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Applicability of the Klein-Gordon equation for pair production in vacuum and plasma
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In this paper, a phase-space description of electron-positron pair creation will be applied, based on a
Wigner transformation of the Klein-Gordon equation. The resulting theory is similar in many respects to the
equations from the Dirac-Heisenberg-Wigner formalism. However, in the former case, all physics related to
particle spin is neglected. In the present paper we compare the pair-production rate in vacuum and plasmas, with
and without spin effects, in order to evaluate the accuracy and applicability of the spinless approximation. It is
found that for modest frequencies of the electromagnetic field the pair production rate of the Klein-Gordon theory
is a good approximation to the Dirac theory, provided the matter density is small enough for Pauli blocking to
be neglected, and a factor of 2 related to the difference in the vacuum energy density is compensated for.
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I. INTRODUCTION

The interest in strong field physics has increased in the past
decades due to the rapid development of the laser facilities
[1,2]. See, e.g., Refs. [3,4] for the recent developments in
the research area. In the presence of a strong electromagnetic
field, the vacuum can decay into electron-positron pairs. This
process was first studied by Sauter in 1931 [5] and a rigor-
ous mathematical description of this process was derived by
Schwinger in 1951 [6]. Since then, the basic mechanism has
been studied in a dynamical context and for more complicated
field geometries. In particular, a study of the interplay between
temporal and spatial variations of the fields has been done in
Refs. [7–10]. To maximize the number of produced particles
in the case of subcritical field strengths, a geometry of collid-
ing laser pulses has been suggested in Refs. [11–14].

In spite of much progress in recent years [7–14], due
to spin and chiral effects associated with Dirac fermions,
various simplifying assumptions are typically needed when
studying electron-positron pair production. A way to relax
some of these assumptions concerning, e.g., the electromag-
netic field geometry, is to study scalar QED, where the spin
of the particles is ignored. Scalar QED models, based on
the Klein-Gordon equation, are considerably less complicated
than those derived from the Dirac equation. While it is known
that many qualitative features regarding pair production are
preserved when replacing fermionic QED with scalar QED
[15–17], a better understanding of the differences and sim-
ilarities is desirable, to know to what degree results from
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scalar QED can be trusted. The purpose of the present paper
is to study pair production in vacuum and plasmas, with and
without including the particle spin properties, to highlight dif-
ferences and similarities between the bosonic and fermionic
results.

Various models and methods can be used when studying
electron-positron pair production from vacuum and in plas-
mas.. This includes quantum kinetic theories, which can be
applied for fermionic and bosonic pair production in electric
fields [18]. Treatments, where a bosonic model of pair pro-
duction has been used, are given in Refs. [19,20], and works
on both bosonic and fermionic pair production in electric and
magnetic fields can be found in Ref. [21]. Moreover, lattice
quantum electrodynamics has been used to model scalar QED
pair production [22].

In the present paper, we will use a phase-space approach,
based on a gauge invariant Wigner transform of the evolution
equations. In the fermionic case, this leads to the real-time
Dirac-Heisenberg-Wigner (DHW) formalism, first derived in
Ref. [23]. For the bosonic case, this corresponds to making
a (gauge-invariant) Wigner transform of the Klein-Gordon
equation, as was first derived in Ref. [24] with applications
presented, e.g., in Refs. [24–29]. We will refer to these equa-
tions as the Klein-Gordon-Wigner (KGW) equations. We note
that since both KGW and DHW are based on a phase-space
approach, they are conceptually similar, and this facilitates a
direct comparison of the results.

An important conclusion from our paper, which agrees
with previous findings [6,30], is that KGW and DHW are
in exact agreement for pair production in the zero frequency
limit, provided a factor of 2 is compensated for. The factor
of 2 is closely related to the difference between the fermionic
and bosonic vacuum expectation values. When the frequency
of the applied field is increased, the spin polarization current
in the DHW formalism grows, which is associated with a
gradually larger deviation between the bosonic and fermionic
results. For significant pair production, the self-consistent
field generated by the plasma currents becomes appreciable,
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and this tends to enhance the deviation between bosonic and
fermionic dynamics. For even higher plasma densities, Pauli
blocking can be important, which naturally cannot occur in
the bosonic case.

The paper is organized as follows: In Sec. II we present
the derivation of the KGW formalism. In Sec. III we derive
the linear response of a plasma to electromagnetic waves. We
make a comparison both to the classical dispersion relation
(which is recovered in the appropriate limit) and to the re-
sults based on the DHW formalism. Next, numerical results
for large fields (Schwinger) pair production are presented in
Sec. IV. Here we compared the particle production in KGW
and DHW using different scaling parameters. Finally, we
present our conclusions in Sec. V.

II. KGW MODEL

In this section, we will make a brief derivation of the KGW
formalism that has previously been derived by Ref. [24],
which the reader may consult for more details. The starting
point is the Klein-Gordon equation

[(∂μ − ieAμ)(∂μ + ieAμ) + m2]φ(r, t ) = 0 (1)

where e is the elementary charge, m is the mass of the electron,
and Aμ = (A0, A), where A0 and A are the scalar and vector
potential, respectively. This equation contains a second-order
derivative in time. To transform the Klein-Gordon equation to
phase space and obtain an explicit expression of the charge
density in phase space, we express the Klein-Gordon equa-
tion in the representation of Feshbach and Villars [31]. In
this representation, we have a first-order time derivative. The
Klein-Gordon field is expressed by the two-component wave
function

� =
(

ψ

χ

)
(2)

where

ψ = 1

2

(
φ + i

m

∂φ

∂t
− eA0

m

)
, (3)

χ = 1

2

(
φ − i

m

∂φ

∂t
+ eA0

m

)
. (4)

