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ABSTRACT
The combined effect of two real-world-occurring phenomena: ‘mea-
surement errors’ and ‘autocorrelation between observations’ has
rarely been investigated. In this paper, it will be investigated for
the first time on ‘adaptive’ and/or ’simultaneous monitoring’ charts
and also for the first time by using the multivariate linearly covari-
ate measurement errors and VARMA (vector mixed autoregressive
and moving average) autocorrelation models, and Markov chains-
based performancemeasures. In addition, this paper for the first time
proposes a skip-sampling strategy in an ARMA/VARMA model for
alleviating the autocorrelation effect. To do so, we add the above-
mentioned measurement errors and autocorrelation models to a
recently developed adaptive max-type chart. Then, we develop a
Markov chain model to compute the performance measures. After
that, extensive numerical analyses will be performed to investigate
their combined effect as well as somemethods to alleviate their neg-
ative effects. Finally, an illustrative example involving a real industrial
case will be presented.
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1. Introduction

Control charts, the main tool of SPC (statistical process control), can be used to reduce
process variability as well as to ensure the delivery of good quality products/services. If the
product/service consists of more than one quality characteristic (p > 1), the multivari-
ate control charts should be employed for process monitoring. Classical control charts are
slow in detecting assignable causes that lead to small or moderate shifts. A common way
of addressing this issue is to use adaptive control charts. By doing so, the charts’ param-
eters are allowed to vary during online process monitoring. The best adaptive approach
is by allowing all the chart’s parameters (i.e. sample size, sampling interval, and control
limits) to vary, namely the variable parameters (VP) scheme [1]. Faraz et al. [2], Seif et al.
[3], and Sabahno et al. [1,4,5] are among the researchers who considered the VP adaptive
feature on the multivariate control charts. For other types of adaptive features contributed
to multivariate control charts, one can refer to Lee and Khoo [6] and Sabahno et al. [1,7,8].
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Moreover, monitoring the process parameters simultaneously is known to reduce the
false alarm rate and improve the performance of the control chart. Simultaneous monitor-
ing of the mean and variability parameters by control charts can be considered in single-
or double-chart schemes. Single-chart ones are easier to administer. Yeh et al. [9] and
Reynolds and Gyo-Young [10] are among those who studied multivariate double-chart
schemes. Khoo [11], Zhang et al. [12], and Wang et al. [13] have contributed to multi-
variate single-chart schemes. Reynolds and Kim [14] and Reynolds and Cho [15] added
adaptive features to multivariate double-chart schemes and Sabahno et al. [1,4,5], Sabahno
and Khoo [16], Sabahno and Amiri [17], to multivariate single-chart schemes. For more
information regarding different simultaneous monitoring schemes, we refer interested
researchers to Jalilibal et al. [18].

In the real world, regardless of how advanced the measurement system is, the process is
faced with measurement errors on some level. It has been shown that measurement errors
deteriorate the chart’s performance. Evaluating the effect of measurement errors on dif-
ferent control charts is of growing interest to researchers. Among different measurement
errors models, the linear covariate model introduced by Linna and Woodall [19], which
is an extension of the simple linear additive model, is the most common one. Linna et al.
[20], Chattinnawat and Bilen [21], and Zaidi et al. [22] considered measurement errors
in Hotelling’s T2 control charts for monitoring the mean vector, and Huwang and Hung
[23] have done the same to monitor the variance-covariance matrix. Sabahno et al. [7,8]
considered the measurement errors’ effect on two different adaptive Hotelling’s T2 control
charts. Sabahno et al. [4], Khati Dizabadi et al. [24], andGhashghaei et al. [25] are examples
of researchers who considered the measurement errors’ effect in simultaneous monitoring
using control charts. For more information regarding the effect of measurement errors on
different control charts, we refer interested researchers to Maleki et al. [26].

In real applications, a commonly occurring phenomenon is autocorrelation among con-
secutive observations, which mainly occurs due to fast consecutive measurements. One
of the most common autocorrelation models is the mixed autoregressive and moving
average (ARMA) model, which is a general form of the simpler autocorrelation models:
autoregressive (AR) and moving average (MA).

Several studies have shown that autocorrelation in the process can deteriorate the chart’s
performance. Interesting papers regarding the investigation of autocorrelation effect on
the multivariate control charts have been published by Kalgonda and Kulkarnin [27], Jar-
rett and Pan [28], Vanhatalo and Kulahci [29], Leoni et al. [30], Dargopatil and Ghute [31],
Sabahno et al. [5], and Rahimi et al. [32,33].

Costa and Castagliola [34] introduced the skip-sampling method to alleviate the auto-
correlation effect in a univariate X̄ control chart with a AR model of order (1), AR (1).
Franco et al. [35] proposed another sampling strategy for a X̄ control chart with a AR (1)
autocorrelation model, by mixing the current and previous samples (instead of skipping
observations during the current sampling) and showed that their strategy performs only on
some limited situations better than the skip-sampling strategy. Franco et al. [36] considered
the economic-statistical design of the X̄ control charts. They used the AR (1) autocorre-
lation model and implemented the skip-sampling strategy. Ma et al. [37] introduced the
sequential skipping strategy for individual observations and used a model-free approach
in three different control charts (X̄, Hotelling’sT2 and PCA-based control charts). All these
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researchers have proposed alleviating strategies based on positive autocorrelations, which
is actually a more common case in industrial practice.

Amore realistic phenomenon in any process is that it contains bothmeasurement errors
and autocorrelation together. However, only four papers that investigated their combined
effect on the univariate control charts could be found, and only one on the multivariate
control charts. Yang and Yang [38] were the first to investigate the combined effect of mea-
surement errors and autocorrelation on a univariate Shewhart control chart. They used an
ARMA (1) autocorrelation model and a simple additive measurement errors model. Xiao-
hong and Zhaojun [39] investigated such an effect on a univariate CUSUM control chart,
this time with a AR (1) autocorrelation model. Costa and Castagliola [34] investigated this
combined effect on a X̄ control chart. They considered the AR (1) and simple additive
measurement errors models. They used skip-sampling to alleviate the AR (1) autocorre-
lation effect and multiple measurements to alleviate the measurement errors effect. They
used the simulation method to compute the performance measures. Shongwe et al. [40]
investigated this combined effect on the synthetic and runs-rules univariate schemes and
used the AR (1) autocorrelation and linearly covariate measurement errors models, and,
for the first time used Markov chains to compute the average run length in such schemes.
Beydaghi et al. [41] did exactly the same as Costa and Castagliola [34], but this time for a
multivariate T2 Hotelling control chart.

Based on the above paragraph, it is clear that there is a huge research gap in this area.
In the case of univariate control charts, this combined effect has not been investigated
on adaptive and/or simultaneous monitoring schemes. In addition, no strategy has been
proposed to alleviate the autocorrelation effect, when the ARMA models are used. In the
case of multivariate control charts, in which only one research could be found, other than
the same gaps as in the univariate charts, the combined effect has not been investigated
when the VARMA autocorrelation and/or linearly covariate measurement errors models
are used.

In this paper, we will fill all the above-mentioned research gaps by considering the combined
effect of measurement errors and autocorrelation on a multivariate control chart with (i) a
linearly covariate measurement errors model (instead of so far used simple linear model) (ii)
a VARMA autocorrelation model (instead of so far used VAR model); with a skip-sampling
strategy for ARMA/VARMA models, (iii) VP adaptive feature (instead of so far used fixed-
parameter charts), (iv) simultaneous parameters monitoring (instead of so far used single
process parameter (mean)monitoring), and, (v)Markov chains-based performancemeasures
(instead of so far used simulation method). To do so, we add the linearly covariate measure-
ment errors and VARMA (1,1) autocorrelation models to the recently developed adaptive
control chart of Sabahno et al. [1] for simultaneously monitoring of the multivariate normal
process parameters.

This paper is structured as follows: In Section 2, the linearly covariate measurement
errors model with multiple measurements is introduced. In Section 3, the vector ARMA
(VARMA) autocorrelation model is developed with a skip-sampling strategy. In Section
4, a max-type multivariate control chart with autocorrelation and measurement errors
is proposed. Next, the adaptive features of the proposed control chart and their design
procedure are discussed. In Section 5, Markov chains-based performance measures are
developed. In Section 6, extensive simulation studies andnumerical analyses are performed
to investigate the combined effects of measurement errors and autocorrelation in different
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scenarios. In Section 7, based on a real case, an example is illustrated to show how the pro-
posed control chart can be implemented in real practice. Finally, concluding remarks and
some suggestions for future research are discussed in Section 8.

