucleotide polymorphisms of the ERβ gene were performed in
whole blood to assign each participant to the genotype of either TT, TC, or CC, as described
elsewhere [22,23]. Plasma concentrations of phytoestrogens were analyzed at Aarhus
University (Aarhus, Denmark) using LC-MS/MS measurements performed on a microLC
200 series (Eksigent/AB Sciex, Redwood City, CA, USA) and QTrap 5500 mass spectrometer
(AB Sciex, Framingham, MA, USA) [27,28] with a coefficient of variation (CV) varying
between 4.6% and 8.6% depending on the analyte. Quality control samples were used to
calculate intra- and inter-batch CV. The chemical structures of the analyzed phytoestrogens
are shown in Figure 2. The concentrations of estradiol, testosterone, SHBG, and IGF-1
were analyzed using the serum samples at the Department of Clinical Chemistry (Halland
Hospital in Halmstad and Varberg, Sweden) according to their standard clinical protocol,
described elsewhere [23]. However, the standard protocol for IGF-1 changed during the
study period, and the first 104 participants were analyzed using sandwich enzyme-linked
immunosorbent assay (ELISA), and the rest of the participants by sandwich assay on a
Cobas 8000 (Hitachi High-Tech Corporation, Tokyo, Japan) analyzer series (reagent: Roche
Diagnostics GmbH, Mannheim, Germany). All executors of the analyses received coded
samples and were blinded to whether the samples belonged to the intervention or the
control groups.
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2.4. Statistical Analysis

Stata/SE version 17.0 (StataCorp LLC, College Station, TX, USA) was used for statisti-
cal analysis. Analyses of demographics, serum concentrations of hormones, and plasma
concentrations of phytoestrogens were stratified according to the genotype of ERβ, and
differences were tested between the genotypes within the intervention and control groups
and between the intervention and the control groups with the same genotype. An indepen-
dent t-test was used to test differences in normally distributed data and the Mann–Whitney
U test or the Kruskal–Wallis test for non-normally distributed data. The Shapiro–Wilk test
was used for guidance to test if the data were normally distributed. All analyses included
only participants with data available from both baseline and endpoint blood samples.

To investigate changes in hormone concentrations between baseline and endpoint,
we dichotomized hormone changes into increased concentrations (1) and unchanged or
decreased concentrations (0) between baseline and endpoint. Then, the dichotomized
variables were used as outcomes in a generalized linear model providing estimates of the
risk difference (RDs) and corresponding 95% confidence intervals (CIs) of the difference be-
tween the intervention and control groups. These analyses were stratified by ERβ genotype
and adjusted for body mass index (BMI), age, and smoking. Additive interactions between
the ERβ genotype and intake of phytoestrogens on increased hormone concentrations
were tested.

A linear regression was used to investigate the relationships between plasma concen-
trations of phytoestrogens (explanatory variables) and serum concentrations of hormones
(outcomes). The regression model was stratified according to the intervention and control
groups and adjusted for body mass index (BMI), age, and smoking. Due to skewed data,
the hormone and phytoestrogen concentrations were logarithmized in the linear regression
using the natural logarithm.

In the analysis of plasma concentrations of phytoestrogens, we compared users and
non-users (including participants who reported “do not know”) of antibiotics over the
last five years and different intervention lengths (<28, 28–56, >56 days). In a subgroup
analysis, the concentrations of different lignans were stratified in participants receiving
crushed and whole flaxseed. For considered confounding variables, BMI was categorized as
underweight (<18.5 kg/m2), normal weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2),
obese class 1 (30–34.9 kg/m2), and obese class ≥ 2 (≥35 kg/m2) [30]. Age was categorized
in ≥median of the study population and <median of the study population. Intake of
antibiotics was categorized as 0 (non-users) if the participants reported in the questionnaire
that they did not know or had no intake of antibiotics during the intervention and the
recent five years. A reported intake of antibiotics, at least once during the intervention or
the recent five years, was categorized as 1 (users). Smoking was categorized as current
smoker (1) and nonsmoker (0). If a participant had quit smoking ≤5 years ago he was
categorized as a current smoker, and if he quit smoking >5 years ago he was categorized as
a nonsmoker.