In matrix representation we get

i
∂�

∂t
=

[
1

2m

(
− i

∂

∂r
− eA

)2(
1 1

−1 −1

)

+ m

(
1 0
0 −1

)
+ eA01

]
� (5)

where 1 is the identity matrix. This equation is first order in the
time derivative and has a Schrödinger type of time evolution.
The right-hand side of this equation can be interpreted as
a Hamiltonian operator that will be used to find the time
evolution in phase space. Next, we use the gauge-invariant

Wigner transformation

Ŵ (r, p, t )

=
∫

d3z exp

(
ip · z+ie

∫ 1/2

−1/2
dλz · A(r+λz, t )

)
Ĉ(r, t )

(6)

where

Ĉ(r, t ) = {�(r + z/2, t ),�(r − z/2, t )}. (7)

The Wigner function is defined as the expectation value of the
Wigner operator

W (r, p, t ) = 〈�|Ŵ (r, p, t ) |�〉 (8)

where |�〉 〈�| is the state of the system in the Hilbert space.
To find an evolution equation in phase space, we take the
time derivative of Eq. (6) and use the Hamiltonian operator
in Eq. (5). We use the Hartree approximation where the elec-
tromagnetic field is treated as a nonquantized field. Finally,
we have an equation of motion of the Wigner function

iDtW (r, p, t ) = − i

2
Ô1{σ3 + iσ2,W }

+ Ô2[σ3 + iσ2,W ] + m[σ1,W ] (9)

where σi, with i = 1, 2, 3, are the Pauli matrices and

Ô1 = p · ∇
m

+ p
m

· e
∫ 1/2

1/2
dλB(x + ih̄λ∇p) × ∇, (10)

Ô2 = ∇2

4m
− p2

m
− eh̄2

12m
∇ · (B × ∇)

+ 2
p
m

· ieh̄
∫ 1/2

1/2
dλλB(x + ih̄λ∇p) × ∇p, (11)

Dt = ∂t + e
∫ 1/2

1/2
dλE(x + ih̄λ∇p) · ∇p. (12)

For longer macroscopic scales, the nonlocal operators given
by the integrals can be expanded in powers of h̄. Thus, for ex-
ample in the long-scale limit, we may use Dt = ∂t + eE · ∇p,
and similarly for the other operators [24]. The interpretation of
the variables described by Eq. (9) is not simple. Thus we make
an expansion of the Wigner function over the Pauli matrices
σi and the identity matrix 1:

W (r, p, t ) = f3(r, p, t )1 +
3∑

i=1

f3−i(r, p, t )σi (13)

where the expansion coefficients fi, with i = 1–3, will lead to
four coupled partial differential equations (PDEs):

Dt f0 = −Ô1( f2 + f3),

Dt f1 = −Ô2( f2 + f3) + 2m f2,

Dt f2 = Ô2 f1 + Ô1 f0 − 2m f1,

Dt f3 = −Ô2 f1 − Ô1 f0. (14)

This PDE system is the final one that covers all physics of the
Klein-Gordon equation. This system is closed by Maxwell’s
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equations with the sources

ρ = e
∫

d3 p f0, (15)

J = e

m

∫
d3 p p( f2 + f3). (16)

Compared to the DHW formalism [23] which is based on
the Dirac equation, this system contains only four instead of
16 scalar equations. This makes the KGW formalism simpler
to solve numerically. The four scalars of the KGW formalism
have a straightforward physical interpretation, as can be seen
from the following observables:

Q = e
∫

d3 pd3x f0, (17)

J = e

m

∫
d3 p p( f2 + f3), (18)

W =
∫

d3 pd3x

[
p2

2m
( f2 + f3) + m f3

]
, (19)

M =
∫

d3 pd3x p( f0 − f1) (20)

where Q is the total charge, J is the current density, W is
the particle energy, and M is the momentum. Interpretations
that can be done from the above expressions include, e.g., that
e f0 is the (phase-space) charge density and ep/m( f2 + f3) is
the current density, as implied by the sources in Maxwell’s
equations.

The fi functions have the vacuum contribution

f0 = f1 = 0,

f2 + f3 = m

ε
,

f3 − f2 = ε

m
(21)

where ε =
√

m2 + p2. The expressions above are obtained by
calculating the Wigner operator for the free particle Klein-
Gordon equation and taking the vacuum expectation value.
If we add a plasma to the background, we should mod-
ify the source terms for f2 + f3 and f3 − f2. Moreover, the
charge density f0 should be nonzero. Adding electron and
positron sources we first obtain f2 + f3 = (m/ε)F and f3 −
f2 = (ε/m)F in Eq. (21) where

F = 1 + 2 fe(p) + 2 fp(p). (22)

Here fe,p can be viewed as classical electron and positron
distribution functions. Note that we have a positive sign be-
tween the particle and vacuum sources, instead of a negative
one as in the DHW formalism [23,32]. This is related to the
physics of the Pauli-exclusion principle, which obviously is
not included in the KGW formalism, as the model is derived
for spinless particles. By contrast, in the DHW formalism,
the Pauli principle will be respected provided the correct
expectation values for the vacuum states are implemented.
Moreover, we can note that the particle contributions to F
have an extra factor of 2 in Eq. (22), as compared to DHW
formalism. This is due to the fact that the magnitude of the
vacuum contribution is only half as large for spinless particles.