2. Linearly covariate measurement errors model

There is usually a difference between the observed and true values in any process,
depending on the measurement system and tools. Similar to Sabahno et al. [7,8], let us
assume that Yij is a vector of p quality characteristics. Samples j = 1,2,3,..., n are taken
every i = 1, 2, 3, . . . time. We assumed thatYij follows a multivariate normal distribution
MN(μ0,�0), where μ0 is the known in-control mean vector and �0 is the known in-
control variance-covariance matrix of the quality characteristics. It is also assumed that
Yij is not directly observable and can only be assessed through k = 1, . . . ,mmeasurements
vectorsXijk which is related toYij using the following linearly covariatemeasurement errors
model:

Xijk= A + BYij+εijk, (1)

where A is a p × 1 vector of constant values, B is a p × p diagonal matrix of constant val-
ues and εijk is a p × 1 vector of random measurement errors which is independent of Yij
and is also assumed to follow a multivariate normal MN(0,�ε) distribution, where �ε is
the known variance-covariance matrix of measurement errors. Thereafter, Xijk follows a
multivariate normal MN(A + Bμ0,B�0BT + �ε) distribution.

The sample mean vector X̄i for each sample (i = 1,2,3, . . . ) is computed as:

X̄i = 1
mn

n∑
j=1

m∑
k=1

Xijk. (2)

By substituting Equation (1) in Equation (2), we have:

X̄i = A + BȲi + 1
mn

n∑
j=1

m∑
k=1

εijk. (3)

SinceYij andXijk are independentmultivariate normal random variables, X̄i also follows
a multivariate normal MN (A + Bμ0 ,B�Ȳ0

BT + (1/mn)�ε) distribution.

3. Varma autocorrelationmodel

In a sampling system in which the observations within a sample are collected very
close in time, autocorrelation and cross-correlation among consecutive observations
should be considered. Tomodel autocorrelation, we assume thatYt = (Y1,t ,Y2,t , . . . ,Yp,t)

′:
t = 0,± 1,± 2,± 3, . . . , which as discussed in the previous section, follows a multivariate
normal MN(μ0,�0) distribution.

One of the most common autocorrelation models is the VARMA model, which is
obtained by combining the VAR and VMAmodels. For the VARMAmodel of order (1,1),
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we have:

Yt − μ0 = �(Yt−1 − μ0) + et − �et−1, (4)

where et , which follows a multivariate normal MN(0,�e), is a p-variate normal random
noise vector, � is a p × p matrix of autoregressive coefficients (VAR component), and �

is a p × p matrix of moving-average coefficients (VMA component). Note that if � =
0 (� = 0), the VARMA model changes into a VMA (VAR) autocorrelation model, and if
�&� = 0 it means that the observations are uncorrelated. Also, note that as opposed to
the measurement errors case, in the case of autocorrelation the observed and true values
of the quality characteristics are the same.

Two important properties of a VARMA autocorrelation model are stationarity and
invertibility. To have the stationarity and invertibility conditions satisfied, the eigenvalues
of the � and � matrices should be less than one in absolute value, respectively.

Sabahno et al. [5] showed that the covariancematrix�0 for the investigatedmultivariate
process can be obtained as:

Vec�0 = (Ip2 − � ⊗ �)−1VecA, (5)

where A = ��e0(�
′ − �′) − ��e0�

′ + �e0 , �e0 is the in-control value of �e, ⊗ is the
Kronecker product operator, Vec is the operator that transforms a matrix into a vector
by stacking its columns, and Ip2 is a p2 × p2 identity matrix. Note that, if there is no
autocorrelation, i.e. � = 0 and � = 0, then �0 = �e0 .

Again from Sabahno et al. [5], we have the variance-covariance matrix of the sample
mean, �Ȳ, equal to:

�Y = 1
n
[�(0) + �(1)[(�′2 − �′n)[�′(I − �′)]−1 + I] + [�(I − �)−1 + I]�(1)′]

− 1
n2

[
�(1)[(I − �′n)(I − �′)−2 − n�′n − 1(I − �′)−1 − 2I]

+[(I − �n)(I − �)−2 − 2I]�(1)′
]
, (6)

where �(0) = �0 and �(1) = �(0)�′ − �e�
′. We also have: �(−l) = �(l)′ and �(0) =

E[(Yt − μ0)(Yt − μ0)
′].

Consequently, the sample mean Ȳi follows a multivariate normal MN(μ0, �Ȳ0
) distri-

bution. Note that, in the case of in-control process variability, we use �e0 and in the case
of out-of-control process variability, we use �e1 .

We now reconstruct the VARMA (1,1) autocorrelation model to be able to use the skip-
sampling strategy. In a skip-sampling strategy, we skip s = 0,1,2,3, . . . observations while
collecting a subgroup of n samples.
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For s = 1,2,3, assuming Ỹt = Yt − μ0, Equation (4) changes into:

for s = 1 :Ỹt = �Ỹt−1 + et − �et−1 = �(�Ỹt−2 + et−1 − �et−2) + et − �et−1

= �2Ỹt−2 + et + (� − �)et−1 − ��et−2,

for s = 2 :Ỹt = �2(�Ỹt−3 + et−2 − �et−3) + et + (� − �)et−1 − ��et−2

= �3Ỹt−3 + �2et−2 + et + (� − �)et−1 + �(� − �)et−2 − �2�et−3,

for s = 3 :Ỹt=�3(�Ỹt−4 + et−3 − �et−4) + et

+ (� − �)et−1 + �(� − �)et−2 − �2�et−3

= �4Ỹt−4 + et + (� − �)et−1 + �(� − �)et−2 + �2(� − �)et−3 − �3�et−4.

From the above relations, the general form of the VARMAmodel with skip-sampling strat-

egy can be obtained as Ỹt = �s+1Ỹt−s−1 + et +
s∑

ss=1
�ss−1(� − �)et−ss − �s�et−s−1.

The above equation can be rewritten as:

Ỹt = �s+1Ỹt−s−1 + e′t − �s�et−s−1, (7)

where e′t = et + ∑s
ss=1 �ss−1(� − �)et−ss. The random noise e′t is a linear combination

of random noises.
Hence, when skipping s observations, Ỹ1, Ỹs+2, Ỹ2s+3, Ỹ3s+4, . . . , Ỹ(n−1)s+n fit a

VARMA(1,1) model with the VAR component equal to �s+1 and the VMA component
equal to �s�. Note that, e′t should be a positive linear combination of random noises (i.e.
� − � > 0) for the observations to fit the above-mentioned VARMAmodel. In addition,
if s = 0 (no skipping), the VAR and VMA components reduce to regular VARMA(1,1)
parameters, i.e. � and �.

4. An adaptive max-type control chart with autocorrelation and
measurement errors

Wemodify the control scheme proposed by Sabahno et al. [1] to include bothmeasurement
errors and autocorrelation between observations.

When the process parameters are in-control and known, the following Hotelling’s T2

statistic can be used to monitor the mean vector for each sample i:

Ti
2 = n(X̄i-μ0)

T(�0)
−1(X̄i-μ0), (8)

where Ti
2 ∼ χ2(p), i.e. a chi-square distribution with p degrees of freedom.

By incorporating measurement errors (discussed in Section 2) and autocorrelation
(discussed in Section 3), the Hotelling’s T2 statistic becomes:

Ti
2 = (X̄i−A − Bμ0)

T
(
B�Ȳ0

BT + 1
mn

�ε

)−1
(X̄i−A − Bμ0). (9)

Note that �Ȳ0
in (9) is obtained using (6).
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To monitor the process variability for each sample i, we can use the following statistic:

Wi = (n − 1)|Si|1/p
|�0|1/p

. (10)

Wi (‘exactly’: when p ≤ 2, and ‘approximately’: when p > 2) follows a gamma �(a, b) dis-
tribution with parameters a = p(n − p)/2 and b = 2/p(1 − (p − 1)(p − 2)/2n)−1/p. By
incorporating both measurement errors and autocorrelation, theWi statistic becomes:

Wi = (n − 1)|Si|1/p∣∣B�0BT + 1
m�ε

∣∣1/p , (11)

where �0 in (11) is obtained using (5).
To develop the max-type scheme, we first need to transform Ti

2 and Wi statistics, as
follows:

Mi = �−1[Hp(T2
i )], (12)

and

Vi = �−1[G(a,b)(Wi)], (13)

where�(.) is the standard normal cumulative distribution function,Hp(.) denotes the chi-
square cumulative distribution function with p degrees of freedom, and Ga,b(.) represents
the gamma cumulative distribution function with parameters a and b.

Therefore, when the process is in-control, Mi and Vi both independently follow a
standard normal N(0, 1) distribution.

