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BACKGROUND: Erythroferrone (ERFE) has been identified as a hepcidin-regulating hormone synthetized by erythroblasts
correlating to the erythropoietic activity and the needs for iron substrate in bone marrow of adults. The present study aimed to
assess the ERFE serum concentrations and its predictors in infants.
METHODS: ERFE was explored at 4 time points during the first year of life in 45 healthy, breastfed, normal birth weight (NBW)
infants, and 136 marginally low birth weight infants (LBW, 2000–2500 g) receiving iron (N= 58) or placebo (N= 78) between
6 weeks and 6 months of age.
RESULTS: ERFE concentrations were low at birth, increasing gradually during the first year of life. In NBW infants, reference ranges
(5th to 95th percentile) were at 6 weeks <0.005–0.99 ng/mL and at 12 months <0.005–33.7 ng/mL. ERFE was higher in LBW infants
at 6 weeks but lower at 12 months compared to NBW and minimally affected by iron supplementation among LBW infants.
Correlations of ERFE with erythropoietic and iron status markers were weak and inconsistent.
CONCLUSIONS: The role of ERFE in the crosstalk of erythropoiesis and iron homeostasis remains unclear in infants and further
studies on ERFE in infants and older children are warranted within the framework of the erythropoietin–ERFE–hepcidin axis.
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IMPACT:

● Normal range of erythroferrone in healthy infants is described for the first time.
● Erythroferrone in infants lacks correlation to iron status and markers of erythropoiesis.
● The findings indicate differences in infant regulation of iron homeostasis as compared to adults.
● The findings point to a need to study infant erythropoiesis separately from its adult counterpart.
● The findings may have clinical impact on management strategies of iron-loading anemia in infancy.

INTRODUCTION
Iron deficiency (ID) is the most common micronutrient deficiency
and iron deficiency anemia (IDA) is considered one of the most
important burdens of global health. Due to the rapid growth in
relation to the iron stores and intake, infants are at particular risk
of developing ID or IDA and interventions to limit this on a global
basis are warranted.1 Both deficiency and overload can be
clinically relevant for the developing infant and understanding
the regulation of iron metabolism is therefore essential when
optimizing nutritional recommendations and interventions. The
key regulator of iron uptake and cellular release, hepcidin, is
upregulated by iron overload and downregulated by iron
depletion.2 However, several other factors influence hepcidin to
orchestrate iron homeostasis, foremost inflammation and
erythropoiesis.3

The existence of a feed-back mechanism from erythropoiesis to
hepcidin expression had already previously been hypothesized
when erythroferrone (ERFE) was identified in 2014.4 ERFE is a
protein secreted from erythroblasts. It has been shown to
suppress hepcidin, thereby increasing iron uptake, in several
mouse model experiments, and this function has been

corroborated in human studies.5 In adults, erythroblast transcrip-
tion of ERFE is upregulated by erythropoietin (EPO). ERFE
subsequently downregulates hepcidin, thus establishing a reg-
ulatory loop from tissue hypoxia to expanded erythropoiesis and
increased iron uptake mediated via an EPO–ERFE–hepcidin axis.6,7

The normal reference level (median (IQR)) of ERFE for healthy
adults has been determined to be 8 (4–15) ng/mL.8

The mechanisms governing the developing erythropoiesis of
infancy is less well characterized.1 Several circumstances differ from
adults, the most striking of which may be the sheer expansion of the
body mass roughly tripling from birth to 12 months, and
consequently increasing demands on erythropoiesis and iron
uptake. The transition from the low-oxygen intrauterine environ-
ment with primarily extramedullary erythropoiesis also creates the
backdrop for an extremely dynamic process, where the activity of
erythropoiesis may not always be mirrored by dietary needs of iron.
While there may certainly be clinical applications of this knowledge,
the challenge of understanding infant erythropoiesis is still one of
basic science. In particular, very little is known about the role of ERFE
in this interplay and only a few previous infant human studies have
been published.9–13
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The primary aim of this study was to define normal range of ERFE
in a cohort of healthy normal birth weight (NBW) infants and
explore its dynamic during the first year of life. Secondary aims were
to compare ERFE concentrations in NBW to a cohort of infants with
marginally low birth weight (LBW), a well-known risk group of iron
deficiency, and to assess the correlation of ERFE during infancy to
other known determinants of erythropoiesis and iron metabolism.