More formally, the particle contribution in Eq. (22) can be
determined by demanding that particles present in the initial

conditions contribute by the proper amount to the charge
density, current density, momentum density, etc. Naturally, the
particle contribution from electrons and positrons will depend
on the number density n0e,p (where the index e, p denotes
the number density of electrons and positrons, respectively).
Using the same normalization as for the DHW formalism [32],
n0,e,p = [2/(2π h̄)3]

∫
fe,pd3 p, the factor of 2 in Eq. (22) for

the particle contribution to the charge density follows.
With one reservation (see the last paragraph of this sec-

tion), the functions fe/p can be picked as any common
background distribution function from standard kinetic theory,
i.e., a Maxwell-Boltzmann, Synge-Juttner, or Fermi-Dirac
distribution, depending on whether the characteristic kinetic
energy is relativistic and whether the particles are degener-
ate. In conclusion, initial conditions for the KGW variables
involving a homogeneous medium with electron and positron
distribution functions fe,p are given by

f0 = 2 fp − 2 fe,

f1 = 0,

f2 + f3 = m

ε
F,

f3 − f2 = ε

m
F (23)

with F given by Eq. (22). The above expression gives a time-
independent solution to the KGW equations in the absence of
electromagnetic fields (assuming that the total charge density
and current density are zero). The expressions in Eq. (23),
describing the equilibrium states, are a necessary prerequisite
for including dynamical scenarios, leading to particle pair
creation as will be studied in the next sections.

Before ending this section, we note that when studying
background distributions of electrons or positrons containing
particle beams, there is one key difference between distribu-
tion functions of the KGW (and DHW) type, and of classical
distribution functions. In the nonclassical theories of DHW
and KGW, electrons and positrons are described with the
same phase-space variables, specifically f0 and f2 + f3 will
give the phase-space charge and current densities for both
electrons and positrons. For symmetric distributions, where
f (p) = f (−p), such as, e.g., for thermodynamic background
distributions, this will not lead to confusion when trans-
lating a classical distribution function into its KGW and
DHW counterparts. However, just as for the DHW theory
[33], the fact that antiparticles can be viewed as particles
moving backward in time means that similar classical elec-
tron and positron momentum distributions fe and fp fulfill a
“momentum mirror property” and should be represented as
fe(p) = fp(−p). For a time-independent homogeneous distri-
bution where f1 = 0, two identical distributions (classically
speaking) of electrons and positrons with a nonzero net drift
must have the phase-space charge density f0 = f0e + f0p =
f0e(p) − f0e(−p) such that (in case of identical classical dis-
tributions) the phase-space charge density is an odd function
of momentum f0(−p) = − f0(p). This means that, although
the charge density vanishes after momentum integration as
required, the momentum density that is also proportional to an
integral over f0 [see Eq. (20) with f1 = 0] will survive for a
drifting system, as required. However, the same argument also
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implies that f2(−p) + f3(−p) = f2(p) + f3(p), such that the
current density integrates to zero [see Eq. (18)], as required
for electron and positron beams moving together.

III. LINEAR WAVES

In this section, we consider the linear response of a plasma
to an electromagnetic wave field, accounting also for the con-
tribution from the vacuum expectation values. For our case
with no background electromagnetic fields, as described in
the previous section, we get the unperturbed vacuum contribu-
tions as the Wigner transform of the expectation value of the
free Klein-Gordon field operators. Thus, Eq. (23) (including
the plasma) applies for the background. For the wave pertur-
bation, we consider electromagnetic waves with the following
geometry:

E = Eex,

k = kez,

B = Bey. (24)

The ions will not be treated dynamically but will constitute a
constant neutralizing background. In the absence of ions, nat-

urally, the electron and positron background charge densities
must cancel for the background to be in equilibrium. However,
in the presence of a constant (immobile) ion background, the
electron and positron may differ; in particular, the positron
background may vanish.

Next, in order to study linear theory, we divide the func-
tions fi as

fi(z, p, t ) = f 0
i (p) + f 1

i (p)ei(kz−ωt ) (25)

where the upper indices denote unperturbed and perturbed
quantities. Furthermore, we use Ampère’s law to obtain an
implicit dispersion relation that can be written as

D(k, ω) = ω2 − k2 + iωJx

= ω2 − k2 + ieω

(2π h̄)3E

∫
d3 p

px

m

(
f 1
3 + f 1

2

) = 0.

(26)

After some algebra, we can compute the current sources and
deduce the explicit expression

D(k, ω) =ω2 − k2 + e2

(2π h̄)3

∫
d3 p

px

ω2 − k2 − 4ε2 + 4k2 p2
z/ω

2

{
[ω2 − 2(p + h̄k/2)2 − 4m2]

×
[
�1∇px − 2h̄k

ω2

(
h̄k
12

− 2p�2

)
· (ey × ∇p)

](
2m2 + p2

2mε
F − p2

2mε
F

)
− 2�1∇px

p2

ε
F + 8

k

ω
px�1∇pz ( fe − fp)

− 4
k2

ω2
pz(px∇pz − pz∇px )�1

F

ε
− 4[(p + h̄k/2)2 + 2m2]

h̄k

ω2

(
h̄k
12

− 2p�2

)
· (ey × ∇p)

F

ε

}
= 0 (27)

where

�1 =
∫ 1/2

1/2
dλ cos (h̄kλ∇pz ), (28)

�2 =
∫ 1/2

1/2
dλλ sin (h̄kλ∇pz ). (29)

Here the operators are given by �1 = 1 and �2 = h̄k∇pz/12
in the long-scale limit, where we have kept contributions to the
lowest nonvanishing order. We can obtain the classical limit
by letting h̄ −→ 0 in Eq. (27). Doing so, we get �2 = 0. The
dispersion relation then reduces to

D(k, ω) = ω2 − k2 − e2

h̄3π2

∫
d p p2

[(
1 − p2

3ε2

)
fe + fp

ε

− kp2

3ε2

(
1

ω + kpz/ε
− 1

ω − kpz/ε

)
∂ ( fe + fp)

∂ pz

]

= 0 (30)

which can be shown to agree with the standard result based
on the relativistic Vlasov equation, after some straightfor-
ward algebra. Here, fe and fp behave as classical distribution
functions, except for the mirror property of the momentum
dependence (which only is important when there is a back-
ground drift) discussed at the end of Sec. II. We note that the

appearance of h̄ in the integration measure is just a matter
of normalization, and not a sign of any remaining quantum
features [33].

