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Abstract

Under the extreme conditions that can be found around dense stars and
in the accretion discs of black holes, several strong-field quantum phenom-
ena dominate the dynamics of the plasma. This includes the creation of
matter and anti-matter from the vacuum (Schwinger mechanism), radiation
reaction and Landau quantization. Some of these strong field phenomena
were presented theoretically a century ago but have never been verified in
experiments due to the difficulty of creating the required extreme conditions
in the lab. However, with the development of laser facilities in the past
decades, it will be possible to observe several extreme physical phenomena
in the near future. To conduct experiments on these extreme phenomena,
theoretical simulations need to be constructed as a guide for optimizing
experiments.

This thesis is concerned with developing and analyzing strong field phe-
nomena in kinetic plasma models. The focus is to extend current kinetic
models to include several physical phenomena that are relevant to future
experiments on laser-plasma interaction. In particular, a kinetic theory based
on the Wigner transformation of the Dirac equation has been analyzed in
different regimes. This kinetic model is used to study the plasma dynamics
at the Schwinger limit, where collective plasma effects and several quantum
processes are studied.
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Chapter 1

Introduction

An essential part of physics is making experiments that aim in verifying
theoretical predictions. The information from the experiments tests whether
the predictions from theory are correct or not. However, since experiments
include many parameters and often complex interactions, it can be hard
to interpret the output data. Thus, theoretical models of experiments
are necessary to construct in order to illustrate the complex interactions
that happen during the experiments. These models describe the different
theoretically predicted processes that often happen in a very short time. The
data from the theoretical models is benchmarked with the output data from
experiments. By doing so, one can strengthen the validity of theoretical
predictions, and if the predictions are invalid, new theories need to be
constructed.

In the past decades, the interest for conducting experiments on strong
field effects in plasma has increased [1]. This has been motivated by the
steady increase in the technological development of laser facilities [2–4] .
This opened the door for conducting experiments that would access new
regimes of physics [5, 6]. In particular, the combination of high-energy
particle beams and high intensity laser fields will access the nonlinear and
relativistic quantum plasma regimes. To conduct experiments in this regime,
theoretical models of relativistic plasma that interact with strong lasers need
to be developed [7–11].

This thesis is about the theoretical modelling of strong field effects
in plasma. In this thesis, kinetic equations that describe the interaction
of dense plasma with external electromagnetic fields are developed and
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CHAPTER 1. INTRODUCTION

analyzed. These kinetic equations model the dynamics of plasma that can
be found in laser-plasma experiments or in astrophysical environments [12].
The theoretical models used in this thesis can also be used to study other
quantum effects related to high-density plasma. For certain classes of plasmas
where the density is very high, several quantum effects become important.
These high-density plasmas can also create strong fields from which electron-
positron pairs can be created. This has also been a part of this thesis. To
be more concrete about which strong field effects we are interested in, this
chapter will briefly describe the ones we are studying in this thesis.

1.1 Pair production

Electron-positron pairs can be created from vacuum by strong electric fields,
also known as the Schwinger mechanism. How strong an electric field E
should be to create pairs from vacuum through this mechanism can be
characterized by the critical field Ecr

Ecr =
m2c3

qh̄
(1.1)

where m and q are the mass and charge of the produced particles, h̄ is the
reduced Planck constant and c is the speed of light. For the case of electron
charges, one has the critical field Ecr = 1.32 × 1018V/m. The Schwinger
mechanism was first proposed by Sauter in 1931 [13]. However, a complete
mathematical description of this phenomenon was constructed by Julian
Schwinger in 1951 [14]. What Julian Schwinger found was that the rate Γ to
create an electron-positron pair from vacuum per unit volume is

Γ =
c5m4

eE
2

4π3h̄4E2
cr

exp

{
−πEcr

E

}
(1.2)

where me is the mass of electron. From this equation, one can conclude
that the probability for the Schwinger mechanism is heavily suppressed for
fields that satisfy the condition E ≪ Ecr. This explains why the Schwinger
mechanism has not been observed yet, as it has not been possible to create
fields of the order of Ecr in experiments. However, due to the development of
laser technology in the past decades, the interest in conducting experiments
on the Schwinger mechanism has increased. Hence, many works have been
devoted to create theoretical models of future experiments on the Schwinger
mechanisms [5, 15–17].
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1.2. RADIATION REACTION

There are also other mechanisms that enable the production of electron-
positron pairs besides the Schwinger mechanism. By letting two photons
collide, one can produce an electron-positron pair, also known as the Breit-
Wheeler process [18].

γ + γ → e+ + e− (1.3)

where γ and e± represent photon and positron/electron. If we have a system
with many photons, let us say a high-energy photon γ that propagate in an
electromagnetic field with n photons, we get

γ + nh̄ω → e+ + e− (1.4)

This process is called nonlinear Breit-Wheeler, where h̄ω is energy from
one photon of the electromagnetic field. The electromagnetic field in this
context is often a laser field with a large number of coherent photons. This
makes it possible to consider the laser field as a classical, non-quantized field.
The nonlinear Breit-Wheeler process has been observed in an experiment
at SLAC in 1997 [19] where a high-energy electron beam collided with a
counter-propogating laser pulse.

It is also possible to create an electron-positron pair from only a classical
electromagnetic field. Although the electromagnetic field is treated classically,
due to the wave particle interaction, a single quanta is absorbed from the
electromagnetic field to produce an electron-positron pair

h̄ω → e+ + e− (1.5)

This process can be described using a mean-field formalism where each
quanta is interacting with a big number of particles, in this context virtual
particles, for more details see Paper IV The single quanta process requires
that each quanta of the classical electromagnetic field carry the energy

h̄ω ≥ 2mec
2 (1.6)

More than a single quanta can also be absorbed to create an electron-positron
pair, and this would soften the condition in Eq. (1.6), for more details, see
Ref. [17]. The considerations made in this section are relevant for Paper III,
IV, and VI.

1.2 Radiation reaction

A plasma consists of a large number of charged particles that experience
different forces when interacting with an external electromagnetic field. Thus,
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CHAPTER 1. INTRODUCTION

in the laser-plasma interaction, the motion of the plasma is changed due
to the different forces it experiences. As is well known, an accelerating
charged particle emits electromagnetic radiation and loses energy. This loss
of energy causes a recoil force on the emitting particle known as the radiation
reaction. By that, the collective dynamics of the charged particles in the
plasma is affected by the single particle radiation reaction when the plasma is
interacting with external electromagnetic fields. The physics of the radiation
reactions has been known in classical electrodynamics [20–23] for more than
a century. While the fundamentals of classical radiation reactions have been
known for a long time, the consequences for collective plasma dynamics have
not been explored until recently.

For plasma and electromagnetic field interactions that occur at very
short time intervals and on small length scales, classical models of radiation
reactions break down [24]. For these processes, a quantum mechanical
description of the radiation reaction is needed. Charged particles emit
discrete photons, not continues emission as in the classical picture. This
affect the radiation reaction force and hence the dynamics of the emitting
particles [25–27]. Experiments that observed quantum radiation reaction
has done recently [28]. The radiation reaction force has been considered in
Paper V.

1.3 Other strong-field effects

In the ultrastrong magnetic field of magnetars [12] and in intense laser-plasma
interactions [29], there are several quantum effects that become important.
These effects are related to spin dynamics and are covered in this thesis.
There are also other strong-field effects that arise due to vacuum polarization.

Landau-quantization: In a very strong and slowly varying magnetic
field, charged particles can only occupy discrete states of the cyclotron orbits.
This affects the motion of the charged particles, as they can only be found in
discrete cyclotron orbits with equidistant energy levels. This effect is known
as the Landau quantization. Such a magnetic field can be found in dense
stars [12]. The effects due to strong magnetic fields on the dynamics of the
plasma have been studied in Paper II.

Vacuum polarization: In quantum mechanics, the vacuum consists of
virtual particles that polarize the vacuum in the same way as a dielectric
medium does. This affects the measurement of different processes. Further-
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1.4. OUTLINE

more, several processes arise due to the vacuum polarization. This includes
the light-light interaction [30, 31] and the one photon splitting due to strong
magnetic fields [32]. Recently, there has been an observation of the light-light
scattering at the ATLAS experiment at CERN [33].

1.4 Outline

I begin the thesis by considering the classical properties of plasma. These
classical properties need to be considered in the laser-plasma interaction
even if quantum models are to be used. In Section 2.1, I present the basic
plasma parameters that characterize the collective physics of a plasma. In
Section 2.2, the equations of motion of the collective plasma dynamics are
presented. The linear response of plasma to external fields is discussed in
Section 2.3. Finally, the wave particle interaction is discussed in Section 2.4
with a focus on the linear wave damping, also known as the Landau-damping.

While classical plasma models work well at modest temperatures and
densities, quantum effects become important at low temperatures and/or
high densities. Thus, in Chapter 3, the kinetic plasma models are extended
to include several quantum effects. In Section 3.2, a transformation that
enables the classical interpretation of quantum formulations is introduced.
This transformation is used to derive kinetic theories of plasma, including
quantum effects. To derive these kinetic theories, a transformation of the
Dirac Hamiltonian that decouple the particle and antiparticle states is
presented in Section 3.3. Finally, in Section 3.4, a quantum kinetic theory of
spin-1/2 particles in ultrastrong magnetic fields is presented.

In very strong electromagnetic fields, the creation of electrons and
positrons from vacuum is not negligible. In Chapter 4, kinetic models
that include the pair creation physics in the dynamics of the plasma are
studied. In Section 4.1, a kinetic equation that is based on the Wigner
transformation of the Dirac equation, so-called Dirac-Heisenberg-Wigner
(DHW) formalism, is presented. In particular, a simplified model in the
electrostatic limit of this kinetic equation is presented. Then, a linear study
of the DHW-formalism is presented in Section 4.2. Here, a pair creation
damping mechanism similar to the linear Landau-damping is derived. To
study nonlinear effects using the DHW-formalism, a numerical solution in
the electrostatic limit is presented in Section 4.3. Here, the focus is to deter-
mine how the Schwinger mechanism affects the different collective plasma
effects. Finally, an alternative formalism to the DHW-formalism, so-called
Klein-Gordon-Wigner (KGW) formalism, is presented in Section 4.4. Here
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CHAPTER 1. INTRODUCTION

the model is based on a Wigner transformation of the Klein-Gordon equation
instead of Dirac. This model can be used to represent fermions under certain
conditions, and these conditions are discussed in Section 4.4.

Finally, in Chapter 5 the effect of radiation has been added to the
dynamics of the plasma. In Section 5.1, the classical radiation reaction is
introduced. Then, in Section 5.2, the effects of the radiation reaction have
been added to the relativistic Vlasov equation. The consequence of this
extension has been analyzed, and a cooling mechanism in the background
plasma due to the radiation reaction has been found.
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Chapter 2

Classical plasma physics

Plasma is the most common state of visible matter in the universe and
can be found in stars, solar winds, planetary magnetospheres, and the
interstellar medium. One can also find plasma in science laboratories and in
the fabrication of semiconductors. Plasma is perhaps most known for being
used to obtain clean energy in future fusion energy reactors [34]. There has
been a large investment to produce clean energy by confining hot and dense
plasma for sufficiently long times to obtain a fusion of deuterium nuclei into
helium nucleus [35].

What characterizes the plasma is that it is overall electrically neutral
but contains charge carriers that can move freely. In this chapter, a short
introduction to classical plasma properties is given. In the first section,
basic plasma parameters are presented. Following that, in Section 2.2 two
methods for modelling plasma dynamics will be presented. Then, linear
plasma responses to external fields will be described in Section 2.3. Finally,
wave-particle exchange effects are discussed in Section 2.4 with a focus on
the linear Landau damping.

2.1 Basic plasma physics

A plasma is an ionized gas in which the typical kinetic energies of the particles
are much greater than the potential energy in relation to its nearest neighbor
[36]. Thus, by heating a neutral gas, the electrons will separate from the
atoms, and we gradually obtain a gas of electrons and ions, i.e., plasma. The
plasma is composed of free charges, it is highly conductive, and any charge
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CHAPTER 2. CLASSICAL PLASMA PHYSICS

imbalance is quickly neutralized by the free-moving charge carriers in the
plasma. If a test charge is introduced into the plasma, the test charge’s
field will affect the plasma’s surrounding particles. The response from the
plasma is that it will surround the test charge with a cloud of particles
of the opposite charge, which screens the test charge. This effect is called
Deby screening and is dependent on the plasma parameters: temperature
T , charge q, and number density n [34, 37]. The characteristic length of the
screening λD from the plasma on the test charge qt is called Deby length and
is defined as

λD =

√
kBT

4πnq2
(2.1)

where kB is the Boltzmann constant. The number of particles inside a cube
with length λD is called the plasma parameter.

