
USING MPI ONE-SIDED
COMMUNICATION FOR PARALLEL

SUDOKU SOLVING
Henrik Aili

Bachelor Thesis, 15 hp/credits
Bachelor of Science in Computing Science

2023

Abstract

This thesis investigates the scalability of parallel Sudoku solving using Donald
Knuth’s Dancing Links and Algorithm X with two different MPI communica-
tion methods: MPI One-Sided Communication and MPI Send-Receive. The study
compares the performance of the two communication approaches and finds that
MPI One-Sided Communication exhibits better scalability in terms of speedup
and efficiency. The research contributes to the understanding of parallel Sudoku
solving and provides insights into the suitability of MPI One-Sided Communica-
tion for this task. The results highlight the advantages of using MPI One-Sided
Communication over MPI Send-Receive, emphasizing its superior performance
in parallel Sudoku solving scenarios. This research lays the foundation for future
investigations in distributed computing environments and facilitates advance-
ments in parallel Sudoku solving algorithms.

Acknowledgements

I want to thank my friends and family for their continued support, especially Emma, Ivar, An-
ton, and a special thanks to Leo for being my eternal lab partner throughout the programme.
I also want to thank Jerry for providing the thesis topic, and guidance and support when
supervising my thesis.

Contents

1 Introduction 1
1.1 Solving Sudokus Computationally 1
1.2 Purpose of Thesis 1
1.3 Research Methodology 1
1.4 Research Question 2
1.5 Outline of the Thesis 2

2 Related Works 3

3 Background 4
3.1 Algorithm X and Dancing Links 4

3.1.1 Implementing Algorithm X with Dancing Links 5
3.2 Solving Sudoku Puzzles with Algorithm X 6
3.3 Message Passing Interface 6

3.3.1 One-Sided Communication 8
3.4 Scalability 8

4 Parallelizing Algorithm DLX 9
4.1 MPI One-Sided Communication 9
4.2 MPI Send-Recieve 9

5 Experimental Setup 12

6 Results 13

7 Discussion 16
7.1 Limitations 16

8 Conclusion 17
8.1 Future Work 17

A Extra Algorithms 19

1 Introduction

Sudoku, initially named Number Place, is a numerical puzzle that first appeared in an Amer-
ican puzzle magazine in 1979. Number Place later appeared in 1984 in a Japanese magazine,
which is where it got the name Sudoku [1]. Sudoku is played on a 9×9 grid, divided into nine
3 × 3 boxes, according to a set of rules. Each tile of the grid should be filled with an integer
from 1 − 9, where one unique integer may only be on one tile in the same row, column, and
box. The Sudoku board typically comes with a set of pre-filled tiles, and the objective is to
complete the board by filling in the remaining spaces [1].

1.1 Solving Sudokus Computationally

There are numerous computational methods for solving Sudoku puzzles, including various
algorithms. The most commonly used algorithm is a brute force approach, which involves a
depth-first search of the Sudoku grid. During this search, the algorithm backtracks whenever
it reaches a non-valid solution and continues doing so until it eventually arrives at a valid
solution for the puzzle.

Donald Knuth’s Algorithm X and Dancing Links may also be used for solving Sudoku
as made evident by Harrysson and Laestander [2]. Algorithm X and Dancing Links, are an
algorithm and a technique made by Donald E. Knuth [3, p. 1]. Dancing Links, which is the
basis of the technique, uses a doubly linked list, where it uncouples and recouples nodes in
the list with its neighbours [3, p. 1]. Algorithm X is a non-deterministic recursive algorithm
specifically designed to solve exact cover problems, which are combinatorial problems known
for their NP-Complete difficulty. When implemented, Algorithm X may employ a technique
called Dancing Links [3, p. 3].

1.2 Purpose of Thesis

This thesis explores the opportunities of parallelizing Knuth’s Algorithm X using the Message
Passing Interface (MPI) library for high performance parallel computing. MPI as the name
suggests is a message passing interface which has use in distributed memory environments [4,
p. 1]. Two distinct implementations of Algorithm X utilize MPI’s One-Sided Communication
and Send-Receive to achieve parallelism.