Now, we want to compare the dispersion relation Eq. (27)
with the DHW formalism. To be able to do that, we take the
homogeneous limit of Eq. (27) (since only the electrostatic
limit resulting from k −→ 0 has been computed in the DHW
case) and compare it with the corresponding result from the
DHW formalism [32,34]. Letting k −→ 0 in Eq. (27), and
including electrons only in the background plasma f = fe, we
get

ω2 = − 4e2

π2h̄3

∫
d p

p2ε

h̄2ω2 − 4ε2

×
[(

1 − p2

3ε2
− h̄2ω2

4ε2

)
f − h̄2ω2 p2

24ε4

]
. (31)

For the DHW formalism, we apply the k −→ 0 result of the
electrostatic case (see Refs. [32,34]), and we obtain

ω2 = − 4e2

π2h̄3

∫
d p

p2ε

h̄2ω2 − 4ε2

×
(

1 − p2

3ε2

)(
f − h̄2ω2

4ε2

)
. (32)
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We can clearly see that the results agree in the classical limit,
and that the denominators coincide, i.e., the physics related
to wave-particle interaction is similar. Both for the KGW and
DHW, the real part of the wave frequency ωr is given by the
classical limit to a good approximation. The reason is that
for h̄ω ∼ m, the Fermi energy EF will be much larger than
unity. Thus, even if h̄ω ∼ m we will have h̄ω � E f , which, in
turn, implies a minor quantum contribution to Eqs. (31) and
(32). Nevertheless, there are also some differences between
Eqs. (31) and (32). To focus on the most important one, we
now concentrate on the damping given by the imaginary part
of the wave frequency ωi, associated with the pole contribu-
tion of the momentum integral. Using the Plemelj formula

1

u − a
= P

1

u − a
+ iπδ(u − a) (33)

where P is the principal value, we obtain from the KGW
expression Eq. (31)

ωi = − e2 p3
res

6h̄4ω4
r π

[1 + 2 f (pres)]. (34)

For the DHW system, we instead obtain

ωi = − e2 pres

12π h̄2ω

(
1 + 2m2

h̄2ω2
r

)
[1 − f (pres)]. (35)

Here pres is the resonant momentum, making the denomina-
tors in the integrands zero, i.e., m2 + p2

res = h̄2ω2/4. While
some features of the two damping rates agree, it can be noted
that there are also significant differences. These differences
can be better understood in light of certain numerical results
presented in the next section. Thus we will wait to make a
more detailed comparison of the damping rates.

IV. NUMERICAL RESULTS

A. Preliminaries

Before presenting the numerical results, we discuss the
issue of renormalization. For large momentum where we can
use the approximation ε ≈ p, it is straightforward to see that
the integrand in Eq. (31) scales as 1/p, and thus the inte-
gral has a logarithmic divergence. In principle, this needs to
be dealt with, but in practice, for a numerical solution, this
is almost automatically solved by a numerical cutoff in the
momentum integration that acts as an effective regularization.
Due to the slow growth of the logarithmic divergence, in the
presence of a numerical momentum cutoff, simply ignoring
the issue of renormalization does not result in a significant
error. The technical aspects are the same as for the DHW case,
which has been described in more detail in Refs. [34,35].

To be able to compare the results of the numerical solution
of Eq. (14) with the ones from the DHW formalism in [35],
we consider the homogeneous limit of Eq. (14):

Dt f0 = 0,

Dt f1 = p2

m
( f2 + f3) + 2m f2,

Dt f2 = −
(

p2

m
+ 2m

)
f1,

Dt f3 = p2

m
f1. (36)

Apparently, in the homogeneous limit, f0 decouples, and we
only need to solve three equations. To simplify the numeri-
cal solution, we define new variables as deviations from the
vacuum state, i.e.,

f̃i = fi − fi,vac (37)

where

f1,vac = 0,

f2,vac = 1

2mε
(m2 − ε2),

f3,vac = 1

2mε
(m2 + ε2). (38)

With this choice, we make sure that our basic variables
become small for large momenta, such that a momentum
cutoff is possible. By introducing f̃i, we remove the vacuum
contribution from the variables that we solve numerically.
Obviously, this does not mean that vacuum physics is not
included in our solution; we only do this to handle certain
numerical technicalities. The PDE system is now

Dt f̃1 = p2

m
( f̃2 + f̃3) + 2m f̃2,

Dt f̃2 = eE pz

2mε

(
1 + m2

ε2

)
−

(
p2

m
+ 2m

)
f̃1,

Dt f̃3 = −eE pz

2mε
p2 + p2

m
f̃1. (39)

For notational convenience, we omit the tilde for variables in
what follows. In order to solve the system numerically, we
need to make some further adaptions. The next step is to make
the additional change of variable

f1 = f1,

f+ = f2 + f3,

f− = f2 − f3; (40)

introduce the canonical momentum q given by

q = p + eA; (41)

and use normalized variables: tn = ωcet , qn = q/m, pn⊥ =
p⊥/m, En = E/Ecr, and An = eA/m, where ωce is the Comp-
ton frequency. The final system resulting from these changes,
which will be solved numerically, is

