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Complex diseases are caused by a combination of
genetic, lifestyle, and environmental factors and
comprise common noncommunicable diseases,
including allergies, cardiovascular disease, and
psychiatric and metabolic disorders. More than
25% of Europeans suffer from a complex disease,
and together these diseases account for 70% of all
deaths. The use of genomic, molecular, or imaging
data to develop accurate diagnostic tools for treat-
ment recommendations and preventive strategies,
and for disease prognosis and prediction, is an
important step toward precision medicine. How-
ever, for complex diseases, precision medicine is
associated with several challenges. There is a sig-
nificant heterogeneity between patients of a spe-
cific disease—both with regards to symptoms and
underlying causal mechanisms—and the num-
ber of underlying genetic and nongenetic risk fac-

tors is often high. Here, we summarize precision
medicine approaches for complex diseases and
highlight the current breakthroughs as well as
the challenges. We conclude that genomic-based
precision medicine has been used mainly for
patients with highly penetrant monogenic dis-
ease forms, such as cardiomyopathies. However,
for most complex diseases—including psychiatric
disorders and allergies—available polygenic risk
scores are more probabilistic than deterministic
and have not yet been validated for clinical util-
ity. However, subclassifying patients of a specific
disease into discrete homogenous subtypes based
on molecular or phenotypic data is a promising
strategy for improving diagnosis, prediction, treat-
ment, prevention, and prognosis. The availability of
high-throughput molecular technologies, together
with large collections of health data and novel
data-driven approaches, offers promise toward
improved individual health through precision
medicine.
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Precision medicine and health

In contemporary evidence-based medicine, peo-
ple are frequently misdiagnosed and prescribed
treatments fail, either because the wrong treat-
ment is prescribed or because the patient does
not respond adequately to the treatment. In many
diseases, patients can also receive too much or
too little treatment. There are many definitions of
precision medicine and related terms—for exam-
ple, genomic medicine, personalized medicine,
stratified medicine, and individualized medicine—
some of which are complimentary. It is generally
accepted that “precision” means a relative lack
of random error. Thus, a pragmatic definition of
“precision medicine” and “precision health” is to
reduce error in medical decisions and health rec-
ommendations, respectively. The growing amount
of genomic, molecular, and imaging data; elec-
tronic health records; and large-scale longitudi-
nal cohorts—in combination with the develop-
ment of novel analytical tools—suggests that pre-
cision medicine will readily complement contempo-
rary evidence-based medicine in the not-so-distant
future [1], and there has already been a rapid pro-
gression in several disease areas, including com-
plex diseases.

Genetics of complex disease

Precision medicine approaches are already used
in the clinic to diagnose rare conditions and to
characterize cancers, aiming to provide the optimal
treatment to each patient [2]. These approaches are
mainly based on genomics, and the diagnostic tools
have benefited from the rapid development of high-
throughput sequencing technologies. Rare condi-
tions are often caused by loss-of-function muta-
tions or larger chromosomal rearrangements, and
the identification of genetic causes for rare condi-
tions has increased almost linearly during the last
30 years [3]. However, by definition rare genetic
disorders only affect a minority of the population,
and the advancements in diagnostics of rare con-
ditions have no benefit for the majority of the pop-
ulation.

Complex diseases account for ∼70% of global
deaths, rendering them the main cost for the
healthcare system [4] and a major burden to the
society. For complex diseases, the heritability—
that is, the variation in disease risk that could be

From the symposium: Cutting-edge implementation of precision
medicine in Europe.

attributed to genetic factors—is often 40%–60%,
and few cases are caused by mutations in single
genes—so-called monogenic disease forms. Almost
two decades ago, when the first genome-wide
association studies (GWAS) were performed, the
identification of genetic variants influencing the
risk of common diseases began [5]. Since then,
thousands of genetic loci associated with complex
disease have been identified [6]. For example,
the largest GWAS to date—with a sample size of
5.4 million individuals [7]—showed that 12,111
independent single nucelotide polymorphisms
(SNPs) are associated with height, one of the most
heritable human traits. For most complex diseases
and traits, the genetic variants identified in GWAS
explain a limited fraction of the heritability. For
example, for systolic blood pressure (SBP), the
901 most significantly associated loci combined
explain 5.7% of the variation in SBP [8]. However,
all SNPs combined—even variants that are not
genome-wide significant—explain as much as
21.3% of the variation in SBP [8]. During the last
years, the use of polygenic risk scores (PRS) has
therefore been widely discussed in the complex
disease field. A PRS is an estimate that reflects an
individual’s genetic liability to a complex disease
or trait and often represents a combined effect
of hundreds of thousands of genetic variants,
of which a majority do not reach the threshold
for significance in a GWAS (Fig. 1). The PRS are
constructed based on linear combinations of effect
estimates for SNPs from a GWAS [9].

One successful example in which PRS have been
evaluated in relation to risk assessment is among
women with a suspected predisposition to breast
cancer [10, 11]. An associated web-based risk
assessment tool, CanRisk, has been developed,
which takes into account both PRS, family history,
and rare pathogenic variants in known cancer sus-
ceptibility genes [12]. It supports integration of PRS
into clinical risk calculators as a feasible approach
to enhance disease prevention. However, for most
complex diseases, the precision of the PRS is still
too low to be clinically relevant, and there are yet no
clear guidelines available on how to translate PRS
to the benefit of people in general. The current days
PRS are more probabilistic than deterministic [13]
and are better suited for risk prediction modeling
than for diagnostic purposes. Many international
organizations recommend estimating the 10-year
cardiovascular risk for adults between the ages of
40–75 years, and it has been shown that including
PRS further increases the accuracy of the current

© 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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Fig. 1 Construction and applications of a polygenic risk
score (PRS). Cases and controls for a disease (A) are col-
lected, and a genome-wide association study (GWAS) is
performed (B). The effect estimates are extracted from the
GWAS and used, in combination with information on link-
age disequilibrium, to construct weights for the PRS (C).
PRSs are computed in an independent cohort, in which a
majority of the participants will have intermediate PRSs,
and a small fraction will have high versus low PRSs,
respectively (D). The distribution of PRSs can be compared
between cases and controls (E), or the disease incidence
rate can be compared between participants with high,
intermediate, or low PRSs (F) to evaluate the performance
of the PRSs.

risk prediction tools [14]. Studies have also shown
that communicating risk-information—including
both clinical risk factors and PRS—to middle-aged
persons promotes positive lifestyle changes as well
as the tendency to seek medical care [15]. This
supports that PRS could be incorporated into clin-
ical risk calculators to delay or prevent disease
onset.