3. Results
3.1. Population and Baseline Characteristics

Of 195 invited men, 55 patients declined to participate, with the main reasons being
occupied or unwillingness to participate in the inclusion meeting (mainly due to long travel
times) (Figure 3). In total, 140 participants were randomized to either the intervention
(n = 71) or the control (n = 69) groups. Of these, 135 participants completed the blood
sample at endpoint (intervention n = 68, control n = 67). Five participants (intervention n = 3,
control n = 2) did not complete the intervention; two participants in the intervention group
experienced gastrointestinal problems from the intervention foods and the participants in
the control group did not state a reason. In total, seven participants in the intervention
group reported gastrointestinal symptoms, and of those, five completed the intervention.
Other adverse effects of the intervention foods were reported by three participants and
were of different kinds.
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The participants’ median age was 66 years (IQR 11; range 40–76) and the median
study period was 47 days (IQR 33, range 7–583; Table 1). At the time of diagnosis, most
participants had an ISUP grade of 2 and a tumor stage of T1c. At baseline, participants in the
intervention group had a higher BMI, a lower level of physical activity, and a higher tumor
stage, and there were less users of antibiotics in the recent years compared to participants
in the control group (Table 1).

Table 1. Demographics of the patients included in the PRODICA 1 study.

Intervention (n = 68) Control (n = 67)

Genotype TT 2

(n = 35)
Genotype TC/CC 2

(n = 33)
Genotype TT 2

(n = 26)
Genotype TC/CC 2

(n = 41)

Median
(IQR) Range Median

(IQR) Range Median
(IQR) Range Median

(IQR) Range

Age, years 65 (13) 51–76 67 (8) 43–76 66 (10) 51–74 65 (10) 40–75
Intervention period, d 47 (46) 12–189 48 (28) 7–146 46 (27) 8–213 47 (29) 14–583

BMI, kg/m2 27.8 (5.2) 21.7–37.4 28.1 (4.7) 21.3–35.1 26.0 (3.9) 20.0–40.0 25.5 (3.8) 20.6–33.3

n(%) n(%) n(%) n(%)

Tumor stage at diagnosis
cT1 20 (57) 20 (61) 14 (54) 31 (76)
cT2 15 (43) 12 (36) 10 (38) 10 (24)
cTX 0 (0) 1 (3) 2 (8) 0 (0)

ISUP grade at diagnosis
1 11 (31) 14 (42) 10 (38) 19 (46)
2 19 (54) 15 (45) 11 (42) 19 (46)
3 5 (14) 4 (12) 5 (19) 3 (7)

Physical activity 3

Low 6 (17) 8 (24) 2 (8) 4 (10)
Moderate 19 (54) 16 (48) 17 (65) 19 (46)

High 10 (29) 9 (27) 7 (27) 18 (44)
Heredity

Yes 13 (37) 12 (36) 7 (27) 14 (34)
No 9 (26) 10 (30) 4 (15) 14 (34)

Do not know 13 (37) 11 (33) 15 (58) 13 (32)
Antibiotic treatment last

year
Yes 12 (34) 7 (21) 11 (42) 11 (27)
No 22 (63) 25 (76) 15 (58) 29 (71)

Do not know 1 (3) 1 (3) 0 (0) 1 (2)
Antibiotic treatment last

2–5 years
Yes 14 (40) 10 (30) 13 (50) 22 (54)
No 19 (54) 17 (52) 12 (46) 14 (34)

Do not know 2 (6) 6 (18) 1 (4) 5 (12)
Antibiotic treatment

during the
intervention, n (%)

Yes 1 (3) 3 (9) 3 (12) 4 (10)
No 34 (97) 30 (91) 23 (88) 36 (88)

Missing, n (%) 0 (0) 0 (0) 0 (0) 1 (2)
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Table 1. Cont.

Intervention (n = 68) Control (n = 67)

Genotype TT 2

(n = 35)
Genotype TC/CC 2

(n = 33)
Genotype TT 2

(n = 26)
Genotype TC/CC 2

(n = 41)

Median
(IQR) Range Median

(IQR) Range Median
(IQR) Range Median

(IQR) Range

Smoking
Currently 2 (6) 1 (3) 1 (4) 2 (5)
Previously 16 (46) 17 (52) 12 (46) 21 (51)

Never 17 (49) 15 (45) 13 (50) 18 (44)
1 The impact of DIet and individual genetic factors on tumor proliferation rate in men with PROstate CAncer. 2

Participants were assigned to the genotype TT, TC, or CC of the estrogen receptor beta. 3 Activity in the daytime:
sedentary (100 p); partly sedentary, sitting, and walking (200 p); mostly standing and walking (300 p), physical
labor (400 p). Physical activity in the evening time: sedentary (1 p), slight activity—equal to a 30-min walk (2 p);
moderately strenuous activity—equal to a bike ride of ≥30 min (3 p); sports activity (4 p). Low physical activity:
101–103, 201 p; moderate physical activity: 104, 202–203, 301–302 p; high physical activity: 204, 303–304, 401–404
p. Abbreviations: ISUP, International Society of Urological Pathology.
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3.2. Effects of the Intervention Diet on Hormone Concentrations