∂tn f1 = ε2
n f+ + f−,

∂tn f+ = (qn − An)

ε3
n

En − 2 f1,

∂tn f− = qn − An

εn
En − 2ε2

n f1 (42)

together with Ampère’s law

∂En

∂tn
= −η

∫
d2 pn(qn − An) f+ (43)

where η = α/π , where α is the fine-structure constant. Note
that, for notational convenience, we omit the subscript n
for variables in what follows. The system Eqs. (42) and
(43) is solved numerically using a phase-corrected staggered
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leapfrog method [36]. Typical parameters of the simulations
are a time step of the order of �t ≈ 0.001, a parallel mo-
mentum step �q ≈ 0.01, and a perpendicular momentum step
�p⊥ ≈ 0.1. In spite of the rather good resolution in parallel
momentum, the q dependence of the produced data tends to
look noisy in momentum space. This is due to the Zitter-
bewegung effect which produces increasingly short scales.
Nevertheless, the dynamics of the larger scales are not sen-
sitive to the small-scale momentum details, i.e., changing �q
does not affect the results presented in this paper.

To confirm that the numerical scheme produces sound
results, we study the energy conservation law. An energy
conservation law of the system Eqs. (42) and (43) can be
written in the form

d

dt

[
E2

2
+ η

2

∫
d2 p((ε2 + 1) f+ − f−)

]
= 0. (44)

For the numerical resolutions used in the runs presented be-
low, the total energy of the system is conserved within a
relative error typically less than 10−4.

B. Effects due to the vacuum background

Before solving Eqs. (42) and (43) for more complicated
scenarios, we can check the validity of the numerical solution
by considering constant electric fields E = E0. The rate for
creating a fermionic pair from vacuum dn f /dt is well known
[6,30]:

dn f

dt
= 1

4π3

(
eE

h̄

)2

exp

(
−πEcr

E

)
. (45)

By comparison, the rate for creating a bosonic pair as de-
scribed by the KGW theory is dnb/dt = 0.5dn f /dt . This is
a direct consequence of the factors given in Eq. (22), where
the relative contribution from the vacuum sources is half of
the contribution seen in the DHW formalism.

To validate the numerics, we will solve Eq. (42) and the
corresponding equations in the DHW formalism [32] for
the case of constant electric fields E0 and only vacuum ini-
tially. Since our goal is to check the validity of the numerics
by comparing with theory without back-reaction effects, we
also neglect back-reaction, i.e., we do not solve Eq. (43)
self-consistently. Then, we calculate the number of produced
particles nk in the KGW formalism and nD in the DHW
formalism, with nk given by

nk = 1

(2h̄π )3

∫
d3 p

1

2ε
[(ε + 1) f+ − f−]. (46)

In Fig. 1, we compare the numerical values of nk/D with
dnb/ f /dt for different values of E0. As can be seen, the numer-
ical values follow the analytical ones with good agreement.

Interestingly, nothing prevents us from making a toy model
where we use spinless dynamics for the evolution equations,
but increase the vacuum expectation values by a factor of 2 in
the KGW model. Doing this, for constant fields nk will get the
same behavior as nD and thus the slightly modified version of
the KGW formalism gives the exact same results as the DHW
formalism

FIG. 1. The number of produced pairs from KGW (nk) and DHW
(nD) using the numerical solutions together with the corresponding
analytical results dnb/dt and dnf /dt .

C. High frequency effects

Now, we turn to the problem of time-dependent electric
fields. We solve Eqs. (42) and (43) for the case with no plasma
and only vacuum initially using the following representation
of the time-dependent pulse:

E (t ) = E0sech

(
t

b
− τ0

)
sin ωt (47)

where τ0 is the phase shift, b is the pulse length, and ω =
Nωce/100. See Fig. 2 for a temporal plot of the electric pulse.
We use nk Eq. (46) to find the ratio nk/nD of the produced
pair in KGW formalism and nD in the DHW formalism [32].
For constant fields E = E0, given by the rate presented for
fermions in Eq. (45) and for bosons, we have

nk

nD
= 1

2
. (48)

For the case with a time-dependent electric field, in Fig. 3,
we plot the ratio nk/nD versus ω. We can note that for small
ω, i.e., in the constant field limit, the ratio is very close to
0.5 as expected. This is a good agreement between numerical
and analytical solutions. For ω = 2, we have h̄ω = 2m and
it is thus possible to create an electron-positron pair from a
single quanta. For this case, the relative rate of the KGW

FIG. 2. The electric pulse is plotted over time for three different
frequencies N = (10, 100, 500).
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FIG. 3. The ratio nk/nD is plotted as a function of N , displaying
the validity of the KGW formalism to model fermions at different
regimes. Here we have used E0 = 1.

pair production has a minimum. Generally, the ratio nk/nD

tends to be smaller than 0.5 when processes involving few
quanta (as opposed to the pure Schwinger mechanism) are
possible to occur. This is because the probability of producing
pairs from few quanta is smaller in the KGW description than
in the DHW description. Looking specifically at one-quanta
processes, this fact is confirmed in the linear damping re-
sults (where the linear damping is due to single quanta pair
creation) as given by Eqs. (34) and (35). For frequencies
h̄ω ≈ 2me, we have pres close to zero, and thus the created
pairs have very small momentum. From Eq. (34), the damping
of the wave in the KGW formalism scales as p3

res, compared
to the DHW formalism, where the wave damping is linear
in pres. For higher frequencies, we have larger pres and this
leads to a somewhat larger value of nk/nD, but it is still well
below 0.5. The reason for the saturation of pair creation for

high frequencies in the KGW model is the scaling ωi ∼ ω−4
r

in Eq. (34), more than compensating for the scaling ωi ∼ p3
res.