It is known that the majority of the heritability
of complex diseases and traits is due to common
genetic variants with small effects [16, 17], and
most individuals with a complex disease do not
carry established single-gene mutations with large
effects. In general, PRS could therefore represent
an individual’s genetic liability to a disease, and
people with high PRS have been shown to have a
high disease risk equal to carriers of monogenic
mutations [18]. As the accuracy of PRS depends
on the power of the GWAS from which they are
derived, the performance of PRS is likely to con-
tinue to improve, thanks to larger cohort sizes
and better characterized samples together with fur-
ther methodological developments [19–21]. How-
ever, for most complex diseases, monogenic forms
have been identified. One well-known example is
the melanocortin 4 receptor gene (MC4R), where
common GWAS variants are associated with a
small increase in the risk of obesity [22]. In con-
trast, rare deleterious mutations in MC4R repre-
sent the most common monogenic cause of severe
early onset obesity [23]. Variants that have such
considerable effects on risk of disease are often
rare, specific to individual populations or families,
or de novo mutations, and are therefore difficult
to detect in GWAS. Such variants are often not
in linkage disequilibrium with common variants
[16], and therefore not captured by PRS. Thus, it
is important to realize that persons with low PRS
can still carry rare mutations that result in very
high genetic liability to the disease.

There are several additional limitations when using
PRS in precision medicine. First, most GWAS have
been performed in cohorts of European descent,
and PRS computed to date are much less infor-
mative in other ethnicities [24]. Therefore, there
is an urgent need for more diverse ancestries to
be included in GWAS [25]. Second, for most dis-
eases and traits, the PRSs still explain a lim-
ited amount of the heritability [26]. This is mainly
due to not having large enough sample sizes in
GWAS, and even larger GWAS studies are needed
[7]. Finally, individuals with high PRS will likely

380 © 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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carry risk alleles in many—may be hundreds or
even thousands—of genes that influence differ-
ent pathways in different tissues and matching
an optimal treatment to patients’ genetic makeup
will be more challenging compared to individuals
with monogenic forms of the same disease. There-
fore, using precision medicine approaches to iden-
tify subgroups of patients with similar features is
believed to be a more promising strategy for com-
plex diseases.

Althoughmost of the knowledge on the genetic con-
tribution of complex disease has arisen from array-
based SNP genotyping studies, followed by imputa-
tions and GWAS, whole-genome sequencing (WGS)
and whole-exome sequencing (WES) will soon be
state of the art in genetic studies [2]. Human
genomics is—due to novel high-throughput tech-
nologies for genome sequencing—the fastest grow-
ing field with regards to big data production. The
costs for WGS have dropped dramatically over the
last decades, from $1000,000,000 per genome—
when the first human genome was sequenced 20
years ago—to soon reach $100 per genome. In
2013, Genomics England announced a flagship
project for sequencing 100,000 whole genomes of
patients with rare diseases as well as their family
members, and tumor samples from patients with
common cancers. Since then, large-scale WGS and
WES studies have been performed in clinical trial
participants [27] as well as in population-based
cohorts [28–30], aiming to increase understanding
of the genetic contribution also to complex diseases
and to accelerate the development of genome-
based precision medicine. Sequencing methods
capture more than 10 times as many damaging
genetic variants [28] compared to SNP genotyping
and imputation, and the major parts of the genetic
variants identified withWGS are rare [17, 31]. How-
ever, the ability to identify genetic effects is propor-
tional to the allele frequency, the allelic effect, and
the sample size. Consequently, the contributions
of large WGS and WES studies have been relatively
limited to the complex disease genetics field [32 ],
in comparison to the most recent GWAS studies
where the sample size, instead of the number of
variants, has increased dramatically [7]. This sug-
gests that the genetic effects that are not captured
by PRS or by knownmonogenic variants most likely
comprise thousands of additional genetic variants
with effect sizes too small to be captured in the
current studies (Fig. 2), ranging in frequency from
very rare to common, and that even larger GWAS
studies in the future will dramatically increase

Fig. 2 The effect sizes for genetic variants of different allele
frequencies. The figure shows the effect on body mass
index (BMI) in kg/m2 per copy of theminor allele for individ-
ual SNPs (blue circles), or for the burden of rare alleles (pur-
ple circles), of different allele frequencies. The blue circles
represent the effect sizes from a genome-wide association
study (GWAS), and the purple circles represent rare coding
variants from gene-based tests performed in over 600,000
samples with whole-exome sequencing (WES) data. The
gray area indicates the effect sizes for which the study
was underpowered to detect any effects for different allele
frequencies. Source: The figure is adapted from Akbari
et al. [32]. Reprinted with permission from AAAS.

the accuracy of the PRS. However, it should be
remembered that even with a highly accurate PRS
that captures most of the heritability of a complex
disease, many people will carry rare deleterious
mutations that are not captured by the PRS, and
there is high probability of those being incorrectly
classified as being of low disease risk based on PRS
only.

Precision medicine for cardiovascular disease

Genomic medicine approaches for clinical utility
have been evaluated for several complex diseases,
including cardiovascular diseases. In the cardio-
vascular field, there is a large interest in preci-
sion medicine approaches [33], and recent reviews
include guidance for clinical implementation of
PRS [14]. One determinant of success has been
the fraction of patients who have a monogenic