Besides higher concentrations of estradiol at baseline in the intervention group com-
pared to the control group in participants with the TT genotype of ERβ, there were no
statistically significant differences in hormone serum concentrations between the interven-
tion and control groups at any time points (Table 2). Within the intervention group, we
found a decreased concentration of SHBG in participants with the TC/CC genotype in
comparison with participants with the TT genotype who increased their concentrations.
We found no effect of the intervention diet on the risk of increasing different hormone
serum concentrations between baseline and endpoint, except for estradiol. There was a
trend of decreased risk of increased serum concentration of estradiol in the intervention
group compared to the control group but only in participants with the TC/CC genotype
(RD −22%, p = 0.058, Table 3).
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Table 2. Serum concentrations of hormones in the intervention and control groups in patients with prostate cancer, stratified by the genotype of estrogen receptor beta.

Intervention (n = 68) Control (n = 67) p 1

Genotype TT 2

(n = 35)
Genotype TC/CC 2

(n = 33)
Genotype TT 2

(n = 26)
Genotype TC/CC 2

(n = 41) TT TC/CC

Median (IQR) Range Median (IQR) Range p 3 Median (IQR) Range Median (IQR) Range p 3

Testosterone
(nmol/L)
Baseline 15.3 (6.6) 9.6–30.1 15.0 (6.4) 5.1–26.2 0.710 5 15.6 (6.3) 8.0–22.7 14.9 (7.5) 8.4–32.6 0.889 0.521 5 0.699 5

Endpoint 14.8 (4.9) 6.9–22.6 14.2 (6.4) 5.1–30.0 0.566 5 14.4 (6.7) 7.3–26.0 15.8 (8.8) 5.4–30.5 0.331 5 0.483 5 0.362 5

Change 4 −0.5 (3.7) −10.1–13.0 0.2 (4.8) −9.0–9.0 0.854 5 −0.8 (2.0) −8.1–9.6 −0.6 (3.8) −7.7–18.3 0.648 0.814 0.865
Estradiol (nmol/L)

Baseline 0.099 (0.034) 0.069–0.18 0.10 (0.029) 0.040–0.18 0.273 0.090 (0.040) 0.049–0.15 0.092 (0.040) 0.030–0.32 0.500 0.0137 5 0.546
Endpoint 0.10 (0.048) 0.045–0.18 0.10 (0.034) 0.048–0.16 0.9735 0.088 (0.035) 0.023–0.15 0.10 (0.061) 0.033–0.35 0.149 0.0625 5 0.727
Change 4 −0.0050 (0.027) −0.050–0.055 0.0 (0.026) −0.038–0.048 0.0725 −0.0015 (0.027) −0.026–0.034 0.0050 (0.032) −0.046–0.089 0.159 0.679 5 0.657 5

SHBG (nmol/L)
Baseline 49.0 (25.0) 28.0–114.0 45.0 (25.0) 21.0–110.0 0.640 50.0 (22.0) 19.0–94.0 48.0 (32.0) 22.0–126.0 0.947 0.848 0.744
Endpoint 51.0 (22.0) 28.0–113.0 41.0 (22.0) 20.0–96.0 0.0982 50.5 (29.0) 24.0–96.0 51.0 (33.0) 20.0–112.0 0.797 0.980 0.273
Change 4 1.0 (8.0) −25.0–16.0 −2.0 (10.0) −29.0–13.0 0.00390 0.0 (6.0) −12.0–21.0 −2.0 (8.0) −20.0–25.0 0.189 0.502 0.418

IGF−1 (µg/L)
Baseline 126.0 (62.0) 75.0–280.0 138.0 (56.0) 60.0–276.0 0.915 166.5 (44.0) 90.0–274.0 146.0 (64.0) 68.0–381.0 0.173 0.0973 0.536
Endpoint 135.0 (57.0) 82.0–304.0 151.0 (64.0) 59.0–266.0 0.819 161.0 (81.0) 90.0–253.0 153.0 (85.0) 63.0–340.0 0.864 0.301 0.499 5

Change 4 −1.0 (18.0) −25.0–124.0 7.0 (23.0) −66.0–41.0 0.281 −0.5 (26.0) −65.0–54.0 7.0 (31.0) −45.0–55.0 0.232 0.656 0.955 5

Testosterone/SHBG
ratio

Baseline 0.33 (0.10) 0.14–0.55 0.32 (0.080) 0.16–0.49 0.826 5 0.30 (0.099) 0.18–0.67 0.32 (0.12) 0.17–0.56 0.426 0.319 0.828 5