For an ion-electron plasma, the particles can generate and respond to
electromagnetic fields. However, ions are much heavier than electrons; a
proton weighs about ∼ 2000 more than an electron. This makes the electrons
more mobile, and unless the considered waves are of low frequencies, the ions
are slow to respond to the propagation of waves and neutralize them. Thus,
in the case of high frequencies, the ions can be regarded as a neutralizing
background for the electrons, and only the electron dynamics are considered.
If we assume that we have a neutralized plasma and displace some of the
electrons, the charge separation will create an electric field. This field will
force the electrons back to their original positions to restore neutrality.
However, the accelerated electrons will pass their original positions due
to inertia and end up with a charge imbalance. This will continue back
and forth, creating an oscillating system with a frequency ωp called plasma
frequency defined as

ωp =

√
4πq2ene
me

(2.2)

where qe, ne and me are the charge, density, and mass of the electron,
respectively.

2.2 Plasma description

To completely determine the state of a plasma, one needs to know the velocity
and position of all particles. However, since a plasma contains a large number
of particles, this is an impossible task, and hence one needs to use a statistical
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2.2. PLASMA DESCRIPTION

approach to determine the state of the plasma. There are two main ways to
model a plasma, kinetic and fluid descriptions.

2.2.1 Kinetic description

The classical state of a plasma is described in kinetic theory by the distribution
function fs(r,p, t) representing the phase space number of particles of species
s (electrons or ions) at position r with the momentum p at time t. The
number particle density ns(r, t) is obtained from

ns(r, t) =

∫
d3pfs(r,p, t) (2.3)

A plasma interacts with an external electromagnetic field, where the evolution
of the distribution function fs(r,p, t) was firstly derived by Vlasov [38]

∂tfs(r,p, t)+
p

ms
·∇rfs(r,p, t)+qs

(
E+

p

msc
×B

)
·∇pfs(r,p, t) = 0 (2.4)

where E and B are the electric and magnetic fields, respectively. The plasma
responds to the propagation of an external field and creates its own fields.
This is included self-consistently in the dynamics using Maxwell’s equations

∇r ·E = 4πρ

∇r ·B = 0

∇r ×E = −∂tB (2.5)

∇r ×B =
4π

c
J+

1

c
∂tE

where ρ and J are the charge and current density, respectively

ρ =
∑
s

qs

∫
d3pfs(r,p, t) (2.6)

J =
∑
s

qs

∫
d3p

p

ms
fs(r,p, t) (2.7)

where a summation of the species s has been used. The Vlasov equation
is one of the most important plasma equations and can be used to model
a large number of systems in plasma physics. The Vlasov equation can be
used to study linear waves, in particular cyclotron and Landau-damping [39].
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CHAPTER 2. CLASSICAL PLASMA PHYSICS

Moreover, Eq. (2.4) capture strongly nonlinear motion very well. However,
Eq. (2.4) is non-relativistic, a relativistic version of Eq. (2.4) is presented in
Section 5.2. The relativistic Vlasov equation can be used to model the case
of fully relativistic electron motion due to a strong laser field.

2.2.2 Fluid description

In cases of inhomogeneous media, complex magnetic field structures or other
complications, a kinetic description of seven independent variables may be too
challenging, in which case a simpler description might be preferable. For this
purpose, the fluid model can be used to model the dynamics of the plasma.
The equations of the fluid model are obtained by integrating over various
moments of the Vlasov equation Eq. (2.4). By doing so, the six-dimensional
phase space is replaced with a three-dimensional one. The fluid equations are
easier to solve numerically since we have only three independent variables
in addition to time. However, phenomena such as wave-particle interaction
and so-called finite Larmor radius effects (e.g., Bernstein resonances [40]) are
excluded in the fluid description. Integrating the Vlasov equation Eq. (2.4)
over momentum space, we get the continuity equation

∂tns(r, t) +∇r ·
(
ns(r, t)

ps

ms

)
= 0 (2.8)

with ns(r, t) representing the number density. Next, we can multiply Eq. (2.4)
by p and integrate over the momentum space to obtain the momentum
equation

∂tpsi(r, t) +
( ps

ms
· ∇r

)
psi(r, t) = qs

(
Ei + εijk

psj
msc

×Bk

)
− 1

n

∂Pij

∂rj
(2.9)

where the summation of the repeated indices is assumed and εijk is the
Levi-Civita pseudotensor. This equation describes the effect of the total
force on the fluid, where Pij is the pressure tensor. The evolution equation of
the pressure tensor Pij is more complicated and involves the gradient of the
heat tensor Qijk [41]. Eqs. (2.8) and (2.9) are coupled to Maxwell’s equation
Eq. (2.5) with the charge and current density given by

ρ(r, t) =
∑
s

qsns(r, t) (2.10)

J(r, t) =
∑
s

qs
ms

ns(r, t)ps(r, t) (2.11)
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2.3. LINEAR THEORY AND PLASMA WAVES

The fluid equations, including the evolution of the pressure tensor, can be
closed by some suitable assumptions. One assumption is that the heat tensor
Qijk = 0, which makes the fluid equation together with the evolution of the
pressure tensor self-consistent.

While kinetic models are the main focus of the thesis, it can be noted that
fluid models play an important role in plasma physics. The fluid description
can be good to use in some cases where kinetic deception is rather complicated.
However, since the momentum dependence of the density function is lost,
wave-particle effects such as Landau damping are not included.

2.3 Linear theory and plasma waves

A plasma consists of a large number of charged particles where the collective
effects are dominant. This allows for a large number of wave modes to
propagate in the plasma. To characterize these modes, a common physical
approach is used, where one assumes that the response of the plasma to
the waves is small compared to the plasma’s static equilibrium state. Such
an approach is known as the linear theory and is used for cases where the
amplitude of the waves is small. Generally, ions are much heavier than
electrons, and for waves with high frequencies, their dynamical motion can
be neglected. Thus, we can neglect the response of ions to the waves and
only consider the response of electrons. By that, we drop the subscript s in
the following and use the electron charge qe = −e. We can pick an example
of the linear theory where we linearize the number density in phase space
f(r,p, t) as

f(r,p, t) = f0(p) + f1(r,p, t) (2.12)

where f0(p) is the constant number density of the equilibrium plasma,
i.e., before the propagation of the waves in the plasma, and f1(r,p, t) is the
perturbed number density due to the propagation of waves. A similar division
of perturbed and unperturbed quantities is done for the electromagnetic field
as well. The requirement for this approach to be valid is f1(r,p, t) ≪ f0(p)
and that we have electromagnetic fields with modest amplitudes. This allows
for an approximation in which the product of perturbed quantities and
higher-order terms is neglected. Looking at the third term of Eq. (2.4), we
notice that

E · ∇pf = E1 · ∇p(f0 + f1)

11



CHAPTER 2. CLASSICAL PLASMA PHYSICS

Here, E1f1 can be ignored, and we only keep E1f0. For simplicity, we can
now consider the case where the magnetic field is vanishing and we have
electrostatic waves in the plasma. Then Eq. (2.4) is reduced to

∂tf1 +
pz
m
∂zf1 − eE1(z, t)∂pz

f0 (2.13)

and Ampere’s law is linearized to

∂tE1 = −4π
e

m

∫
d3p pzf1 (2.14)

Next, we can use the wave-plane ansatz

f1(r,p, t) = f̃1(p)e
i(k·r−ωt) (2.15)

where f̃1(p) is the amplitude of f1 in momentum space and k and ω are the
wave vector and frequency of the wave, respectively. Using this ansatz in
Eqs. (2.13) and (2.14), we get

f1 = i
eE1

(ω − kpz/m)
∂pzf0 (2.16)

E1 = −i4π e

mω

∫
d3p pzf1 (2.17)

Using the expression of f1 in the Ampere’s law, we get the dispersion relation
D(ω, k) = 0

D(ω, k) = 1 +
4πe2

ωm

∫
d3p

pz
ω − kpz/m

∂pzf0 = 0 (2.18)

Considering the low-temperature limit where kpz/m≪ ω and keeping the
lowest order non-vanishing term, we get after integration by parts

ω2 =
4πe2

m

∫
d3pf0 =

4πe2n0
m

= ω2
p (2.19)

where in the last equality we have used the definition of plasma frequency.
However, if we include up to first order in kpz/mω in Eq. (2.18), the dispersion
relation becomes

D(ω, k) = 1−
ω2
p

ω2
−

3k2p2thω
2
p

m2ω4
= 0 (2.20)

where we have defined the thermal momentum pth as

p2th =
1

n0

∫
d3p p2zf0 (2.21)
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2.4. LANDAU-DAMPING

2.4 Landau-damping

The dispersion relation in Eq. (2.18) was firstly derived by Vlasov [38].
While Vlasov solved the dispersion relation using the principal value of the
integral, Landau showed in [39] that this approach neglects an important
effect. This effect is related to the singularity that occurs for ω = kpz/m.
Landau suggested that the frequency ω must have an imaginary part: ω =
ωr+ iωi, where ωr and ωi are the real and imaginary frequencies, respectively.
Assuming that: ωi ≪ ωr, one can Taylor-expand the dispersion relation
D(ω, k) to first order around ωr:

0 = Dr(ωr, k) + iDi(ωr, k) + iωi
∂Dr

∂ω
|(ωr,k) (2.22)

The integral in D(ω, k) Eq. (2.18) should be evaluated as a contour integral
in the complex pz-plane. The singularity in D(ω, k) is treated using the
Plemelj formula

1

u− a
= P

1

u− 1
+ iπδ(u− a) (2.23)

where P is the principal value employed by Vlasov in his approach and δ is
the delta-function. Thus, all points in the pz-coordinate are covered by the
principal valued integral except the point at the singularity, which is included
in the delta-function. Thus, the imaginary frequency ωi is determined by
solving both the real Dr(ωr, k) and imaginary part Di(ωr, k). Considering
the low-temperature limit of Eq. (2.20), we have the following expression of
the real frequency ωr

ω2
r = ω2

p + 3k2
p2th
m2

(2.24)

Using this expression of ωr in Eq. (2.22) together with Eq. (2.18), we get

ωi =
πω3

p

2k2
f ′
(pz
m

=
ωr

k

)
(2.25)

This expression is valid in the limit ωr/k ≫ pth/m, indicating that the wave’s
phase velocity is much greater than the thermal velocity of electrons in the
plasma. Thus, there is an exchange of energy between the electrons in the
plasma and the external wave. This exchange causes a damping of the wave,
called Landau damping. If the opposite were to hold, i.e., the electrons have
a higher thermal velocity than the phase velocity, then the wave amplitude
would grow and we would have an instability. One can summarize the physics
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CHAPTER 2. CLASSICAL PLASMA PHYSICS

of Landau damping as follows: If particles move slower on average than the
phase velocity of the wave with which they interact, they gain energy and the
wave amplitude is damped. For the opposite case, particles that on average
move faster than the phase velocity will lose energy, and the wave amplitude
is increasing. Next, we use Eq. (2.22) to define the fraction γ.

γ ≡
∣∣∣∣ωi

ωr

∣∣∣∣ = ∣∣∣∣ Di(ωr, k)

ωr(∂Dr/∂ωr)

∣∣∣∣ (2.26)

This quantity can be used to estimate the importance of the Landau damping
mechanism. Generally, the Landau damping mechanism is one of the most
important theoretical predictions in plasma physics. This mechanism can
only be modeled using kinetic theories. This is because the wave-particle
interaction is related to the momentum distribution of the electrons, and such
information is not provided by the fluid model. We will see in Section 4.2, a
mathematically similar damping process to Landau-damping, but one with
a different physical meaning.
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Chapter 3

Quantum kinetic theory

In the previous chapter, we discussed different plasma parameters and showed
how to model plasma using kinetic and fluid theories. These models are based
on classical mechanics and work well for modest temperatures and densities.
However, for low-temperature and/or high-density plasma, quantum effects
become important [42, 43]. The interest for quantum plasma has increased
due to different applications, including laser-plasma interaction [2, 44, 45],
spintronic devices [46, 47] and plasmonic devices [48–50]. In this chapter,
we will model and analyze quantum effects using kinetic plasma models.
The formalism presented in this chapter is used to derive quantum kinetic
theories that can be seen as a quantum extension to the Vlasov equation.
We will start this chapter by presenting the conditions that make quantum
mechanics necessary to describe the dynamics of the plasma. Then, in
Section 3.2, a transformation that enables quantum mechanical systems to
be treated with a formalism resembling classical ones is introduced. Then we
will introduce the so-called Foldy-Wouthuysen transformation in Section 3.3.
This transformation is used to separate particle- and antiparticle states of
the Dirac Hamiltonian. We end this chapter by deriving a quantum kinetic
theory of spin-1/2 particles in ultrastrong magnetic fields. To simplify the
equations used in this chapter, we set c = 1.

3.1 Quantum plasma regimes

Before presenting the theoretical foundation of the quantum kinetic plasma
models, we can go through the conditions for the quantum effect to be
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CHAPTER 3. QUANTUM KINETIC THEORY

important. The first quantum effect is due to the uncertainty principle,
which implies that the wave function of a particle cannot be localized in both
momentum and spatial space. Generally, for a particle momentum p, the
characteristic spread in spatial space is given by the de Broglie wavelength λ =
h̄/p. The typical momentum of the particles in a plasma with temperature
T is pT . Thus, the typical spread of the wave function is the thermal de
Broglie wavelength.

