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Abstract

Recycling lithium‐ion batteries (LIBs) is fundamental for resource recovery,

reducing energy consumption, decreasing emissions, and minimizing envir-

onmental risks. The inherited properties of materials and design are not

commonly attributed to the complexity of recycling LIBs and their effects on

the recycling process. The state‐of‐the‐art battery recycling methodology

consequently suffers from poor recycling efficiency and high consumption

from issues with the cathode and the binder material. As a feasibility study,

high‐energy‐density cathode material LiFeMnPO4 with a water‐soluble
polyacrylic acid (PAA) binder is extracted with dilute hydrochloric acid at

room temperature under oxidant‐free conditions. The cathode is wholly

leached with high purity and is suitable for reuse. The cathode is easily

separated from its constituent materials and reduces material and energy

consumption during recycling by 20% and 7%, respectively. This strategy is

utilized to fabricate recyclable‐oriented LiFeMnPO4/graphite LIBs with a PAA

binder and carbon paper current collector. Finally, the limitation of the

solubility of the binder is discussed in terms of recycling. This research

hopefully provides guidance for recycling‐oriented design for the circular

economy of the LIB industry.
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1 | INTRODUCTION

Battery design oriented toward recycling is required to
comply with the principles of a circular economy for
the lithium‐ion battery (LIB) industry.1 The typical LIB
cell is complex and comprises various valuable metals,
carbon‐based materials, and fluorinated derivatives.2

LIB cell complexity presents significant challenges to
material separation and cathode leaching, making it
difficult to recycle while reducing recycling efficiency.3

Individual components of spent LIBs can be easily
separated mechanically. Breaking each component
further down to recover its constituent materials in
pure form is less straightforward.4 For example, the
disassembly of cathodes is hindered by the properties
of the binder and cathode materials.5–7 Recycling
research on LIB has emphasized recovering Al foil
and cathode materials over other valuable materials
(e.g., conductive agents). The LIB recycling processes
are costly in terms of material and energy consump-
tion, reducing profitability, and having deleterious
effects on the environment.8 Recycling 1 tonne of
LiFePO4 cells using modern recycling methods would
require 10 kL of 1 M HCl, 10 kL of 1 M H2O2, and
54.73 kJ of energy, with a projected cost of ∼$2400
(16,400 Chinese yuan [CNY]). The primary recovered
material would be approximately 55 kg of Li2CO3,
valued at ∼$3400 (23,600 CNY) at the current market
price.9–12 Unfortunately, recycling LiFePO4 may
become commercially unviable with labor and proces-
sing costs, as the profitability is strongly linked to the
lithium salts' market price. If the lithium salts' prices
stabilize, the revenue recoverd lithium salts could
depreciate as low as ∼$1400 (9600 CNY). Approaches
to combat the dependency on lithium salt would
require reduced labor and processing costs. This can
be achieved by designing the next generation of LIBs
that are easily separated and oriented for recycling to
further support the LIB industry's development.

Next‐generation LIBs will require higher energy‐
density cathode materials to meet the increasing energy
demands while being easily recyclable. Cutting‐edge
research on promising cathode materials based on olivine
LiFePO4, layered LiCoO2, and LiNixCoyMnzO2 is being
developed and explored. LiFePO4 has been one of the
most widely used modern cathode materials because of
its low cost, favorable operating parameters, and safety.
Mn has emerged as a supplementary material for Fe in
LiFePO4 LIBs, increasing energy density by up to
20% and raising the output voltage from 3.5 to 4.1 V
(Figure 1A).13–15 The theoretical energy density of a
LiFeMnPO4 battery is comparable to layered cathode
materials and dramatically exceeds the performance of

LiFePO4 batteries. The precursor of LiFeMnPO4 materi-
als is cheaper than Ni and Co, which could enable a more
sustainable LIB production (Figure 1B).

Herein, LiFe0.3Mn0.7PO4 exemplifies a high‐energy‐
density cathode material that can be easily recycled by
leaching with hydrochloric acid (HCl) at room tempera-
ture under oxidant‐free conditions (Figure 1C). The
effects of the HCl concentration, leaching duration,
and solid–liquid (S/L) ratio on the effects of leaching
efficiencies for Li, Fe, Mn, and P were investigated.
Results indicate that the cathode material is easily
recycled with a water‐soluble binder,16,17 enabling quick
recovery and reuse of the current collector, the cathode
material, and the residual carbon materials.