1.3 Research Methodology

This study employs an empirical research methodology to compare the scalability of two Su-
doku solver implementations: one utilizing MPI One-Sided Communication and the other
utilizing MPI Send-Receive. The effectiveness of each implementation in solving Sudoku puz-
zles is evaluated through experimentation and result evaluation.

1

1.4 ResearchQuestion

The research question in this thesis is: Does the use of MPI One-Sided Communication result in
better performance for implementing Algorithm X than using MPI Send-Recieve?

1.5 Outline of the Thesis

The thesis is structured as follows: Section 2 provides a comprehensive review of related
works to the thesis, while Section 3 covers the necessary background information on the
topic and its application. In Section 4, the author presents their contributions to the research.
Section 5 describes the experimental setup used to obtain the results presented in the thesis,
while Section 6 presents and analyses the results obtained from the experiments conducted
during the research. Section 7 provides a detailed discussion of the results obtained, including
their implications and the limitations of the thesis. Finally, Section 8 concludes the thesis
with a summary of the main findings and their implications along with potential directions
for future research.

2

2 Related Works

Harrysson and Lestander proposed a solution for solving Sudoku puzzles using Algorithm X,
which involves reducing Sudoku to an exact cover problem [2]. They demonstrated the effec-
tiveness of Algorithm X as an efficient method for solving Sudoku puzzles. By transforming
Sudoku into an exact cover problem, they provided valuable insights into the computational
complexity of the approach. Their work serves as a foundational contribution to the appli-
cation of Algorithm X in Sudoku puzzle solving and has inspired the approach taken in this
thesis.

Foroutan Rad provides an array-based solution to the Dancing Links technique for solving
Sudoku puzzles [5]. This approach addresses the challenge of parallelizing Dancing Links and
Algorithm X due to the difficulty of sharing pointers between threads. By utilizing an array-
based representation, the solution enables easier parallelization and coordination of multiple
threads or processes working on the Sudoku puzzle solving task. This work offers valuable
insights into enhancing the parallel efficiency and scalability of Sudoku-solving algorithms
and serves as a reference for future research and developments in parallel Sudoku solving
techniques.

Viksten and Mattson analyse the differences in algorithms for solving Sudoku puzzles
in their study [6]. They compare three algorithms: Brute-Force, Simulated Annealing, and
Dancing Links with Algorithm X. The research findings indicate that Dancing Links with Al-
gorithm X exhibits the best performance among the evaluated algorithms for solving Sudoku
puzzles [6]. This study offers current insights into the strengths and effectiveness of various
algorithmic approaches in the context of Sudoku puzzle solving.

3

3 Background

The background chapter aims to provide the necessary context for understanding the appli-
cation of Algorithm X and Dancing Links in solving Sudoku puzzles. The chapter begins by
introducing the core concepts of Algorithm X and Dancing Links, and their use in solving
Sudoku puzzles. Additionally, it briefly explains how parallelization techniques, such as MPI
One-Sided Communication and MPI Send-Receive, can be used to accelerate the solution pro-
cess. While these techniques are not the primary focus of the chapter, they are introduced
to provide some context for how parallelization can be used to improve the performance of
Algorithm X and Dancing Links in solving Sudoku puzzles. A separate chapter focuses on
explaining how these MPI techniques are utilized to accelerate the solving of puzzles using
Algorithm X and Dancing Links.

3.1 Algorithm X and Dancing Links

Dancing Links is a technique based on a discovery that Knuth made on doubly linked lists
[3, p. 1]. Knuth realized that links in a doubly linked can be reattached after they have been
removed. Considering the two operations,

𝐿[𝑅 [𝑥]] ← 𝐿[𝑥], 𝑅 [𝐿[𝑥]] ← 𝑅 [𝑥] (3.1)

𝐿[𝑅 [𝑥]] ← 𝑥, 𝑅 [𝐿[𝑥]] ← 𝑥 (3.2)

(3.1) which removes 𝑥 from the list, and (3.2) which put 𝑥 back into the list [3, p. 1]. It is those
two operations that is the heart of the Dancing Links technique.