λdB =
h̄

pT

For dense plasma, the wave functions of the different particles overlap each
other, which makes it necessary to use quantum mechanics for describing
the dynamics of the plasma. Such dense plasma can be characterized by the
condition

nλ3dB ≥ 1 (3.1)

where the number of particles inside the de Broglie box is equal to or greater
than one. For such plasma, quantum mechanics is needed to describe the
dynamics of the plasma.

Another quantum effect that is important for the dynamics of the plasma is
the Pauli exclusion principle, which becomes important when the temperature
of the plasma is similar to or lower than the Fermi temperature TF

Tf
T

≥ 1 (3.2)

where

TF =
(3π2n)2/3

2mkBh̄
2 (3.3)

However, one can show that T/Tf ∝ nλ3dB and hence the conditions Eqs. (3.1)
and (3.3) are the same.

A third quantum effect is due to the intrinsic angular momentum of the
electrons, also known as spin. The electrons are spin-1/2 particles and have
a magnetic moment, also known as Bohr magneton µB

µB =
eh̄

2m
(3.4)

Thus, electrons interact with external magnetic fields with interaction energy
µBB, where B is the magnitude of the external magnetic field. Comparing

16



3.2. THE WIGNER TRANSFORMATION

this interaction energy with typical kinetic energy kBT , for a temperature of
T = 1K, we need to have a magnetic field of the order of 1 tesla to have

µBB

kBT
∼ 1 (3.5)

Other quantum effects that need to be included in the dynamics of the plasma
are strong-field quantum electrodynamics effects. These effects become
important when the plasma is subjected to ultrastrong electromagnetic fields.
A more detailed description of these effects will be discussed in the next
chapter.

3.2 The Wigner transformation

In the previous chapter, we used a statistical approach where the number of
particles could be easily obtained by integrating the distribution function
f(r,p, t) in phase space. In quantum mechanics, the wave function can be
represented either in momentum or spatial space, not both as for classical
distribution functions. This makes it non-trivial to establish a statistical
approach in phase space where classical interpretations can be made. How-
ever, the seminal work by Eugene Wigner [51] was a significant advance
in establishing statistical approaches based on quantum formulations. The
Wigner transformation, named for its inventor, has applications to different
fields, including semiconductor physics, quantum optics, quantum chemistry,
and plasma physics. In this thesis, we will only consider the formulation
applicable to plasma physics.

The Wigner transformation can be considered as a Fourier transformation
of the density matrix ραβ

Wαβ(r,p, t) =
1

(2πh̄)3

∫
d3z ⟨r+ z/2| e i

h̄p·zραβ |r− z/2⟩ (3.6)

where the subscripts αβ here indicate the spin states. For a more detailed
description of the Wigner transformation, see [52]. We can note here that
the Wigner function Wαβ(r,p, t) is spanned in phase space. By integrating
the Wigner function in momentum space, we get∫

d3pWαβ(r,p, t) = ⟨r| ραβ |r⟩ (3.7)

Before considering more advanced definitions of the Wigner function, we
can take a look at how one can establish kinetic equations using the Wigner
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functions. As is well known, the density matrix ραβ evolves over time
according to the von Neumann equation

ih̄∂tραβ =
[
Ĥ, ραβ

]
(3.8)

where Ĥ is the Hamiltonian. We let the Von Neumann equation be our
starting point and aim to get a kinetic equation in terms of the Wigner
function. Let us consider a simple case where we have a free particle with
the following Hamiltonian

Ĥ =
p2

2m
(3.9)

Using this Hamiltonian in Eq. (3.8) and making some algebraic calculations,
we can obtain a kinetic equation in terms of the Wigner function[

∂t +
p

m
· ∇r

]
Wαβ(r,p, t) = 0 (3.10)

Except for the 2 × 2- structure of the Wigner function 1, this equation is
simply the Vlasov equation Eq. (2.4) in the vanishing field limit.

Next, we want to study the case with electromagnetic fields. Thus, we
should modify the Hamiltonian to

Ĥ =

(
p− qA(r)

)2
2m

+ qϕ(r) (3.11)

where A(r) and ϕ(r) are the vector and scalar potentials, respectively. If
we use the Wigner function Eq. (3.6) for this Hamiltonian, then the kinetic
equation will be explicitly dependent on the vector potential A. This means
that the kinetic equation will be gauge-dependent, and one should fix the
gauge to get further when using the kinetic equation. To avoid this problem,
an alternative definition of the Wigner function, which was first developed
by Stratonovich [53], can be used. The idea is to use the kinetic operator

π = p− qA (3.12)

instead of the canonical operator p̂. The gauge-invariant Wigner function is
now

Wαβ(r,p, t) =
1

(2πh̄)3

∫
d3z ⟨r+ z/2| e

i
h̄z·

(
p+q

∫ 1/2

1/2
dλA(r+zλ)

)
ραβ |r− z/2⟩

(3.13)

1Since the different components of the Wigner function in Eq. (3.10) don’t couple, one
can easily show that this equation is reduced to a scalar-valued equation.
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3.3. FOLDY-WOUTHUYSEN TRANSFORMATION

Because this expression is dependent on the vector potential, A, deriving
kinetic equations based on this Wigner function will be more difficult than
using the gauge-dependent definition of the Wigner function Eq. (3.6). The
reason is that the operators in the Hamiltonian will act on the vector
potential when performing the commutator in the von Neumann equation.
Nevertheless, it is necessary to obtain kinetic equations without any potential
dependence. For a more detailed discussion about the technical detials related
to the gauge-invariant derivation of evolution equation, see e.g., Ref. [52].

3.3 Foldy-Wouthuysen transformation

After deriving the gauge-independent Wigner function Eq. (3.13), we can now
derive quantum kinetic equations of particles in external electromagnetic
fields. We can let the Hamiltonian Eq. (3.11) be our starting point to
derive quantum kinetic equations. However, this Hamiltonian represents non-
relativistic particles in external electromagnetic fields and excludes relativistic
effects. To derive quantum kinetic equations for particles under more extreme
conditions, where relativistic effects are important, one needs to use another
Hamiltonian. The Dirac Hamiltonian that implies the Dirac equation [54],
covers relativistic effects. However, a difficulty with the Dirac Hamiltonian
is that it is a 4 × 4 matrix where the states of matter and antimatter are
coupled. While this structure is natural to deal with for problems involving
the creation of electrons and positrons, i.e., when we have a strong external
electric field, it is unnecessary to keep this complicated structure for modest
electric fields. In Foldy and Wouthuysen’s seminal paper [55], they used a
transformation where one can separate the particle and antiparticle states of
the Dirac Hamiltonian. Their idea was to find the non-relativistic limit of
the Dirac Hamiltonian. Their starting point was the Dirac Hamiltonian

Ĥ = βm+ qϕ(r) +α · π̂ (3.14)

where β and α are the Dirac matrices. The first two terms of the Dirac
Hamiltonian are even since they don’t couple the different states of the Dirac
four-spinor. The third term is an odd term, it couples the different states of
the Dirac four-spinor. The idea of Foldy and Wouthuysen was to transform
the Dirac wave function, and hence the Dirac Hamiltonian, so that one
only kept even terms (no coupling between the different states of the Dirac
four-spinor). The Dirac wave function Ψ is then transformed according to

Ψ′ = UΨ (3.15)
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CHAPTER 3. QUANTUM KINETIC THEORY

where U = eiS is a unitary operator. Here S is an operator that is assumed
to have a small amplitude. The Dirac Hamiltonian is transformed according
to

H ′ = U
(
H − ih̄∂t

)
U−1 + ih̄∂t (3.16)

In order to get rid of the odd operators, the operator S should be defined as
a product of the α and β matrices. For the free particle case, we can define
S as

S = − i

2m
βα · pω

( p
m

)
(3.17)

where ω is a function of p/m determined in such a way that H ′ is devoid of
odd operators. Using this expression of S in Eq. (3.16), we get

H ′ = β
[
m cos (ωp/m)+p sin (p/mω)

]
+α · p

p

[
m cos (ωp/m)−p sin (p/mω)

]
(3.18)

Here, we can note that by choosing

ω
( p
m

)
=
m

p
arctan

( p
m

)
(3.19)

the Hamiltonian H ′ becomes free of odd operators and we get

H ′ = β
√
m2 + p2 (3.20)

This Hamiltonian does not couple the upper and lower components of the
Dirac four-spinor, and we got what we were looking for.

We have looked for the free particle case; next, we will look for the case of
the electromagnetic field. Here, we need to consider another operator U than
the one defined in Eq. (3.17). Silenko generalized the Foldy-Wouthuysen
transformation to the electromagnetic case by defining the operator U [56]

U =
ϵ+m+ βα · π√

2ϵ(ϵ+m)
(3.21)

where ϵ =
√
m2 + (α · π)2. Using this expression in Eq. (3.16), one still has

odd terms. However, the odd terms are proportional to E/Ecr. Since we are
considering a regime in which pair creation is ignored, we have E/Ecr ≪ 1.
Thus, the odd terms are small and can be removed by applying a second
transformation, similar to the one defined in Eq. (3.16). I will skip the
derivation of the second transformation since it is very lengthy, see [56] for
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more details. The final Hamiltonian is obtained by considering the smallest
correction of the second transformation

HFW = ϵ+qϕ−µBm

2

{
1

ϵ
,σ ·B

}
+

µBm√
2ϵ(ϵ+m)

[
σ·(π×E)−E×π

] 1√
2ϵ(ϵ+m)

(3.22)
where σ is a vector containing the Pauli matrices. This Hamiltonian includes
up to the first order of electric and magnetic field, in accordance with the
E/Ecr ≪ 1-approximation. Furthermore, the Hamiltonian is fully relativistic,
i.e., it includes all orders of gamma-factor. This Hamiltonian has been used
to derive a fully relativistic kinetic equation in [57] and in Paper I.

3.4 Ultrastrong magnetic field

In this section, we will use the Wigner function and the Foldy-Wouthuysen
transformation to derive a kinetic theory of spin-1/2 particles in an ultra-
strong magnetic field. When the Zeeman energy of an electron exceeds the
rest mass energy, then the motion of the electron is strongly influenced by
the magnetic field. Such a condition requires a magnetic field of the order of
the critical one Bcr

Bcr = m2/eh̄ = 4.4× 109T (3.23)

The Hamiltonian derived in Eq. (3.22) fulfills the conditions

E

Ecr
≪ 1

B

Bcr
≪ 1 (3.24)

The first condition of Eq. (3.24) was used to separate the states of particles
and anti-particles and to construct a simpler Hamiltonian. A strong magnetic
field, on the other hand, cannot produce particles and antiparticles. Hence,
it is possible to construct an even Hamiltonian, similar to Eq. (3.22), but
including the effects of a strong magnetic field. To do that, we reconsider
the derivation made in the previous subsection, but will not apply the
approximation where we neglected the products of fields. Thus, we reconsider
the Hamiltonian obtained in the previous subsection before applying the
second transformation. Keeping products of fields leads to a very complicated
Hamiltonian, thus we need to make a further approximation to simplify the
Hamiltonian. We will consider the following division

B(r) = B0 + δB(r) (3.25)
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where we divided the magnetic field into two parts. B0 can be considered as
a background magnetic field that is homogeneous and can be very strong,
i.e., B0 ∼ Bcr. The other part, δB is a varying magnetic field and fulfills the
conditions of Eq. (3.24). Another approximation we will use is to neglect the
effects of spin-orbit interaction, i.e., we drop the fourth term in Eq. (3.22).
We do that in order to construct a less complicated kinetic equation and put
more focus on the effects due to the ultra-strong magnetic fields. The final
Hamiltonian is

ĤFW =
√
m2 + π2 − 2mµBσ ·B0 + qϕ(r) (3.26)

Note that δB does not appear explicitly in the above Hamiltonian. However,
the kinetic momentum π̂ includes the vector potential A, which generates
the full magnetic field B. Next, we will derive a kinetic equation using this
Hamiltonian. This is a similar derivation to the one made in Section 3.2
where we used the von Neumann equation Eq. (3.8). However, this time we
will use the gauge-invariant Wigner function Eq. (3.13). After some algebra,
we get the kinetic equation (see Paper II for more details)

∂tWαβ +
1

ϵ′
p · ∇rWαβ + q

(
E+

1

ϵ′
p×B

)
· ∇pWαβ (3.27)

where

ϵ′ =
√
m2 + p2 − 2mµBσ ·B0 −m2µ2

B(B0 ×∇p)2 (3.28)

is the operator that generalizes the traditional Lorentz factor to include
the effects of ultra-strong magnetic fields. Note that the operator ϵ′ acts
on everything on the right side, i.e., it acts on both p and Wαβ . Another
thing to note is that the third term in ϵ′ is matrix-valued. To obtain a scalar
theory, we can make a transformation of ϵ′ such that we get rid of the Pauli
matrix σ from the square-root term. We define the scalar version of ϵ′ as