2 | RESULTS AND DISCUSSIONS

2.1 | LiFeMnPO4 leaching

The results of leaching experiments using LiFeMnPO4 are
shown in Figure 2. Various HCl concentrations (0.5, 1.0,
2.0, and 3.0mol/L) were tested at room temperature as a
solvent for LiFeMnPO4 leachants, loading 20 g/L with a 1‐h
leaching time. Figure 2A–D demonstrates that the leaching
efficiencies for Li and Mn were around 94% when using
0.5mol/L HCl, while for Fe and P, they were around 90%.
Increasing HCl concentrations improved all elements'
leaching efficiencies to 100%, demonstrating that LiFe-
MnPO4 is readily recycled. The chemical equation of the
leaching process is in Equation (1). According to Equation
(1), ∆fG x x= 1152.27 – 952.8(0 < < 1). Given x=0.3, the
Gibbs free energy of formation for this reaction is
−607.12 kJ/mol, which means this reaction can occur at
room temperature (Table S1).

 x

x x

LiMn Fe PO + 3HCl LiCl + FeCl

+(1 − )MnCl + H PO (0 < < 1).

x x(1− ) 4 2

2 3 4
(1)

The effect of varying the S/L ratio on Li, Fe, Mn, and
P leaching efficiency was investigated to evaluate the
feasibility of industrial‐scale LiFeMnPO4 recovery. The
time to effectively leach out the metals was evaluated
with various solvent exposure times (10, 30, 60, 120, and
180 min) at 1.0 mol/L HCl. Leaching readily occurs
with 68.0%–75.5% leaching efficiencies within 10 min of
HCl solvent exposure at 1.0 mol/L HCl (Figure 2E–H).
Extending the reaction time to 30 min increases the
Fe and Mn leaching efficiencies to ∼99.0%, while those
of Li and P were 87.2% and 94.6%, respectively.
Complete dissolution of all elements was achieved
within one hour. The leaching efficiency remained
nearly 100% for all elements when the S/L ratio was
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between 10 and 30 g/L. However, when the S/L ratio
was 40 g/L, it decreased the leaching efficiency of Li, Fe,
Mn, and P below 90% (Figure 2I,J). The decreased
leaching efficiency may be potentially attributed to Le
Chȃtelier's principle, where the product of leachants
shifts the reaction's direction back toward reactants
preventing equilibrium from moving toward leaching.18

LiFeMnPO4 leaching was optimally performed using
HCl concentrations higher than 1.0 mol/L, with an S/L
ratio of less than 30 g/L and a leaching time more than
1‐h. Under these conditions, the residual carbon
material obtained after leaching was very pure, with
Li, Fe, Mn, and P content below 0.02 ppm (Figure 2K).
Separate experiments using 2.0 mol/L H2SO4 as the
leachant, instead of HCl, resulted in Li's complete
dissolution but were poor at recovering Fe at ∼20%
leaching efficiency (Figure 2L).

2.2 | Cathode separation

The excellent leaching properties of LiFeMnPO4 suggest
that it could be used to create easily recycled cathodes for
enhanced recyclability. Separating traditional cathode
materials is generally inherent to using polyvinylidene
fluoride (PVDF) as a binder due to poor solubility in
water and organic solvents. Water‐soluble polyacrylic
acid (PAA) was explored as a potential cathode binder
(Figure 3A,B) to avoid the solubility issues of PVDF; this
allows the cathode materials to be separated from
the Al foil simply by washing with water, as shown in
Figure 3B.

The cathode materials that remain after removing
the Al foil require further processing to separate the
active cathode material from the residual carbon
materials, both of which are valuable. Conventional

FIGURE 1 Properties of LiFeMnPO4 and its recycling. (A) The energy densities of LIB cells (Wh/kg) utilizing various cathode materials.
(B) Prices of metal elements in LiFeMnPO4 LIBs. (C) The schematic for the leaching process of LiFeMnPO4 and its advantages.
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LIB cathodes comprise the active cathode material,
PVDF, and a conductive nanomaterial. While the
majority of the active cathode material can generally be
recovered by acid leaching, residual metal elements can
significantly affect the performance and properties of the
recovered material if the leaching efficiency is below
100%. Furthermore, the poor solubility properties of
PVDF binders increase the complexity of recovering
the conductive nanomaterial. Utilizing more soluble
cathode active materials and binders thus facilitates the
recycling of the residual carbon materials. Figure 3
illustrates that the residual material obtained after
removing the Al foil and water‐soluble binder from
LiFeMnPO4 cathodes consists of carbon‐coated LiFe-
MnPO4 particles mixed with the conductive agent. Due
to strong interactions between these materials, this
mixture cannot be separated based on density differ-
ences. However, the residual LiFeMnPO4 can be
removed by completely leaching the active cathode
material, leaving only carbon materials. While these
residual carbon materials include the conductive nano-
material and nano‐coating layers from LiFeMnPO4

particles, the mixture could theoretically be repurposed
as a conductive agent.