Definition 3.1.1 (Exact Cover) Given a family {𝑆 𝑗 } of subsets of a set {𝑢𝑖 , 𝑖 = 1, 2, ..., 𝑡}, there
exists a subfamily {𝑇ℎ} ⊆ {𝑆 𝑗 } such that the sets 𝑇ℎ are disjoint and ∪𝑇ℎ = ∪𝑆 𝑗 = {𝑢𝑖 , 𝑖 =

1, 2, ..., 𝑡} [7, p. 95].

Algorithm X, developed by Knuth, is a non-deterministic recursive algorithm designed
to solve the exact cover problem [3, p. 3]. The exact cover problem, a combinatorial co-
nundrum, falls under the category of NP-Complete difficulties [7, p. 95]. Algorithm X is a
non-deterministic recursive algorithm created by Knuth to solve an exact cover problem [3,
p. 3]. The exact cover problem is a combinatorics problem that is of NP-Complete difficulty
[7, p. 95]. The definition of exact cover is seen in Definition 3.1.1. The objective of Algorithm
X is to find the subfamily 𝑇ℎ . Algorithm X, as seen in Algorithm 1, essentially works by hav-
ing a matrix 𝐴 consisting of 0s and 1s that represents the exact cover problem to solve. It
recursively forms subalgorithms in a tree-like manner and backtracks after failing to find a
solution [3, pp. 3-4].

4

Algorithm 1 Algorithm X
1: function X(𝐴) ⊲ 𝐴 is a matrix of the exact cover problem
2: if A is empty then
3: return success
4: else
5: choose a column 𝑐 ⊲ deterministically
6: choose a row 𝑟 such that 𝐴[𝑟, 𝑐] = 1 ⊲ non-deterministically
7: include the row 𝑟 in the partial solution
8: for each 𝑗 such that 𝐴[𝑟, 𝑐] = 1 do
9: delete column 𝑗 from matrix 𝐴

10: for each 𝑖 such that 𝐴[𝑟, 𝑐] = 1 do
11: delete row 𝑖 from matrix 𝐴

12: end for
13: end for
14: end if
15: return X(𝐴) ⊲ Call Algorithm X recursively on the newly reduced matrix
16: end function

3.1.1 Implementing Algorithm X with Dancing Links

To implement Algorithm X, a combination of Algorithm X and Dancing Links may be
used, which Knuth calls Algorithm DLX [3, p. 5, 8]. In Algorithm DLX, the matrix is repre-
sented by data objects 𝑥 that corresponds to a 1 in the matrix. Each object 𝑥 has four links
that each point in one of the cardinal directions and a link to the list header [3, p. 5]. The
data objects are linked row- and column-wise [3, p. 5]. The list headers are special because in
addition to the links they have a size that corresponds to the number of rows in the current
column and a name used for results [3, p. 5]. There is also a “root” object which is the master
of every other active list header and links the headers together into a circular list[3, p. 5].

The algorithm when implemented consists of three main functions: 1. Search seen in
Algorithm 2, which is the main recursive search function, 2. Cover seen in Algorithm 5 which
essentially covers a column in the matrix representation by unlinking the column similar
to the operation in (3.1), 3. Uncover seen in Algorithm 6, which uncovers a column in the
representation by linking the column back together using the operation seen in (3.2) [3, pp.
6-7].

5

Algorithm 2 Search algorithm used in DLX
1: function Search(depth 𝑘 , root header ℎ, stack 𝑆)
2: if 𝑅 [ℎ] = ℎ then
3: print solution and return
4: else
5: choose a column object 𝑐 which has the least amount of rows
6: Cover column c ⊲ see Algorithm 5 in Appendix A
7: for each 𝑟 ← 𝐷 [𝑐], 𝐷 [𝐷 [𝑐]], ...,while 𝑟 ≠ 𝑐 do
8: stack push(𝑆 ,𝑟)
9: for each 𝑗 ← 𝑅 [𝑟], 𝑅 [𝑅 [𝑟]], ...,while 𝑗 ≠ 𝑟 do