Then, the following max-type statistic is used to represent bothMi and Vi statistics as a
single statistic:

Ci = max{|Mi|, |Vi|} . (14)

This max-type statistic has a positive value. Thus, only an upper control limitUCL that can
be obtained by the following equation is needed:

P(Ci ≤ UCL) = 1 − α,

whereα is theType-I error probability. Therefore, after simplemathematical computations,
we have:

UCL = �−1
[√

1 − α + 1
2

]
. (15)

VP (variable parameters) adaptive scheme has been proven to be the most efficient in con-
trol charts. In such adaptive schemes, all the design (chart) parameters are allowed to vary
during the online sampling. In this paper, as in most adaptive control charts so far devel-
oped, two transient states ts for each design parameter are considered (ts ∈ [1, 2]), i.e. n1
and n2 (n1 < n2) for sample sizes, t1 and t2 (t2 < t1) for sampling intervals, and,α1 andα2
(α1 < α2) for Type-I error probabilities. Consequently, we have two upper control limits:
UCL1 and UCL2 (UCL2 < UCL1). We should also have two upper warning limits UWL1
andUWL2 (UWL1 < UCL1 andUWL2 < UCL2). Then, the strategy for choosing the next
sample’s design parameters in a VP scheme is as follows:
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• When Ci is in the safe zone (i.e.Ci ∈ [0,UWL]), the design parameters for the next
sample are n1, t1,UCL1,UWL1.

• When Ci is in the warning zone (i.e.Ci ∈ (UWL,UCL]), the design parameters for the
next sample are n2, t2,UCL2,UWL2.

• When Ci is out of the safe zone (i.e.Ci ∈ (UCL,∞)), the process is out-of-control and
corrective actions are needed.

The following three constraints should always be satisfied in a VP control chart (each
related to one design parameter):

ASS = n1P0 + n2(1 − P0), (16)

ASI = t1P0 + t2(1 − P0), (17)

ATE = α1P0 + α2(1 − P0), (18)

where ASS is the average sample size, ASI is the average sampling interval, ATE is the aver-
age Type-I error probability and P0 is the probability of being in the safe state while the
process is in-control, i.e.:

P0 = P(Ci ≤ UWL)
P(Ci ≤ UCL)

= P(max{|Mi|, |Vi|} ≤ UWL)
P(max{|Mi|, |Vi|} ≤ UCL)

= [2�(UWL) − 1]2

[2�(UCL) − 1]2
. (19)

By solving Equations (16)–(18) together, we can obtain α2 and t1 as:

α2 = ATE(n1 − n2) − α1(ASS − n2)
n1 − ASS

, (20)

t1 = ASI(n1 − n2) − t2(n1 − ASS)
ASS − n2

. (21)

To obtain UWLs, we can simply solve Equation (19), as:

UWLts = �−1
(

(2�(UCLts) − 1)
√
P0 + 1

2

)
, (22)

where P0 = ASS − n2/n1 − n2 is obtained by solving Equation (16).

5. Performancemeasures

In this paper, time-to-signal performance measures, i.e. average time to signal (ATS) and
standard deviation of time to signal (SDTS), are used to evaluate the control chart’s perfor-
mance under different conditions. In addition, the process is assumed to be out-of-control
from the beginning of the online monitoring, therefore initial (zero)-state performance
measures are going to be developed in this section. To do so, we develop a Markov
chain model to derive the initial-state performance measures. TheMarkov chain approach
requires the definition of the following three states for the proposed control scheme: (i)
the safe zone transient state: Ci ∈ [0,UWL], (ii) the warning zone transient state: Ci ∈
(UWL,UCL], and (iii) the out-of-control absorbing state: Ci ∈ (UCL,∞).
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Then, the Markov transition probability matrix is equal to:

P =
⎡
⎣p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤
⎦.

The transient probabilities p11, p12, p21 and p22 for the proposed VPmultivariate max-type
control chart, with index ts representing the transient state (ts ∈ [1, 2]), are equal to:

pts1 = P(Ci ≤ UWL) = P(max{|Mi|, |Vi|} ≤ UWL)

= P(−UWL ≤ Mi ≤ UWL)P(−UWL ≤ Vi ≤ UWL), (23)

pts2 = P(UWL < Ci ≤ UCL) = P(UWL < max{|Mi|, |Vi|} ≤ UCL)

= P(−UCL ≤ Mi ≤ UCL)P(−UCL ≤ Vi ≤ UCL)

− P(−UWL ≤ Mi ≤ UWL)P(−UWL ≤ Vi ≤ UWL). (24)

Equations (23) and (24) both contain the terms P(m1 ≤ Mi ≤ m2) and P(v1 ≤ Vi ≤ v2),
wherem1&v1 stand for -UWL /-UCL andm2&v2 stand forUWL/UCL. Similar to Sabahno
et al. [1], we have:

P(m1 ≤ Mi ≤ m2) = P(H−1
p (�(m1)) ≤ T2

i ≤ H−1
p (�(m2))). (25)

We should compute Equation (25) in both in- and out-of-control conditions. When
the process is in-control, Xi∼ MN(A + Bμ0,B�Ȳ0

BT + (1/mnts)�ε) and by letting
Zi = [B�Ȳ0

BT+(1/mnts)�ε]−1/2(Xi − A − Bμ0), we have:Zi∼ MN(0, I).We know that:
Ti

2 = Zi
TZi ∼χ2(p). Therefore, when the process is in-control, Equation (25) can be

easily computed. When the process is out-of-control on the other hand: Xi∼ MN(A +
Bμ1,B�Ȳ1

BT + (1/mnts)�ε) andZi∼ MN([B�Ȳ0
BT+ 1

mnts �ε]−1/2B(μ1 − μ0),�), with

�=[B�Ȳ0
BT+

1
mnts

�ε]−1/2[B�Ȳ1
BT+

1
mnts

�ε][B�Ȳ0
BT+

1
mnts

�ε]−1/2.

Consequently, we have Zi
T�−1Zi∼χ2(p, λ), i.e. a non-central chi-square distribution

with the non-centrality parameter:

λ = [B(μ1 − μ0)]T[B�Ȳ0
BT+

1
mnts

�ε]−1/2�−1/2�−1/2[B�Ȳ0
BT+

1
mnts

�ε]−1/2

B(μ1 − μ0).

By replacing � with its formula, the non-centrality parameter is computed as:

λ = [B(μ1 − μ0)]T
(
B�Ȳ1

BT+
1

mnts
�ε

)−1
B(μ1 − μ0). (26)

Since it is not possible to obtain the distribution of T2
i = Zi

TZi for an out-of-
control condition (we could only find the distribution of Zi

T�−1Zi, not Zi
TZi), we

cannot directly compute Equation (25) in the case of an out-of-control condition.
Hence, similar to Sabahno et al. [1], it will be assumed that [B�Ȳ1

BT+(1/mnts)�ε] =
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τ1[B�Ȳ0
BT+(1/mnts)�ε], with τ1 > 0. Therefore, we have �−1 = (1/τ1)I and, conse-

quently, (1/τ1)T2
i = (1/τ1)Zi

TZi∼χ2(p, λ) with

λ = 1
τ1

(μ1 − μ0)
TBT

(
B�Ȳ0

BT+
1

mnts
�ε

)−1
B(μ1 − μ0 ).

Now, we can compute Equation (25) in an out-of-control condition as:

P(m1 ≤ Mi ≤ m2) = [Hp,λ(H−1
p (�(m2)) × (1/τ1)) − Hp,λ(H−1

p (�(m1)) × (1/τ1))].
(27)

To compute P(v1 ≤ Vi ≤ v2), by adopting a similar approach, we have:

P(v1 ≤ Vi ≤ v2) = P(G−1
(a,b)

(�(v1)) ≤ Wi ≤ G−1
(a,b)

(�(v2))) . (28)

When the process is out-of-control, the distribution of Wi is obtained by multiplying
|B�0BT+(1/m)�ε| by |B�1BT+(1/m)�ε|/|B�1BT+(1/m)�ε| = 1 in Equation (28), as
follows:

P(G−1
(a,b)

(�(v1)) ≤ (ns − 1)|Si|1/p
[|B�0BT+(1/m)�ε||B�1BT+(1/m)�ε|/|B�1BT+(1/m)�ε|]1/p

≤ G−1
(a,b)

(�(v2))).

Then, assuming τ2 = [|B�1BT+(1/m)�ε/B�0BT+(1/m)�ε|]1/p, we have:

P(v1 ≤ Vi ≤ v2) = [G
(a,b) (G

−1
(a,b)

(�(v2)) × (1/τ2)) − G
(a,b) (G

−1
(a,b)

(�(v1)) × (1/τ2))].
(29)

Equations (23) and (24) can be computed using P(m1 ≤ Mi ≤ m2) and P(v1 ≤ Vi ≤
v2), by replacing m1&v1 with -UWL/-UCL and m2&v2 with UWL/UCL in Equations (27)
and (29).