© 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
Journal of Internal Medicine, 2023, 294; 378–396
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form of the disease, a factor that varies dramati-
cally between different diseases. Cardiomyopathies
are a heterogeneous group of disorders that affect
mainly younger adults and can lead to severe out-
comes and complications. As up to 60% of cases
are familial, genomics has been successfully used
to enlighten the etiological basis and disease mech-
anisms [34]. This has recently resulted in many
strategies to therapeutically target specific disease
mechanisms. For example, cardiac amyloidosis—
one of the leading causes of cardiomyopathy—
has recently gained guideline class I recommen-
dation for a first-in-class treatment using a pro-
tein stabilizer. Cardiac amyloidosis is caused by
mutations in TTR, a gene that encodes the protein
transthyretin, which causes a fibrillar structure
in the myocardium. The protein structure stabi-
lizer tafamidis was submitted for market approval
already in 2010, for peripheral nerve disease
caused by TTR amyloid deposits [35]. Following a
landmark randomized clinical trial in cardiac amy-
loidosis, the FDA approved tafamidis for cardiac
indication in 2019, 16 years after it was first dis-
covered. Besides stabilizing the natural tetrameric
structure of TTR, different approaches from block-
ing gene transcription to attacking deposited TTR-
fibrils are under clinical investigation or are
already approved. The latest success comes from
a first-in-human clinical trial using CRISPR-Cas9
in hereditary amyloidosis [36]. Using intravenous
infusions of lipid nanoparticles containing guide-
RNA against the tafamidis-locus and mRNA cod-
ing for an optimized Cas9 enzyme, six patients
have undergone experimental gene therapy. After
a single-dose treatment, gene sequencing showed
a successful modification of TTR in liver cells, with
the CRISPR-Cas9 editing leading to a premature
stop codon and termination of translation, and
consequently a dose-dependent decrease of serum
TTR. Other indications have followed the stringent
developmental pipeline, with mavacamten being
the latest success in a randomized clinical phase
3 trial [37]. Aficamten, another myosin inhibitor, is
currently in clinical investigation. First published
in 2016 in a rat model of hypertrophic cardiomy-
opathy (HCM) [38], only 8 years later, the FDA
approved the compound for treating symptomatic
patients with obstructive HCM. This brings the first
specifically developed drug to HCM and positions
it as an alternative treatment to cardiac surgery
or interventional septum ablation. In dilated car-
diomyopathy (DCM), different trials in phases 1–
3 investigate the use of small compounds, anti-
bodies, noncoding RNAs, cellular therapies and

gene therapy approaches. Only recently, a promis-
ing small compound trial in phase 3 against car-
diac laminopathy was canceled due to futility,
leaving one of the most severe forms of DCM with-
out the prospect of an immediate treatment option
[39] besides primary prophylactic implantation of
a defibrillator against sudden cardiac death.

Precision medicine for allergic diseases

Allergic diseases are a group of complex dis-
eases that represent very common conditions like
asthma, eczema, hay fever, pet allergy, and food
allergy that affect large proportions of populations
worldwide, from infants to the elderly. Both genetic
and environmental factors are well recognized to
influence disease occurrence, severity, and pro-
gression. Therefore, precision medicine efforts
need to encompass environmental, lifestyle, and
genomic domains to successfully improve diag-
nostics, treatment response or predictive scores
in allergic disease [40]. Analyses of allergen-
specific IgE in blood (or a skin prick test) today
constitute a standard diagnostic test for any aller-
gic condition. For some conditions, like peanut
allergy, conventional peanut extract tests can-
not distinguish true, potentially life-threatening
peanut allergy from cross-reactivity with birch
pollen associated with only mild symptoms. How-
ever, novel molecular allergy approaches—that
is, component-resolved analyses—may reveal
IgE sensitization patterns at the protein level
(e.g., toward the peanut protein Ara h2), which
represents true peanut allergy rather than cross-
reactivity [41]. Such tests are today available in
most well-equipped laboratories and allow for tar-
geted patient advice (e.g., strict avoidance), rescue
treatment (prescription of adrenaline/epinephrine
autoinjectors), or disease-modifying treatment
recommendation (immunotherapy). In relation to
allergy to airborne allergens—for example, tree or
grass pollens, or dust mites—diagnostics must
reflect personal exposures that are often region- or
country-specific (e.g., birch pollen very prevalent
in Scandinavia). However, with climate change,
allergen levels have changed in that peaks may
occur outside the regular pollen season and new
plant species with new allergens may appear in a
given region [40]. As such, both the patient and
the caregiver must be aware of these changes that
will influence diagnostics (new allergens tested)
and treatment (consider exposure outside tradi-
tional exposure periods), exemplifying that also

382 © 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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environmental factors will have to be incorporated
in precision medicine efforts.

Although genetic factors strongly influence the risk
of allergic and respiratory disease, no convincing
examples of diagnostic tests applied in clinical set-
tings have so far been seen. The predictive value
of PRS is rather low, with AUCs around 0.65–
0.70 [42]. However, genetics can improve clinical
diagnostics, on top of disease history and rou-
tine clinical information, especially in the case of
early onset severe asthma or an inherited respira-
tory or immunodeficiency disease. In such exam-
ples, WGS has predominantly been used to rule
out monogenetic respiratory disease (e.g., cystic
fibrosis, primary ciliary dyskinesia, or surfactant
dysfunction) and inform decisions about initiating
adequate treatment.

Several precision medicine studies in allergic dis-
eases have been performed to identify markers for
treatment response. Local corticosteroid applica-
tions (e.g., in nasal spray, inhalation device, or top-
ical skin cream) are the primary anti-inflammatory
treatments for all allergic diseases. In severe cases,
highly potent and mechanism-specific biological
treatments have, in the last years, become more
broadly available. For the right patient, a dramatic
treatment response can be observed with marked
symptom reduction and increased quality of life.
For severe asthma patients, there are today several
biological drugs available, including omalizumab
(anti-IgE), mepolizumab (anti-IL5), benralizumab
(anti-IL5R), dupilumab (anti IL4/IL13), and teze-
pelumab (anti-TSLP) [43]. A clinical challenge is
to predict which patient will respond to which
treatment. The biomarkers—for example, blood
eosinophil counts, total or specific IgEs, or frac-
tion of exhaled NO—used to guide decision-making
in the clinic today do not provide enough preci-
sion. Omics-based characterization of response,
or prediction of response, holds great promise
to allow for clinical precision medicine applica-
tions. Two examples using transcriptomics can
be highlighted to illustrate this potential. In chil-
dren with severe, eosinophilic asthma, treatment
responses to mepolizumab were found to differ
based on baseline nasal transcriptomic signatures;
some children responded well, whereas others—
depending on the signature—actually did worse on
treatment [44]. The other example provides novel
insights into oral immunotherapy effects in ado-
lescents with peanut allergy, for which signatures
of tolerance and immune response were captured

in those who successfully completed the therapy
[45].

Precision medicine in psychiatry

Psychiatric disorders—including depression and
schizophrenia as well as bipolarity, anxiety, post-
traumatic stress, and neurodevelopmental and
eating disorders—affect our mental health. Person-
alized practice is an integrated part of clinical psy-
chiatry. Psychiatric diagnoses are defined based on
descriptive criteria [46], but the classical founda-
tions of the diagnostic categories were based on
detailed clinical phenotyping, including long-term
outcome [47]. Recent evidence supports the notion
that clinical characteristics can be helpful for per-
sonalized management of major depression and
psychotic disorders [48, 49]. The lack of knowl-
edge about disease mechanisms and related treat-
ments has so far limited the application of preci-
sion medicine in psychiatry.