Since the KGW formalism is spinless, only free currents
are created. By contrast, the total current in the DHW for-
malism is the sum of free current, the magnetization current
[37], and the polarization current Jp [38]. Note, however, that
in the absence of spatial variations, the magnetization current
vanishes. For pulses with ω � ωce, the polarization current
is small due to Jp = ∂P/∂t , and the slow (compared to the
Compton frequency) temporal scale. Here P is the polariza-
tion due to the particle spin properties. The smallness of the
polarization current is confirmed in Fig. 4, where the polar-
ization and total currents are plotted over time by solving the
equations of the DHW formalism using the pulse in Eq. (47).
For the upper panel of Fig. 4 where we used N = 2, i.e.,
ω = 0.02ωce, the polarization current is roughly only around
1% of the total current. When the frequency is increased to
N = 20, the polarization current increases to about 10% of
the total current. As the ratio nk/nD = 1/2 comes from the
difference in the vacuum contribution only, the deviation from
this value depends on the different dynamics of the KGW and
DHW descriptions. For the present case, as long as the po-
larization current density Jp associated with the spin is small
compared to the total current density, the dynamical influence
of spin effects is comparatively small. Thus it is not surprising
that the ratio nk/nD = 1/2 is relatively unaffected by the spin
dynamics. However, a careful comparison of Figs. 3 and 4
shows that the deviation from nk/nD = 1/2 coincides with an
increase in the relative importance of the spin dynamics.

Next, we would like to make contact between the analytical
and numerical calculations. Specifically, we will study where
in momentum space the pairs are produced. In Fig. 5, contour
curves over the pair momentum density, i.e., the integrand in
Eq. (46), are shown. The two figures in the upper panel show
the contour for DHW expression nD(p⊥, q) (the figure to the
left) and the KGW expression nk (p⊥, q) (the figure to the
right) using the pulse in Eq. (47) with ω = 0.02ωcr, τ0 = π ,
b = 20, and E0 = 1. In the upper panel, we can see that

FIG. 4. Polarization current Jp and total current Jtot plotted over time for N = (2, 20) in the upper and lower panels, respectively. Note the
different scales for Jp and Jtot .
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FIG. 5. Color mappings of the momentum distribution of the
created pairs from DHW nD(q, p⊥) (the first column) and KGW
nk (q, p⊥) (the second column). In the first panel, we have used
ω = 0.02ωce, τ0 = π , b = 20, and E0 = 1 and in the second panel
we have ω = 5ωce, τ0 = π , b = 2, and E0 = 2.

created pairs have the same momentum distribution in both of
the models. It should be emphasized that we here have used
the toy model with the vacuum contribution twice as large as
for a scalar field in the KGW calculations, to better mimic the
behavior of fermions.

In the lower panel of Fig. 5, we have used the pulse in
Eq. (47) with ω = 5ωce, τ0 = π , b = 2, and E0 = 2. For such
a high frequency, single quanta pair-creation processes dom-
inate. Clearly, the polarization current Jp is important in this
regime. As can be seen, in spite that pairs are created close to
the region of resonant momenta, satisfying the resonance con-
dition m2 + p2

res = h̄2ω2, the different models have different
momentum distributions nevertheless. For the KGW model
(the figure to the right), the pairs created tend to have a higher
value of |q|, and a smaller value of p⊥. For the DHW model,
the distribution in momentum space is the opposite.

To clarify the reason for this difference, we will rewrite
the previous expressions Eqs. (31) and (32) in cylindrical
momentum coordinates. In this case, the dispersion relation
Eq. (31) for the KGW case becomes

ω2 = e2

4π2h̄3

∫
d p⊥ p⊥d pz

1/ε

h̄2ω2 − 4ε2

×
[

2 f (h̄2ω2 − 4ε2
⊥) + h̄2ω2 p2

z

ε2

]
(49)

and the dispersion relation for the DHW case is written

ω2 = − e2

2π2h̄3

∫
d p⊥ p⊥d pz

ε2
⊥/ε

h̄2ω2 − 4ε2

×
(

f − h̄2ω2

4ε2

)
(50)

where ε⊥ =
√

m2 + p2
⊥. Note that we have regained pz rather

than q here [39] and also keep the un-normalized variables of
Sec. III. The key to understanding the lower panels of Fig. 5 is
the scalings with pz and p⊥ of the integrands in Eqs. (49) and
(50). What contributes to the damping rates is the pair creation
that results from the pole contribution. That is, pair creation

comes from an integration over resonant momenta pres. The
resulting pair creation will have a distribution in momentum
space reflecting the magnitude of the integrand as a function
of pz and p⊥ along the curve given by a constant pres. As
we are now considering pair creation in vacuum rather than
a plasma, we can inspect the integrand in Eq. (49) with only
the vacuum contribution present, in which case the integrand
reads ∫

d p⊥ p⊥d pz
p2

z/ε
3

h̄2ω2 − 4ε2
. (51)

Noting that the momentum which contributes to single-quanta
pair creation will be close to the resonant momenta, we see
that for resonant values with large pz (q) and small p⊥, we
will get the dominant pair creation contribution. This is in
agreement with the lower right panel of Fig. 5 as p⊥ ≈ 0 gives
a negligible pair creation rate.

For the left figure of the lower panel in Fig. 5, we have the
contour curves of the momentum distribution for the created
pairs in the DHW formalism. As noted above, we see that the
created pairs tend to have a high perpendicular momentum.
This effect has been seen in previous works [32,40]. More-
over, it is further confirmed by considering only the vacuum
contribution to the integrand in Eq. (50):∫

d p⊥ p⊥d pz
ε2
⊥/ε3

h̄2ω2 − 4ε2
. (52)

We note that for resonant momenta, the integrand is largest for
high perpendicular momentum and has a smaller value when
|pz| is large, explaining why the momentum distribution of
the single-quanta pair creation in the DHW formalism has the
momentum distribution that we see in Fig. 5.