Although τ2 has a deterministic value, τ1 on the other hand, does not have a deter-
ministic value and it should be estimated. To estimate τ1, we can use the generalization
of matrices in order to change them into numbers. The generalized form of a variance-
covariance matrix (it’s determinant) is called the generalized variance. Hence, following
the same approach as Sabahno et al. [1], the value of τ1 can be estimated by |�|1/p, i.e.

τ1 ≈
⎡
⎣

∣∣∣B�Ȳ1
BT+ 1

mnts �ε

∣∣∣∣∣∣B�Ȳ0
BT+ 1

mnts �ε

∣∣∣

⎤
⎦
1/p

.

More specifically, τ1 is estimated such that the relationship [B�Ȳ1
BT+(1/mnts)�ε] =

τ1[B�Ȳ0
BT+(1/mnts)�ε] is approximately held.

Note that, in the case of no autocorrelation and/or no measurement errors: τ1 = τ2.
To obtain the other transition probabilities, we have p13 = 1 − p11 − p12, p23 = 1 −

p21 − p22, p31 = p32 = 0 and p33 = 1. Now, we can compute our performance measures



2966 H. SABAHNO

using the following equations:

ATS = b′(I − Q) - 1t, (30)

SDTS =
√
b′(I − Q)−1(2Dt(I − Q)−1t − t(2)) − (ATS)2, (31)

where b′ = (b1, b2) is the vector of starting probabilities such that b1 + b2 = 1, I is the
identity matrix of order 2,Q is a 2 × 2 transition probability matrix for the transient states,
t = (t1, t2)′ is the vector of sampling intervals, Dt is the 2 × 2 diagonal matrix with the
diagonal elements of t, t(2) contains the squares of the elements of the vector t.

In the beginning, when the process is assumed to be in-control (μ1 = μ0&�e1 = �e0),
b1 and b2 are obtained as follows:

b1 = p11
p11 + p12

,

b2 = p22
p21 + p22

.

6. Numerical analyses

In this section, the effects of autocorrelation and measurement errors on the proposed
control chart as well as some solutions to alleviate their negative effects will be investigated.
To better and easier analyse these effects, we only consider autocorrelational effects and
neglect the cross-correlational effects, i.e.� and�matrices are assumed to be diagonal. In
addition, although � and � can take any value in (−1, 1), since positive autocorrelations
are most common in real practice, following Costa and Castagliola [34], we only consider
positive autocorrelations in this paper.

6.1. The effects ofmeasurement errors and autocorrelation

For the case of p = 2, we have � =
[

φ1,1 0
0 φ2,2

]
and � =

[
θ1,1 0
0 θ2,2

]
, and we

assume the following values for the diagonal elements:

θ = (θ1,1, θ2,2) ∈ {(0, 0), (0.4, 0.3), (0.7, 0.8)} and
φ = (φ1,1,φ2,2) ∈ {(0, 0), (0.2, 0.3), (0.6, 0.5)}.

For the in-control random noise variance-covariance matrix, we assume that �e0 =[
1 0.5
0.5 1

]
. Then, when shifted, we assume that �e1 = τ�e0 . Note that, in the case of

no autocorrelation (�&� = 0), the random noise variance-covariance matrix is the same
as the quality characteristics’ variance-covariance matrix (i.e. �0 = �e0 and �1 = �e1).

In this paper, we assume that the level of autocorrelation, as well as measurement errors,
do not change throughout the process monitoring, and shifts only occur for the mean
vector and also for the random noise variance-covariance matrix. For the mean vector
shifts, we assume: μ0 = (1, 1) → μ1 ∈ {(1, 1), (1.1, 1.1), (1.5, 1.5)} and for the random
noise variance-covariance matrix shifts we assume: τ ∈ {1.02, 1.2, 1.5}.
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We also assume that ATE = 0.005, ASI = 1, ASS = 10, (n1, n2) = (5, 15), t2 = 0.1,
μ0 = (0, 0) and α1 = 0.004. In addition, for the measurement errors model parameters,

we assume: �ε =
[

ε1 0
0 ε2

]
, so that ε = (ε1, ε2) ∈ {(0, 0), (0.5, 0.5), (1, 1)}, B = I and

m = 1. The results for the p = 2 case for different mean vector shifts are shown in Tables
1–3.

As can be seen in Tables 1–3, for any autocorrelation level (different � and � values)
we have:

• As the shift in the random noise variance-covariance matrix (τ ) increases, the chart
signals faster.

• As the mean shift (μ1 − μ0) increases, the chart signals faster.
• As the measurement errors (ε) increase, the control chart signals slower.
• In all cases, the ATS and SDTS values are very close, but the SDTS values are always

slightly larger.

In addition, in Table 1 (zeromean shift), when there are nomeasurement errors (ε = 0),
and for any shift size in the random noise variance-covariance matrix (any τ value), dif-
ferent values of � and � have no effect on the chart’s performance. However, when the
mean shift is not zero (Tables 2 and 3), when the value of � (AR component) is larger,
the chart signals slower and when the � value (MA component) is larger, the chart signals
faster. Having said that, when measurement errors are available in the process (ε > 0), the
above-mentioned rule is not always valid.

We repeat the previous analysis by increasing p to 4 (four quality characteristics) and by
keeping the previous value assumptions for the design and process parameters. Tables 4–6
contain the information regarding the p = 4 case; with three different mean vector shift
sizes. All of the previous conclusions for the p = 2 case are valid for the p = 4 case as well.
However, all of the ATS/SDTS values are smaller when p = 4 (the chart signals faster when
there are more quality characteristics).

6.2. Reducing the autocorrelation effect

In this section, assuming there are nomeasurement errors in the process, we try to apply the
developed skip-sampling strategy to investigate its effect on the chart’s performance. In this
section as well as the next section, we only consider the case of p = 3. The design and pro-
cess parameters are assumed to be as before, except for θ which is fixed to θ = (0.1, 0.1, 0.1)
and φ changes from (0.2, 0.2, 0.2) to (0.4, 0.4, 0.4), (0.6, 0.6, 0.6) and (0.8, 0.8, 0.8) in each
plot. We have three plots in Figure 1, each having a different mean vector shift size of
μ1 ∈ {(1.1, 1.1, 1.1), (1.5, 1.5, 1.5), (2, 2, 2)}. τ is assumed to be 1.2 in this analysis to rep-
resent the random noise variance-covariance matrix shift. We assume that the number of
skipped samples (s) will vary from 0 to 20 in each plot and we will only use the ATS as the
performance measure here.

As can be seen in Figure 1, as the number of skipped samples increases, the chart
performs better (signals faster), and the negative effect of autocorrelation decreases. How-
ever, skipping samples is only effective until some s value, and after that, the chart
becomes insensitive to the change in the value of s. The larger the value of � is,
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Table 1. ATS, SDTS with p = 2 and the mean vectorμ1 = (1, 1).

φ

(0,0) (0.2,0.3) (0.6,0.5)

θ θ θ

(0,0) (0.4,0.3) (0.7,0.8) (0,0) (0.4,0.3) (0.7,0.8) (0,0) (0.4,0.3) (0.7,0.8)

τ = 1.02
(0,0) 184.7007, 184.7858 184.7007, 184.7858 184.7007, 184.7858 184.7007, 184.7858 184.7007, 184.7858 184.7007, 184.7858 184.7007, 184.7858 184.7007, 184.7858 184.7007, 184.7858

ε (0.5,0.5) 190.7369, 190.8211 191.4853, 191.5693 191.8912, 191.9742 189.9320, 190.0162 191.0031, 191.0871 192.0361, 192.1190 188.5068, 188.5911 189.8558, 189.9401 191.5369, 191.6201
(1,1) 193.1862, 193.2702 193.8968, 193.9807 194.0306, 194.1138 192.2859, 192.3700 193.4543, 193.5383 194.2854, 194.3686 190.5229, 190.6071 192.1872, 192.2715 193.9428, 194.0261

τ = 1.2
(0,0) 52.6587, 52.8741 52.6587, 52.8741 52.6587, 52.8741 52.6587, 52.8741 52.6587, 52.8741 52.6587, 52.8741 52.6587, 52.8741 52.6587, 52.8741 52.6587, 52.8741

ε (0.5,0.5) 95.4640, 95.6253 97.0104, 97.1814 92.9631, 93.1482 90.6272, 90.7878 96.2832, 96.4469 97.2656, 97.4390 80.5459, 80.7144 90.4398, 90.6008 98.0415, 98.2040
(1,1) 120.3320, 120.4645 122.4973, 122.6384 116.1205, 116.2782 113.5910, 113.7240 121.5591, 121.6934 122.1623, 122.3065 98.9846, 99.1275 113.1486, 113.2826 123.7106, 123.8434

τ = 1.5
(0,0) 6.4337, 6.6056 6.4337, 6.6056 6.4337, 6.6056 6.4337, 6.6056 6.4337, 6.6056 6.4337, 6.6056 6.4337, 6.6056 6.4337, 6.6056 6.4337, 6.6056

ε (0.5,0.5) 21.9733, 22.2092 21.6188, 21.8760 18.2720, 18.5433 19.8722, 20.0951 22.0436, 22.2862 20.8229, 21.0886 15.3682, 15.5769 19.8854, 20.1077 22.3142, 22.5629
(1,1) 40.8550, 41.0833 40.2883, 40.5435 32.2276, 32.5099 35.9791, 36.1958 41.1998, 41.4360 38.1294, 38.3971 25.7767, 25.9857 35.8564, 36.0729 41.7571, 42.0001
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Table 2. ATS, SDTS with p = 2 and the mean vectorμ1 = (1.1, 1.1).