METHODS
This was an observational study assessing stored serum samples from
infants participating in two previous study cohorts.

The NBW, breastfed infants: LIME cohort
The first set of samples included sera from Swedish normal birth weight
(NBW), breastfed infants, originally included as a reference population in
the LIME study (Swedish acronym), a randomized controlled infant formula
intervention trial.14 Briefly, the breastfed reference infants were not
assigned to any intervention and the original inclusion criteria were birth
weight 2500–4500 g, gestational age at birth ≥37 weeks, absence of
chronic illness and neonatal diagnosis likely to affect any iron status
outcome, no previous blood transfusion or iron supplementation, and
exclusive breastfeeding at the inclusion with the intention to exclusively
breastfeed until 6 months of age. In the present study, the first 45
breastfed infants included between 2014 and 2017 in the LIME study were
analyzed for ERFE as a healthy NBW control group to the LBW at-risk group
with regards to iron deficiency, and as a cohort on which to base reference
values for ERFE serum concentrations. The LIME study was approved by the
Regional Ethical Review Board in Umeå and registered at clinicaltrials.gov
(NCT02103205).

The LBW infants: JOHN cohort
The second set of samples included stored serum from Swedish marginally
LBW infants (2000–2500 g), previously included in a randomized controlled
trial of iron supplements, the JOHN study (Swedish acronym).15 Briefly, 285
LBW infants were included between 2004 and 2007 and randomized to
receive placebo (n= 95), or iron supplementation at doses 1mg (n= 95) or
2mg/kg/day (n= 95) from 6 weeks to 6 months of age. Inclusion criteria
were birth weight 2000–2500 g, no chronic diseases diagnosed at inclusion,
and no previous blood transfusion or iron supplementation. Exclusion criteria
in the present analyses were infants randomized to 1mg/kg/day (n= 95),
hematological disorder diagnosed during the study (n= 1), drop out from
original study before 6 months of age (n= 17), poor compliance to the
intervention (n= 21), infants unblinded from the randomized trial due to
iron deficiency anemia (n= 15). Remaining LBW infants, randomized to
placebo (LBW/no iron, n= 78) and 2mg/kg/day (LBW/iron, n= 58), were
analyzed for ERFE in the present secondary study. The JOHN study was
approved by the Ethical Review Board in Umeå and registered at
clinicaltrials.gov (NCT00558454). As previously published from the JOHN
study, the placebo treated group had a high prevalence of ID at 6 months of
age and thereby represents a high-risk population for iron depletion, while
the iron supplemented LBW infants had an overall low ID prevalence.15

Data collection and laboratory analyses
As a part of the original study design for the LIME study and the JOHN study,
a large set of background and baseline characteristics were collected at
inclusion, using delivery records and parental questionnaires. Data included
sex, birth weight, birth length, and gestational age at birth. Furthermore,
included infants were assessed at the study clinic according to their original
study design. Blood samples were drawn from NBW infants (LIME study) at
6 weeks (inclusion), 4 months, 6 months and 12 months of age and blood
samples from the two LBW groups (JOHN study) were drawn at 6 weeks
(inclusion), 12 weeks, 6 months, and 12 months of age. At each visit,
anthropometric measures were recorded, and blood samples were drawn for
both immediate analyses of blood counts (including hemoglobin [Hb] and
reticulocytes) and stored in multiple tubes as centrifuged serum at −80
degrees Celsius. As previously reported in both original studies, stored serum
was later analyzed for iron status including ferritin, transferrin saturation (TS),
transferrin receptor (TfR), and hepcidin.14,15

For this secondary project, stored serum was analyzed at the pediatric
laboratory of Umeå University hospital for ERFE using enzyme-linked
immunoassay (ELISA) (ERF-001, Intrinsic LifeSciences, La Jolla, CA). Before

analysis, the serum samples were diluted 1:10 in treated human serum
provided with the kit. All samples were analyzed in duplicates and samples
with coefficient of variation above 15% or with levels falling outside the
measuring range were re-assayed in dilution 1:5. This amendment to the
test protocol was discussed and after data sharing confirmed as valid with
the manufacturer. Samples with a level below the lowest standard measure
(<0.005 ng/mL) were set to 0.005 ng/mL in statistical analyses.