Next, we will include the effects due to back-reaction, i.e.,
we will solve Eq. (43) together with Eq. (42) using the pulse
in Eq. (47). We start from vacuum and divide the electric
field into the self-consistent electric field, given by the cur-
rent sources generated by the created pairs, and the external
electric field which is prescribed and given by the same type
of temporal profile as before.

In Fig. 6, we have a plot of the self-consistent electric field
(as the prescribed part is the same) over time comparing the
results from DHW and KGW. In the first panel, we have used
N = 2, i.e., ω = 0.02ωce. For this low frequency, we see a
very good agreement between DHW and KGW. The good
agreement is dependent on the choice to double the back-
ground vacuum contribution in the KGW model, i.e., we have
imitated initial conditions for the fermions, even though the
dynamical evolution follows that of a scalar field, neglecting
the spin.

In the second panel, we use a slightly higher frequency
N = 4. While the agreement is still good, we see a gradually
growing phase shift between the DHW and KGW mod-
els. While the fraction nK/nD was almost unchanged when
the frequency was increased to this value, when the self-
consistent dynamic is involved, we see a higher sensitivity to
the frequency. Increasing the frequency even higher to 0.1ωce,
the difference between DHW and KGW is even more pro-
nounced. Here, we see a more dramatic phase shift at an early
stage and a qualitatively different evolution of the wave am-
plitude. Thus, modeling electron-positron pair creation with
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FIG. 6. The time profile of the self-consistent electric field from the KGW and DHW formalism for three values of the frequency of the
initial electric pulse ω = (0.02, 0.04, 0.1)ωce, using the initial pulse with E0 = 1, b = 20, and τ = π .

the KGW model requires lower frequencies in the case of
self-consistent dynamics.

The validity condition found here for the KGW theory, ω �
0.04, is just a crude estimate, naturally. To a certain degree, it
may also depend on the electric field magnitude. To illustrate
this, let us compare the evolution for the KGW and DHW
theory, using the same parameters as in panel 3 of Fig. 6,
but with the external electric field amplitude increased from
E0 = 1 to 4. The temporal dependence of the electric field
for the two cases is shown in Fig. 7. While certain qualitative
features are the same, mainly plasma oscillations set up in the
electron-positron plasma produced by the external field, there
are also several distinct differences between the KGW and
DHW case. First, the amplitude of the self-consistent field in
the plasma oscillations is stronger for the DHW case. Second,

FIG. 7. The time profile of the self-consistent electric field from
the KGW and DHW formalism using the initial pulse with E0 = 4,
b = 20, ω = 0.1ωce, and τ = π .

the plasma frequency is significantly higher in the KGW case,
related to a higher amount of particles and a lower spread in
the momentum distribution. Third, the damping of the plasma
oscillations, resulting from further pair production due to the
self-consistent electric field, is much more pronounced in the
KGW case.

All in all, the differences between the KGW and the DHW
case tend to increase with amplitude. This is due to two
mechanisms. First, when the electric field is strong enough,
a sufficient number of particles will be generated such that the
Pauli blocking mechanism of fermions becomes significant.
That an unlimited amount of particles can be generated in
a limited region of momentum space for bosons is the rea-
son why the plasma frequency is higher and the damping is
stronger in the KGW case. Moreover, when more particles
are generated due to a higher amplitude, the previous validity
condition of a low enough frequency tends to be challenged
simply due to a high (relatively speaking) plasma frequency. It
can be seen in Fig. 7 that the frequency scale ωp of the plasma
oscillations is ωp ≈ 0.1 for the KGW case, which is not within
the validity regime of the frequency scale, but slightly higher.

D. Nondegeneracy effects

In this subsection, we would like to illustrate the mech-
anism of Pauli blocking. This mechanism is always present
in the DHW formalism, but not in the KGW formalism as
the model is spinless. However, whether or not Pauli blocking
is an important feature dynamically depends on the number
of free states where pairs can be created. In particular, a
degenerate initial distribution will block the low-energy states
in momentum space, which is the region where particles are
most easily created. Thus, in this subsection, we will start
with a plasma initially and solve Eqs. (42) and (43) and
the corresponding equations in the DHW formalism. As ini-
tial conditions in the runs, we let E (t = 0) = E0 and A(t =
0) = 0. The initial plasma is represented by a Fermi-Dirac
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FIG. 8. The number density nD/K (q) = ∫
d p⊥ p⊥nD/K (q, p⊥) as a function of the canonical momentum is plotted for E0 = 4, μ = 4, and

T = 0.02 for DHW and KGW. Here, the solid curve is for n (t = 0) and the thicker curve is for n (t = Tp).

distribution:

f (q, p⊥) = 1

1 + exp (ε − μ)/T
(53)

where μ is the chemical potential and T is the temperature
(we normalize both μ and T with the electron mass). For
μ 	 T , the chemical potential fulfills μ ≈ EF , where EF

is the Fermi energy, in which case the distribution will be
degenerate (i.e., we will have f ≈ 1, i.e., all electron states
filled, for energies smaller than the Fermi energy, and f ≈ 0
otherwise). Naturally, nondegenerate initial distributions are
still possible when using Eq. (53), by letting μ < T . Also,
by picking a large but negative chemical potential, we get a
Maxwell-Boltzmann type of distribution. In principle, one
could also study the case of an initial Bose-Einstein distri-
bution, since the system can be solved for arbitrary initial
conditions. However, since our aim is to see to what degree
the KGW model can be applied for electrons and positrons,
rather than actual bosons, we will not pursue that here.