φ

(0,0) (0.2,0.3) (0.6,0.5)

θ θ θ

(0,0) (0.4,0.3) (0.7,0.8) (0,0) (0.4,0.3) (0.7,0.8) (0,0) (0.4,0.3) (0.7,0.8)

τ = 1.02
(0,0) 162.3570, 162.4846 138.7565, 138.9450 78.1241, 78.5223 171.2617, 171.3704 154.6227, 154.7697 97.1568, 97.4907 179.1806, 179.2737 172.7280, 172.8324 129.4982, 129.7291

ε (0.5,0.5) 173.5566, 173.6725 163.7274, 163.8681 149.3881, 149.5717 178.5266, 178.6306 170.3386, 170.4625 153.0619, 153.2359 183.3363, 183.4282 179.4494, 179.5506 162.5063, 162.6539
(1,1) 179.3291, 179.4385 174.0048, 174.1277 167.7332, 167.8731 182.4445, 182.5457 177.5443, 177.6582 169.3387, 169.4754 185.6978, 185.7891 183.0763, 83.1755 173.5982, 173.7237

τ = 1.2
(0,0) 47.5871, 47.8105 42.2870, 42.5274 28.0424, 28.3599 49.5963, 49.8154 45.8474, 46.0761 32.7156, 33.0091 51.3986, 51.6146 49.9330, 50.1506 40.1911, 40.4496

ε (0.5,0.5) 87.2470, 87.4253 84.6464, 84.8450 77.0092, 77.2353 85.2759, 85.4470 86.5846, 86.7692 81.2388, 81.4536 78.3772, 78.5488 85.5224, 85.6920 84.9560, 85.1516
(1,1) 111.5965, 111.7471 110.8632, 111.0290 103.3102, 103.4969 107.4771, 107.6224 111.7162, 111.8713 108.7416, 108.9165 96.3055, 96.4529 107.4442, 107.5891 111.6499, 111.8104

τ = 1.5
(0,0) 6.1621, 6.3277 5.8672, 6.0287 4.9833, 5.1444 6.2708, 6.4386 6.0666, 6.2308 5.2937, 5.4551 6.3672, 6.5372 34.5046, 34.7218 5.7466, 5.9102

ε (0.5,0.5) 20.7850, 21.0187 19.9834, 20.2365 16.6255, 16.8899 19.1416, 19.3627 20.6690, 20.9090 18.9199, 19.1809 15.1282, 15.3354 19.2103, 19.4305 20.5310, 20.7776
(1,1) 38.6571, 38.8876 37.6970, 37.9535 30.1978, 30.4782 34.5406, 34.7585 38.7861, 39.0245 35.5513, 35.8194 25.2960, 25.5044 34.5046, 34.7218 38.9680, 39.2138
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Table 3. ATS, SDTS with p = 2 and the mean vectorμ1 = (1.5, 1.5).

φ

(0,0) (0.2,0.3) (0.6,0.5)

θ θ θ

(0,0) (0.4,0.3) (0.7,0.8) (0,0) (0.4,0.3) (0.7,0.8) (0,0) (0.4,0.3) (0.7,0.8)

τ = 1.02
(0,0) 7.0808, 7.3810 1.8541, 2.0367 1.3127, 1.4539 21.2162, 21.5769 3.6505, 3.8941 1.3745, 1.5524 75.9497, 76.2166 22.0751, 22.4250 1.7690, 2.0001

ε (0.5,0.5) 13.5368, 13.8988 4.5060, 4.7854 2.0877, 2.3270 30.3290, 30.7012 8.8991, 9.2380 2.3568, 2.6073 83.4942, 83.7560 33.0379, 33.3967 4.0395, 4.3390
(1,1) 21.5256, 21.9126 9.7796, 10.1378 4.9969, 5.3162 39.4200, 39.7906 16.1585, 16.5417 5.6740, 6.0073 89.9374, 90.1933 43.0456, 43.4006 8.9748, 9.3485

τ = 1.2
(0,0) 4.8148, 5.0090 1.7455, 1.8811 1.2839, 1.4005 10.8631, 11.1011 2.9446, 3.1097 1.3366, 1.4804 27.4325, 27.6619 12.8468, 13.0764 1.5797, 1.7642

ε (0.5,0.5) 9.8262, 10.1086 3.9230, 4.1482 1.9879, 2.1887 18.6239, 18.9134 6.9538, 7.2204 2.2247, 2.4344 39.4379, 39.6711 21.2305, 21.5067 3.5764, 3.8190
(1,1) 16.2638, 16.5889 8.3158, 8.6213 4.5372, 4.8091 26.3670, 26.6768 12.7872, 13.1104 5.1290, 5.4152 48.5411, 48.7758 29.1702, 29.4657 7.8552, 8.1733

τ = 1.5
(0,0) 2.4021, 2.4728 1.5039, 1.5707 1.2294, 1.2995 3.3827, 3.4757 1.9388, 2.0059 1.2678, 1.3532 4.9274, 5.0550 3.6216, 3.7148 1.4255, 1.5283

ε (0.5,0.5) 5.2554, 5.4211 2.8596, 2.9947 1.7584, 1.8927 7.5770, 7.7532 4.1986, 4.3543 1.9248, 2.0641 10.2763, 10.4513 8.2148, 8.3881 2.7017, 2.8513
(1,1) 9.4188, 9.6494 5.7499, 5.9643 3.4884, 3.6720 12.6128, 12.8357 7.9343, 8.1623 3.9471, 4.1465 16.0243, 16.2203 13.5064, 13.7238 5.5524, 5.7754
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Table 4. ATS, SDTS with p = 4 and the mean vectorμ1 = (1, 1, 1, 1).

φ

(0,0,0,0) (0.2,0.3,0.2,0.3) (0.6,0.5,0.6,0.5)

θ θ θ

(0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8) (0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8) (0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8)

τ = 1.02
(0,0, 0,0) 168.8696, 168.9827 168.8696, 168.9827 168.8696, 168.9827 168.8696, 168.9827 168.8696, 168.9827 168.8696, 168.9827 168.8696, 168.9827 168.8696, 168.9827 168.8696, 168.9827

ε (0.5,0.5, 0.5,0.5) 183.8628, 183.9567 184.1530, 184.2477 183.1771, 183.2736 182.7301, 182.8245 184.0169, 184.1110 184.1829, 184.2776 180.0161, 180.1129 182.6956, 182.7901 184.3641, 184.4577
(1,1, 1,1) 188.7798, 188.8691 189.0694, 189.1593 187.9820, 188.0735 187.6409, 187.7306 188.9435, 189.0329 189.0106, 189.1005 184.7459, 184.8376 187.5790, 187.6689 189.2543, 189.3434

τ = 1.2
(0,0, 0,0) 5.2714, 5.5946 5.2714, 5.5946 5.2714, 5.5946 5.2714, 5.5946 5.2714, 5.5946 5.2714, 5.5946 5.2714, 5.5946 5.2714, 5.5946 5.2714, 5.5946

ε (0.5,0.5, 0.5,0.5) 26.1616, 26.5603 24.0329, 24.4476 18.2753, 18.7010 23.9724, 24.3638 25.6680, 26.0719 21.9106, 22.3328 17.8337, 18.2173 24.1902, 24.5804 25.0222, 25.4320
(1,1, 1,1) 52.1952, 52.5512 48.2121, 48.5928 35.7083, 36.1250 47.5795, 47.9340 51.4109, 51.7739 43.7487, 44.1456 34.3316, 34.6993 47.9076, 48.2603 48.2603, 50.5963

τ = 1.5
(0,0, 0,0) 1.3670, 1.5226 1.3670, 1.5226 1.3670, 1.5226 1.3670, 1.5226 1.3670, 1.5226 1.3670, 1.5226 1.3670, 1.5226 1.3670, 1.5226 1.3670, 1.5226

ε (0.5,0.5, 0.5,0.5) 2.1636, 2.4074 2.0645, 2.3225 1.8277, 2.0884 2.0461, 2.2751 2.1396, 2.3884 1.9714, 2.2342 1.7692, 1.9781 2.0571, 2.2852 2.1081, 2.3630
(1,1, 1,1) 4.4670, 4.7751 3.9126, 4.2300 2.7605, 3.0630 3.9396, 4.2221 4.3352, 4.6478 3.4261, 3.7414 2.6938, 2.9296 3.9909, 4.2727 4.1456, 4.4629
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Table 5. ATS, SDTS with p = 4 and the mean vectorμ1 = (1.1, 1.1, 1.1, 1.1).