10: cover column 𝑗

11: end for
12: Search(𝑘 + 1, ℎ, 𝑆)
13: 𝑟 ←stack pop(𝑆) and 𝑐 ← 𝐶 [𝑟] ⊲ C[r] is the column header of r
14: for each 𝑗 ← 𝐿[𝑟], 𝐿[𝐿[𝑟]], ...,while 𝑗 ≠ 𝑟 do
15: uncover column 𝑗 ⊲ see Algorithm 6 in Appendix A
16: end for
17: end for
18: uncover column 𝑐 and return
19: end if
20: end function

3.2 Solving Sudoku Puzzles with Algorithm X

To solve a Sudoku puzzle using Algorithm X, the puzzle is reduced to an Exact Cover problem.
This transformation enables the application of Algorithm X for efficient Sudoku puzzle solv-
ing. The rules of Sudoku, as described in Section 1, define the constraints for the reduction
[2, p. 13]. These constraints include:

• Cell: Each cell can only contain one integer between 1-9.

• Row: Each row can only contain nine unique integers in the range of 1-9.

• Column: Each column can only contain nine unique integers in the range of 1-9.

• Box: Each box can only contain nine unique integers in the range of 1-9 [2, p. 13].

Considering the constraints, the Sudoku puzzle can be represented as a binary matrix
of size 729 × 324 [2, p.17]. This matrix encapsulates the relationships between the Sudoku
cells, rows, columns, and boxes, forming the foundation for applying Algorithm X to solve
the puzzle efficiently.

3.3 Message Passing Interface

As briefly mentioned earlier in Section 1.2, MPI is a standardized communication protocol
used for message passing between parallel processes. It enables the exchange of data through
the sending and receiving of messages with the use of an Application Programming Interface
(API) [8, p. 22]. MPI is extensively used in high-performance computing for parallel pro-
grams that utilize distributed memory machines [8, p. 22], where multiple computing nodes

6

collaborate within a cluster. The standardized nature of MPI offers the advantage of prede-
fined operations for communication and computation, making it a favored choice in the field
of high-performance computing [8, p. 22].

In MPI, communicators are used to define groups of processes that can communicate with
each other. Communicators serve as the entities that enable processes to interact and co-
ordinate their operations. [8, pp. 23-24]. The default communicator MPI COMM WORLD
includes all the processes in a parallel program [8, p. 24]. In MPI, there are several basic prim-
itives, with ”send” and ”receive” being the two most commonly used in this thesis. The ”send”
primitive in MPI allows for the transmission of an array of data to a specified destination
process. Conversely, the ”receive” primitive enables a process to accept data from a specified
source process and store it in an array [8, p. 26]. A small example MPI program in C using
send and receive is seen in Listing 3.1

Listing 3.1: Example MPI program in C using the send and recieve primitives
1
2 #include <stdio.h>
3 #include <mpi.h>
4
5 int main(int argc, char* argv[]) {
6 //number of processors and process rank
7 int p, my_rank, sum;
8 int my_arr[10];
9

10 //Initialise MPI
11 MPI_Init(&argc, &argv);
12 MPI_Comm_size(MPI_COMM_WORLD, &p)
13 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank)
14
15 if (my_rank == 0) {
16 //Calculate the partial sums of the 10 first natural numbers
17 for (int i = 0; i < 10; i++) {
18 my_arr[i] = (i*(i+1))/2;
19 }
20 //Send the array of partial sums to rank 1
21 MPI_Send(&my_arr, 10, MPI_INTEGER, 1, 0, MPI_COMM_WORLD);
22 }
23 else {
24 //Recieve an array with 10 integers from rank 0
25 MPI_Recv(&my_arr, 10, MPI_INTEGER, 0, 0, MPI_COMM_WORLD, NULL);
26 }
27
28 //Waits for all processes to reach this code
29 MPI_Barrier(MPI_COMM_WORLD);
30
31 sum = 0;
32 for (int i = 0; i < 10; i++) {
33 sum += my_arr[i]
34 }
35 fprintf(stderr "Sum of 10 first partial sums: %d \n my rank = %d\n", sum

, my_rank);
36
37
38 MPI_Barrier(MPI_COMM_WORLD);
39
40 MPI_Finalize();
41
42 return 0;
43 }

7

3.3.1 One-Sided Communication

MPI supports one-sided communication through Remote Memory Access (RMA) opera-
tions [9, p. 4386]. This allows processes to directly access and modify the memory of other
processes without explicit send and receive operations [9, p. 4386]. MPI RMA utilizes mem-
ory windows, representing contiguous regions of memory that are accessible to a specific
set of processes within a communicator [9, p. 4387]. The creation of windows is a collec-
tive operation involving all processes within the input communicator, achieved through the
MPI Win create function call [9, p. 4387].

