
Building High-performing Web
Rendering of Large Data Sets

William Burwall

wibu0003@student.umu.se

Department of Physics, Ume̊a University
Master’s Thesis in Engineering Physics, 30 credits
Master of Science Programme in Engineering Physics, 300 credits
June 18, 2023
Supervisor: Dmitry Malyshev
External Supervisors: Andreas Grahn, Frida Nordström
Examiner: Martin Rosvall
Copyright ©2023 William Burwall

i

Abstract

Interactive visualization is an essential tool for data analysis. Cloud-based data
analysis software must handle growing data sets without relying on powerful
end-user hardware. This thesis explores and tests various methods to speed up
primarily time series plots of large data sets on the web for the biotechnology
research company Sartorius.

To increase rendering speed, I focused on two main approaches: downsampling
and hardware acceleration. To find which sampling algorithms suit Sartorius’s
needs, I implemented multiple alternatives and compared them quantitatively and
qualitatively. The results show that downsampling increases or eliminates data set
size limits and that test users favored algorithms maintaining local outliers. With
hardware acceleration that substantially increased the amount of simultaneously
rendered points for more detailed representations, these methods pave the way
for efficient visualization of large data sets on the web.

ii

Acknowledgement

I wish to thank my supervisors and the members of team Magenta at Sartorius
for our discussions and their general feedback. I also want to extend my thanks
to the product owner Stefan Rännar for providing me with insight and test data
sets, as well as to Martin Nordin for helping me get started with Apache Arrow.

iii

William Burwall Building High-performing Web Rendering of Large Data Sets

Contents

1 Introduction 1
1.1 Project Goals . 3
1.2 Project Boundaries . 3
1.3 Outline . 4

2 Sampling Strategies 5
2.1 Intuitive Strategies . 5

2.1.1 Nth-Point . 5
2.1.2 Mode-Median-Bucket . 5
2.1.3 Largest-Vertical-Deviation . 7

2.2 Cartographic Strategies . 7
2.2.1 Largest-Triangle-Three-Buckets 8
2.2.2 Longest-Perpendicular-Distance 9

3 Components and Methods 11
3.1 D3 and Plot Component . 11
3.2 Implementation of Sampling Methods 12

3.2.1 Plot Component Modifications 13
3.3 Evaluation of Sampling Methods . 15

3.3.1 Data Acquisition . 15
3.3.2 Time Efficiency . 16
3.3.3 Correctness . 17

3.4 Hardware Acceleration . 18
3.4.1 Custom Plot Component . 19
3.4.2 Updating the Trajectory Plot Rendering 20

3.5 Back-End with Apache Arrow . 21

4 Results 24
4.1 Comparison between Sampling Methods 24
4.2 Effects of WebGL Rendering and Back-End Sampling 25

5 Discussion 26
5.1 Sampling Discussion . 26

5.1.1 Comments on Nth-point . 26
5.1.2 Comments on Mode-Median-Bucket 26
5.1.3 Comments on Largest-Vertical-Deviation 26
5.1.4 Comments on Largest-Triangle-Three-Buckets 26
5.1.5 Comments on Longest-Perpendicular-Distance 27
5.1.6 General Comments . 27

5.2 Hardware Acceleration Discussion . 27
5.3 Back-End Discussion . 28

6 Conclusion 29

iv

William Burwall Building High-performing Web Rendering of Large Data Sets

References 30

v

William Burwall Building High-performing Web Rendering of Large Data Sets

List of Figures

1 Trajectory Plot . 2
2 Schematic Image: Nth-Point . 5
3 Schematic Image: Mode-Median-Bucket 6
4 Schematic Image: Largest-Vertical-Deviation 7
5 Schematic Image: Largest-Triangle-Three-Bucket 8
6 Schematic Image: Longest-Perpendicular-Distance 10
7 Regular Trajectory Plot Component . 12
8 Schematic Image: Filtering and Sampling of Data 13
9 Modified Trajectory Plot Component 14
10 Evaluation Data Sets . 16
11 Correctness Example . 18
12 Custom Trajectory Plot Component . 20
13 Trajectory Plot Component with WebGL Rendering 21
14 Schematic Image: Exchanging Data with Server 23
15 Trajectory Plot Component with PyArrow Processing 23
16 Time Efficiency of Sampling Algorithms 24
17 Perceived Correctness of Sampling Algorithms 25

vi

William Burwall Building High-performing Web Rendering of Large Data Sets

List of Tables

1 Basic Data Set Example . 11

vii

William Burwall Building High-performing Web Rendering of Large Data Sets

List of Algorithms

1 Mode-Median-Bucket . 6
2 Largest-Vertical-Deviation . 7
3 Largest-Triangle-Three-Buckets . 9
4 Longest-Perpendicular-Distance . 10

viii

William Burwall Building High-performing Web Rendering of Large Data Sets

1 Introduction

It is common for companies to acquire large volumes of data from users, processes, or
scientific experiments. The challenge is often to turn this data into positive value by
extracting knowledge that can help expedite decisions that can save time and resources,
and reduce waste.