φ

(0,0,0,0) (0.2,0.3,0.2,0.3) (0.6,0.5,0.6,0.5)

θ θ θ

(0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8) (0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8) (0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8)

τ = 1.02
(0,0, 0,0) 155.0573, 155.1967 138.5053, 138.6888 87.0600, 87.4267 160.6864, 160.8137 149.3488, 149.5030 104.8572, 105.1611 165.5413, 165.6591 161.6533, 161.7778 129.5698, 129.7924

ε (0.5,0.5, 0.5,0.5) 171.3917, 171.5092 161.9238, 162.0661 143.4616, 143.6613 174.8297, 174.9380 168.3650, 168.4902 149.0166, 149.2007 176.6056, 176.7074 175.5685, 175.6745 160.2935, 160.4440
(1,1, 1,1) 177.9054, 178.0150 171.7398, 171.8653 162.0059, 162.1588 180.3769, 180.4793 175.9372, 176.0519 164.9652, 165.1113 181.4230, 181.5196 180.9405, 181.0412 171.1371, 171.2663

τ = 1.2
(0,0, 0,0) 5.1456, 5.4600 5.0004, 5.3072 4.5139, 4.8077 5.1960, 5.5136 5.0953, 5.4071 4.6980, 4.9967 5.2403, 5.5610 5.2046, 5.5227 4.9254, 5.2320

ε (0.5,0.5, 0.5,0.5) 25.1923, 25.5848 22.6624, 23.0675 16.7789, 17.1910 23.3900, 23.7769 24.5277, 24.9243 20.1679, 20.5789 17.6552, 18.0362 23.6513, 24.0371 23.4564, 23.8581
(1,1, 1,1) 50.0970, 50.4514 45.5835, 45.9616 33.4287, 33.8400 46.2391, 46.5919 49.0580, 49.4193 40.8572, 41.2512 33.9023, 34.2682 46.6481, 46.9989 47.3086, 47.6792

τ = 1.5
(0,0, 0,0) 1.3630, 1.5156 1.3597, 1.5100 1.3548, 1.5025 1.3645, 1.5181 1.3618, 1.5136 1.3567, 1.5054 1.3658, 1.5205 1.3646, 1.5183 1.3599, 1.5106

ε (0.5,0.5, 0.5,0.5) 2.1450, 2.3841 2.0396, 2.2905 1.8044, 2.0569 2.0352, 2.2613 2.1182, 2.3614 1.9430, 2.1976 1.7660, 1.9736 2.0469, 2.2721 2.0805, 2.3285
(1,1, 1,1) 4.3983, 4.7004 3.8384, 4.1477 2.7139, 3.0081 3.8989, 4.1773 4.2611, 4.5668 3.3562, 3.6625 2.6840, 2.9180 3.9520, 4.2299 4.0604, 4.3697
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Table 6. ATS, SDTS with p = 4 and the mean vectorμ1 = (1.5, 1.5, 1.5, 1.5).

φ

(0,0,0,0) (0.2,0.3,0.2,0.3) (0.6,0.5,0.6,0.5)

θ θ θ

(0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8) (0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8) (0,0, 0,0) (0.4,0.3, 0.4,0,3) (0.7,0.8, 0.7,0.8)

τ = 1.02
(0,0, 0,0) 8.3789, 8.7204 1.9158, 2.1311 1.3412, 1.5072 25.6655, 26.0508 3.8417, 4.1203 1.4068, 1.6141 84.6742, 84.9376 32.5799, 32.9416 1.6567, 1.9342

ε (0.5,0.5, 0.5,0.5) 13.3207, 13.7081 3.4849, 3.7664 1.6723, 1.9307 33.5916, 33.9840 7.7677, 8.1234 1.8319, 2.1011 93.2275, 93.4821 40.4797, 40.8465 2.9924, 3.2980
(1,1, 1,1) 19.0885, 19.4981 6.3593, 6.7084 2.6508, 2.9445 40.9201, 41.3100 12.7104, 13.1086 3.0762, 3.3849 99.2327, 99.4808 47.6412, 48.0056 5.6639, 6.0294

τ = 1.2
(0,0, 0,0) 2.4315, 2.5794 1.5252, 1.6478 1.2630, 1.3640 3.3198, 3.5150 1.9318, 2.0649 1.3075, 1.4347 4.4441, 4.7046 3.5244, 3.7256 1.4509, 1.6191

ε (0.5,0.5, 0.5,0.5) 6.0251, 6.2744 2.5375, 2.7221 1.5478, 1.7448 9.8912, 10.1791 4.2723, 4.4949 1.6607, 1.8642 13.1468, 13.4685 10.9985, 11.2874 2.3190, 2.5278
(1,1, 1,1) 10.5640, 10.8766 4.5573, 4.8142 2.2574, 2.4809 17.1161, 17.4411 7.7923, 8.0891 2.5796, 2.8153 23.4159, 23.7436 18.9783, 19.2975 4.2007, 4.4713

τ = 1.5
(0,0, 0,0) 1.2751, 1.3645 1.2143, 1.2641 1.1567, 1.1711 1.3064, 1.4176 1.2518, 1.3260 1.1754, 1.2041 1.3381, 1.4720 1.3098, 1.4230 1.2189, 1.2774

ε (0.5,0.5, 0.5,0.5) 1.7204, 1.8682 1.5021, 1.6325 1.3394, 1.4617 1.7820, 1.9447 1.6363, 1.7771 1.3833, 1.5158 1.6889, 1.8671 1.8085, 1.9720 1.5010, 1.6428
(1,1, 1,1) 2.7401, 2.9169 2.0545, 2.2108 1.5916, 1.7531 2.9174, 3.1077 2.4770, 2.6448 1.7107, 1.8743 2.4497, 2.6449 3.0194, 3.2117 2.0499, 2.2143
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Figure 1. ATS versus Number of skipped samples (s) for small, moderate, and large (respectively, from
top to bottom) mean vector shifts for p = 3.
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Figure 2. ATS versus Number of multiple measurements (m) with zero, small, moderate, and large
numbers of skipped samples for p = 3.

the more skipped samples are needed until the chart becomes insensitive to the num-
ber of skipped samples. On the contrary, as the mean vector shift increases, the chart
needs fewer skipped samples before it becomes insensitive to the number of skipped
samples.

6.3. Reducing themeasurement errors effect

Sabahno et al. [4] showed that multiple measurements (m) will alleviate the effect of mea-
surement errors in the case of no autocorrelation in the process. In this section, we will
investigate the effect of multiple measurements when there is also autocorrelation in the
process and in the case the skipped-sampling strategy is also being applied.

Note that, since parameter A in the measurement errors model has been eliminated
during ATS/SDTS formulas computations, its value does not affect the chart performance.
Sabahno et al. [4] also showed that the larger the value of parameter B is, the better the
chart performs in the presence of measurement errors. However, unlike the number of
multiple measurements (m), only the measurement system determines the value of B, not
the practitioners.

In this section, we assume that θ = (0.2, 0.2, 0.2), φ = (0.4, 0.4, 0.4), τ = 1.2, μ1 =
(1.5, 1.5), B = 2I, andm changes from 1 to 10 in each plot.

We also assume that ε varies from (0.1, 0.1) to (0.3, 0.3), (0.5, 0.5) and (0.8, 0.8) in each
plot. This analysis is performed for s = 0, 1, 2, 4, each used in separate plots. All other
design and process parameters value assumptions are as before.
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Figure 3. A hole in a plate with three quality characteristics.

The results of this investigation are shown in Figure 2. It is clear that not only multi-
ple measurements will improve the chart performance, but also if one combines it with
the skip-sampling strategy, it will further improve the chart performance. However, in all
the cases, multiple measurements are only effective up to some number of measurements
m, and after that, no significant improvement will occur in the chart performance. The
larger the measurement errors (ε) are, the more multiple measurements are needed until
the chart becomes insensitive to the number of multiple measurements.