Statistical analyses
The original studies were powered based on primary outcomes and the
present sample size was limited by the number of stored samples. All available
samples from the three study groups were analyzed for ERFE and the pre-
study assumption was that a clinically relevant effect size would be possible to
detect. ERFE showed a skewed distribution, and all statistical analyses were
performed using non-parametric tests. Descriptive data including median and
percentiles 5, 25, 75, and 95 were used to assess the reference NBWpopulation
and normal range was defined as 5th to 95th percentile. Secondly, using
Mann–Whitney U-test, ERFE was compared between NBW infants and the LBW
infants (both subgroups combined) at 6 weeks, 6 months, and 12 months and
between the two LBW groups at all four time points. Third, associations
between ERFE and iron status and erythropoietic markers were assessed using
Spearman rank correlation analyses. In addition, and due to a significant
number of samples with non-detectable ERFE, the variables were also
dichotomized according to detectable or non-detectable levels and further
explored for predictors using logistic regression. In the regression models, lack
of interaction was assumed, and calculations were performed for the pooled
total study sample for samples collected at the same time point (6 weeks,
6 months, and 12 months).

RESULTS
ERFE was successfully measured in 151–163 infants at each of the
4 time points (Figs. 1 and 2). Background characteristics for
included cases as well as results on iron results and hematological
parameters previously analyzed are presented in Table 1. Of the
analyzed samples, 54 (35%), 34 (21%), 21 (13%), and 7 (5%),
respectively, at each time point were set to 0.005 ng/mL due to a
result below detection limit. As illustrated in Fig. 2, the samples
clustered into two groups, undetected samples (<0.005 ng/mL)
and those with measurable values. There were no significant
differences in any of the background variables between infants
with detectable compared to undetectable ERFE at inclusion.
Descriptive data of ERFE in NBW infants at 4 time points over the

first year of life is presented in Table 2. Reference ranges (5th to 95th
percentile) changed from <0.005–0.99 ng/mL at 6 weeks to
<0.005–33.7 ng/mL at 12 months. In each group, respectively, ERFE
showed an increasing trend during the first year of life (Fig. 2) and
ERFE was significantly higher at 12 months compared to 6 weeks of
age in all 3 groups (p < 0.001). Compared to NBW infants, LBW
infants had significantly higher ERFE at 6 weeks (Median [5th; 95th
percentile] was 0.28 [<0.005; 1.9] vs. 0.058 [<0.005; 1.12], p= 0.004)
and significantly lower levels at 12 months of age (1.9 [0.17; 43] vs.
7.39 [<0.005; 34], p= 0.013). Between the two LBW groups,
significantly higher ERFE was observed in the placebo group at
6 months of age (1.7 [<0.005; 133]) compared to iron supplemented
infants (0.86 [<0.005; 27], p= 0.036), but no differences were
observed at 6 weeks, 12 weeks, or 12 months.
Univariate non-parametric linear regression analysis assessing

the associations to markers of erythropoiesis and iron status is
presented in Table 3. The results showed that some markers of
erythropoiesis and iron metabolism correlated significantly to
ERFE albeit in an inconsistent manner. However, correlations were
weak as illustrated by correlation coefficients in Table 3 and
graphically for Hb and hepcidin in Fig. 3. Corresponding logistic
regression for univariate prediction of the dichotomized variable
detectable/non-detectable ERFE is presented in Supplementary
Table 1. Anthropometric data were analyzed similarly but stratified
for NBW/LBW due to differing growth reference populations
between the cohorts. No anthropometric predictors of ERFE were
detected (data not shown).
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DISCUSSION
This is to our knowledge the first study exploring ERFE long-
itudinally throughout the whole of infancy. Despite high erythro-
poietic activity, ERFE concentrations were generally very low during
early infancy, approaching adult levels only at 12 months of age. We
observed a minimal difference between infants exposed to iron
supplementation as compared to placebo at 6 months of age, but
the effect size was small and the direction was unexpected (higher
in un-supplemented infants). Furthermore, there was a lack of
strong associations to traditional indicators of iron status and
erythropoiesis, including EPO and hepcidin.