Images with the electron microscope were used to
evaluate the practicality of reusing the recovered
carbon materials. As shown in Figure 3B, with the
assistance of a water‐soluble PAA binder, cathode
materials are readily separated from the Al foil
physically. Figure 3C shows that the LiFeMnPO4

particles were coated with graphene layers and that
the graphene remaining after leaching contained no
detectable Fe, Mn, or P. Accordingly, the residual
carbon material obtained from recycled cathodes after
leaching was highly pure: Figure 3D shows that it
consisted of the conductive agent (super P) and
graphene layers from LiFeMnPO4 particles, with no
detectable metallic impurities at the micron scale.
This material's energy‐dispersive X‐ray spectroscopy
analyses confirmed the absence of characteristic
peaks for Fe and P at 0.8 and 2.0 keV, respectively
(Figure 3E).

The only noncarbon peak present is a minor peak
corresponding to trace quantities of O (0.53 keV) at
the edges of the carbon material and indicating the
potential suitability of reusing the recovered carbon
residue as a conductive agent. The viability of
recycled carbon residue as a conductive agent for

FIGURE 2 Leaching of LiFeMnPO4. (A–D) The effects of HCl concentrations on leaching efficiencies for Li, Fe, Mn, and P. (E–H) The
results of leaching time on leaching efficiencies for Li, Fe, Mn, and P. (I, J) The effects of the solid/liquid (S/L) ratio on leaching efficiencies
for Li, Fe, Mn, and P. (K) Li, Fe, Mn, and P content in the residual carbon after LiFeMnPO4 leaching. (L) Li, Fe, Mn, and P leaching
efficiencies using 2M H2SO4 as the leachant.
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LIBs was assessed by assembled NMC333 half cells.
Figure 3F shows that these NMC333 cells had an
initial specific capacity of 188 mAh/g with a Coulom-
bic efficiency of 83.5%. For comparative purposes,
commercial NMC333 half cells had a slightly lower
specific capacity of 179 mAh/g and a negligible higher
initial CE of 84.8%. The minor differences in NMC333
cells may be due to the increased oxygen content of
the carbon residues. Cycling performance reveals that
the recycled carbon showed similar stability to super
P:NMC333 half cells made using recycled carbon, and
super P retained 86.7% and 88.3% of their stable
capacity after 80 cycles, respectively (Figure 3G).

2.3 | Environmental and economic
analysis

Their recycling was analyzed quantitatively to illustrate the
advantages of LiFeMnPO4‐based cathodes over traditional
methodologies. Recycling efficiencies nearing full recovery
were achieved for the active cathode material, conductive
agent, and Al foil. In contrast, conventional pyro-
metallurgical, hydrometallurgical, and direct physical recy-
cling methods have recovered active cathode materials and
Al foil with many impurities and below 90% recycling
efficiency.19 The conductive agents account for 1%–2% of the
mass of LIBs and 3% of the overall cost (Tables S2 and S3).

FIGURE 3 (A) A concept design for an easily recycled LiFeMnPO4‐based cathode and the associated recycling process. (B) The optical
images of the separation of the LiFeMnPO4‐based cathode with a polyacrylic acid binder. (C) The electron micrographs of LiFeMnPO4

particles and graphene recovered from their conductive coating. (D) The TEM image of recycled carbon residue from a LiFeMnPO4 cathode,
and (E) the corresponding EDX profile. (F) The voltage and capacity curves of NMC333 half cells with super P and recycled carbon residue
as conductive agents. (G) The cycling performance of NMC333 half cells with super P and recycled carbon residue as conductive agents.
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Pyrolysis of the conductive agent in spent LIBs is predicted
to increase greenhouse gas emissions by 10% during
recycling. Thus, pyrolysis of the conductive agent has no
economic benefit and is a potential source of environmental
pollutants. The LiFeMnPO4‐based cathode with water‐
soluble binder design outlined here significantly reduces
material and energy consumption during the cathode
separation process. The leaching of the active cathode
material is feasible without oxidants or heating compared to
other cathodic materials utilizing PVDF binders. This
reduces the material and energy consumption required for
recycling by 20% and 7%, respectively. This method reduces
CO2 emission by ∼11.1%, or 162 g per kg of material,
compared to traditional hydrometallurgical methods
(Table S4).

In comparison, the economic value of recycling
LiFePO4 and LiMnxFe1−xPO4 cathodes are comparable
due to the low valuation of metal elements. The precise
separation of the easily dissembled cathode can signifi-
cantly improve recycling profitability. For instance, with
precise separation, the profitability of $3231.9 + 10.59x
(0 < x< 1) (22160.9 + 72.62x (0 < x< 1) CNY) can be
achieved for 1 tonne of degraded LiMnxFe1−xPO4

cathode, with ∼$133 (918 CNY) per kg of cathode
revenue from conductive agent recycling (Table S5).
Therefore, bringing in recycle‐oriented designs for
cathodes could dramatically improve recycling efficiency,
reduce environmental impact, and increase the profit-
ability of LIB recycling.