7. An illustrative example

To show how the proposed control chart in this paper can be applied in practice, we adopt
a real case first introduced by Sabahno et al. [4] by considering measurement errors. Later,
Sabahno et al. [5] adopted the same case for an autocorrelated process. In this paper,
we will investigate a more realistic scenario that involves both measurement errors and
autocorrelation.

A company makes mechanical plates where up to 8 holes can be bored into them by
using a CNC drilling machine. It has been decided to measure the holes at p = 3 different
levels (10mm, 30mm, 50mm) to achieve the required accuracy, see Figure 3.

We use the same process and design parameters values as in Sabahno et al. [4]. The pro-
cessmean vector isμ0 = (19.0998, 19.0997, 19.0996). Because of themeasurement system,
there are measurement errors in the process and the values for the measurement errors
model parameters are obtained as:

A = a1, B = bI, and �ε = σ 2
ε I with â = −0.0008, b̂ = 1.0002 and σ̂ε = 0.000629.

As for the design parameters, we have:
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Table 7. Control table: details of 20 samples taken for online process monitoring.

i η
∑

ni tt
∑

ti Mi Vi Ci UWLi UCLi Status

1 4 4 110 110 −0.1116 −0.1122 0.1122 1.0514 3.6622 In-control
2 4 8 110 220 −0.2137 0.6476 0.6476 1.0514 3.6622 In-control
3 4 12 110 330 1.0586 1.3763 1.3763 1.0514 3.6622 In-control
4 8 20 10 340 1.0976 2.0859 2.0859 1.0445 2.8228 In-control
5 8 28 10 350 0.0403 1.6172 1.6172 1.0445 2.8228 In-control
6 8 36 10 360 −2.2713 0.8925 2.2713 1.0445 2.8228 In-control
7 8 44 10 370 −0.6311 1.0158 1.0158 1.0445 2.8228 In-control
8 4 48 110 480 −2.1900 1.0903 2.1900 1.0514 3.6622 In-control
9 8 56 10 490 0.5191 1.6261 1.6261 1.0445 2.8228 In-control
10 8 64 10 500 1.2862 1.5167 1.5167 1.0445 2.8228 In-control
11 8 72 10 510 −1.0382 0.9022 1.0382 1.0445 2.8228 In-control
12 4 76 110 620 0.5283 1.1897 1.1897 1.0514 3.6622 In-control
13 8 84 10 630 0.6872 1.3916 1.3916 1.0445 2.8228 In-control
14 8 92 10 640 0.0820 2.6211 2.6211 1.0445 2.8228 In-control
15 8 100 10 650 1.0870 2.8554 2.8554 1.0445 2.8228 Out-of-control
16 8 108 10 660 −0.2421 2.0106 2.0106 1.0445 2.8228 In-control
17 8 116 10 670 0.4224 1.1663 1.1663 1.0445 2.8228 In-control
18 8 124 10 680 −1.1589 0.7211 1.1589 1.0445 2.8228 In-control
19 8 132 10 690 1.9365 1.8396 1.9365 1.0445 2.8228 In-control
20 8 140 10 700 1.0424 1.8662 1.8662 1.0445 2.8228 In-control

ASI = 60 mins, ASS = 6 holes, ATE = 0.005, α1 = 0.0005, (n1, n2) = (4, 8) holes, and
t2 = 10 mins. Using Equations (15, 20-22), we have UCL1 = 3.6622, UWL1 = 1.0514,
α2 = 0.0095, UCL2 = 2.8228, UWL2 = 1.0445 and t1 = 110mins.

In addition, due to a recent modification in the sampling system, the sampling intervals
within samples, have been considerably reduced and this has caused an autocorrelation.
We further assume the following values for the autocorrelation model parameters:

�e0 =
⎡
⎣4.826 × 10−6 1.95 × 10−7 4.1 × 10−8

1.95 × 10−7 4.275 × 10−6 −3.63 × 10−7

4.1 × 10−8 −3.63 × 10−7 5.426 × 10−6

⎤
⎦ ,

� =
⎡
⎣0.25 0.04 0.22
0.3 0.1 −0.054
0.3 0.2 0.321

⎤
⎦ and� =

⎡
⎣ 0.136 −0.151 0.11

−0.29 0.09 0.21
−0.34 0.043 0.22

⎤
⎦ .

To see how the control scheme works, we shift the mean vector to μ1 =
(19.1009, 19.1006, 19.0998) and the random noise variance-covariance matrix to

�e1 =
⎡
⎣4.973 × 10−6 1.9 × 10−7 4.5 × 10−8

1.9 × 10−7 5.25 × 10−6 −3.69 × 10−7

4.5 × 10−8 −3.69 × 10−7 6.53 × 10−6

⎤
⎦ .

We then perform the online process monitoring by taking 20 samples from the process
by skipping the samples in between (s = 1) and bymeasuring the next ones twice (m = 2).
By doing so, according to Sections 6.2 and 6.3, wewill alleviate the combined effects of both
measurement errors and autocorrelation, and also, since we choose the smallest values for s
andm, this does not add difficulty in administrating the control chart. According to Table 7
(control table), as well as Figure 4 (control chart), after 650mins and 100 holes measured,
the control chart was able to signal at sample No.15 during the first 20 samples.
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Figure 4. The max-type adaptive control chart for the illustrative example.

8. Concluding remarks and future research

The combined effects of autocorrelation between consecutive observations and measure-
ment errors on a recently developed adaptive VPmax-type multivariate control chart were
investigated in this paper. To do so, we first developed the control chart by incorporating
linearly covariate measurement errors and VARMA autocorrelation models (two of the
most common measurement errors and autocorrelation models) into it. In doing so, we
also developed a skip-sampling strategy for the ARMA/VARMA models. Then, we added
the VP adaptive features to the control scheme. After that, we developed a Markov chain
model to compute the control chart’s performance measures and we used the average and
standard deviation of the time to chart’s signal as the performance measures.

Later, for two and four number of quality characteristics (p = 2, 4), we performed
extensive numerical analyses and simulation studies to investigate the combined effects of
autocorrelation and measurement errors and compared them with ‘only autocorrelation’,
‘only measurement errors’, and ‘no autocorrelation/measurement errors’ scenarios under
different shift sizes and also under different autocorrelation and measurement errors lev-
els. The result showed that: (i) as the shift in the random noise variance-covariance matrix
and/or in the mean vector increases, the chart signals faster, (ii) as the measurement errors
increase, the chart signals slower, (iii) the ATS and SDTS values are very close all the time,
but the SDTS value is always slightly larger, (iv) in the case the mean shift is not zero, when
the value of � (AR component) is larger, the chart signals slower and when the � value
(MA component) is larger, the chart signals faster, however, in the case the measurement
errors are available in the process, the above-mentioned rule is not always valid, and, (v)
the chart signals faster when there are more quality characteristics.
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Next, we used multiple measurements and skip-sampling strategies to reduce the nega-
tive effects of measurement errors and autocorrelation, respectively. We used three quality
characteristics (p = 3) for these analyses. The results of these graphical analyses showed
that as the number of skipped samples (s) increases, the chart signals faster. However, the
skip-sampling strategy is only effective until some number of skipped samples value (s),
and after that, the chart becomes insensitive to the change in the value of s. The larger
the value of � (the smaller the mean vector shift) is, the more (less) skipped samples are
required until the chart becomes insensitive to the number of skipped samples. Moreover,
the results showed that not only multiple measurements will improve the chart’s perfor-
mance, but also if combined with the skip-sampling strategy, it will further improve the
chart performance. However, multiple measurements too are only effective up to some
number of measurements (m), and after that, no significant improvement will occur in the
chart’s performance. The larger the measurement errors are, the more multiple measure-
ments are needed until the chart becomes insensitive to them value. Finally, we presented
an illustrative real-case industrial example.

For future developments, since the idea of considering the combined effects of mea-
surement errors and autocorrelation is rather new, interested researchers can investigate
such an effect onmany different ‘classical’ / ‘adaptive’, ‘univariate’ / ‘multivariate’ and ‘single
parameter monitoring’ / ‘simultaneous parameters monitoring’ control charts. In addition,
investigating other techniques for reducing their negative effects could be another idea for
future developments. Moreover, other measurement errors models (such as models with
non-constant errors variance, additive Berkson model, multiplicative model, or additive-
multiplicative model), as well as other autocorrelation models (such as AR or ARMA
models with high orders, non-stationary ARIMA model, non-linear ARCH & GARCH
models, or continuous-time Wiener model), in univariate or multivariate cases, might be
worth considering by some researchers.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] SabahnoH,Amiri A, Castagliola P. A new adaptive control chart for the simultaneousmonitor-
ing of the mean and variability of multivariate normal processes. Comput Ind Eng. 2021;151.
doi:10.1016/j.cie.2020.106524.