Most psychiatric disorders have a high heritability,
with estimates between 40% and 80% [50], and are
highly polygenic [51]. Lately, there has been a large
increase in discoveries of genetic variants associ-
ated with psychiatric disorders [50], followed by the
development of PRS-based tools [51]. However, PRS
for psychiatric disorders explain relatively small
proportions of the liability of each disorder, and the
current PRS are still not clinically useful [52]. In
addition to genetics, several lines of research have
focused on prediction modeling building on clini-
cal, cognitive, and brain imaging approaches. With
the emerging transformative knowledge in psychi-
atric genetics, neuroscience, and brain imaging,
there is a large potential for implementing precision
psychiatry in several areas [53]. Despite this, psy-
chiatry has been slow in implementing precision
medicine [54], and potential applications have not
yet been considered for real-world implementation
[55], or even been demonstrated to be useful in the
clinic [52]. Promising results have emerged for pre-
dictionmodels to support the diagnosis and predict
treatment response in some specific clinical sce-
narios [56] with the most fruitful approaches being
the prediction of diagnoses and disease onset,
as well as treatment response and outcome [57].
Prediction algorithms applying machine-learning
methodology have reasonable levels of accuracy
and precision when informed with clinical [58, 59],
brain MRI [55, 58, 59], and biomarker [58–60] data.
For example, individuals at clinical high risk for
psychosis could be classified with 78% sensitivity

© 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
Journal of Internal Medicine, 2023, 294; 378–396
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and 77% specificity [60], and integrating clinical
information [56] further increases the prediction
accuracy of transition to psychosis to 85%.

Precision medicine approaches for treatment
stratification could have large clinical impact
[61, 62] due to the high rates of nonresponse
to psychopharmacological agents. For example,
∼30%–40% of patients with schizophrenia are
treatment-resistant [63]. Some recent findings in
the prediction of treatment response, including
clinical data, show reasonable accuracy [1]. How-
ever, the performance of these models will most
likely increase when genetic, molecular, or imaging
data are also included. There are several ongoing
efforts to develop PRS for treatment stratification.
For example, for antipsychotic nonresponse, the
PRS could predict nonresponse in independent
samples [64], and the accuracy further improved
when adding cognitive measures [65]. Genetic
prediction may also be helpful for identifying
individuals who are likely to develop specific side
effects [66]. Combining genotyping with data avail-
able in large, prescription registers—such as those
from the Nordic countries [67]—in addition to
longitudinal clinical samples, will also provide new
insight into the genetics of psychopharmacological
treatment. In addition, including neurobiological
deviances from normal trajectory during neurode-
velopment [68] may help treatment development
and stratification.

Precision diabetes medicine

In diabetes, very few people are ever cured, and
most people at high risk will eventually develop
the disease, even when aggressive interventions
are used to mitigate risk. For example, the Dia-
betes Prevention Program [69] was a breakthrough
trial that demonstrated that type 2 diabetes inci-
dence can be substantially reduced through met-
formin treatment (31% risk reduction compared
to placebo control) and intensive lifestyle interven-
tion (58% risk reduction compared to standard-of-
care control) in people at high risk of the disease.
Nevertheless, the extent to which the metformin
and lifestyle interventions delayed diabetes onset
compared with the control intervention was only
about 12 months with metformin and 36 months
with intensive lifestyle intervention. Moreover, after
more than 20 years of follow-up, the mortality rates
were comparable in those initially randomized to
metformin or lifestyle and in those randomized to
the control interventions.

Precision medicine for diabetes is—as for many
other complex diseases—very challenging, as both
the common forms of the disease (type 1 and type
2) are remarkably complex in etiology, clinical pre-
sentation, pathogenesis, and treatment require-
ments. Thus, no single solution will solve these
challenges, and it is improbable that genomic
medicine alone will play a major role in defeat-
ing these diseases, as so much of the etiology
and pathogenesis is a consequence of environmen-
tal risk factors. Thus, precision diabetes medicine
of the future is likely to involve a broad-scope
approach, which will need to incorporate time-
varying and environmentally sensitive markers,
neither of which are characteristics of genetics.
In an elegant commentary on the complex etiol-
ogy of type 2 diabetes, McCarthy proposed the
“palette” model [70]. This is a metaphor of the
painter’s palette, where the bright colors around
the edges represent the individual disease path-
ways, and the combinate in the middle—where the
colors meet—represents the mixed combination of
pathways that leads to disease development in
each patient (Fig. 3). The model infers that amongst
the heterogenous group of people with type 2 dia-
betes, some have a relatively simple form caused
by one or a few key factors, whereas most people
with the disease cannot be so easily distinguished,
owing to the complex interaction of many genetic
and nongenetic factors that renders these cases
unpredictable and difficult to accurately diagnose
and treat.

In 2018, an important study describing the sub-
classification of diabetes into distinct subclasses
was published [71]. A “hard clustering” machine-
learning method called “K-means clustering” was
used to stratify a dataset comprising people of
Swedish and Finnish ancestry into five subclasses,
each representing a phenotypically distinct etiol-
ogy. The research went beyond this to show that
these subclasses can be used to predict differential
treatment requirements and incidence of diabetes
complications. Many subsequent papers showed
that these subclasses are reproducible in other
populations, some differing in ethnic origin to the
original cohorts, and interpreted this work as evi-
dence that people with diabetes can be assigned
to one of five distinct sub-diagnoses of diabetes—
which is, unfortunately, incorrect. Assignment of
individuals to a subclass is a probabilistic phe-
nomenon, where each person within the dataset
has a certain probability to be assigned to each
cluster. Thus, a given individual within the dataset

384 © 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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Precision medicine in complex diseases / A. Johansson et al.