Endpoint 0.30 (0.12) 0.17–0.58 0.33 (0.12) 0.19–0.59 0.215 5 0.28 (0.11) 0.17–0.47 0.32 (0.12) 0.17–0.60 0.0705 0.380 0.773
Change 4 0.011 (0.090) −0.19–0.17 −0.0023 (0.088) −0.12–0.094 0.0734 5 0.012 (0.068) −0.092–0.26 0.00043 (0.067) −0.29–0.12 0.145 0.789 0.462

Testosterone/estradiol
ratio

Baseline 134.9 (37.4) 0.09–311.1 140.5 (77.8) 0.09–348.5 0.637 166.1 (75.6) 0.1–346.2 155.0 (12.6) 0.09–380.0 0.280 0.0697 0.854
Endpoint 149.3 (69.9) 0.1–322.2 140.4 (84.0) 0.083–321.7 0.678 164.1 (102.1) 0.1–487.0 138.8 (127.1) 0.09–356.4 0.242 0.107 0.681
Change 4 0.07 (46.4) −70.1–68.9 −6.4 (40.7) −95.0–54.6 0.127 5 −5.2 (48.4) −106.3–225.7 −2.8 (26.1) −116.4–108.3 0.934 0.438 0.417

1 Difference between the intervention and control groups within the same genotype of the estrogen receptor beta. 2 Participants were assigned to the genotype of either TT, TC, or CC of
the estrogen receptor beta. 3 Difference between genotypes within the intervention and control groups. 4 The median difference between endpoint and baseline. 5 An independent T-test
test was used to compare groups depending on the normal distribution. The Mann–Whitney U test was used to compare groups, except when noted otherwise. Abbreviations: IGF-1,
insulin-like growth factor 1; SHBG, sex hormone binding globulin.
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Table 3. Risk differences (RDs) with 95% confidence intervals (CIs) for the risk of increasing different
hormone concentrations between baseline and endpoint, in relation to intake of phytoestrogens,
stratified by estrogen receptor beta genotype (TT or TC/CC).

Hormone Concentrations
(nmol/L) RD 95% CI Adjusted 1

RD
Adjusted 1

95% CI
p Additive
Interaction

Testosterone All cases (n = 135) 0.083 −0.84, 0.25 0.067 −0.10, 0.23 0.792
TT (n = 61) 0.12 −0.12, 0.36 0.099 −0.14, 0.34

TC/CC (n = 74) 0.076 −0.15, 0.30 0.073 −0.16, 0.31
Estradiol All cases (n = 135) −0.11 −0.28, 0.057 −0.13 −0.30, 0.045 0.424

TT (n = 61) −0.013 −0.26, 0.23 −0.027 −0.27, 0.22
TC/CC (n = 74) −0.15 −0.37, 0.076 −0.22 −0.45, 0.071

SHBG All cases (n = 135) 0.038 −0.13, 0.20 0.030 −0.14, 0.20 0.149
TT (n = 61) 0.15 −0.10, 0.40 0.13 −0.12, 0.37

TC/CC (n = 74) −0.093 −0.30, 0.12 −0.11 −0.33, 0.011
IGF-1 All cases (n = 135) −0.038 −0.21, 0.13 −0.028 −0.20, 0.14 0.386

TT (n = 61) −0.090 −0.34, 0.16 −0.076 −0.31, 0.15
TC/CC (n = 74) 0.057 −0.16, 0.28 0.068 −0.16, 0.30

Testosterone/SHBG ratio All cases (n = 135) 0.0061 −0.16, 0.17 0.027 −0.14, 0.20 0.632
TT (n = 61) 0.022 −0.21, 0.25 0.028 −0.20, 0.25

TC/CC (n = 74) −0.058 −0.29, 0.17 −0.083 −0.31, 0.15
Testosterone/estradiol ratio All cases (n = 135) 0.097 −0.068, 0.26 0.081 −0.090, 0.25 0.458

TT (n = 61) 0.15 −0.10, 0.40 0.13 −0.12, 0.39

TC/CC (n = 74) 0.022 −0.20, 0.24
−0.0050 2

0.0011 3

0.024 4

−0.21, 0.22 2

−0.21, 0.21 3

−0.21, 0.25 4

1 Analyses were adjusted for BMI (kg/m2) (≤18.5; 18.5 to <25; 25 to <30; 30 to <35; ≥35), age (≥median, <median),
and smoking (1 = current smoker or quit smoking ≤5 years ago; 0 = nonsmoker or quit smoking >5 years ago).
2 The analysis did not converge and was therefore only adjusted for BMI and smoking. 3 The analysis did
not converge and was therefore only adjusted for age and smoking. 4 The analysis did not converge and was
therefore only adjusted for BMI and age. Abbreviations: IGF-1, insulin-like growth factor 1; SHBG, sex hormone
binding globulin.