[2] Faraz A, Heuchenne C, Saniga E, et al. Double-objective economic statistical design of the VP
T2 control chart: Wald’s identity approach. J Stat Comput Simul. 2014;84(10):2123–2137.

[3] Seif A, FarazA, Saniga E, et al. A statistically adaptive sampling policy to theHotelling’s T2 con-
trol chart: Markov chain approach. Commun Stat-Theory Methods. 2016;45(13):3919–3929.

[4] Sabahno H, Castagliola P, Amiri A. A variable parameter multivariate control chart for simul-
taneous monitoring of the process mean and variability with measurement errors. Qual Reliab
Eng Int. 2020;36(4):1161–1196.

[5] SabahnoH, Castagliola P, Amiri A. An adaptive variable-parameters scheme for the simultane-
ous monitoring of the mean and variability of an autocorrelated multivariate normal process.
J Stat Comput Simul. 2020;90(8):1430–1465.

[6] Lee MH, Khoo MBC. Multivariate synthetic |S| control chart with variable sampling interval.
Commun Stat - Simul Comput. 2015;44(4):924–942.

https://doi.org/10.1016/j.cie.2020.106524


2980 H. SABAHNO

[7] Sabahno H, Amiri A, Castagliola P. Optimal performance of the variable sample sizes
Hotelling’s T2 control chart in the presence of measurement errors. Qual Technol Quant
Manag. 2018;16(5):588–612.

[8] SabahnoH, Amiri A, Castagliola P. Evaluating the effect of measurement errors on the variable
sampling intervals Hotelling T2 control charts. Qual Reliab Eng Int. 2018;34:1785–1799.

[9] Yeh A, Lin D, Zhou H, et al. A multivariate exponentially weighted moving average control
chart for monitoring process variability. J Appl Stat. 2003;30(5):507–536.

[10] Reynolds Jr MR, Gyo-Young C. Multivariate control charts for monitoring the mean vector
and covariance matrix. J Qual Technol. 2006;38(3):230–253.

[11] Khoo MBC. A new bivariate control chart to monitor the multivariate process mean and
variance simultaneously. Qual Eng. 2005;17:109–118.

[12] Zhang J, Li Z, Wang Z. A multivariate control chart for simultaneously monitoring process
mean and variability. Comput Stat Data Anal. 2010;54(10):2244–2252.

[13] Wang K, Yeh AB, Li B. Simultaneousmonitoring of process mean vector and covariancematrix
via penalized likelihood estimation. Comput Stat Data Anal. 2014;78(1):206–217.

[14] Reynolds Jr MR, Kim K. Multivariate control charts for monitoring the process mean and
variability using sequential sampling. Seq Analy: Design Methods Appl. 2007;26:283–315.

[15] Reynolds Jr MR, Cho GY. Multivariate control charts for monitoring the mean vector
and covariance matrix with variable sampling intervals. Seq Analy: Design Methods Appl.
2011;30:1–40.

[16] Sabahno H, Khoo MBC. A multivariate adaptive control chart for simultaneously monitoring
of the process parameters. Commun Stat - Simul Comput. 2022. doi:10.1080/03610918.2022.
2066695.

[17] Sabahno H, Amiri A. Simultaneous monitoring of the mean vector and covariance matrix of
multivariate multiple linear profiles with a new adaptive Shewhart-type control chart. Qual
Eng. 2023. doi:10.1080/08982112.2022.2164725.

[18] Jalilibal Z, Amiri A, Khoo MBC. A literature review on joint control schemes in statistical
process monitoring. Qual Reliab Eng Int. 2022;38(6):3270–3289.

[19] Linna KW, Woodall WH. Effect of measurement error on Shewhart control charts. J Qual
Technol. 2001;33(2):213–222.

[20] Linna KW, Woodall WH, Busby KL. The performance of multivariate control charts in the
presence of measurement error. J Qual Technol. 2001;33(3):349–355.

[21] Chattinnawat W, Bilen C. Performance analysis of Hotelling T2 under multivariate inspection
errors. Qual Technol Quant Manag. 2017;14(3):249–268.

[22] Zaidi FS, Castagliola P, Tran KP, et al. Performance of the Hotelling T2 control chart for
compositional data in the presence ofmeasurement errors. J Appl Stat. 2019;46(14):2583–2602.

[23] Huwang L,HungY. Effect ofmeasurement error onmonitoringmultivariate process variability.
Stat Sin. 2007;17(2):749–760.

[24] Dizabadi K, Shahrokhi A, Maleki M, et al. On the effect of measurement error with linearly
increasing-type variance on simultaneous monitoring of process mean and variability. Qual
Reliab Eng Int. 2016;32(5):1693–1705.

[25] Ghashghaei R, Bashiri M, Amiri A, et al. Effect of measurement error on joint moni-
toring of process mean and variability under ranked set sampling. Qual Reliab Eng Int.
2016;32(8):3035–3050.

[26] Maleki MR, Amiri A, Castagliola P. Measurement errors in statistical process monitoring: a
literature review. Comput Ind Eng. 2017;103:316–329.

[27] Kalgonda AA, Kulkarni SR. Multivariate quality control chart for autocorrelated processes.
J Appl Stat. 2004;31:317–327.

[28] Jarrett JE, Pan X. Monitoring variability and analyzing multivariate autocorrelated processes.
J Appl Stat. 2007;34(4):459–469.

[29] Vanhatalo E, Kulahci M. The effect of autocorrelation on the Hotelling T2 control chart. Qual
Reliab Eng Int. 2015;31(8):1779–1796.

[30] Leoni RC, Costa AFB, Sampaio NAS, et al. A geometric approach to illustrate the autocorrela-
tion effect in T2 control chart of Hotelling. Appl Math (Irvine). 2015;5(2):39–47.

https://doi.org/10.1080/03610918.2022.2066695
https://doi.org/10.1080/08982112.2022.2164725


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 2981

[31] Dargopatil P, Ghute V. New sampling strategies to reduce the effect of autocorrelation on the
synthetic T2 chart to monitor bivariate process. Quality Reliability Engineering International.
2018;34:1–17.

[32] Rahimi SB, Amiri A, Ghashghaei R. Simultaneous monitoring of mean vector and covariance
matrix of multivariate simple linear profiles in the presence of within profile autocorrelation.
Commun Stat-Simul Comput. 2021;50(6):1791–1808.

[33] Rahimi SB, Amiri A, Khoo MBC, et al. Simultaneous monitoring of mean vector and covari-
ance matrix of auto correlated multivariate multiple linear profiles. Qual Reliab Eng Int.
2022;38(7):3513–3542.

[34] Costa AFB, Castagliola P. Effect of measurement error and autocorrelation on the chart. J Appl
Stat. 2011;38(4):661–673.

[35] Franco BC, Castagliola P, Celano G, et al. A new sampling strategy to reduce the effect of
autocorrelation on a control chart. J Appl Stat. 2014;41(7):1408–1421.

[36] Franco BC, Castagliola P, CelanoG, et al. Economic design of Shewhart control charts formon-
itoring autocorrelated data with skip sampling strategies. Int J Prod Econ. 2014;151:121–130.

[37] Ma X, Zhang L, Hu J, et al. A model-free approach to reduce the effect of autocorrelation on
statistical process control charts. J Chemom. 2018;32(12):1–24.

[38] Yang SF, Yang CM. Effects of imprecise measurement on the two dependent processes control
for the autocorrelated observations. Int J Adv Manufact Tech. 2005;26:623–630.

[39] Xiaohong L, ZhaojunW. The CUSUM control chart for the autocorrelated data with measure-
ment error. Chinese Journal of Applied Probability. 2009;25(5):461–474.

[40] Shongwe SC, Malela-Majika JC, Castagliola P. The new synthetic and runs-rules schemes to
monitor the process mean of autocorrelated observations with measurement errors. Commun
Stat - Theory Methods. 2021;50(24):5806–5835.

[41] BeydaghiH,Amiri A, Jalilibal Z, et al. On the effect ofmeasurement errors and auto-correlation
on the performance of Hotelling’s T2 control chart. J Indus Syst Eng. 2021;13(3):193–215.


	1. Introduction
	2. Linearly covariate measurement errors model
	3. Varma autocorrelation model
	4. An adaptive max-type control chart with autocorrelation and measurement errors
	5. Performance measures
	6. Numerical analyses
	6.1. The effects of measurement errors and autocorrelation
	6.2. Reducing the autocorrelation effect
	6.3. Reducing the measurement errors effect

	7. An illustrative example
	8. Concluding remarks and future research
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