ϵ± =
√
m2 + p2 ∓ 2mµBB0 −m2µ2

B(B0 ×∇p)2 (3.29)

and it is straightforward to show that

ϵ′ =
1

2
(ϵ+ + ϵ−)I + (ϵ+ − ϵ−)σz (3.30)

where I is the identity matrix. Note that we have assumed that B0 = B0 ez.
It is worth noting that the Wigner function is a 2 × 2- matrix. The same
is true for σz and I, they are also matrix-valued, but with only non-zero

22



3.4. ULTRASTRONG MAGNETIC FIELD

diagonal elements. If the Wigner function initially has only diagonal elements,
i.e., there is no coupling between the spin states

W11 =W+,W22 =W−

W12 =W21 = 0

Then the Wigner function remains uncoupled. Thus we can rewrite the
kinetic equation Eq. (3.27) into two scalar ones

∂tW± +
1

ϵ±
p · ∇rW± + q

(
E+

1

ϵ±
p×B

)
· ∇pW± (3.31)

This equation includes all orders of the spin magnetic moments. It represents
an ensemble of spin-1/2 particles in the mean-field approximation in ultra-
strong magnetic fields. This model could be used to model relativistic plasma
that can be found around dense stars where the magnetic field exceeds the
critical field Bcr [12]. This model is completed by Maxwell’s equations

∇r ·E = ρf (3.32)

∇r ×B = jf + ∂tE (3.33)

where ρf and jf are the free charge and current density respectively

ρf = q
∑
±

∫
d3pW± (3.34)

jf = q
∑
±

∫
d3p

1

ϵ±
pW± (3.35)

Note that we have summed over the spin states. The model presented in this
section has been derived to show that a plasma in a strong magnetic field
essentially behaves as a multi-species plasma. See Paper II for more details.
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Chapter 4

Pair production

In the previous chapter, we considered quantum kinetic theories, including
relativistic effects and effects due to ultrastrong magnetic fields. In this
section, we focus on the pair production dynamics in vacuum and plasma.
Under the extreme conditions that can be found around dense stars and
in the accretion discs of black holes [58], it is possible to create electrons
and positrons from the vacuum. The Schwinger mechanism was presented
theoretically almost a century ago, but has never been verified in experiments
due to the difficulty of creating the required extreme conditions in the lab.
However, with the development of laser facilities in the past decades, it
is becoming more possible to observe several extreme physical phenomena
(including the Schwinger mechanism) in the lab. Thus, interest in studying
the Schwinger mechanism has increased over the past few decades [5, 16, 24].

The creation of electrons and positrons from vacuum becomes important
when the external fields approach the critical field limit Ecr. At this limit,
it is possible to create a large number of electrons and positrons from
vacuum. The produced particles will interact with the external fields, and we
will get several collective plasma effects. Thus, the focus of this chapter will
be to study how the pair creation mechanism due to strong electric fields
affects the dynamics of a plasma.

In this chapter, we will begin by introducing the Dirac-Heisenberg-Wigner
(DHW) formalism, which is a Wigner transformation of the Dirac Hamiltonian.
We will show how to define new variables in the electrostatic limit to obtain
a simplified version of the DHW-formalism. Then, in Section 4.2, we will
present a pair creation damping mechanism that does not rely on strong
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fields but is analogous to the linear Landau-damping. To study the Schwinger
effects in plasma, we solve the equations for the DHW-variables in Section 4.3.
Finally, in Section 4.4, an alternative model to the DHW-formalism is
presented, and the results from it are compared to the ones from the DHW-
formalism.

As we have done in the previous chapter, we use units where c = 1.

4.1 DHW-formalism

In the previous chapter, we presented the Foldy-Wouthuysen transformation
to separate the particle and antiparticle states of the Dirac Hamiltonian.
However, in this section, we want to keep the coupling between the particle
and anti-particle states in order to study pair production mechanisms in
plasma and vacuum. Hence, the Dirac Hamiltonian Eq. (3.14) will be our
starting point, and we want to derive a kinetic equation that is based on
a Wigner transformation of it. In this section, I present a set of expansion
coefficients, which we term the DHW-functions, of the equal-time Wigner
function Wα,β(r,p, t) Eq. (3.13). We use the temporal gauge, where the
scalar potential ϕ is set to zero, thus the electromagnetic field is given by

E = −∂tA
B = ∇r ×A

The gauge-fixing slightly simplifies the derivation of the evolution equations
for the DHW-functions. However, since a gauge-independent Wigner trans-
formation is utilized, the end result will be gauge-invariant. Our starting
point is the Dirac equation in the temporal gauge[

ih̄∂t +α · (i∇r + qA) + βm
]
Ψ̂α(r, t) = 0, (4.1)

We use the gauge independent Wigner transformation

Ŵαβ(r,p) =

∫
d3z exp

(
− i

h̄
p·z− iq

h̄

∫ 1/2

−1/2

dλz·A(r+λz, t)

)
Ĉαβ(r, z, t),

(4.2)

where

Ĉαβ(r, z, t) = −1

2

[
Ψ̂α(r+ z/2, t), ˆ̄Ψβ(r− z/2

]
. (4.3)
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In Eq. (4.2) we use the Wilson line factor (the integral involving the vector
potential) to ensure the gauge invariance. The Wigner function Wαβ(r,p, t)
is defined as the expectation value of the Wigner operator

Wαβ(r,p, t) = ⟨Ω|Ŵαβ(r,p, t)|Ω⟩ , (4.4)

where |Ω⟩ ⟨Ω| is the state of the system. Note that the Wigner function
Eq. (4.2) is the same as the one presented in Eq. (3.13). The only difference
here is that we have expressed it in terms of the wave function Ψ instead of
the density matrix ρ. Next, in order to derive an equation of motion for the
Wigner function, we take the time derivative of Eq. (4.4). We use the Hartree
approximation, where the electromagnetic field is treated as a non-quantized
field. This approximation is well justified for high electromagnetic field
strengths and amounts to neglecting the quantum fluctuations. Applying the
Hartree approximation, we replace

⟨Ω|E(r, t)Ĉαβ(r,p, t)|Ω⟩ → ⟨Ω|E(r, t)|Ω⟩ ⟨Ω|Ĉαβ(r,p, t)|Ω⟩
⟨Ω|B(r, t)Ĉαβ(r,p, t)|Ω⟩ → ⟨Ω|B(r, t)|Ω| ⟨Ω|Ĉαβ(r,p, t)|Ω⟩ (4.5)

This approximation corresponds to ignoring higher-loop radiative corrections
and is appropriate for fields that vary slowly with time. After some algebra,
the equation of motion of the Wigner function is given by [59]

ih̄DtWαβ(r,p, t) = m[β,W ]αβ + [p̃ ·α,W ]αβ − ih̄

2
{D,W}αβ , (4.6)

where we have the non-local operators

Dt =
∂

∂t
+ qẼ ·∇p (4.7)

p̃ = p− iq

∫ 1/2

−1/2

dττB(r+ ih̄τ∇p)×∇p (4.8)

D = ∇r + q

∫ 1/2

−1/2

dτB(r+ ih̄τ∇p)×∇p (4.9)

Ẽ =

∫ 1/2

−1/2

dτE(r+ ih̄τ∇p) (4.10)

which reduce to their local approximations (i.e. Dt → ∂/∂t+ eE · ∇p and

Ẽ → E, etc.) for scale lengths much longer than the characteristic de Broglie
length.

27



CHAPTER 4. PAIR PRODUCTION

4.1.1 The DHW-expansion

Even though the equation of motion of the Wigner function Eq. (4.6) has
only a couple of terms, it is not simple to interpret since the particle and anti-
particle states are mixed. The Wigner-function is a 4× 4-matrix, and each
component’s equation of motion is coupled with others due to commutators
and anti-commutators with the α- matrix. What is needed now is to expand
the elements of the Wigner function so that it becomes possible to solve their
equation of motion. We do that, by expanding the Wigner function W (r,p, t)
in terms of an irreducible set of 4× 4 matrices {1, γ5, γµ, γµγ5, σµ,ν} where
1 is a 4× 4-identity matrix, we get

Wαβ(r,p, t) =
1

4

[
s+ iγ5ϱ+ γµvµ + γµγ5aµ + σµνtµν

]
αβ
, (4.11)

where the expansion coefficients {s, ϱ, vµ, aµ, tµν} are called the DHW-functions.
This expansion leads to a number of coupled differential equations. The
tensor part σµν in Eq. (4.11) can be decomposed into

t1 =

t10t20
t30

 , t2 =

t23t31
t12

 (4.12)

Using the expansion in Eq. (4.11) in Eq. (4.6), and comparing the coefficients
of the basis matrices, we get the following system of partial differential
equations

Dts−
2

h̄
p̃ · t1 = 0

Dtϱ+
2

h̄
p̃ · t2 = 2

m

h̄
a0

Dtv0 +D · v = 0

Dta0 +D · a = −2
m

h̄
ϱ (4.13)

Dtv+Dv0 −
2

h̄
p̃× a = −2

m

h̄
t1

Dta+Da0 −
2

h̄
p̃× v = 0

Dtt1 +D× t2 +
2

h̄
p̃s = 2

m

h̄
v

Dtt2 −D× t1 −
2

h̄
p̃ϱ = 0.
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Thus we have 16 scalar components of coupled partial differential equations.
This system can be expressed in matrix-form as

Dt


G1

G2

G3

G4

 =


0 0 0 M1

0 0 −M2 0
0 −M2 0 −2m

−M1 0 2m 0



G1

G2

G3

G4

 , (4.14)

where we have divided the DHW-functions into four groups

G1 =

(
s
t2

)
, G2 =

(
v0
a

)
G3 =

(
a0
v

)
, G4 =

(
ϱ
t1

)
(4.15)

and we have defined

M1 =

(
0 2p̃
2p̃ Dx

)
,M2 =

(
0 D
D −2p̃x

)
(4.16)

where Dx is the anti-symmetric representation of D. One can show that
some of the DHW-functions have a clear physical interpretation. Firstly, the
electromagnetic current Jµ can be expressed

Jµ =
q

(2h̄π)3

∫
d3p vµ(r,p, t) (4.17)

where the total charge Q is

Q =
q

(2h̄π)2

∫
d3pd3rv0(r,p, t) (4.18)

Moreover, the total energy W is given by

W =
1

(2h̄π)3

∫
d3pd3r

[
p · v(r,p, t) +ms(r,p.t)

]
+

1

2

∫
d3r

[
E2 +B2

]
.

(4.19)

The linear momentum is

p =
1

(2h̄π)2

∫
d3pd3r pv0(r,p, t) +

∫
d3rE×B (4.20)
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and the total angular momentum M is

M =
1

(2h̄h̄π)2

∫
d3pd3r

[
r×pv0(r,p, t)+

h̄

2
a(r,p, t)

]
+

∫
d3r r×E×B

(4.21)

The interpretation that can be done from the expressions above is that
s(r,p, t) is the mass density, v0(r,p, t) is the charge density, and v(r,p, t) is
the current density. Moreover, the function a(r,p, t) can be associated with
the spin density.

The classical, but still relativistic, Vlasov equation can be obtained in the
limit h̄ → 0. Note, however, that the variable v0, which is proportional to
the charge density, must be kept non-zero. Thus, the procedure to reach the
classical limit, which is outlined in Ref. [59], must be somewhat modified.