3.3. Plasma Concentrations of Phytoestrogens

There were no differences in the plasma concentrations of phytoestrogens at baseline
between the intervention and control groups (Figure 4). The plasma concentrations of
enterolactone, enterodiol, secoisolariciresinol, daidzein, genistein, glycitein, and equol were
statistically significantly higher in the intervention group compared to the control group
at endpoint. Participants in the intervention group increased their concentrations of these
phytoestrogens during the study period compared to participants in the control group
whose concentrations were maintained or reduced (Table 4). None of the participants had
detectable concentrations of equol at baseline, and only ten participants (20%) in the inter-
vention group and one participant in the control group (2%) had detectable concentrations
at endpoint (Table 4).

Non-users of antibiotics had higher median values of genistein and daidzein at base-
line. We found no differences in median values between users and non-users of antibiotics
at endpoint or for the change between endpoint and baseline. When the change in different
concentrations of phytoestrogens was compared depending on different intervention dura-
tions, no difference was found between the three different durations. Stratified analyses of
participants receiving crushed and whole flaxseed showed no difference in plasma concen-
trations for enterodiol and enterolactone at any time point (Table S1). However, participants
who received crushed flaxseeds had a higher change between baseline and endpoint in
plasma concentration of secoisolariciresinol compared to those receiving whole flaxseeds.
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Table 4. Plasma concentrations of phytoestrogens in the intervention and control groups in patients with prostate cancer, stratified by the genotype of estrogen
receptor beta.

Intervention (n = 51) Control (n = 54) p 1

Genotype TT 2 (n = 26) Genotype TC/CC 2 (n = 25) Genotype TT 2 (n = 24) Genotype TC/CC 2 (n = 30) TT TC/CC

Plasma
Concentrations

(nmol/L)
Median (IQR) Range Median

(IQR) Range p 3 Median
(IQR) Range Median

(IQR) Range p 3

Lariciresinol
Baseline 4.9 (4.1) 1.8–17.0 5.2 (4.2) 1.7–20.6 0.797 5.9 (2.5) 3.1–12.2 5.7 (6.5) 2.0–17.9 0.833 0.718 0.654
Endpoint 6.5 (4.9) 2.6–12.0 6.0 (6.0) 2.4–16.4 0.374 6.1 (5.5) 1.2–18.4 4.6 (4.9) 0.0–15.6 0.419 0.473 0.463
Change 4 1.9 (5.8) −11.0–8.5 −0.02 (4.3) −10.4–7.1 0.449 0.02 (5.8) −6.7–11.8 −1.3 (5.1) −12.4–5.3 0.138 0.481 0.164

Secoisolariciresinol
Baseline 6.5 (7.1) 0.8–26.7 5.7 (5.5) 0.6–103.1 0.664 6.0 (8.6) 1.5–61.1 6.2 (6.9) 1.8–31.0 0.883 0.859 0.507
Endpoint 13.9 (17.9) 2.2–80.8 10.4 (9.9) 1.2–108.3 0.275 5.5 (11.0) 1.8–29.6 4.8 (4.5) 0.9–41.6 0.766 0.0094 0.0314
Change 4 5.0 (21.4) −17.2–78.5 4.2 (11.1) −90.3–98.5 0.647 0.08 (6.5) −50.1–26.8 −0.8 (5.2) −25.4–18.9 0.506 0.0068 0.0045

Enterodiol
Baseline 7.0 (10.2) 0.8–122.0 5.7 (15.1) 0.6–584.5 0.507 7.7 (23.0) 1.2–175.0 4.5 (6.9) 0.4–81.9 0.0932 0.683 0.694
Endpoint 25.5 (37.5) 4.3–880.3 32.0 (122.4) 1.2–1526.1 0.604 8.8 (11.6) 0.5–691.3 4.5 (9.4) 0.2–82.6 0.244 <0.001 <0.001
Change 3 11.7 (32.6) −87.9–876.8 17.1 (92.3) −330.8–1501.2 0.395 −1.6 (14.6) −114.1–683.5 −0.2 (5.7) −52.0–77.4 0.264 0.0014 0.0014