Fig. 3 The “palette” model of the multifactorial etiology of a complex disease. The different colors to the left represent four
tentative disease pathways or pathophysiological mechanisms. Each of the five individuals (A–E) has different contributions
of the colors representing the various pathways that can contribute to disease. The contribution of each pathway is illustrated
by an “X,” and individuals with the same disease can have very different underlying pathophysiological mechanisms, as
illustrated by the difference in colors of the individuals to the right. Source: The figure is adapted from the figure by McCarthy
[70] licensed under CC BY 4.0 [139], where the model was proposed for type 2 diabetes.

may contribute to one or more of the five sub-
classes, similar to the palette model [70]. Sub-
sequent analyses using “soft clustering” methods
revealed that only around one-third of people with
diabetes can confidently be assigned to a specific
subclass, with the other two-thirds being of mixed
etiology, aligning well with the palette model [72].
Moreover, although classification methods lead to
easily interpretable results, the stratification of ini-
tially continuous data usually results in a loss
of predictive power. Indeed, Dennis et al. showed
that when comparing a subclassification method
to a simple model that maintains the continuous
nature of the clinical variables, the latter had supe-
rior predictive ability [73]. Building on this, the
most recent advances in precision diagnostics for
diabetes have usedmachine-learningmethods that
maintain the continuous distribution of data—for
example, using UMAP and DDRTREE—to array
continuous data distributions and to assign prob-
abilities of diagnostic tendencies that might prove
useful for clinical translation.

Beyond precision diagnostics, significant progress
has also been made in precision nutrition. Sev-

eral studies have shown success in individual-
level prediction of postprandial glycemic variation.
The seminal paper on this topic was published in
2015 [73], where Zeevi et al. collected very detailed
diet and phenotypic data in ∼800 young adults.
The phenotypic assessments included continu-
ous glucose monitoring, physical activity, habitual
diet, and biological features, including gut micro-
bial diversity assessed using 16s rRNA sequenc-
ing of bacterial DNA obtained from participants’
stool. They derived machine-learning models that
accurately predicted personalized postprandial
glycemic response to real-life meals. The authors
proceeded to conduct a small blinded randomized
controlled dietary intervention and showed that the
algorithmically personalized diets performed better
compared to diets prescribed by a registered dieti-
tian. Berry et al. undertook a slightly larger study
[73] and broadened the scope to explore whether—
in addition to postprandial glycaemia—triglyceride
and c-peptide concentrations could also be pre-
dicted after randomized fixed-macronutrient meal
assignment. They showed that although post-
prandial glycemia could be adequately predicted,
triglycerides and c-peptide could not. Importantly,

© 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
Journal of Internal Medicine, 2023, 294; 378–396
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glycemia was assessed using flash monitors (a
continuous measure of glucose), whereas triglyc-
erides and c-peptide were assessed using dried
blood spots manually obtained throughout the 2-
week study period. Thus, limitations of the method
used to measure triglycerides and c-peptide may
have undermined the ability to predict these phe-
notypes.

In early 2018, the American Diabetes Association
(ADA) and European Association for the Study of
Diabetes (EASD) launched the Precision Medicine
in Diabetes Initiative (PMDI). The work undertaken
within the ADA/EASD PMDI has focused on build-
ing robust networks and infrastructures through
which research on precision diabetes medicine
can be undertaken and translated into clinical
practice [74]. In 2020, the first ADA/EASD Con-
sensus Report on Precision Diabetes Medicine
was published [75]. The report outlined the key
pillars of precision diabetes medicine (preven-
tion, diagnosis, treatment, prognosis, and monitor-
ing), outlined terminology, described clinical exem-
plars of precision diabetes medicine, and provided
expert opinion on key steps to implementation—
including opportunities and barriers. The moti-
vation to establish the ADA/EASD PMDI came
through recognition that research germane to pre-
cision diabetes medicine was advancing rapidly,
yet there was a little coordination of these pro-
cesses, which stood in the way of clinical trans-
lation. Moreover, there has been little consensus
about what precision and personalized medicines
really are as research concepts and as practical
clinical domains, with people often using the same
words to mean different things and different words
to mean the same thing. This is evident, not only
within diabetes medicine, but also for other disease
areas.

Genetic subtyping in obesity and metabolism

Obesity is a multifactorial disease, resulting from
an intricate interplay between genetic and environ-
mental factors. Obesity is one of the major risk
factors for many complex diseases, including type
2 diabetes, cardiovascular disease, and cancer. At
the population level, the genetic contribution to
obesity (i.e., the heritability) has been estimated
to range between 40% and 70%, suggesting that
a substantial proportion of the interindividual dif-
ferences in obesity susceptibility is due to genetic
factors. Indeed, GWAS have so far identified more
than 1500 genetic variants that each are associ-

ated with body mass index (BMI), obesity risk, or
other adiposity outcomes [76]. At the individual
level, people’s genetic susceptibility to obesity is
quantified using PRS, and even though most indi-
viduals have an average score—and thus an aver-
age susceptibility to obesity—some individuals will
have a very high genetic susceptibility, and others
will have a very low genetic susceptibility (Fig. 1).
Increasingly, these scores are used in the context
of precision health to predict which individuals are
at high risk of gaining weight. However, so far the
predictive ability of PRS has been limited, which
may be due to how obesity is defined. Obesity is
typically defined by a simple metric—that is, a BMI
of ≥30 kg/m2. However, two individuals with obe-
sity, even if they have exactly the same BMI, may
differ in the underlying (biological) causes of their
weight gain. They may also differ in the presenta-
tion of the disease, the prognosis, the complica-
tions, and the response to treatment. To account
for this heterogeneity, there is a growing interest to
subclassify obesity into smaller, more homogenous
subtypes. So far, subclassifications have been pre-
dominantly performed based on clinical features
present in individuals who have obesity (i.e., phe-
notypic subclassification). For example, individ-
uals who have obesity, but do not demonstrate
any comorbidities, have been subtyped as hav-
ing “metabolically healthy obesity” [77]. Increas-
ingly, more advanced methods—such as principal
component analyses and machine learning based
on anthropometric and clinical features—are being
used for more refined subclassifications [78–80].

With the discovery of an increasing number of
genetic variants associated with obesity, genetic
subclassification has become possible. A key
advantage of subclassifications that are based
on genetic variants is that they may reveal new
insights into the etiology of the disease and its
subtypes. In addition, genetic subclassification can
be done early on in life, long before the onset of
disease, allowing for a timely prevention. There
are various approaches that can be applied to use
genetic information in the subclassification of obe-
sity. For example, in a recent study, publicly avail-
able GWAS summary statistics were used to iden-
tify BMI-increasing variants that are associated
with a lower risk of type 2 diabetes and cardiovas-
cular disease, and with a favorable cardiometabolic
profile [81]. With this multi-trait approach, 62 vari-
ants were identified, for which enrichment anal-
yses point to a key role of adipose tissue and
adipocyte biology in the uncoupling of obesity from

386 © 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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its comorbidities, which is in stark contrast to the
enrichment analyses performed for BMI-only asso-
ciated variants, which point to the brain [22]. These
subsets of variants help reveal new biological path-
ways that are not observed when all variants are
considered together, as commonly done in PRS
approaches. Importantly, these subsets of variants
can contribute to the subtyping of obesity through
using genetic risk scores that are based on them.
The derived subtypes of obesity would allow for
a more precise diagnosis of obesity—as compared
to the simple “BMI ≥ 30 kg/m2” metric—that will
allow for more personalized prevention and treat-
ment strategies that are tailored to the specific obe-
sity subtype, and a more precise prognosis. Addi-
tional studies have confirmed the obesity–type 2
diabetes discordant genetic effects and the link to
fat distribution and lipid metabolism, and genes
that may represent targets for precision medicine
approaches have been highlighted [82]. However,
both fat distribution and the pathogenic effects by
the adipose tissues are known to differ between
sexes [83, 84], and future studies stratifying by
sex are therefore needed to increase the precision
in prevention and treatment strategies for obesity
[85].