4.1.2 Electrostatic fields

The system in Eq. (4.13) is cumbersome to solve for the case of arbitrary
geometry of external electromagnetic fields. In this section, we simplify the
DHW-system Eq. (4.13) by considering one-dimensional electrostatic fields

E(t, r) = E(t, z)ez

B(t, r) = 0

This simplifies the operators M1 and M2 to

M1 =

(
0 2p
2p ∇x

)
,M2 =

(
0 ∇r

∇r −2px

)
. (4.22)

By considering an electrostatic geometry, we thus get rid of some of the
more complicated operators that depend on the magnetic field. However,
we still have 16 coupled scalar-functions, where we will show that 8 are
non-zero in the electrostatic 1D limit. However, the situation simplifies
further, as only four out of the 8 nonzero DHW components are linearly
independent. The problem of identifying the nonzero DHW-components as
well as the smaller number of independent variables can be formulated as
finding new basis vectors for the matrix system Eq. (4.14). In general, the
original DHW-functions can be expressed in terms of variables χi(z,p, t),
defined by

G(z,p, t) = {G1, G2, G3, G4} =

16∑
i=1

χi(z,p, t)ei(z,p, t), (4.23)
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Here ei(z,p, t) are a set of orthonormal basis vectors. The idea here is to
find basis vectors such that the system Eq. (4.14) reduces to equations for
the linearly independent variables and reduces the number of equations to
solve. The task is simplified by noting that the operator Dt will not be
acting on basis vectors that depend only on p⊥. As a result, the problem of
finding the linearly independent variables is reduced to straightforward (but
somewhat tedious) linear algebra. By contracting basis vectors that only
depend on p⊥

e1 =


0
0(
0
ez

)
0

 , e2 =
1

ϵ⊥



(
m
0

)
0(
0
p⊥

)
0



e3 =
1

ϵ⊥


0(
0

ez × p⊥

)
0(
0

−mez

)

 , e4 =


0(
1
0

)
0
0

 (4.24)

only four independent variables χ1 − χ4 are needed to fully describe the
system of 1D electrostatic DHW. Here ϵ⊥ =

√
m2 + p2⊥. Note that one only

needs the basis vectors e1 − e3 to consider the homogeneous electrostatic
case. Adding the spatial dependence into the picture makes the charge
density v0 nonzero. As a result, one extra variable and one extra basis vector
e4 is needed, as compared to the homogeneous case considered in [60], to
completely describe the system. Applying Eq. (4.23) in Eq. (4.14) for the
given basis vectors, the equations in terms of χ1 − χ4 becomes

Dtχ1(z,p, t) = 2ϵ⊥(p⊥)χ3(z,p, t)−
∂χ4

∂z
(z,p, t)

Dtχ2(z,p, t) = −2pzχ3(z,p, t) (4.25)

Dtχ3(z,p, t) = −2ϵ⊥(p⊥)χ1(z,p, t) + 2pzχ2(z,p, t)

Dtχ4(z,p, t) = −∂χ1

∂z
(z,p, t)

This system of four coupled equations is closed by Ampére’s law

∂E

∂t
=

q

(2h̄π)3

∫
χ1d

3p (4.26)
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where we have used the relation between the original DHW-functions and
the expansion functions χi(z,p, t). The complete list of relations between
the two sets of variables is as follows:

s(z,p, t) =
m

ϵ⊥
χ2(z,p, t)

v0(z,p, t) = χ4(z,p, t)

v⊥(z,p, t) =
p⊥
ϵ⊥

χ2(z,p, t)

vz(z,p, t) = χ1(z,p, t) (4.27)

ax(z,p, t) = − py
ϵ⊥
χ3(z,p, t)

ay(z,p, t) =
px
ϵ⊥
χ3(z,p, t)

t1z(z,p, t) = −m

ϵ⊥
χ3(z,p, t)

As seen above, for the electrostatic case under consideration, we have 8 scalar
non-zero DHW-functions. The PDE-system in Eq. (4.25) can be shown to
be sufficient by using the relations between these 8 DHW-functions in the
general system of Eq. (4.13).

4.1.3 Renormalization

In this subsection, we will discuss the divergence problem that appears
when integrating the DHW-variables over the momentum space. Since the
DHW-variables are derived from the Dirac equation, they have non-zero
vacuum contributions. The vacuum contribution is present in both the mass
density s and the current density v

svac(p) = −2m

ϵ

vvac(p) = −2p

ϵ
, (4.28)

In terms of the χ-variables, using the relations between the DHW-variables
and χ-variables in Eq. (4.27), we get

χ1vac(p) = −2pz
ϵ

χ2vac(p) = −2ϵ⊥
ϵ
. (4.29)
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We will see later that these contributions will give rise to a logarithmic
divergence term in the current when integrating over momentum space. To
show how this problem appears and how one can treat it, we will consider
the electrostatic case Eq. (4.25) for a toy model problem with only vacuum
initially. Furthermore, we consider the case where we have modest electric
fields such that we can linearize the DHW-variables using the ansatz

χi(z,p, t) = χ0
i (p) + χ1

i (p)e
i(kz−ωt) (4.30)

where the subscripts 0 and 1 denote the perturbed and unperturbed quantities,
respectively. By using some algebra, we can find explicit expressions of the
χ1
i (p)-variables in terms of χ0

i (p), here i = 1, 2, 3, 4. Furthermore, by using
Ampérs law Eq. (4.26), we find the dispersion relation D(k, ω) = 0 of the
electrostatic limit of the DHW-variables to be

D(k, ω) = 1 + 4πe2Bηv (4.31)

where eB is the bare charge and ηv is the vacuum contribution to the
dispersion relation

ηv =
1

2(2π)3h̄

∫ λ

0

d3p
1

ϵ3

[
1−p

2
z

ϵ2
− h̄

2k2

8ϵ2

(
3−5

p2z
ϵ2

+7
p4z
ϵ4

)
+
h̄2ω2

4ϵ2

(
1−p

2
z

ϵ2

)]
(4.32)

where we have introduced a momentum cut-off λ to get a finite expression.
Note that we considered in Eq. (4.32) the somewhat simplified case of modest
frequencies and wave-numbers, i.e., we studied the case of h̄ω ≪ ϵ and
h̄k ≪ ϵ. The vacuum contribution, ηv, after integration, will give us a
logarithmic divergent term and a finite term that will be the part of the
vacuum polarization that remains after the renormalization.

Solving the integrals in Eq. (4.32), we get

ηv =
1

24π2h̄
ln
( λ
m

)
− 1

60π2h̄m2

(
h̄2k2 − h̄2ω2

)
(4.33)

The first term of ηv is the logarithmic term that will be absorbed by pick-
ing a proper renormalized charge er, and the second term is the vacuum
polarization. Letting the renormalized charge er be given by

e2r =
e2B

1 +
e2B

24π2h̄ ln
(

λ
m

) (4.34)
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Here, the logarithmic term is indeed absorbed, and the relation between er
and eB agrees with Ref. [61]. Next, using this expression for the renormalized
charge in Eq. (4.31), we get

D(k, ω) = 1− e2r
h̄2k2 − h̄2ω2

15πh̄m2
(4.35)

Here we have shown how the divergence problem is treated in the vacuum
case. If we have the contribution from the plasma, then the dispersion
relation Eq. (4.31) is extended to

D(k, ω) = 1 + 4π
(
e2Bηv + e2Bηp

)
(4.36)

where ηp is the plasma contribution to the electrostatic dispersion relation.
Then, we use the same procedure where the divergence-term is absorbed in
the bare charge by using Eq. (4.34) and considering modest frequencies and
wave-numbers, then Eq. (4.36) becomes

D(k, ω) = 1 + 4πe2r

[
ηp −

h̄2k2 − h̄2ω2

60π2h̄m2

]
(4.37)

The term ηp contains contributions from a real background distribution rep-
resenting the plasma. Moreover, we note that the vacuum polarization term
(second term in the square bracket) agrees with a general expression (pro-
portional to derivatives of the EM-fields) for the space- and time-dependent
vacuum contribution (i.e. proportional to derivatives of the EM-fields) de-
rived in Ref. [62]. This dispersion relation will be analyzed in the following
section.

4.2 One-quanta pair creation

After introducing the DHW-formalism and showing how to treat the di-
vergence problem in the previous section, we can in this section derive a
dispersion relation of the electrostatic waves in plasma, including the plasma
and vacuum contributions. We will start in this section by considering the
real part of the linear dispersion relation of electrostatic waves in plasma.
Then, we consider a damping mechanism similar to the Landau damping.
We will see that an electron-positron pair can be produced from a plasmon,
and this leads to a damping of the electrostatic wave. This wave-damping
mechanism is analyzed using different input parameters of the background
plasma.
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4.2.1 Linear dispersion relation

In Eq. (4.37), we introduced the contribution of the background plasma as ηp.
Here, we will consider this contribution in more details. To do that, we go
back to the step where we introduced the vacuum contribution to mass and
current density (s and v). Now, a background distribution function fe(p)
of electrons (fp(p) for positrons), can be added to the vacuum background
(Eq. (4.28)) as follows:

v0 = 2(F + 1)

s(p) =
2m

ϵ
F (p) (4.38)

v(p) =
2p

ϵ
F (p),

where
F (p) = [fp(p) + fe(p)− 1] (4.39)

represents the contribution from both the plasma and vacuum. In terms of
the new functions χi, we have

χ0
1(p) =

2pz
ϵ

[
fp(p) + fe(p)− 1

]
χ0
2(p) =

2ϵ⊥
ϵ

[
fp(p) + fe(p)− 1

]
(4.40)

χ0
4(p) = 2

[
fp(p)− fe(p)

]
The electron/positron background distribution function fe(p)/fp(p) are
normalized such that the unperturbed number density n0e,p is

n0e,p =
2

(2πh̄)3

∫
fe,p(p)d

3p, (4.41)

Without ions contributing to the charge density, we must have a neutral
electron-positron background (i.e. n0 = n0e = n0p). Adding an ion species
and letting the electron and positron densities background densities differ
is trivial, however. The function fe,p(p) represent an ensemble of elec-
trons/positrons in thermodynamical equilibrium. These functions can be
represented by any common background distribution function from classical
kinetic theory, i.e., a Maxwell-Boltzmann, Synge-Juttner, or Fermi-Dirac
distribution, depending on whether the characteristic kinetic energy is rela-
tivistic and whether the particles are degenerate. In what follows, we will

35



CHAPTER 4. PAIR PRODUCTION

set the initial positron density to zero and consider a partially or completely
degenerate Fermi-Dirac electron background fD given by

fD(p) =
1

1 + exp((ϵ− µ)/T )
, (4.42)

where µ is the chemical potential. Note that for a completely degenerate
(T = 0) Fermi-Dirac background of electrons (and no positrons fp = 0),
the electron and vacuum contributions cancel inside the Fermi sphere.
Consequently, for momenta p ≤ pF , where pF = h̄(3π2n0)

1/3 is the Fermi
momentum we have F (p) = 0. Next, we linearize Eq. (4.25) using the plane-
wave ansatz Eq. (4.30) as we did for the case with only vacuum initially in the
previous section. However, this time we use Eq. (4.40) instead of Eq. (4.29).
By using some algebra, we find the dispersion relation for the electrostatic
wave in homogeneous plasma, including the vacuum contribution

D(k, ω) = 1 +
∑
±

∫
d3p

(2πh̄)3
±2e2/(h̄k)

(ω2 − k2)(h̄2ω2 − 4p2±)− 4ϵ2⊥ω
2
×[

4
ϵ2⊥
ϵ
p±F (p)− (h̄2ω2 − 4p2±)

(
pz
ϵ
F (p)− k

ω
− fD(p)

)]
= 0 (4.43)

where

p± = pz ±
h̄k

2
(4.44)

Note that F (p) = fD(p)− 1. Looking at the denominator of Eq. (4.43), one
can see that the dispersion relation exhibits pair-creation resonances, leading
to wave damping. Before studying this wave-damping mechanism, we can
note that by lettering h̄→ 0 in Eq. (4.43), we get

D(k, ω) = 1+
e2

ω

∫
d3p

(2πh̄)3
pz
ϵ

(
1

ω − kpz/ϵ
+

1

ω + kpz/ϵ

)(
1−kpz

ϵω

)∂fD(p)

∂pz
.

(4.45)

We note that the appearance of h̄ in the integration measure d3p/(2πh̄)3

is just a matter of normalization (compare Eq. (4.41)), and not a sign
of any remaining quantum features. Since fD is an even function of pz,
it is straightforward to show that the expression Eq. (4.45) agrees with
results based on the classical (but relativistic) Vlasov equation. In the next
subsection, we study the wave-damping mechanism.
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4.2.2 Pair creation damping

Now, we study the wave-damping mechanism that arise due to the resonance
in Eq. (4.43). The calculations made in this subsection are similar to those
presented in Section 2.4. With the fact that the frequency is ω = ωr + iωi

and by considering small wave-dampings ωi ≪ ωr, we can Taylor-expand
the dispersion relation Eq. (4.43) to first order around ωr. We can then use
Eq. (2.26) for the relative damping γ. What is needed to determine the
relative damping γ are the real frequency ωr and the real and imaginary parts
of the dispersion relation Eq. (4.43). For ωr and the real part of Eq. (4.43),
one can note that the quantum contribution is quite small, as long as the
wavenumber is modest (well beyond the Compton wavelength). This is true
even for high wave frequencies, of the order of the Compton frequency or
higher. Thus, unless k is very large, the relativistic Vlasov equation is a good
approximation for the real part of the frequency ωr. The reason is that for
h̄ω ∼ mc2, the Fermi energy EF will be much larger than unity. Thus, even
if h̄ω ∼ mc2 we will have h̄ω ≪ ϵ, which, in turn, implies a minor quantum
contribution to Eq. (4.43). Hence, when calculating the real part of the
relative damping γ, we will use the relativistic Vlasov equation. However,
the same conclusion does not apply for the imaginary part of the frequency,
ωi, where the full quantum relativistic theory is needed.