Enterolactone
Baseline 113.6 (123.0) 10.7–348.7 71.2 (107.5) 5.2–321.8 0.207 107.4 (144.3) 8.6–517.7 66.0 (69.0) 8.4–393.7 0.115 0.981 0.923
Endpoint 213.0 (404.8) 0.8–1348.2 175.4 (371.7) 5.3–1172.1 0.344 78.8 (123.6) 4.5–578.8 78.1 (91.0) 15.8–231.9 0.572 <0.001 0.0048
Change 4 109.1 (364.4) −218.2–1264.5 109.1 (270.7) −215.0–1052.0 0.993 −29.2 (92.9) −168.3–446.0 −22.2 (61.9) −213.9–203.8 0.714 0.0013 <0.001
Daidzein
Baseline 40.3 (112.1) 0.0–477.8 32.4 (53.0) 0.0–1257.5 0.426 16.4 (46.7) 0.0–349.0 33.3 (94.7) 0.0–453.0 0.776 0.372 0.792
Endpoint 579.2 (796.6) 0.0–2096.7 250.0 (819.4) 0.0–3688.4 0.384 10.2 (23.4) 0.0–153.0 32.3 (38.3) 0.0–157.7 0.124 <0.001 <0.001
Change 4 499.1 (790.5) −205.0–2093.2 132.3 (680.6) −89.1–3655.4 0.472 −7.6 (33.5) −308.9–135.7 −3.2 (66.9) −365.9–142.5 0.554 <0.001 <0.001
Genistein
Baseline 147.5 (325.1) 0.0–8798.1 68.1 (163.4) 0.0–2378.8 0.486 34.3 (150.6) 0.0–2335.0 43.8 (157.1) 0.0–2091.8 0.675 0.290 0.782
Endpoint 1055.5 (3141.7) 4.4–8075.1 474.9 (1378.7) 10.3–13,070.3 0.129 18.5 (127.4) 0.0–667.7 29.3 (79.9) 0.0–621.7 0.382 <0.001 <0.001
Change 4 668.6 (3003.5) −5060.9–8041.4 421.7 (692.8) −322.1–12,911.8 0.438 −13.6 (144.4) −1667.3–201.1 −14.2 (86.5) −1470.1–438.2 0.982 <0.001 <0.001
Glycitein
Baseline 0.0 (4.4) 0.0–29.2 0.0 (3.4) 0.0–174.3 0.853 0.0 (3.3) 0.0–29.6 0.0 (4.4) 0.0–40.0 0.905 0.834 0.678
Endpoint 20.9 (43.3) 0.0–87.9 14.4 (42.7) 0.0–287.4 0.406 0.0 (0.0) 0.0–6.1 0.0 (2.2) 0.0–13.2 0.130 <0.001 <0.001
Change 4 17.3 (47.5) −10.9–83.7 14.4 (40.0) −5.0–287.4 0.604 0.0 (3.3) −25.0–3.5 0.0 (4.1) −40.0–13.2 0.816 <0.001 <0.001

Equol
Baseline 0.0 (0.0) 0.0–0.0 0.0 (0.0) 0.0–0.0 1.000 0.0 (0.0) 0.0–0.0 0.0 (0.0) 0.0–0.0 1.000 1.000 1.000
Endpoint 0.0 (0.0) 0.0–1204.9 0.0 (0.0) 0.0–616.1 0.404 0.0 (0.0) 0.0–0.0 0.0 (0.0) 0.0–289.0 1.000 0.0290 0.0742
Change 4 0.0 (0.0) 0.0–1204.9 0.0 (0.0) 0.0–616.1 0.404 0.0 (0.0) 0.0–0.0 0.0 (0.0) 0.0–289.0 1.000 0.0290 0.0742

1 Difference between the intervention and control groups within the same genotype of the estrogen receptor beta. 2 Participants were assigned to the genotype of either TT, TC, or CC
of the estrogen receptor beta. 3 Difference between genotypes of the estrogen receptor beta within the intervention- and control groups. 4 The median difference between endpoint
and baseline.
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Figure 4. Boxplots showing plasma concentrations of different phytoestrogens (nmol/L) in the
intervention- (n = 51) and control groups (n = 54) in patients with prostate cancer at baseline and
endpoint. (A) Plasma concentrations of lariciresinol, secoisolariciresinol, and glycitein. (B) Plasma
concentrations of enterolactone, enterodiol, and equol. (C) Plasma concentrations of daidzein and
genistein. Concentrations of secoisolariciresinol, glycitein, enterolactone, enterodiol, equol, daidzein,
and genistein were statistically significantly higher in the intervention group compared to the control
group at the endpoint. The Mann–Whitney U test was used to test differences between groups.