2.4 | LiFeMnPO4/graphite LIBs with
PAA and carbon paper

Separation of the battery from the materials is ultimately
a matter of separating the current collector, active
materials, conductive agent, and binder. A readily
soluble binder facilitates the separation of the current
collector and subsequent materials. These electrode
separation processes are designed to ensure that the
current collector does not mix with other materials.
Otherwise, the recycled materials require further purifi-
cation. Metals, including copper and aluminum foils, are
a potential source of contaminants that have caused
significant problems during recycling. Unfortunately, the
copper and aluminum foils are fragile and are readily
incorporated into recyclable materials. Aluminum foil is
also prone to oxidation and corrosion, which increases
the potential for contamination of recycled materials. As
a result, it remains challenging to ensure that the metal
content of the recycled materials is below two parts per
million.

One approach to avoid potential metal contamination
is to substitute metal for carbon paper in the current
collector so the recovered materials from LIBs lack metal
impurities, making them more suitable for subsequent
reuse. As shown in Figure 4, the discharged LIBs can
be disassembled into shell, separator, cathode, and anode
(Figure 4A–E). From the disassembled cathode and
anode, the current collector and active materials/

FIGURE 4 (A) The LiFeMnPO4/graphite LIB with PAA and carbon paper. Disassembled (B) shell, (C) separator, (D) cathode, and (E)
anode. (F) The water tank. (G) The cathode in water. (H) The anode in water. (I) Separated current collector from the cathode. (J) Separated
current collector from the anode.
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conductive agent can be separated very easily by simply
immersing them in water (Figure 4F–J). Even if the
separated cathode materials contain carbon, impurities
can be removed directly by heat treatment or physical
methods.

2.5 | Limitation of the soluble binder

The water‐soluble binder PAA allows for the separation
of the cathode material and the current collector.
However, the PAA binder in the material cannot be
completely dissolved in water. Figure 5A,B show the
PAA detection in the recovered cathode materials after
multiple water washes and ultrasonic treatment.
Figure 5C shows that the recycled cathode material
decomposes by 4.17% before 800°C in an Ar atmosphere,
which agrees with the decomposition of PAA
(Figure 5D). The TGA decomposition of PAA leads to

the mass percentage of 12.17 carbon materials, indicating
that only a fraction of PAA (∼5%) in the recycled cathode
materials is dissolved in water. This could be due to the
strong interaction between the binder, active materials,
and conductive agent, possibly forming irreversible
chemical bonds. Fortunately, the decomposition of PAA
increases the carbon content in the conductive agent by
11.56%, which does not significantly change the conduc-
tive agent's properties. Therefore, extensive research is
still required to select suitable binders and processing
methods for efficiently developing recyclable LIBs.

3 | CONCLUSIONS

This research represents a proof‐of‐concept for the design
of an easily recyclable LIB cathode using LiFeMnPO4 as
the active cathode material and a water‐soluble PAA
binder. The cathode is easily separated into its

FIGURE 5 (A, B) The transmission electron microscopy (TEM) images of residual PAA in recovered cathode materials. (C) The
thermogravimetric analysis (TGA) curves of super P and recovered cathode materials. (D) the TGA curve of PAA binder.
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constituent materials, recovered in high‐purity form, and
suitable for reuse, which could significantly improve the
circularity of the LIB industry. The water‐soluble binder
allows for the separation of the Al foil current collector
from the cathode materials by a simple water wash. The
separated cathode can be leached with acid extraction
that separates the active materials from the residual
carbon, resulting in a high‐purity carbon material that
can be reused as a conductive agent without significantly
impacting performance. The methodology could benefit
recycling manufacturing scraps, which account for
5%–10% of the wasted materials in spent LIBs.

Due to environmental concerns associated with the
use of PVDF, environmentally friendly and water‐
soluble binders are being developed for use in LIBs.
Water‐soluble binders have already been successfully
used in the anode materials in LIBs, resulting in nearly
100% recycling of copper foil, graphite, and conductive
agents. If the same approach is applied to cathode
materials, the recycling of LIBs could be significantly
simplified. Future research focusing on developing
soluble cathode materials and binders with collabora-
tion between researchers and battery manufacturers is
fundamental to the next generation of LIBs to achieve
LIBs with high performance oriented toward recyclabil-
ity. Ensuring a circular economy for the LIB industry is
critical for securing energy security, managing resource
consumption, and delaying the natural depletion of
lithium reserves.
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