Fetal precision medicine

During the last two decades, there has been
considerable development in precision diagnos-
tics within embryo and fetal precision medicine
both before and during pregnancy. This has been
brought about through huge advances within the
field of genomics and also within the ultrasound
and magnetic resonance imaging area. Before
2000, the genetic tests had low resolution and cov-
ered only a few conditions, but with the advance-
ments within the genomic field, the tests now
have a very high resolution and cover many
genetic conditions [86]. The genomic advances
cover both genomic screening techniques and diag-
nostic tools. For example, sampling the fetus’s
genome has been revolutionized in recent years
by the possibility of sampling the fetus DNA by
testing the cell-free DNA (cfDNA) in the mother’s
blood [87]. Noninvasive diagnosis of fetal aneu-
ploidy can be performed by shotgun sequencing
DNA from maternal blood [88]. This noninvasive
technique has substantially lowered the need for
invasive diagnostic procedures that are associated
with a risk of miscarriage. Noninvasive prenatal
testing (NIPT) is built on discovering that fetal
cfDNA is present extracellularly in the maternal

plasma and serum during pregnancy. The fetal
cfDNA comes mainly from apoptosis in the pla-
centa, which is a fetal tissue. Of the total mater-
nal cfDNA in maternal plasma, ∼3%–10% is typi-
cally from the fetus in late first trimester [89]. Fetal
cfDNA can be used for detecting fetal rhesus fac-
tor status, screening for fetal trisomies, and, more
recently, for screening of some of the microdele-
tion syndromes [89–93]. The entire genome and
mutational status have been sequenced from fetal
cfDNA, and some fetal single-gene mutations have
already been diagnosed using fetal cfDNA [94]. The
advancements in assisted reproductive techniques
have nowmade it possible to check the genetics of a
5-day-old embryo before the embryo is transferred
to the mother—preimplantation genetic diagnosis
[95]. Many more applications for noninvasive fetal
screening, including targeting monogenic forms of
complex disease, are expected in the future.

Complex disease, multi-morbidities, and precision
medicine

Due to aging populations, complex diseases in a
single patient do unfortunately not typically man-
ifest in a mutually exclusive manner. They coex-
ist and provoke each other over time, complicating
workup and treatment in particular in a precision
medicine context [96]. As explained before, a given
complex disease can have multiple etiologies and
in fact represent different routes or mechanisms
that interact toward similar conditions in a single
patient. One can consider this a “special case” of
the general multi-morbidity problem in which sev-
eral diseases that for long have been recognized
as distinct, separate diseases interact—for exam-
ple, via shared genes and pathways [97]. In some
cases, a “driver disease” provoked by genetic risk,
exposures or both may lead to longitudinal disease
development in which the order of events is quite
well understood (even if it in the individual case
may be hard to predict), whereas in other cases it
may be less clear what represents a risk factor and
what represents a complication in a life-course per-
spective.

The concept of “promiscuous” diseases has been
introduced to reflect the difficulties in understand-
ing the mechanistic aspects of temporal disease
development [98]. Atrial fibrillation is one such
example in which this condition may contribute to
increasing the risk of other cardiac events, but it
may also be a complication to other diseases with-
out prior manifestation. Sex differences in disease

© 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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trajectories across men and women add to the
complexity of the problem [99]. The way diseases
have been defined over the history of medicine
has been influenced by symptomatology, anatomy
and tissues, not by detailed knowledge at the
mechanistic, molecular level that now increasingly
can be revealed by deep multi-omics technologies
[100]. When such technologies are used to pro-
duce readouts that over several time points reflect
disease progression, it becomes possible to better
decipher mechanisms over time and to include
exposure information along the way.

Drugs are designed to change cellular behavior,
which today also is characterized by multiple
omics technologies. When multi-omics data are
produced in large cohorts, they have the potential
to reveal patient-level disease characteristics and
individualized response to treatment. In a recent
study [101], a deep-learning-based framework
(variational autoencoders) was used to integrate
multi-omics data from a cohort of newly diagnosed
diabetes patients (genomics, transcriptomics,
proteomics, metabolomics, and microbiomes). In
addition to the molecular level data, the autoen-
coder also received data on medication, diet
questionnaires describing lifestyle and clinical
measurements. This type of approach can then be
used to quantify and assess how different interven-
tions are likely to change the multi-omics readouts
and hence how exposures change cellular behav-
ior. Exposures can be everything from lifestyle
interventions to drugs given to patients. The
authors focused on drug–omics associations and
found many new such associations. Of relevance
in the precision medicine context, the methodology
can be used to perform “thought experiments” on
how a drug that a patient did not yet receive would
likely change the omics readouts for that patient.
The variational autoencoder uses correlations
learned from other patients who received the drug
to make this estimate. It is often said in healthcare
that one cannot know what would have happened
if drug B were given before drug A, when A was
the initial choice. However, with this kind of data
reconstruction scheme one can make such esti-
mates, even in the context of multi-morbidities
where polypharmacy is a significant problem.