For simplicity, we can first consider the homogeneous case of Eq. (4.43)
to determine γ. After taking the homogeneous limit of Eq. (4.43), we use
spherical coordinates in momentum space and first perform the angular
integration over ϕp and θp to get

D(k = 0, ω) = 1+
16e2B
ω2πh̄3

∫
dp

p2ϵ

h̄2ω2 − 4ϵ2

(
1− p2

3ϵ2

)(
f − h̄2ω2

4ϵ2

)
(4.46)

Note that we have used the bare charge eB . However, as we will see later, the
renormalization procedure is not needed for the imaginary part ωi. In the
first term of the second parentheses, we have dropped the subscript ”D” on
the background distribution f . The second term of the second parentheses
comes from the non-zero expectation value of the vacuum contribution. To
handle the denominator in Eq. (4.46), we separate the integral into the real
principal value contribution and the imaginary pole contribution. The latter
part will be evaluated at the resonant momenta p = pres. Since pres never
approach infinity, we see that the issue of renormalization will not affect
the pole contribution. Hence, for the pole contribution, one can replace the
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bare charge with the real charge, i.e., eB → er. For the real part of the
integral in Eq. (4.46), the full momentum space contributes, and hence the
renormalization procedure of the previous section applies. Focusing on the
pole contribution, it is convenient to factorize the denominator as follows:

D(k = 0, ω) = 1 +

∫
dp

G(p)

(h̄ω − 2ϵ)(h̄ω + 2ϵ)
(4.47)

where G(p) is the numerator of Eq. (4.46). Without loss of generality, we
may consider only positive frequencies, in which case the pole occurs at
ϵ(pres) = h̄ω/2. Changing the integration variable from p to ϵ and evaluating
the integral using the Landau contour, we deduce that the imaginary part of
D(k, ω) is given by

Di =
G(ϵres)

4pres
= − e2rpres

6πh̄2ω

(
1 +

2m2

h̄2ω2

)(
f(pres)− 1

)
(4.48)

Now, with Di determined, we are done with the numerator of γ Eq. (2.26).
However, for the denominator of Eq. (2.26), we solve for the real frequency
using the relativistic Vlasov equation in the homogeneous limit k = 0. Next,
we can study the relative damping γ as a function of the input parameters of
the background plasma. Since we are considering a Fermi-Dirac distribution
of the background plasma, both the chemical potential and temperature are
free parameters that the relative damping γ will depend on. We can note
here, given by Di in Eq. (4.48), in order to maximize the damping γ one
should have as small f(pres) as possible. This means that if the distribution
function is more degenerate and we have a less sharp step function f , then the
approximate cancellation between the vacuum and the plasma contributions
is broken. A detailed analysis of the dependence of γ on temperature and
chemical potential can be found in Paper IV.

For the case of general k-dependence, the dispersion relation Eq. (4.46)
becomes more complicated. More specifically, the requirement for resonance
will be more complicated where the resonant momentum pres is modified to

pres =
1

2

√
h̄2(ω2 − k2)− 4m2

1− k2

ω2 cos2 θp
(4.49)

Physically, in order to produce a pair from a plasmon, we have to fulfill
the conservation of energy and momentum. When a wave quanta carries
momentum h̄k in addition to energy h̄ω, electron-positron pairs with zero
momentum cannot be created because the created pairs must absorb a finite
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amount of momentum. As a result, a higher plasma density is required for
pair-creation damping to be possible. We can deduce from this that pair
creation from a plasmon is suppressed for larger wave vectors k because the
pair-creation condition becomes increasingly difficult to satisfy. Paper IV
contains a more detailed analysis of the k-dependence.

4.3 Plasma dynamics at the Schwinger limit

In the previous sections, we presented the DHW-formalism that covers
all physics of the Dirac equation Eq. (4.1). We have analyzed the linear
dispersion relation and found a damping mechanism similar to linear Landau
damping. In this section, we will use the DHW-formalism to study plasma
dynamics at the Schwinger limit. To do that, we can no longer make linear
approximations as we have done in the previous section. Thus, we need to
solve the DHW-system Eq. (4.25) numerically. To solve this PDE-system,
several things need to be considered in order to simplify the numerical
calculation. Firstly, we define new variables χ̃i(p, t) as the deviation from
the vacuum state, i.e., we let

χ̃i(z,p, t) = χi(z,p, t)− χivac(p). (4.50)

where χivac(p) is given by Eq. (4.29). Note that χ̃3 = χ3. The goal of
doing this transformation is to avoid having an initial condition (vacuum
contribution) that does not decay to zero at the boundaries in the momentum
space. By defining the χ̃i-variables, we remove the vacuum contribution from
the variables that we solve numerically. This does not mean that vacuum
physics is not included in our solution, we only skip the problem of having the
vacuum contribution as a part of the initial conditions. To further simplify
Eq. (4.25), we consider the homogeneous limit, making the variable χ̃4 = 0.
Furthermore, we introduce the so-called canonical momentum q

q = pz + eA

By using the Canonical momentum, the operator Dt becomes

Dt → ∂t

Next, we normalize Eq. (4.25) using the normalized variables: tn = ωcet,
qn = q/m, pn⊥ = p⊥/m, En = E/Ecr, An = eA/m, where ωce = m/h̄ is the
Compton frequency, and we note that the χ-variables are already normalized.
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For notational convenience, we omit the index n in what follows. After using
all the mentioned transformations, Eq. (4.25) is now

∂χ̃1

∂t
(q, p⊥, t) = 2ε⊥χ̃3 + 2E

ε2⊥
ε3

∂χ̃2

∂t
(q, p⊥, t) = −2(q −A)χ̃3 − 2(q −A)E

ε⊥
ε3

(4.51)

∂χ̃3

∂t
(q, p⊥, t) = −2ε⊥χ̃1 + 2(q −A)χ̃2

with Ampère’s law
∂E

∂t
= −η

∫
χ1d

2p (4.52)

where we have used the dimensionless factor η = α/π ≈ 2.322× 10−3, here α
is the fine-structure constant. Note that due to cylindrical symmetry, the az-
imuthal integration has already been carried out, and hence d2p = p⊥dqdp⊥.
Eq. (4.51) together with Ampere’s law describe the dynamics of plasma,
including the Schwinger mechanism in the mean field approximation. Gener-
ally, all quantum effects that can be described as a collective phenomenon are
included in Eq. (4.51). Specifically, this includes e.g., collective pair-creation,
collective pair-annihilation, Pauli-blocking, and vacuum effects such as finite
vacuum polarization, see Paper VI for more details. The vacuum contribu-
tion also gives rise to the issue of charge renormalization, which has been
discussed for the linear case in the previous section. However, in this section,
as we solve the current integrals numerically, the divergence problem becomes
less important. This is due to the use of cut-off limits in momentum space,
which eliminates the divergence problem. Eqs. (4.51) and (4.52) are solved
numerically using the phase corrected staggered leapfrog method [63]. While
this is straightforward in principle, the full problem with three independent
variables χi = χi(q, p⊥, t) is still numerically demanding when run on a
standard workstation. The reason is that we have a strongly relativistic
motion requiring a high cut-off limit in the momentum space.

4.3.1 Plasma oscillation dynamics

Now, we study the plasma oscillation dynamics by solving Eqs. (4.51)
and (4.52) numerically. The initial state of the plasma is represented by the
Fermi-Dirac distribution, Eq. (4.42). So by starting with a plasma initially,
we can study how the different plasma parameters affect the production of
electrons and positrons. Since we are considering a plasma represented by a
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Fermi-Dirac distribution, we have the temperature T , the chemical potential
µ and the initial field amplitude E0 as initial parameters. A particular result
from the numerical solution of Eq. (4.51)-Eq. (4.52) that we can discuss in
this thesis is illustrated in Fig. 4.1, for more numerical results see Paper VI.
Here the electric field and vector potential are plotted for different values of
E0, µ, and T . To be able to show the evolution of A in the same plot as E,
we have normalized the vector potential once more, displaying

AN = E(t = 0)
A(t)

Apeak

where Apeak is the peak absolute value of A(t). Even in the upper panel, with
a comparatively modest field strength, E(t = 0) = 1/100, µ = 1 and T = 0.1,
we have nonlinear relativistic motion with Apeak = 1.85. In spite of the
relativistic motion, the deviation from linear behavior is not clearly visible in
the temporal field profile, although a careful analysis would show a harmonic
content in the spectrum. However, by changing the initial electric field to
E(t = 0) = 0.1 (still with µ = 1 and T = 0.1), the moderately relativistic
motion turns into strongly relativistic oscillations with Apeak = 15.9. The
oscillation is still perfectly periodic, as seen in the second panel of Fig. 1, but
now there is a clear sawtooth profile of the electric field. This effect comes
from the strong relativistic motion, where the gamma factors are much larger
than unity for most of the oscillation, except at the turning points. As a
result, for most of the oscillations, all particles move close to the speed of
light, giving a current that is more or less constant until it changes direction.
Given this, the sawtooth profile of the electric field is a direct consequence
of Ampere’s law.

Next, to be able to see quantum relativistic physics, we need to pick a
stronger electric field, i.e., let E(t = 0) ∼ 1. In the third panel, we have used
E(t = 0) = 1, µ = 1.5 and T = 0.2. Here we still see a sawtooth profile for
the electric field as expected, since Apeak = 67.2. However, we now also have
a pronounced decrease in the vector potential for each oscillation. While
the electric field also decreases, we note that A decreases more rapidly than
E. With E = −∂A/∂t the more rapid decrease of A is consistent with an
increase in the plasma frequency. While the energy loss of the electric field
due to pair-production is clearly seen, the increase in plasma frequency (due
to the increased number density) is even more pronounced. The latter effect
is seen both in the relation between E and A, and by observing the gradual
change in time period between successive peaks.

In the fourth panel, we pick E(t = 0) = 4, µ = 4 and T = 0.2, which
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correspond to Apeak = 39.7. Here we display the dynamics of the plasma
oscillation in a regime well beyond the Schwinger critical field. The curve
might look surprisingly similar to the third panel with E(1 = 0) = 1, with
the same type of energy loss and decrease in frequency. However, from the
temporal scale, we see that here the oscillation frequency is much higher,
due to the higher value of the electron number density. Hence the energy
loss due to pair-production is indeed more rapid with a higher initial electric
field, as expected.

4.3.2 Pair creation

In the previous subsection, we have seen that for fields of the order of the
critical field E ∼ Ecr, the plasma frequency increases due to the pair creation.
This fact is further confirmed by investigating the momentum distribution
of the total number of the produced pairs n. In terms of the normalized
χ-variables, n can be expressed as (see Paper III for more details)

n =
1

(2h̄π)3

∫
d3p

1

ε

[
ε⊥χ̃2 + (q −A)χ̃1

]
(4.53)

The integrand in Eq. (4.53) represents the total number density, the sum of
the initial plasma and the produced pairs, in momentum space. By solving
the χ-variables numerically, we can follow the momentum distribution of
the produced particles along with the initial plasma in the momentum
space. In Fig. 4.2 contour curves over the integrand in Eq. (4.53) are shown,
n(p⊥, pz), where we have switched back to kinetic momentum pz rather
than canonical momentum q. The upper panel shows the contour curves
for the initial Fermi-Dirac distribution. A quarter of a plasma period later,
we can clearly distinguish the initial particle distribution. As can be seen,
the initial particles have been shifted a distance ≈ A(t) in the pz-direction,
but with a more or less conserved shape. However, in addition to the
initial plasma, a contribution from electron-positron pairs has been added,
accelerated by the fields to have a much larger parallel momentum than
perpendicular momentum. For a more detailed discussion about the parallel
and perpendicular momentum distribution of the produced pairs, see Ref.
[64]. Note that after a quarter period, the produced pairs have larger
negative pz momentum than the initial plasma. In the lower panel, after a
half cycle, the symmetry has been restored, as the produced pairs are located
on both sides (in parallel momentum space) of the initial plasma. As the
pair-production process continues, eventually it will be difficult to separate
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Figure 4.1: The self-consistent electric field E(t) (solid lines) and the nor-
malized vector potential (dashed lines) are plotted over time for the initial
field amplitudes E0 = (0.01, 0.1, 1, 4).
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the original particles from the newly produced ones, as the produced particles
will outnumber the original ones. Both Fig. 4.1 and Fig. 4.2 confirm the fact
that electron-positron pairs are produced and that the wave is damped.

4.4 KGW-formalism

Until now, we have considered only the DHW-formalism to study pair pro-
duction dynamics in plasma. However, the DHW-formalism is cumbersome
to solve numerically for more general cases than the electrostatic one. In
this section, we study the pair production dynamics in plasma using the
Klein-Gordon-Wigner (KGW)-formalism [65]. This formalism is based on
a Wigner transformation of the Klein-Gordon equation [66]. While the
Klein-Gordon equation is used to model spinless particles, in this chapter we
will show that under certain conditions the Klein-Gordon equation can be
used to model pair production involving spin-1/2 particles with a sufficient
accuracy..