3.4. The Relationship between Blood Concentrations of Phytoestrogens and Hormones

We found a relationship between higher plasma concentrations of lignans and higher
serum concentrations of SHBG, but it did not remain statistically significant after adjusting
for confounders. A 10% increase in plasma concentrations of lignans was associated with a
55% increase in serum concentrations of SHBG (p = 0.11; Table 5).
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Table 5. Linear regression analyses between plasma concentrations of phytoestrogens (explana-
tory variables) and serum concentrations of hormones (outcomes) in patients with prostate cancer
(n = 105).

Hormone Concentrations
(nmol/L)

Plasma
Concentrations of
Lignans 1 (nmol/L)

β (95% CI)

Plasma Concentrations
of Isoflavones 2 (nmol/L)

β (95% CI)

Plasma Concentrations
of Phytoestrogens 3

(nmol/L)
β (95% CI)

Testosterone Unadjusted 0.035 (−0.028, 0.099) 0.0071 (−0.024, 0.039) 4 0.013 (−0.034, 0.059)
Adjusted 5 0.029 (−0.034, 0.092) 0.0099 (−0.021, 0.041) 4 0.014 (−0.031, 0.059)

Estradiol Unadjusted 0.019 (−0.051, 0.089) −0.012 (−0.046, 0.022) 4 −0.013 (−0.064, 0.037)
Adjusted 5 0.026 (−0.044, 0.097) −0.015 (−0.050, 0.019) 4 −0.014 (−0.65, 0.036)

SHBG Unadjusted 0.071 (0.0013, 0.14) −0.0090 (−0.044, 0.026) 4 0.011 (−0.040, 0.062)
Adjusted 5 0.055 (−0.013, 0.12) −0.0048 (−0.038, 0.029) 4 0.010 (−0.039, 0.059)

IGF-1 Unadjusted 0.0065 (−0.049, 0.062) 0.012 (−0.015, 0.038) 4 0.0085 (−0.031, 0.048)
Adjusted 5 0.015 (−0.041, 0.071) 0.0095 (−0.017, 0.036) 4 0.0093 (−0.031, 0.049)

Testosterone/SHBG ratio Unadjusted −0.036 (−0.85, 0.014) 0.016 (−0.0082, 0.040) 4 0.0017 (−0.034, 0.038)
Adjusted 5 −0.026 (−0.075, 0.023) 0.015 (−0.0093, 0.039) 4 0.0038 (−0.031, 0.039)

Testosterone/estradiol ratio Unadjusted 0.016 (−0.057, 0.089) 0.019 (−0.016, 0.055) 4 0.026 (−0.026, 0.078)
Adjusted 5 0.0031 (−0.064, 0.070) 0.025 (−0.0071, 0.058) 4 0.028 (−0.019, 0.076)

1 Include lariciresinol, secoisolariciresinol enterolactone, and enterodiol. 2 Include daidzein, genistein, glycitein,
and equol. 3 Include isoflavones and lignans. 4 One participant is missing. 5 Analyses were adjusted for BMI
(kg/m2) (≤18.5; 18.5 to <25; 25 to <30; 30 to <35; ≥35), age (≥median, <median), and smoking (1 = current smoker
or quit smoking ≤5 years ago; 0 = nonsmoker or quit smoking >5 years ago). Samples of plasma and serum were
collected at endpoint. Hormone concentrations and phytoestrogen concentrations were logarithmized using the
natural logarithm. Abbreviations: β, beta-coefficient; IGF-1, insulin-like growth factor 1; SHBG, sex hormone
binding globulin.

4. Discussion

In this randomized controlled dietary intervention study of patients with prostate
cancer, an increased intake of phytoestrogens did not affect the serum of concentrations of
testosterone, SHBG, and IGF-1. However, a trend of decreased risk of increased concen-
tration of estradiol was found in participants with the TC/CC genotype of ERβ. In the
intervention group, participants with the TC/CC genotype decreased serum concentrations
of SHBG during the intervention compared to participants with the TT genotype, who
increased their concentrations.

In one of the genotype groups of ERβ, we found a trend of a decreased risk of
increasing estradiol concentration, comparing the intervention and control groups. This
is in contrast to another study that demonstrated an increase in plasma concentrations
of phytoestrogens and increased concentrations of serum estradiol, although the blood
concentrations of phytoestrogens were lower than in our study [19]. Hamilton-Reeves et al.
found higher urinary excretion of estradiol and 2-hydroxy estrogens to 16α-hydroxyestrone
(2:16 OH-E1) ratio with an isoflavone supplement compared to a control group [31]. A
higher 2:16 OH-E1 ratio has been associated with a reduced risk of prostate cancer [32].
However, 2:16 OH-E1 ratio was not analyzed in our study. A potential mechanism of
our result is that the increased intake of phytoestrogens resulted in negative feedback on
estradiol. To our knowledge, there is no study confirming this mechanism.