The MPI RMA protocol includes three main operations for communication: MPI Put,
MPI Get, and MPI Accumulate [9, p. 4387]. However, in this thesis, only the MPI Put and
MPI Get operations are utilized. MPI Put puts data into the memory window of the target
process, allowing it to be accessed by the target process [9, p. 4387]. Similarly, MPI Get gets
data from the memory window of the target process and stores it into the memory window
of the calling process [9, p. 4387]. The communication operations occur within a synchro-
nization epoch, and they are completed at the end of the epoch [9, p. 4387].

3.4 Scalability

Scalability in software refers to the ability of a parallel program to efficiently utilize additional
resources as the problem size or the number of processors increases. It is based upon speedup,
which quantifies the performance improvement achieved by scaling up the computational
resources [10]. Speedup, is defined as:

𝑆 =
𝑇𝑠

𝑇𝑝
,

where 𝑇𝑠 is the execution time of the sequential program and 𝑇𝑝 is the execution amount of
the parallel program [11, p. 125]. Efficiency, is defined as:

𝐸 =
𝑆

𝑝
,

where S is the speedup of the parallel program, and p is the number of processes/threads [11,
pp. 125-126].

There are two types of scaling in parallel programming: strong scaling and weak scaling
[11, p. 127]. A strong scalable program maintains constant efficiency without increasing the
problem size, while a weak scalable program maintains constant efficiency as the problem
size increases with the number of processes [11, p. 127].

8

4 Parallelizing Algorithm DLX

This section consists of the main contributions and intricacies found when parallelizing Algo-
rithm DLX using MPI. It aims to provide the details needed for the reader to understand how
the parallel version works and be able to implement it themselves. The section begins with
the core of the parallel implementation and then continues on with the intricacies of using
MPI One-Sided Communication and MPI Send-Recieve.

The core of the parallel version of Algorithm DLX is the serial algorithm as seen in Al-
gorithm 2, since the two parallel implementations relies on the serial implementation of the
algorithm. Using both MPI One-Sided Communication and Send-Recieve, it was possible to
reduce the Algorithm to a producer-consumer problem for both implementations which each
have their own intricacies. The parallelization of Algorithm DLX introduces the concept of
granularity, which pertains to the number of Sudoku puzzles assigned to each unit of work.

4.1 MPI One-Sided Communication

In Section 3.3.2, it is discussed that MPI One-Sided Communication rely on shared memory
windows. Each MPI process has its own window, allowing all processes within the communi-
cator to access it. By utilizing these memory windows, a specific process (in this case, root/0)
can extract and store Sudoku puzzles from the provided file. Subsequently, other processes
can retrieve one puzzle at a time to work on, utilizing the serial Algorithm DLX.

However, to ensure work is not duplicated, synchronization among the processes is re-
quired. This is achieved by utilizing an integer stored in a second memory window on the
root process. The integer serves as a counter that each process increments whenever it ac-
quires a new Sudoku puzzle from the root process. The One-Sided Communication procedure
is depicted in Algorithm 3.

4.2 MPI Send-Recieve

In Section 3.3.1, it is discussed that MPI Send-Recieve relies on message passing. Each MPI
process within the communicator can send messages to each other. Through the use of mes-
sage passing, the processes establish a coordinator-worker relationship, with process 0 acting
as the coordinator and assigning new Sudoku puzzles to the worker processes upon receiving
a request.

When a worker finishes its work, it sends a message to the coordinator process with its
process rank and then waits to receive new work from the coordinator. When the coordinator
receives a work request, it sends the next Sudoku puzzle in order and increments its index
counter until it reaches the number of Sudoku puzzles to solve. Finally, when the total number
of Sudoku puzzles is reached, the coordinator sends a termination message to the workers,
signalling the completion of all tasks. The Send-Recieve procedure is depicted in Algorithm
4.