Little is known about the physiological mechanisms behind iron
homeostasis in infants and the discovery of ERFE as an important
player in the homeostasis of adult erythropoiesis, may contribute
important keys for understanding the corresponding infant
physiology.16,17 The present study suggested a normal range of
less than 1 ng/mL in newborns, slowly increasing during the first
year of life. This is in line with previous data on cord blood ERFE.11

We found no previous studies on healthy subjects in later infancy
to compare these results with, and rather few studies in children
and adults. In the original publication on the human ERFE assay by
Ganz et al., the levels of 58 healthy adult blood donors had a
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Fig. 1 Trial profile. The study included 45 normal birth weight (NBW) breastfed infants originally participating as a reference group in the
randomized trial LIME14 and 136 low birth weight (LBW) infants originally randomized to receive iron (2mg/kg/day, n= 58) or placebo (n= 78)
in the randomized controlled trial JOHN.15
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Fig. 2 Violin plots for measures (ng/mL) of erythroferrone (ERFE) at four time points during the first year of life. Three groups are
compared; breastfed normal birth weight controls (NBW) and low birth weight (LBW) infants supplemented with placebo or 2 mg/kg/day of
iron between 6 weeks and 6 months of age. Horizontal line represents median.
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median (IQR) of 8 ng/mL (4–15 ng/mL).8 This is clearly in the
vicinity of our finding of median (IQR) 7.4 ng/mL (1.3–17.2 ng/mL)
in infants aged 12 months. Whether this convergence points to a
stabilization of levels beyond the first year of life is an interesting
avenue for future studies. Reference levels are also likely to be
specific to different kits as indicated by the concentrations
presented by El Gendy et al., which were more than 100-fold
lower in children 1.5–15 years old than those of 1 year olds in our
study.9 This clearly complicates the pooling of data from different
studies and underscores the need for an international standard.
While there is a clear time-dependent dynamic to ERFE levels in

the present study, the correlation to erythropoietic or iron-
homeostatic parameters was weak and inconsistent, both when
analyzed as continuous variables and the dichotomized variable
non-detectable vs. detectable. Specifically, no clear or consistent
correlation was observed either to hepcidin, the target of ERFE in
the iron-homeostatic context, or to reticulocyte levels, which may
serve as a surrogate variable for erythropoietic activity, the source
of ERFE. A lack of correlation between ERFE and hepcidin in
severely ill preterm newborns has been previously shown,10,12 and
our findings may indicate that this is not a pathological
circumstance but rather a reflection of normal infant physiology.
There are several possible reasons for this lack of correlation. ERFE
may serve other physiological functions in infants, confounding

correlations. For instance, an identical gene product circulating in
the blood has been described in adult muscle physiology (the
anabolic hormone myonectin)18 and the possibility of the ERFE
dynamic shown in the present study being at least partially
reflective of some other developmental process must be
considered. It may also support the viewpoint suggested by some
that infant hematopoiesis is not yet regulated in the same manner
as in adults or older children.17 In contrast, it has been shown
previously in unwell neonates that ERFE does respond to
exogenous EPO analog administration.13 This would suggest there
is some integrity of the EPO-ERFE part of the EPO-ERFE-hepcidin
axis, although the effect size seems very modest compared to
what has been shown in adults.8 Furthermore, the data presented
here does not indicate any trend over time towards a closer
correlation between ERFE and iron-regulation predictors in older
infants. El Gendy et al. did show such correlations in 66 children,
36 IDA patients and 30 healthy controls, of mean age 8.59 and
9.13 years, respectively.9 Further studies delineating ERFE devel-
opment beyond the first year of life are warranted to give more
insight as to when and how this occurs.
An unexpected observation was the twin-peaked distribution of

ERFE values observed at all time points. Although decreasing with
advancing age, a significant number of samples turned out below
the detection limit. As to reasons for this we can only speculate.