4.4.1 A derivation of the KGW-formalism

In this subsection, we will make a brief derivation of the KGW-formalism
[65]. Our starting point is the Klein-Gordon equation [66][

(∂µ − iqAµ)(∂µ + iqAµ) +
m2

h̄2

]
ϕ(r, t) = 0 (4.54)

where Aµ = (A0,A) is the vector potential in covariant form. This equation
contains a second-order derivative in time. To transform the Klein-Gordon
equation to phase space and obtain an explicit expression of the charge density
in phase space, we express the Klein-Gordon equation in the representation
of Feshbach and Villars [67]. In this representation, we have a first-order
time-derivative. The Klein-Gordon field is expressed by a two-component
wave function

Φ =

(
ψ
χ

)
(4.55)

where

ψ =
1

2

(
ϕ+

i

m

∂ϕ

∂t
− qA0

m

)
(4.56)

χ =
1

2

(
ϕ− i

m

∂ϕ

∂t
+
qA0

m

)
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Figure 4.2: Color mappings of the momentum distribution of the total
particle density n(pz, p⊥) at three different times t = (0, Tp/4, Tp/2) for
E0 = 1, µ = 1.5 and T = 0.2. Here Tp is the period of the plasma oscillation.
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In a matrix representation, we get

i
∂Φ

∂t
=

[
1

2m

(
− i

∂

∂r
− qA

)2
(

1 1
−1 −1

)
+m

(
1 0
0 −1

)
+ qA01

]
Φ (4.57)

where 1 is the identity matrix. This equation has a first-order time derivative,
which means that the time evolution of the equation is of Schrödinger’s type.
The right-hand side of this equation can be interpreted as a Hamiltonian
operator that will be used to derive a kinetic equation in phase space. Next,
we use the gauge-invariant Wigner transformation Eq. (3.13). To find an
evolution equation in the phase space, we take the time derivative of Eq. (3.13)
and use the right-hand side of Eq. (4.57). We use the Hartree approximation,
where the electromagnetic field is treated as a nonquantized field. Finally,
we have an equation of motion for the Wigner function

ih̄DtWαβ(r,p, t) = − ih̄
2
Ô1{σ3 + iσ2,W}αβ

+ Ô2[σ3 + iσ2,W ]αβ +m[σ1,W ]αβ (4.58)

where σi are the Pauli matrices and we have the non-local operators

Ô1 =
p · ∇
m

+
p

m
· q

∫ 1/2

1/2

dλB(r+ ih̄λ∇p)×∇

Ô2 =
∇2

4m
− p2

m
− qh̄2

12m
∇ · (B×∇)

+ 2
p

m
· iqh̄

∫ 1/2

1/2

dλB(r+ ih̄λ∇p)×∇p (4.59)

Dt = ∂t + q

∫ 1/2

1/2

dλE(r+ ih̄λ∇p) · ∇p

The interpretation of Eq. (4.58) is not simple, thus we make an expansion of
the Wigner function over the Pauli matrices σi and the identity matrix 1

Wαβ(r,p, t) = f3(r,p, t)1αβ +

3∑
i=1

f3−i(r,p, t)σi,αβ (4.60)

where the expansion coefficients fi, with i=0-3, will lead to four coupled
partial differential equations.
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Dtf0 = −Ô1(f2 + f3)

Dtf1 = −Ô2(f2 + f3) + 2mf2

Dtf2 = Ô2f1 + Ô1f0 − 2mf1 (4.61)

Dtf3 = −Ô2f1 − Ô1f0

This PDE-system is the final one that covers all physics of the Klein-Gordon
equation. Compared to the DHW-formalism Eq. (4.13), this system contains
only four instead of 16 scalar equations. This makes the KGW-formalism
simpler to solve numerically. The 4 scalars of the KGW-formalism have a
physical interpretation if one considers the following observables:

Q = q

∫
d3pd3rf0

J =
q

m

∫
d3pp(f2 + f3)

W =

∫
d3pd3r

[ p2
2m

(f2 + f3) +mf3

]
(4.62)

M =

∫
d3pd3r p(f0 − f1)

where Q is the total charge, J is the total current, W is the particle energy,
and M is the momentum. Interpretations that can be done from the above
expressions include, e.g., that qf0 is the (phase space) charge density and
qp/m(f2 + f3) the current density, as implied by the sources in Maxwell’s
equations. The fi-functions have the vacuum-contribution

f0 = f1 = 0

f2 + f3 =
m

ϵ
(4.63)

f3 − f2 =
ϵ

m

If we add plasma to the background, we should modify the source terms for
f2 + f3 and f3 − f2. Moreover, the charge density f0 should be non-zero.
Adding electron and positron sources we first obtain f2 + f3 = (m/ϵ)F and
f3 − f2 = (ϵ/m)F in Eq. (4.63) where

F = 1 + 2fe(p) + 2fp(p) (4.64)
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Here fe,p can be viewed as classical electron/positron distribution functions.
Note that we have a positive sign between the particle and vacuum sources,
instead of a negative one as in the DHW-formalism [59]. This is related
to the physics of the Pauli-exclusion principle, which is not included in the
KGW-formalism as the model was originally derived for spinless particles,
but more directly, it comes from the sign of the vacuum expectation values.
Moreover, we can note that the particle contributions to F have an extra
factor of 2 in Eq. (4.64), as compared to DHW-formalism. This is due to
the fact that the magnitude of the vacuum contribution is only half as large
for spinless particles.

Using Eq. (4.64), the initial values of the fi- functions due to background
plasma together with the non-zero expectation value of the vacuum become

f0 = 2fp − 2fe

f2 + f3 =
m

ϵ
F (4.65)

f3 − f2 =
ϵ

m
F

In the next subsection, we will solve Eq. (4.61) numerically and compare the
results with the ones from the DHW-formalism.

4.4.2 Numerical solution

In this subsection, we will consider the Schwinger-effects in plasma using
the KGW-formalism. Before discussing the numerical solution, we can note
that the process of renormalization of the KGW-formalism is done in the
same way as for the DHW-formalism. Thus, we will not give more details
about it in this thesis, we refer the reader who is interested to Paper VI. To
be able to compare the results of the numerical solution of Eq. (4.61) with
the ones from the DHW-formalism, we consider the homogeneous-limit of
Eq. (4.61)

Dtf0 = 0

Dtf1 =
p2

m
(f2 + f3) + 2mf2

Dtf2 = −
(p2
m

+ 2m
)
f1 (4.66)

Dtf3 =
p2

m
f1
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The charge density f0 remains zero as in the DHW-formalism. In order to
solve the system numerically, we need to define new variables that simplify
the numerical solution. We make a new definition of the KGW-variables

f1 = f1

f+ = f2 + f3 (4.67)

f− = f2 − f3

Furthermore, we redefine the KGW-variables to get rid of the initial vacuum,
and we use the canonical transformation. Finally, we use normalized variables
tn = ωcet, qn = q/m, pn⊥ = p⊥/m, En = E/Ecr, An = eA/m. Eq. (4.66)
becomes now

∂tf1 = ϵ2f+ + f−

∂tf+ =
(q −A)

ϵ3
E − 2f1 (4.68)

∂tf− =
q −A

ϵ
E − 2ϵ2f1

As in the case of the DHW-formalism, the physics of the vacuum still exists in
the system, we only removed the initial contribution from the KGW-variables.
The Ampere’s law becomes

∂E

∂t
= −η

∫
d2p(q −A)f+ (4.69)

where η = α/π. We solve Eq. (4.68)-Eq. (4.69) numerically, neglecting the
effects of the background plasma, and using the following representation of
the electric field

E(t) = E0sech
( t
2
− τ0

)
sinωt (4.70)

where τ0 is phase-shift and ω = Nωce/100, here N is the parameter that we
vary. To check the validity of the KGW-formalism to model the dynamics
of fermions, we calculate the number of produced particles in the KGW-
formalism using

nk =
1

(2h̄π)3

∫
d3p

1

2ϵ

[
(ϵ+ 1)f+ − f−

]
(4.71)

We use nk to find the ratio nk/nD of the produced pair in KGW and DHW-
formalism. Here nD is the number of produced pairs in the DHW-formalism
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using Eq. (4.53). For constant fields E = E0, given by the rate presented for
fermions in Eq. (1.2) and for bosons (same as Eq. (1.2) except factor 2 extra
in the denominators), we have

nk
nD

=
1

2
(4.72)

For the case with a time-dependent electric field, see Fig. 4.3, we plot the
ration nk/nD versus N . We can note that for a small N , i.e., in the constant
field limit, the ratio is roughly 0.5. This is a good agreement between
numerical and analytical solutions. For N = 200, we have h̄ω = 2m and
it is possible to create a pair from one quanta. The ratio nk/nD tends to
be smaller than 0.5 when the one-quanta process is possible to occur. This
is due to the fact that the probability of producing a pair from a single
quanta is lower for KGW than for DHW; for a more detailed discussion, see
Paper VII. The aim of Paper VII is to decide to what extent the simpler
KGW-model can be used to describe pair production in plasma and vacuum.
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Figure 4.3: The ratio nk/nD is plotted as a function of N , displaying the
validity of the KGW-formalism to model fermions at different frequencies of
the background electric field.
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Chapter 5

Radiation reaction

For sufficiently strong electromagnetic fields, the particles in the plasma emit
hard photons and lose a large amount of kinetic energy. This loss of energy
causes a recoil force on the emitting particles called radiation reaction. In the
previous chapters, the focus was on including quantum effects in the kinetic
description of the plasma. However, in this chapter we focus on the effects
due to radiation reactions, thus we work with the classical but relativistic
Vlasov equation. In particular, we study the evolution of electrostatic plasma
waves, using the relativistic Vlasov equation extended by the Landau-Lifshitz
expression for the radiation reaction.

We will begin this chapter by presenting the classical picture of radiation
reaction physics. Then, in Section 5.2, we will show how the radiation
reaction effect is added into the kinetic description of the plasma.

5.1 Classical radiation reaction

In classical electrodynamics, the motion of a charged particle in an electro-
magnetic field is determined by the Lorentz force FEM [23].

FEM = q
(
E+

p

c
×B

)
(5.1)

However, charged particles emit radiation, and in the relativistic case the
emitted energy can be a substantial part of the kinetic energy. In that
case, the radiation reaction force should be considered when studying the
dynamics of a plasma. Classically, one can add a radiation reaction term
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that corresponds to the energy loss due to radiation into the equation motion
as

F = FEM + FRR (5.2)

Here, F is the total force that a particle will experience, and FRR is the
radiation reaction force. For the theory to be sound, the work performed
by FRR on the emitting particle should be the same as the radiation energy
loss. The radiation reaction force FRR can be calculated using the Lorentz-
Abraham-Dirac (LAD) equation [68]. However, this equation has a problem
related to the third order derivatives. This gives an unphysical solution
because it is not enough to specify the initial position and momentum
of the particle to solve the equation. Specifically, it can have a runaway
solution, meaning that a particle can still be accelerated without external
forces. This problem can be removed by using the Lorentz force FEM to
approximate the third-order derivative. The resulting equation is known as
the Landau-Lifshitz (LL) equation and requires that

FRR ≪ FEM

The radiation reaction force FRR from the Landau-Lifshitz equation is

FRR =
e3ϵ

6πϵ0m2c5

(
∂t +

p

ϵ
· ∇x

)[
E+

c2p

ϵ
×B

]
+

e4

6πϵ0m2c4

[
E×B+B×

(
B× c2p

ϵ

)
+E

(cp
ϵ

·E
)]

− 2e4ϵ

3c7m4
p

[(
E+

c2p

ϵ
×B

)2

−
(cp
ϵ

·E
)2

]
(5.3)

where ϵ0 is the permittivity of free space.

5.2 Radiation reaction in relativistic plasma

For field strengths well below the Schwinger critical field Ecr, electron-
positron pair production due to the Schwinger mechanism can be neglected.
However, photon emission by single electrons due to nonlinear Compton
scattering may become significant in case the product χa20 is not too small.
Here we have introduced the quantum nonlinearity parameter χ [5] covariantly
written as

χ =
1

Ecrc

√
FµνuνFµσuσ
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which is typically much smaller than unity and the laser strength

a0 = eE/mω

One can interpret a0 roughly as the relativistic gamma factor due to electron
quiver velocity for large electric fields E, in which case a0 is larger than unity.
Here, ω is the wave frequency, Fµν the electromagnetic field tensor, and uµ

the four-velocity. Thus, for relativistic plasma motion such as a0 ≫ 1 and
fields E ≪ Ecr, it is justified to use the relativistic Vlasov equation to model
plasma while also taking the radiation reaction force into account. Given
Eq. (5.3), the relativistic Vlasov equation, with the radiation reaction FRR

as a correction to the Lorentz-force, can be written[ ∂
∂t

+
p

ϵ
· ∇

]
f + e

(
E+

cp

ϵ
×B

)
· ∇pf +∇p · (FRRf) = 0 (5.4)

Note here that particle conservation demands the correction term to be
written as ∇p · (FRRf) rather than FRR · ∇pf , since, contrary to non-
dissipative forces such as the Lorentz force, ∇p · FRR ̸= 0. It should
be stressed that after introducing the radiation reaction into the Vlasov
equation, the Maxwell-Vlasov system will not be energy-conserving anymore.
This is because the macroscopic current −e

∫
pf/ϵd3p will not resolve the

microscopic currents from individual particles, leading to the emission of
high-frequency Larmor radiation, constituting the missing piece in the energy
balance.