9

Algorithm 3 MPI One-Sided Communication Algorithm DLX
1: function sudoku index(mpi win𝑊)
2: lock window(𝑊)
3: index← get(𝑊)
4: if index ≥ num sudoku then
5: unlock window(𝑊)
6: return -1
7: end if
8: put(index+1,𝑊)
9: unlock window(𝑊)

10: return index
11: end function
12:
13: function get sudoku(mpi win𝑊 , index 𝐼)
14: lock window(𝑊)
15: sudoku← get(𝑊 , 𝐼)
16: unlock window(𝑊)
17: return index
18: end function
19:
20: function osc dlx(mpi win 𝑆𝑊 , mpi win 𝐼𝑊 , dlink 𝑑𝑙)
21: 𝐼 ← 0
22: while (𝐼 ← sudoku index(𝐼𝑊)) ≠ −1 do
23: sudoku← get sudoku(𝑆𝑊 , 𝐼)
24: remove clues(𝑑𝑙 , sudoku) ⊲ Removes the pre-filled squares from the exact cover

problem
25: Search(𝑑𝑙)
26: reset dlink(𝑑𝑙)
27: end while
28: end function

10

Algorithm 4 MPI Send-Recieve Algorithm DLX
1: function root loop(sudokus 𝑆 , total sudoku 𝑇 , num procs 𝑁)
2: index← 0
3: while index < 𝑇 do
4: worker← recv(any)
5: send(𝑆 [𝑖𝑛𝑑𝑒𝑥], worker)
6: index++
7: end while
8: for 𝑖 in 𝑁 do
9: send(−1,worker)

10: end for
11: end function
12:
13: function worker loop(dlink 𝑑𝑙 , my rank 𝑛)
14: sudoku 𝑆

15: while true do
16: send(𝑛,0)
17: 𝑆 ← recv(0)
18: if 𝑆 = −1 then
19: return
20: end if
21: remove clues(𝑑𝑙 , sudoku) ⊲ Removes the pre-filled squares from the exact cover

problem
22: Search(𝑑𝑙)
23: reset dlink(𝑑𝑙)
24: end while
25: end function

11

5 Experimental Setup

This chapter covers the validation of the research question through a series of experiments. It
discusses the experimental setup employed and provides details about the test data used for
these experiments. It begins by covering the experiments performed, along with the test data
used, finishing with the system used for performing the experiments.

The experiment focuses on evaluating the scalability of MPI One-Sided Communication in
contrast to MPI Send-Receive. The experiment involves running parallel implementations of
the two approaches with a fixed file and an increasing number of Sudokus while varying the
core count along with varying granularity. For each core count and grain size, the experiment
is performed 10 times, and the runtime of each run is recorded. Finally, the average runtime
is calculated for each core count, enabling the determination of the speedup and efficiency of
the two implementations.

For the aforementioned experiment, the test data comprises text files containing numer-
ous Sudoku puzzles gathered from various sources on the web. The Sudoku puzzle files adhere
to the formatting depicted in Listing 5.1.

Listing 5.1: An example of a Sudoku puzzle file with 1000 puzzles
1000
.5..83.17...1..4..3.4..56.8....3...9.9.8245....6....7...9
....5...729..861.36.72.4
2.6.3......1.65.7..471.8.5.5......29..8.194.6...42...1...
.428..6.93....57.....13.
..45.21781...9..3....8....46..45.....7.9...128.12.35..4..
.....935..6.8.7.9.3..62.

The system used for performing the experiment is a login server available for students and
employees at the Institution of Computing Science, Umeå University used for programming
and other use cases. The server used has the following specifications:

• Hardware

– Processor: AMD EPYC 7702P 64 cores/128 threads @2.0-3.35GHz
– Memory: 128 GB
– Disk: 2x500 GB SSD

• Software

– Debian GNU/Linux 11 (bullseye) x86 64
– openmpi(3.1.3-11)
– gcc (4:10.2.1-1)

12

6 Results

The purpose of this chapter is to present the results obtained from the experiment. As a
reminder, the research question guiding this study is: “Does the utilization of MPI One-Sided
Communication result in better scalability for implementing Algorithm X compared to using MPI
Send-Receive?”