In Fig. 8, we demonstrate the Pauli blocking mechanism.
In the upper panel, we have considered the DHW formalism
using a degenerate distribution with μ = 4 and T = 0.02,
where all the low-energy electron states are filled, preventing
further pair creation in the filled region. As shown, due to
a strong initial field E0 = 4, pairs are still created at a high
rate, but the low-energy region is perfectly blocked. This
is seen in Fig. 8 by comparing the momentum distribution
nD(q) after an oscillation period with the initial momentum
distribution nD(t = 0). Specifically, it should be noted that
the two curves coincide (no further pair creation) for a low or
modest parallel momentum. In the lower panel of Fig. 8, we
have used the KGW formalism using the same input data as
in the upper panel. We note that pairs are still created for low
parallel momentum, in contrast to the DHW case. The effect is
expected as the KGW model does not include the effect of the
Pauli blocking dynamically, even if a degenerate distribution
is chosen as an initial condition.

V. CONCLUSION

In this paper, we have compared pair creation in the KGW
formalism, based on a Wigner transform of the Klein-Gordon
equation, and pair creation in the DHW formalism, based
on a Wigner transform of the Dirac equation. First, studying
high-frequency pair creation in low amplitude linear theory,
we have noted that while the DHW formalism and the KGW
formalism share qualitative features (e.g., pair creation when
the same resonance condition is fulfilled), the expressions for
the wave damping rates due to pair creation are fundamentally
different.

Generally, the agreement between KGW and DHW is
better for lower frequencies of the electromagnetic field. In
particular, if one compensates for the larger magnitude of the
vacuum background in the DHW case (by picking a vacuum
background a factor 2 larger than for a genuine scalar field),
the KGW and DHW equations agree perfectly for the pair-
production rate in the zero-frequency limit.

Increasing the frequency of the electric field, the agreement
gradually deteriorates. The lack of agreement is correlated
with a simultaneous growth of the relative contribution of the
polarization current density to the total current density. As the
polarization current is a direct consequence of the electron
spin, this result is to be expected.

Studying pair production including the back-reaction from
the self-consistent current density created by the pairs, the
sensitivity to a finite frequency is increased. That is, we need a
lower frequency of the electromagnetic field to still get a good
agreement between the DHW theory and the KGW theory.
Practically speaking ω ≈ 0.04ωc or smaller. Moreover, for
a self-consistent theory it is crucial to magnify the vacuum
background by a factor 2 in the KGW case (as compared to
a genuine scalar field), as the nonlinear dynamics otherwise
will be heavily modified, in case the self-consistent response
has the wrong magnitude. It should also be noted that
when the self-consistent field is accounted for, the difference
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between KGW and DHW theory tends to increase for very
large fields (well above the Schwinger critical field) imply-
ing very strong pair creation. This is due to the increase of
the self-consistent frequency scale (large number of particles
implying a high plasma frequency), and due to the mech-
anism of Pauli blocking becoming significant in the DHW
theory

Moreover, we have isolated the mechanism of Pauli block-
ing by studying the case of degenerate initial distributions.
As expected, in the DHW formalism pairs can not be cre-
ated in a region of momentum space where the states are
occupied. The same does not apply for the KGW formalism,
naturally.

In this paper, we have compared numerical results from
the KGW formalism specifically with the DHW formalism.
However, it can be noted that there are other well-established
approaches to the problem of strong field pair creation,
e.g., the quantum kinetic formalism [7,41–43] related to the
quantum mechanical scattering approach and S-matrix the-
ory [44,45]. Importantly, in the homogeneous and vanishing
magnetic field limit (the geometry studied in the numeri-
cal section of this paper), it has been shown that the DHW
formalism agrees exactly with the quantum kinetic theory
[7,41–43]. Thus, in practice, much of the present comparison
of the KGW formalism with the DHW theory is also a com-
parison with quantum kinetic theory.

The present paper is motivated by a desire to use the KGW
formalism whenever it is a valid approximation, as the 16
scalar equations of the DHW formalism (as compared to the
four scalar equations of the KGW formalism) are considerably
more difficult to solve, both numerically and analytically.
While the present paper has certain restrictions, e.g., except
for Sec. III we have considered electrostatic fields and the ho-

mogeneous limit, we expect that many of the present findings
apply in more general scenarios.

To give some motivation for this belief, let us consider a
more general scenario, where the field has a magnetic compo-
nent, and is varying both temporarily and spatially. First, we
note that strong field pair creation is driven by the electromag-
netic invariant E2 − B2. If this quantity is positive (such that
strong field pair creation is possible), there exists a reference
frame where the field is purely electric. Analyzing the local
(ignoring temporal and spatial gradients) physics in the refer-
ence frame of a pure electric field, we will obtain agreement
between DHW and KGW theory, as locally we can view the
field as electric as well as homogeneous. More realistically,
however, the agreement will fail, to the extent that the local
approximation is not accurate enough. However, from a rel-
ativistic point of view, whether the deviation from locality is
temporal or spatial is again dependent on the reference frame.
Specifically, for a field that can be locally approximated by a
plane wave, only the invariant ω2 − k2 matters. If this quantity
is positive, there exists a frame where the variation is purely
temporal, in which case the findings of the present paper, with
a maximum allowed frequency for the KGW theory, would be
applicable.

Thus, we expect that the relatively good agreement be-
tween the DHW formalism and the KGW formalism for
low frequencies generalizes to cases of spatial variations and
electromagnetic fields, at least qualitatively. However, more
studies are needed to give a definitive answer.
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