Beyond genomics

Although genetic subtyping is a promising
approach, genetic variation explains only part
of the susceptibility to complex diseases. There-

fore, genetics alone will not be sufficient to
generate precise discriminatory subtypes. Simi-
larly, genomic diagnostic approaches for complex
disease have been most successful for monogenic
disease forms—as in the example for cardiomyopa-
thy above—and the use of PRS for risk prediction
has still not been shown to be useful in the clinic
for most diseases. There is a need to include other
omics and nongenetic factors to further refine the
precision medicine approaches. The genomic com-
ponent of complex diseases captures the heritable
effects, but importantly, the risk accumulation
throughout a lifetime is not captured. The inci-
dence rate of most complex diseases increases
with age, and it is therefore important to consider
other types of clinical and biological information
that can serve as markers for disease risk and
progression, markers that can be used for diag-
nostic purposes, prognosis or for clinical decision
support. Such data could be based on, for exam-
ple, molecular profiling, imaging, or electronic
health records. This provides an opportunity to
identify, for example, molecular signatures that
can be linked to disease development or increased
disease risk. Although many omics technologies—
including proteomics, epigenomics, lipidomics,
and metabolomics—are useful for molecular pro-
filing and for discovery of novel biomarkers, there
are some important limitations that are less pro-
nounced in genomics. It should, for example, be
considered that genetic variation influences an
individual’s baseline levels of many molecules,
and genetic variants can also change the amino
acid sequence of proteins with dramatic effect on
the ability to measure it in some individuals [102–
105]. Combining genomic information with other
molecular measurements is therefore important to
improving the predictive value of molecular pro-
filing. In addition, high-throughput technologies
for genome-wide assessment of genetic variation
have high reproducibility at a reasonable cost. In
complex disease genetics, genetic variations that
are inherited from the parents are investigated,
and therefore a blood sample—or any other tissue
sample—taken at any time point is suited for
the experiment. The technologies for RNA and
DNA methylation analyses are in some aspects
similar to DNA sequencing; however, both RNA
expression and DNA methylation differ between
cells, tissues and change over time. Epigenetic
factors have been suggested to play an important
role in the regulation of gene expression [106] and
in the pathogenesis of complex diseases [107].
The epigenetic pattern is linked to cell-specific

388 © 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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gene expression and transcription factor binding
[108], but it is also associated with many envi-
ronmental factors such as, for example, smoking
[109]. Epigenome-wide association studies (EWAS)
seeking to identify associations between epige-
netic modifications and disease traits [110, 111]
have mainly been performed using large-scale
DNA methylation data. DNA methylation is the
attachment of a methyl group to a CpG (cytosine–
phosphate–guanine) dinucleotide, which can
introduce stable changes in gene expression [112,
113]. High-throughput arrays for interrogating
the DNA methylation at hundreds of thousands
of positions in the genome have been developed,
including the Infinium Human Methylation 450K
and MethylationEPIC BeadChip (Illumina, San
Diego, CA, USA). Numerous studies have, for
example, linked epigenetic changes in blood or
nasal epithelium/bronchial wash samples with
allergic disease [40] and other complex respiratory
diseases like chronic obstructive pulmonary dis-
ease [114]. Epigenetics-based prediction models
using a handful of markers are now appearing in
the literature [115]. This is a very rapidly expand-
ing field with huge potential for both diagnostics
and novel treatment approaches. However, one
major limitation with RNA sequencing and DNA
methylation studies in complex diseases is that
access to the relevant cells and tissues might not
always be feasible—for example, in psychiatric
disorders—and most studies have used blood
samples as proxies for the tissue of interest.

In contrast to DNA methylation and RNA, proteins
are often released or leaked out to the plasma,
and for that reason, plasma proteome profiling
has been suggested to better capture disease pro-
cesses that occur in tissues other than blood. The
development of proteomic technologies has taken
a rapid step forward during the last decade, since
the first proteomic analyses in larger cohorts were
performed [104, 105]. Untargeted proteomic analy-
ses can detect and quantify thousands of proteins
and are a powerful approach for discovering novel
biomarkers. The first step in a biomarker discov-
ery study should ideally be untargeted, similarly to
a GWAS, aiming to identify novel protein biomark-
ers. However, due to high costs and relatively low
throughput, most untargeted biomarker discovery
studies are performed in a very limited number
of samples [116]. Targeted proteomic approaches
have been developed, including immunoassays
based on nucleic acid proximity-based methods
[117] or aptamer-based proteomic assays [118].

These methods provide an improvement in the
dynamic range and sensitivity, as well as the intra-
assay precision, and over 1000 articles have been
published using these assays. However, similarly
to genomics, most biomarker studies focus on the
discovery phase, and very few new biomarkers have
been taken forward into clinical use. This is mainly
because most biomarkers show predictive value
that it too low to enhance a clinical decision. In
addition, the process of developing and validat-
ing biomarker assays for clinical utility is time-
consuming and requires validation in real-life clin-
ical settings through clinical trials.

The omics cascade proceeds from the genome to
the epigenome and transcriptome, followed by
the proteome, and culminates in the metabolome,
which is the end-scale integrative product. Accord-
ingly, the metabolome has been described as being
closest to the patient phenotype and therefore par-
ticularly useful for molecular phenotyping [119].
Metabolomics is defined as the comprehensive
analysis of the small molecule component (con-
ventionally defined as compounds <1500 Da). The
sensitivity with which small molecules respond to
physiological fluxes has led to them being termed
the “canaries of the genome” [119], because dys-
regulation of the metabolome may be detected
earlier than, or even without, alterations observed
at the genome or transcriptome level. Estimates
of the size of the metabolome vary widely from
thousands to hundreds of thousands of small
molecules. However, to place these estimates
within context, in silico libraries of molecular
lipids alone reported >250,000 different species
[120]. In addition, if the metabolome is expanded
to include exogenous compounds (e.g., dietary
components, and xenobiotics), conjugation prod-
ucts (e.g., glucuronides and sulfides), and peptides
as well as isomers (e.g., regio- and stereoisomers),
then the metabolome starts to approach that
of the million-molecule size that has been pro-
posed [121]. Metabolomics provides a real-time
biochemical profile that reflects exogenous (e.g.,
xenobiotics, dietary, occupational, and microbial)
and endogenous (e.g., inflammation, oxidative
stress, infection, and microbiota) factors—the
metabotype. This comprehensive chemical signa-
ture makes the metabolome particularly useful
for investigating the etiology of complex diseases,
which incorporates genetic and environmental fac-
tors and their interactions. However, the complete
analysis of the metabolome remains challenging,
and limits in the technology have been a significant