Figure 1 illustrates the speedup of the MPI One-Sided Communication implementation
with different grain sizes, ranging from 1 to 64 puzzles per unit of work. The graph shows
a generally linear speedup trend, with a slight decrease in speedup as the number of cores
increases. Notably, when the grain size is 1, there is a more significant drop-off in speedup
from around 50 cores onwards.

Figure 2 illustrates the speedup of the MPI Send-Recieve implementation with different
grain sizes, ranging from 1 to 64 puzzles per unit of work. The graph shows a generally
linear speedup trend, with a slight decrease in speedup as the core count increases. Notably,
when the grain size is 1, there is a more significant drop-off in speedup from around 34 cores
onwards.

Figure 3 illustrates the speedup of the optimal grain sizes for MPI One-Sided Communi-
cation and MPI Send-Recieve. The graph demonstrates that the performance of the two im-
plementations is comparable, with Send-Recieve exhibiting slightly lower performance than
One-Sided Communication.

Figure 4 illustrates the efficiency of the optimal grain sizes for MPI One-Sided Communi-
cation and MPI Send-Recieve. The graph shows a relatively constant efficiency until 30 cores,
after which it gradually decreases.

13

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 620

5

10

15

20

25

30

35

40

45

Cores (n)

Sp
ee

du
p

(S
)

𝐺 = 1
𝐺 = 4
𝐺 = 16
𝐺 = 32
𝐺 = 64

Figure 1: Speedup of varying grain-size using MPI One-Sided Communication

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 620

5

10

15

20

25

30

35

40

45

Cores (n)

Sp
ee

du
p

(S
)

𝐺 = 1
𝐺 = 4
𝐺 = 16
𝐺 = 32
𝐺 = 64

Figure 2: Speedup of varying grain-size using MPI Send-Receive

14

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 620

5

10

15

20

25

30

35

40

45

Cores (n)

Sp
ee

du
p

(S
)

MPI One-Sided
MPI Send-Recieve

Figure 3: Speedup of the optimal grain sizes for the two implementations

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 620.4

0.5

0.6

0.7

0.8

0.9

1

Cores (n)

Eff
ci

en
cy

(E
)

MPI One-Sided
MPI Send-Recieve

Figure 4: Efficiency of the optimal grain sizes for the two implementations

15

7 Discussion

One-Sided Communication. This outcome aligns with expectations, as the Send-Receive im-
plementation relies on a root process responsible for sending Sudoku puzzles to the other
working cores. This means that the Send-Receive implementation essentially has one less
core working on solving the puzzles. In hindsight, the performance difference between the
two implementations with optimal grain size is neck and neck, but ultimately Send-Receive
exhibits slightly worse performance. This suggests that the extra core that One-Sided Commu-
nication has over Send-Receive due to Send-Receive needing a coordinator process outweighs
the benefits of the Send-Receive implementation. The obtained results imply that MPI One-
Sided Communication offers superior scalability compared to Send-Receive, indicating that
the former is better suited for handling increased parallelism.

7.1 Limitations

From my perspective, I perceive several limitations in the conducted study. Firstly, the ex-
periment only focuses on a single file of sudoku puzzles, which might not capture the full
range of scenarios or variations in puzzle complexity. Additionally, the study does not ex-
plore the impact of the number of clues in the puzzles. These limitations suggest that further
experimentation with diverse puzzle datasets and exploring different levels of puzzle com-
plexity would provide a more comprehensive understanding of the scalability of the parallel
implementations.

16

8 Conclusion

In conclusion, this thesis aims to explore the impact of MPI One-Sided Communication on
the scalability of a parallel Algorithm X in contrast to MPI Send-Receive. Through a series of
experiments and comprehensive analysis, the findings consistently demonstrate the superior
scalability of MPI One-Sided Communication over MPI Send-Receive, both in terms of effi-
ciency and performance. The experimental results reveal that MPI One-Sided Communication
exhibits enhanced scalability, enabling more effective utilization of computational resources
and improved parallel algorithm execution. These outcomes highlight the potential of MPI
One-Sided Communication as a valuable approach for achieving better scalability in parallel
computing applications.