Table 2. Descriptive data of ERFE (ng/mL) during infancy in 45 normal birth weight infants.

Age 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

6 weeks <0.005a <0.005 0.06 0.33 0.99

4 months <0.005 <0.005 0.03 0.15 3.33

6 months <0.005 0.25 0.45 1.08 31.05

12 months <0.005 1.27 7.39 17.22 33.67
aOf the analyzed samples, 54 (35%), 34 (21%), 21 (13%), and 7 (5%), respectively, at each time point were below detection limit (<0.005 ng/mL).

Table 1. Baseline characteristics and iron status in the included infants.

NBW (n= 45) LBW/placebo (n= 75) LBW/iron (n= 58)

Girl, n (%) 25 (56%) 41 (55%) 25 (43%)

Preterm, n (%) 0 (0%) 38 (51%) 36 (62%)

Small for gestational age, n (%) 0 (0%) 32 (43%) 23 (40%)

Birth weight (kg) 3.57 (3.46–3.68) 2.29 (2.26–2.32) 2.30 (2.27–2.34)

Birth length (cm) 50.3 (49.8–50.9) 45.1 (44.8–45.5) 45.4 (45.0–45.7)

Gestational age (weeks) 40.0 (39.7–40.4) 36.6 (36.2–37.0) 36.2 (35.7–36.7)

Hemoglobin at 6 weeks (g/L) 117.9 (13.0) 108.2 (11.1) 107.1 (11.6)

Hemoglobin at 12 weeks/4 monthsa (g/L) 113.4 (8.9) 107.2 (7.3) 107.8 (7.1)

Hemoglobin at 6 months (g/L) 114.7 (7.1) 114.0 (7.3) 122.3 (9.8)

Hemoglobin at 12 months (g/L) 114.9 (7.1) 117.6 (10.6) 117.6 (8.2)

Hepcidin at 6 weeks (ng/mL) 84.6 (31.9) 14.1 (5.1) 14.7 (20.9)

Hepcidin at 12 weeks/4 monthsa (ng/mL) 42.7 (27.4) 22.1 (48.0) 23.7 (14.6)

Hepcidin at 6 months (ng/mL) 32.7 (27.1) 20.0 (19.6) 25.4 (17.8)

Hepcidin at 12 months (ng/mL) N/A 16.5 (8.7) 13.2 (7.8)

Reticulocytes at 6 weeks (×109/L) 47.6 (18.2) 62.4 (23.8) 64.4 (22.0)

Reticulocytes at 12 weeks/4 monthsa (×109/L) 46.4 (14.9) 68.8 (20.6) 77.0 (19.8)

Reticulocytes at 6 months (×109/L) 42.8 (15.8) 57.2 (18.6) 56.1 (18.4)

Reticulocytes at 12 months (×109/L) 44.4 (15.8) 57.0 (22.5) 41.3 (12.1)

Iron deficiency at 6 months, n (%) 5 (11.1%) 23 (31.5%) 1 (1.8%)

Values are n (%), mean (95% CI), or mean (SD).
NBW normal-birth-weight infants, LBW/placebo low-birth-weight infants (2000–2500 g) supplemented with placebo from 6 weeks to 6 months, LBW/iron low-
birth-weight infants (2000–2500 g) supplemented with iron 2mg/kg/day from 6 weeks to 6 months.
aNBW infants were assessed at 4 months of age and the LBW infants at 12 weeks of age.
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Most likely this relates to technical uncertainty in the assay at very
low levels, overstating the discreteness of the peaks. Alternatively,
we cannot rule out a true biologically active process turning the
ERFE transcription on and off; a “switch”, hypothetically by, e.g.,
epigenetic events, but we judge this less probable. As for ERFE in
general, no clear predictors for or typical profile of these two
clusters were seen in background characteristics or in laboratory
data using logistic regressions. It would, however, stand to reason
that undetectable samples were less frequent at 12 months as
median ERFE levels in general were increasing at that time point.
Comparing our reference population of NBW infants and the