© 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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bottleneck in performing large-scale metabolomic
epidemiology or metabolome-wide association
analyses [122]. To date, no single method is capa-
ble of accurately capturing the high level of physic-
ochemical diversity and concentration ranges
that span the several orders of magnitude of the
metabolome. Accordingly, multiple assays across
multiple instruments are necessary to acquire a
comprehensive metabolite profile. Mass spectrom-
etry coupled to separation techniques and nuclear
magnetic resonance spectroscopy (NMR) are the
most used analytical techniques for metabolomic
analysis. NMR has multiple benefits, including
rapidity, minimal sample preparation, quantifi-
cation, and reproducibility across laboratories.
However, NMR suffers from low sensitivity, limit-
ing the detection of some metabolites. The high-
throughput and relatively low-cost of NMR-based
metabolomics have led to its use in large-scale
precision medicine studies, most notably its selec-
tion for acquiring a metabolic profile of all 500,000
individuals in the UK Biobank [123]. The applica-
tion of NMR is being actively pursued for in vitro
diagnostic applications for precision medicine by
multiple commercial entities [124]. However, mass
spectrometry is the most common technology for
measuring the metabolome, due to its high speci-
ficity and sensitivity. Mass spectrometry–based
metabolomics data acquisition is generally broadly
divided into targeted and untargeted methods. In
a targeted approach, a selected panel of known or
predefined metabolites is measured and identified
based upon a match to known chemical standards.
This is the most common approach employed by
most commercial metabolomics laboratories.
Untargeted metabolomics approaches involve the
acquisition of thousands to tens-of-thousands
of unidentified metabolite features. While con-
sisting of true discovery-based approaches to
biomarker analysis, the data analysis is complex
and not readily applicable to large-scale studies or
commercial services.

The metabolomics biomarker discovery pipeline is
demonstrated in work by Wigger et al. [125]. Using
general profiling methods, they identified a group
of sphingolipids (three ceramides, two lactosyl-
ceramides, and one dihydroceramide) that corre-
lated with glucose intolerance and altered insulin
secretion in six differential genetic mice strains
fed a high-fat and high-sucrose diet. The find-
ings were validated in two separate prospective
human cohorts, a targeted quantitative method
was developed, and a subset of sphingolipids (three

ceramides and one dihydroceramide) were linked
to a predisposition to develop type 2 diabetes up
to 9 years before disease diagnosis. These findings
were proposed to aid in designing improved clinical
trials to assess disease onset and provide alterna-
tive avenues for treatment. Laaksonen et al. [126]
employed lipidomics profiling methods to identify
a panel of four ceramides (Ceramide [d18:1/16:0],
Ceramide [d18:1/18:0], Ceramide [d18:1/24:1],
and Ceramide [d18:1/24:0]) that predicted cardio-
vascular mortality. These markers have been inde-
pendently validated by other laboratories [127–
129] and are currently offered as a clinical assay
by, for example, the Mayo Clinic. These examples
demonstrate how applications of metabolomics
profiling approaches lead to the development of
targeted biomarker assays for application in the
clinic. There is great promise for metabolomics for
precision medicine applications, but there is an
increased need for method development to enable
large-scale robust methods.

In the complex disease field, integrating differ-
ent types of omics data has shed light into the
functionality of GWAS findings, by statistical
colocalization [123] with quantitative trait loci for
intermediate omics phenotypes, such as tran-
scriptomics, proteomics, or metabolomics. Genetic
data has also been used to identify causal effects
by, for example, proteins [130] and metabolites
[131] through Mendelian randomization analyses.
In addition, multi-omics approaches have been
suggested to be useful for precision medicine.
One such example is the suggested integrative
personalized omics profile (iPOP), which combines
wearable and omics technology for diagnostic
purposes [132]. By measuring the subject’s com-
plete molecular profile (genomic, transcriptomic,
proteomic, metabolomics, and autoantibody), the
authors were able to detect the onset of T2D fol-
lowing two viral infections, prior to being detected
by conventional clinical-based measurements. To
do this, the iPOP of a single subject was created
over a 14-month period combining orthogonal
approaches that resulted in >3 billion measure-
ments taken over 20 time points [132]. This study
illustrates the benefit of longitudinal monitoring
via the identification of a dysregulated phenotype
to provide actionable measures that can be taken
by study participants.

Besides the molecular precision medicine
approaches, data from electronic health records
can provide important information for disease

390 © 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
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prediction and for selecting optimal treatments. In
2014, an important study was published describ-
ing the temporal disease progression patterns
(trajectories) in the whole Danish population,
using data from national electronic health reg-
istries [133]. The Nordic countries provide a unique
opportunity to use electronic health records due to
the personal identity number and the possibility to
link the whole population to, for example, registers
for total population, tax, education, birth, patient,
cancer, prescription, and causes of death [134].
A tool—the Danish Disease Trajectory Browser
(DTB)—has been developed to explore data from
the Danish National Patient Register. The dataset
comprises almost 25 years of data for 7.2 million
Danes and 122 million admissions and allows for
exploring disease trajectories that are associated
with, for example, specific diagnoses [98]. The
prescribed drug registers have been used to con-
struct prescription trajectories that can be used
to provide information on suboptimal or futile
prescriptions but also to suggest initial treatments
[135].

Concluding remarks

In order to make use of all types of health data for
developing novel precision medicine approaches,
there is a need for better frameworks for big data
analytical approaches, and studies need to be
scaled up dramatically. This will enable develop-
ment of mathematical modeling approaches that
can leverage high-dimensional, longitudinal, and
multimodal data. The combination of the high
computing power of modern computer facilities
and the ever-increasing ability to gather and store
extremely large amounts of data have also paved
the way for artificial intelligence (AI) as a major
tool for big data analysis. In addition to prediction
modeling, such models may also increase etio-
logical insights and define the roadmap toward
precision medicine—for example, in psychiatry
[1], where multimodal data integration has been
suggested to provide the fastest route to clinical
practice for genomic precision psychiatry [60].
Prediction models integrating clinical, genetic,
and neuroimaging data, have, for example, been
developed to accurately predict age of onset in neu-
ropsychiatric diseases [136–138]. Still, even when
the prediction tools have obtained clinically rele-
vant accuracy, there are some bottlenecks before
they can be implemented in real-world healthcare.
This includes an initial lack of cost-effectiveness,
inadequate levels of education, and training of

healthcare personnel as well as patients, and
structural barriers of healthcare providers [53].
Still, the recent findings are encouraging, and it
is expected that precision medicine will lead to a
paradigm change in healthcare with transforma-
tive potential for individuals who are at high risk
or are diagnosed with a complex disease. However,
there are several additional challenges, including
the heterogeneity within each complex disease and
the need to incorporate many layers of molecular,
clinical, and imaging data in combination with
advanced mathematical modeling. Establishing
networks, such as the ADA/EASD PMDI for dia-
betes, but also collaborations across disease fields
will be crucial to meeting the rapid advancements
in precision medicine.
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