8.1 Future Work

For future research, it is recommended to explore the impact of the number of clues in the
puzzles on the performance of the parallel implementations. Investigating whether using
non-blocking MPI Send-Receive can mitigate the performance difference and potentially im-
prove the efficiency of the Send-Receive implementation would be valuable. Additionally,
it would be beneficial to investigate the suitability of MPI Send-Receive and MPI One-Sided
Communication for multi-node environments. This would provide valuable insights into their
performance in distributed computing scenarios and help determine their effectiveness and
scalability across multiple nodes. Such investigations would contribute to a deeper under-
standing of the behavior and optimization of these communication mechanisms in parallel
algorithms, paving the way for improved parallelization strategies in the future.

17

Bibliography

[1] R. Wilson, 2022. [Online]. Available: https://www.britannica.com/topic/
sudoku (visited on 04/14/2023).

[2] M. Harrysson and H. Laestander, Solving sudoku efficiently with dancing links, 2014.
[3] D. E. Knuth, “Dancing links,” arXiv preprint cs/0011047, 2000.
[4] D. W. Walker and J. J. Dongarra, “Mpi: A standard message passing interface,” Super-

computer, vol. 12, pp. 56–68, 1996.
[5] A. Foroutan Rad, Efficient array for solving sudoku problem, 2018. [Online]. Available:

https://umu.diva-portal.org/smash/record.jsf?pid=diva2%
3A1278842&dswid=1031.

[6] H. Viksten and V. MATTSSON, Performance and scalability of sudoku solvers, 2013.
[7] R. M. Karp, Reducibility among combinatorial problems, complexity of computer compu-

tations (re miller and jw thatcher, editors), 1972.
[8] F. Nielsen and F. Nielsen, “Introduction to mpi: The message passing interface,” Intro-

duction to HPC with MPI for Data Science, pp. 21–62, 2016.
[9] J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur, “An implemen-

tation and evaluation of the mpi 3.0 one-sided communication interface,” Concurrency
and Computation: Practice and Experience, vol. 28, no. 17, pp. 4385–4404, 2016.

[10] X. Li. “Scalability: Strong and weak scaling.” (2018), [Online]. Available: https://
www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-
scaling/ (visited on 06/02/2023).

[11] P. Pacheco, An Introduction to Parallel Programming. Morgan Kaufmann, 2011, isbn:
9780123742605 0123742609.

18

A Extra Algorithms

Algorithm 5 Cover function used in Search
1: function Cover(column 𝑐)
2: Set 𝐿[𝑅 [𝑐]] ← 𝐿[𝑐] and 𝑅 [𝐿[𝑐]] ← 𝑅 [𝑐]
3: for each 𝑖 ← 𝐷 [𝑐], 𝐷 [𝐷 [𝑐]], ...,while 𝑖 ≠ 𝑐 do
4: for each 𝑗 ← 𝑅 [𝑗], 𝑅 [𝑅 [𝑗]], ...,while 𝑗 ≠ 𝑖 do
5: set 𝑈 [𝐷 [𝑗]] ← 𝑈 [𝑐] and 𝐷 [𝑈 [𝑗]] ← 𝐷 [𝐽]
6: set 𝑆 [𝐶 [𝐽]] ← 𝑆 [𝐶 [𝑗]] − 1 ⊲ S is the number of rows in the column
7: end for
8: end for
9: end function

Algorithm 6 Uncover function used in Search
1: function Uncover(column 𝑐)
2: for each 𝑖 ← 𝐷 [𝑐], 𝐷 [𝐷 [𝑐]], ...,while 𝑖 ≠ 𝑐 do
3: for each 𝑗 ← 𝑅 [𝑗], 𝑅 [𝑅 [𝑗]], ...,while 𝑗 ≠ 𝑖 do
4: set 𝑆 [𝐶 [𝐽]] ← 𝑆 [𝐶 [𝑗]] + 1
5: set 𝑈 [𝐷 [𝑗]] ← 𝑗 and 𝐷 [𝑈 [𝑗]] ← 𝑗

6: end for
7: end for
8: Set 𝐿[𝑅 [𝑐]] ← 𝑐 and 𝑅 [𝐿[𝑐]] ← 𝑐

9: end function

19