LBW groups, ERFE levels were in a similar range and showed a
similar pattern of development. Although not explained by any
iron or erythropoiesis marker, there was a statistically significant
difference in ERFE concentrations between the NBW group and

the LBW groups at 6 weeks. This may suggest an earlier onset of
increased transcription of ERFE in LBW babies. Bahr et al. showed a
similar significant difference in cord blood ERFE between healthy
NBW term and LBW preterm (28–32 weeks) newborns,13 and it is
notable that both our LBW groups had higher rates of preterm
babies (36–37 weeks) compared to the NBW group, suggesting
that the predictor to some extent may be gestational age as well
as birth weight. Finally, the ERFE concentrations did not seem to
be influenced much by the access to supplemented iron in the
LBW cohort even though we previously observed significant
differences in several iron status and erythropoietic markers
between the same two groups.19 With a high prevalence of ID at
6 months, the LBW/placebo group represents a suitable model of
iron-deficient infants compared to the iron supplemented peers.
Since ERFE was minimally higher in the placebo group at 6 months
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Fig. 3 Scatter plots illustrating the correlation at 3 different time points during infancy of ERFE (ng/mL). a–c Hepcidin (ng/mL) and d–f Hb
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Table 3. Univariate correlation between ERFE and indicators of erythropoiesis and iron status at three different time points using Spearman rank
correlation coefficient.

6 weeks 6 months 12 months

R p N R p N R p N

Hepcidin −0.223a 0.005 156 −0.069 0.387 159 0.157 0.110 104

Hemoglobin −0.192b 0.017 156 −0.129 0.101 163 −0.048 0.557 150

Ferritin −0.135 0.098 152 −0.086 0.274 162 −0.019 0.818 151

MCV 0.049 0.541 156 −0.084 0.289 163 −0.105 0.202 150

Transferrin saturation 0.088 0.275 156 0.050 0.530 162 0.120 0.152 145

Transferrin receptor 0.137 0.090 155 0.204a 0.009 163 −0.036 0.716 104

Transferrin −0.077 0.337 156 0.160b 0.041 163 0.001 0.988 145

Reticulocytes −0.036 0.668 147 0.116 0.151 154 −0.181 0.156 62

EPO 0.031 0.746 111 0.069 0.460 118 N/A

Bold values represents significant associations.
aSignificant association (p < 0.01).
bSignificant association (p < 0.05).
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when erythropoietic activity was lower, it further supports our
observation of a weak or absent association between ERFE and
erythropoietic activity at this age. Indeed, since infants after the
age of about 2 months of age have a very high erythropoietic
activity, they might have been expected to have higher ERFE
levels than healthy adults, but we found the opposite. The high
number of undetectably low values, in our opinion, underscores
the low expression of ERFE compared to adults.
From a clinical viewpoint, there is an interest in ERFE as a target for

pharmaceutical manipulation to prevent organ damage from uptake
of excess iron, e.g., in iron-loading anemias, and some progress has
been made in this effort.20 The results of this study, however,
demonstrate that before such a therapeutical approach is considered
in early childhood, further elucidation of infant erythropoiesis in
general, and particularly the role of ERFE, is necessary.

CONCLUSION
Despite high erythropoietic activity, circulating ERFE is low in early
infancy reaching levels similar to adult levels at 1 year of age.
Throughout infancy, there is a lack of correlation between ERFE
and markers of erythropoiesis and iron homeostasis, suggesting
limitations in extrapolating the adult EPO–ERFE–hepcidin axis as a
mechanistic model or theoretical framework. Other mechanisms
governing the interplay between erythropoiesis and iron uptake
are likely to be present in infants and further basic research to
better understand these mechanisms is needed to inform
therapeutic strategies in infant hematology.
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