5.2.1 Electrostatic limit

From now on we will consider the one-dimensional electrostatic limit with
E = E(z, t)ẑ, in which case the radiation reaction force Eq. (5.3) reduces to

FRR =
e3ϵ

6πϵ0m2c5

[(∂E
∂t

+
pz
ϵ

∂E

∂z

)
ez +

c2eE2pz
ϵ2

ez −
eE2ϵ2⊥
m2c2ϵ2

p

]
(5.5)

As a consequence, in the electrostatic 1D limit, the relativistic Vlasov equation
including radiation reactions is given by

(
∂

∂tn
+
pzn
ϵn

∂

∂zn
+ En

∂

∂pzn

)
fn − 1

p⊥n

∂

∂p⊥n

(
2δϵ2⊥np

2
⊥nE

2
n

3ϵn
fn

)
+

2δ

3

∂

∂pzn

[(
ϵn
∂En

∂tn
+ pzn

∂En

∂zn
− E2

npznp
2
⊥n

ϵn

)
fn

]
= 0 (5.6)
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where we have used normalized units

tn = ωpt

zn =
ωpz

c

pn =
p

mc

ϵn =
ϵ

mc2
(5.7)

fn =
m3c3

n0
f

En =
eE

mcωp

Here δ = reωp/c and re is the classical electron radius, that is re = e2/mc2.
We note that except for extremely high-density plasmas (like, for example,
the central parts of neutron stars), δ ≪ 1 applies, which will be used for
the reminder of this section. Finally, the radiation reaction corrected Vlasov
Eq. (5.6), is complemented by Ampère’s law to obtain a closed system.

∂En

∂tn
= −

∫
d3pn

pzn
ϵn

fn (5.8)

5.2.2 Plasma cooling

We solve Eq. (5.6) and Eq. (5.8) numerically in the homogeneous limit.
Generally, the radiation reaction force leads to a damping of the plasma
oscillation. In this subsection, we focus on the effect of the radiation reaction
force on the background plasma, for more details about the plasma oscillation
damping, see Paper V. As our initial background distribution, we will
consider a Maxwell-Jüttner distribution f0, i.e., we let

f0 =
1∫

e−
√

1+p2
⊥+q2/Ethp⊥dp⊥dq

e−
√

1+p2
⊥+q2/Eth (5.9)

where we have used the canonical momentum q to simplify the numerical
calculation as we have done in the previous chapters, and pth is the normalized
thermal momentum. We have used the thermal energy

Eth =
√
1 + p2th − 1
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Since we have δ ≪ 1, the radiation reaction term in Eq. (5.6) will be a small
correction to the relativistic Vlasov equation. Thus, we define

f = fv + δf

where fv is a solution to the unperturbed Vlasov equation (i.e. for δ = 0
in Eq. (5.6)) and δf is due to the radiation reaction. Next, we can define
temperature T = T0 + δT , where T0 is the (constant) initial temperature of
the background plasma, and the temperature change δT is given by

δT =
2

3

∫ [√
1 + q2 + p2⊥ − 1

]
δfp⊥dp⊥dq (5.10)

together with

δf =

∫ t

0

−∇p̃ ·
(
Frad fv(q, p⊥, t = 0)

)
dt′ (5.11)

Inserting the expression for Eq. (5.11) into Eq. (5.10), after a partial integra-
tion we can derive an expression for δT

δT =
4δ

6

∫
p⊥dp⊥dq

(
q
∂E

∂t
− (1 + p2⊥ + q2 − qA)

ϵ2
E2p2⊥

)
ϵ

ϵq
fv (5.12)

where

ϵ =
√
1 + p2⊥ + (q −A)2

ϵq =
√

1 + p2⊥ + q2 (5.13)

So the change in the temperature of the plasma δT is obtained by solving the
unperturbed Vlasov Eq. (5.6), then using Eq. (5.12). In Fig. 5.1, we present
the result of the numerical solution of δT Eq. (5.12). In the upper panel of
Fig. 5.1 the evolution of the normalized temperature Trel = (T0 + δT )/T0 is
displayed for the initial electric field E0 = 3 and δ = 0.01 for different initial
temperatures. We can see that the relative temperature decrease is only
somewhat stronger at higher temperatures. While the relative difference in
the cooling rate due to the difference in initial thermal energy is fairly modest,
in absolute terms, the cooling is naturally much more pronounced for a higher
initial temperature. In the lower panel of Fig. 5.1, the evolution of the
normalized temperature Trel is shown for different values of the initial electric
field, E0, for pth = 0.1. As is obvious, the cooling rate shows a very strong
dependence on the initial electric field. Roughly speaking, the temperature
loss rate is proportional to E2

0 , as can be expected from Eq. (5.12).
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Figure 5.1: Trel as a function of time t. In the first panel we have E0 = 3,
δ = 0.01 and pth = (0.1, 0.3, 0.5). In the second panel we have pth = 0.3,
δ = 0.01 and E0 = (1, 2, 3).
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Summary of Papers

Paper I
Relativistic kinetic theory for spin-1/2 particles: Conservation
laws, thermodynamics, and linear waves
In this paper, we have studied a fully relativistic quantum kinetic equation for
spin-1/2 particles. We have derived a full set of conservation laws, including
those governing momentum, energy, and angular momentum. Furthermore,
we addressed thermodynamical background functions for different cases.
These have been used to calculate the linear dispersion of waves in plasma.
My contribution to this work was to derive linear dispersion relations for
waves propagating in magnetized plasma. I also took part in writing a large
part of the report.

Paper II
Kinetic theory for spin-1/2 particles in ultrastrong magnetic fields
In this work, we developed a fully relativistic quantum kinetic theory for
spin-1/2 particles in ultrastrong magnetic fields. The kinetic equation is
derived using a Foldy-Wouthuysen transformation of the Dirac Hamiltonian,
where the particle and antiparticle states are decoupled. Then, we applied a
Wigner transformation to the new Hamiltonian, and the kinetic theory was
derived.
My contribution to this paper included making the transformation, deriving
the kinetic equation, and calculating the linear dispersion relations. I have
been doing the majority of the calculations and writing a large part of the
report. I also took part in analyzing the results of the calculations.

Paper III
Plasma dynamics and vacuum pair creation using the Dirac-Heisenberg-
Wigner formalism
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In this work, we derived a system of coupled partial differential equations for
the equal-time Wigner function in an arbitrary strong electromagnetic field.
We started the paper by presenting the Dirac-Heisenberg-Wigner formalism.
Then, we presented a system of four coupled partial differential equations in
the electrostatic limit. This system enables the numerical study of the plasma
dynamics at the Schwinger limit. This electrostatic system was further stud-
ied in two different cases. In the first case, we considered linearized wave
propagation in a plasma, accounting for the nonzero vacuum expectation
values. In the second case, we considered Schwinger pair production using
the local density approximation to allow for analytical treatment.
My contribution to this paper included deriving the electrostatic system, cal-
culating the linear dispersion relation, and making the calculation of the local
density approximation. I have been doing the majority of the calculations
and writing a large part of the report. I also took part in analyzing the results
of the calculations.

Paper IV
Linear pair-creation damping of high-frequency plasma oscillation
In this work, we have studied the linear dispersion relation for Langmuir
waves in plasmas of very high density, based on the Dirac–Heisenberg–Wigner
formalism. This work was based on the electrostatic system derived in Paper
III. We have discussed ultraviolet divergences that appear due to the vacuum
contribution to the physical observables. We have removed the ultraviolet
divergences by charge renormalization and shown that the remaining vacuum
contribution agrees with previously derived expressions. The main new
feature of this work was a damping mechanism similar to Landau damping,
but where the plasmon energy gives rise to the creation of electron–positron
pairs. Finally, the analytical results of linearized theory were compared with
numerical solutions.
My contribution to this paper included the derivation of the linear disper-
sion relation, calculating the charge renormalization, and constructing the
numerical solutions. I have been doing the majority of the calculations and
writing a large part of the report. I also took part in analyzing the results of
the calculations.

Paper V
Radiation reaction effects in relativistic plasmas–the electrostatic
limit
In this work, we have studied the evolution of electrostatic plasma waves using
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the relativistic Vlasov equation extended by the Landau-Lifshitz radiation
reaction. We solved the system numerically and calculated the Langmuir
wave damping as a function of wave number, initial temperature, and initial
electric field amplitude. Moreover, we found that the background distribution
function loses energy in the process. Then, we calculated the cooling rate as
a function of the initial temperature and the initial wave amplitude.
My contribution to this paper included constructing the numerical solutions
of the equations studied in this work. I have been writing a large part of the
report. I also took part in analyzing the results of the calculations.

Paper VI
Plasma dynamics at the Schwinger limit and beyond
In this work, we used the Dirac-Heisenberg-Wigner formalism to study the in-
terplay between classical and quantum mechanical mechanisms in the regime
of ultrastrong electric fields. This work was based on the electrostatic system
derived in Paper III. In particular, we studied the effects of initial density
and temperature on the plasma oscillation dynamics. Finally, comparisons
with competing mechanisms such as radiation reaction and Breit-Wheeler
pair production were made.
My contribution to this paper included taking part in constructing the nu-
merical solutions. I also took part in analyzing the results of the calculations
and writing the report.

Paper VII
Applicability of the Klein-Gordon equation for pair production in
vacuum and plasma
In this work, we have studied pair production mechanisms in plasma and
vacuum using a model based on the Wigner transformation of the Klein-
Gordon equation. We started the work by presenting the model and deriving
a linear dispersion relation for electromagnetic waves. Then, the Klein-
Gordon model was solved numerically in the electrostatic limit. Both the
numerical and analytical results were analyzed and compared with the Dirac-
Heisenberg-Wigner model.
My contribution to this paper included constructing the numerical solutions
of the Klein-Gordon model and deriving the linear dispersion relation. I have
been writing a large part of the report. I also took part in analyzing the results
of the calculations.
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like to thank Thomas Wågberg for all his administrative help during my
Ph.D. time.

Outside the department, I would like to thank Bengt Eliasson for all
the discussions we had about numerical analysis. To Christian Kohlfürst,
thank you for the discussions we had about the DHW-formalism. I would
like to thank Mattias Marklund for supervising my Master’s thesis and the
discussion we had during my Ph.D. Thanks also to Frederico Fiuza and
David Reis at Stanford University for all the discussions and guidance during
my Ph.D.

Finally, I thank my family for their support. Without you, I would not
be able to write this thesis.

63





Bibliography

[1] H. Abramowicz et al., “Conceptual design report for the luxe experi-
ment”, The European Physical Journal Special Topics 230, 2445–2560
(2021).

[2] A. Matheron et al., “Probing strong-field qed in beam-plasma colli-
sions”, arXiv preprint arXiv:2209.14280 (2022).

[3] C. N. Danson et al., “Petawatt and exawatt class lasers worldwide”,
High Power Laser Science and Engineering 7, e54 (2019).

[4] E. Cartlidge, The light fantastic, 2018.

[5] A. Fedotov et al., “Advances in qed with intense background fields”,
Physics Reports 1010, 1–138 (2023).

[6] A. Di Piazza, C. Müller, and K. Hatsagortsyan, “Extremely high-
intensity laser interactions with fundamental quantum systems”, Re-
views of Modern Physics 84, 1177 (2012).

[7] A. Gonoskov et al., “Extended particle-in-cell schemes for physics in
ultrastrong laser fields: review and developments”, Phys. Rev. E 92,
023305 (2015).

[8] J. Mendonca, Theory of photon acceleration (CRC Press, 2000).

[9] J. Vieira and J. T. Mendonca, “Nonlinear laser driven donut wakefields
for positron and electron acceleration”, Phys. Rev. Lett. 112, 215001
(2014).

[10] A. Gonoskov et al., “Probing nonperturbative qed with optimally
focused laser pulses”, Phys. Rev. Lett. 111, 060404 (2013).

[11] M. J. A. Jansen et al., “Strong-field breit-wheeler pair production in
short laser pulses: relevance of spin effects”, Phys. Rev. D 94, 013010
(2016).

65

https://doi.org/10.1103/PhysRevE.92.023305
https://doi.org/10.1103/PhysRevE.92.023305
https://doi.org/10.1103/PhysRevLett.112.215001
https://doi.org/10.1103/PhysRevLett.112.215001
https://doi.org/10.1103/PhysRevLett.111.060404
https://doi.org/10.1103/PhysRevD.94.013010
https://doi.org/10.1103/PhysRevD.94.013010


BIBLIOGRAPHY

[12] D. A. Uzdensky and S. Rightley, “Plasma physics of extreme astro-
physical environments”, Reports on Progress in Physics 77, 036902
(2014).
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