We did not find any effect of the phytoestrogen intervention on serum concentrations
of testosterone, IGF-1, and SHBG. This is in line with several other studies finding no effect
on blood concentrations of testosterone, IGF-1, and SHBG [15–17]. Other investigations
challenge these results with favorable effects on testosterone [18,19] and IGF-1 in African
American men [20]. These conflicting results can depend on the different doses and sources
of phytoestrogens used in the studies, varying effect-modifying factors, short duration of
interventions, and small sample sizes [21].

In the intervention group, the two genotype groups of ERβ had opposites effects
on SHBG concentration, participants with the genotype of TC/CC decreased their con-
centrations during the intervention, and participants with TT genotype increased their
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concentrations. This suggests that the genotype of ERβ may affect the serum concen-
trations of hormones. To our knowledge, this is the first study to investigate the effect
of phytoestrogens on serum hormones depending on the genotype of ERβ. ERβ has an
important role in, e.g., hormonal and protein regulation and transcription, and thus the
genotype of ERβ could play a role in these different responses [11]. Lee et al. found that
postoperative biochemical recurrence-free survival was worse for patients with higher
SHBG concentrations [33], suggesting a beneficial effect of the TC/CC genotype in prostate
cancer. Nevertheless, the impact of the genotype of ERβ needs to be further examined in
future studies.

We found that the intervention diet increased the plasma concentrations of several
phytoestrogens. Elevated plasma phytoestrogen concentrations have been confirmed in
similar intervention studies [19,34]. Daidzein and genistein are the main isoflavones in
soybeans [12], which explains why these compounds had the highest concentrations in
participants in the intervention group at endpoint. For isoflavones, few participants in
our study had detectable measures of equol. Previous studies have observed a higher
proportion (35%) of equol producers than ours in a general Caucasian population [35,36].
Our population’s reduced ability to metabolize equol may be caused by the fact that equol
or the ability to produce equol could be related to the development of prostate cancer [37].
We noticed that the intake of antibiotics affected some phytoestrogen concentrations at
baseline. This was probably because the intake of antibiotics impacted the intestinal
microbiota and negatively affected the phytoestrogen metabolism [13].

The strengths of this study include the randomized design and the fact that blood con-
centrations of phytoestrogens were measured. The results are also based on a large clinical
study with a low dropout rate. Even if the number of dropouts would be large enough to
affect the results, we do not expect the results of the participants who dropped out from
the study to differ from the rest of the study population. A limitation of the present study
is the change from crushed to whole flaxseeds, which probably decreased the absorption of
lignans [38]. This is confirmed by the higher change in concentrations of secoisolariciresinol
in participants who received crushed flaxseeds compared to those who received whole
flaxseeds. Another limitation is the wide range (1 to 83 weeks) of the duration of the inter-
vention depending on when the surgery was scheduled, as both very short and very long
intervention durations could have influenced the blood concentrations of phytoestrogens.
However, we did not find any difference in plasma concentrations when we stratified the
analysis after the intervention duration. Previous research observed half-lives of 2–11 h in
plant lignans and isoflavones and longer half-lives in their mammalian conversion prod-
ucts, likely because of continuous transformation by the gut microbiota [39,40]. Moreover,
the gut microbiota is important for the formation of enterolactone, enterodiol, and equol,
but we did not collect any stool samples or information on additional factors influencing
the metabolism of phytoestrogens (e.g., diseases or drugs influencing gut microbiota and
intake of prebiotics and probiotics) [12,41]. For the generalizability of the result, we lack
data on patients with high-grade prostate cancer, men without prostate cancer, and women.

In conclusion, our findings suggest that a high intake of phytoestrogens may lower the
concentration of estradiol in patients with prostate cancer with a specific genetic upset of
ERβ but does not affect serum concentrations of testosterone, IGF-1, and SHBG. However,
the effect on SHBG concentration differed across the ERβ genotype groups. The effect of
the genotype of ERβ on hormone concentrations in patients with prostate cancer should be
confirmed in future studies. Further research is needed to investigate whether elevated
plasma concentrations of phytoestrogens have a beneficial effect in terms of reduced tumor
proliferation and prolonged survival for patients with prostate cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15071792/s1, Table S1: Plasma concentrations of phytoestrogens
in the intervention group receiving crushed or whole flaxseeds in the PRODICA study.
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