Sartorius currently offers Simca®, which is a desktop-based solution for Multi-variate
Data Analysis (MVDA) [1]. MVDA is a statistical technique for analyzing data with
multiple variables [2]. An example would be to use structural equation modeling (SEM)
to determine the value of an apartment based on multiple variables such as the size
of the apartment, location, floor, number of rooms, and so on. The key process of
MVDA is the estimation of summary indices that weigh together multiple variables,
which serves to cover most essential information in simpler terms. This makes it easier
to understand the relationship between them and draw informed conclusions. Examples
of common summary variables are stock indices and regression lines through scattered
data. Simca® combines MVDA models with interactive visualization tools (plots) to
help users extract useful knowledge such as relationships between different variables,
as well as trends and patterns, that can be used to diagnose future samples. Work is
currently being done by Sartorius to develop Umetrics® Studio (Studio), a cloud-based
software. This comes with benefits like putting less hardware demands on the user
machine, and facilitating data-sharing and cooperation [3].

Studio aims to simplify advanced data analytics by providing something called work-
flows. These serve to streamline tasks such as modelling and data wrangling, and the
user can either use predefined workflows or construct their own. The latter is done
within a visual programming environment where tasks can be connected as nodes and
executed in order. Studio contains three main components:

• Insights Applications: A growing library of applications with predefined work-
flows and dedicated interfaces for specific use cases. An example is cell insights
that generates bioreactor simulations, aiding studies of cell growth, metabolism,
and more.

• Scibox®: Offers a range of predeveloped tools for generic data analysis, as well as
the visual programming environment for creating automated analytics workflows.

• Codebox®: An application programming interface (API) that lets developers
build custom Studio integrations and applications.

For visualization, Studio offers several types of interactive plots, such as histograms,
column and scatter plots, and time series plots. These may also include batches, which
in the case of time series plots, will result in multiple lines plotted together, one for
each batch. Studio is often used for biopharmaceutical purposes such as cell studies as
mentioned above, and batch evolution data are very common. This makes the batch
evolution time series plot, or the trajectory plot, especially important to optimize since

1

William Burwall Building High-performing Web Rendering of Large Data Sets

it is also the most demanding to render and interact with for large data sets. As such,
improving this type of plot will be the main focus of this thesis (Fig. 1).

Figure 1: Example of a trajectory plot.

When improving the rendering of large data sets, two important things should be taken
into account, visual scalability, and data processing scalability [4]. The first is about
how the data are presented from a visual standpoint. If data are dense enough, there
will be more data points on the screen than the amount of pixels to represent them.
This can either result in a chaotic mess that is difficult for the user to interact with,
or in partial information getting lost due to multiple points occupying the same pixels.
Data processing scalability denotes the need to handle the data in a way such that the
processing demands do not diverge with increases in data set size.

A prominent strategy involves reducing the amount of data, which can be done in a
variety of different ways. Data can be filtered by establishing a set of rules and only
including observations that fit those rules. Data can also be aggregated, which means
that they are gathered and presented in a summarized form. An example would be
summarizing the number of votes by county instead of showing all individual votes.
Downsampling involves excluding individual samples from the data while still main-
taining its length with respect to time. Aggregation works well when individual obser-
vations are not necessary. Downsampling is more suitable when individual observations
are important, but only a fraction of them are required to derive the necessary informa-
tion. For the trajectory plot, filtering and downsampling are the most relevant options.

These reductions will inevitably result in a loss of detail. It is important that the
remaining data still conveys information about patterns and clusters within the data
as that signifies that the placement of data points is not random. Furthermore, it
is important that outliers within the data are not excluded since they are important

2

William Burwall Building High-performing Web Rendering of Large Data Sets

for data scientists to find, and understand the reasons behind. Thus, an important
process within this project will be to choose and test multiple promising downsampling
methods. This is to find if they can fulfill any performance goals while still preserving
the most important information by keeping the correct points.

1.1 Project Goals

To be considered the next generation after Simca®, it is important that Studio does
not fall short in comparison when it comes to performance. While Simca® has the
benefit of relying on powerful hardware on the user machine, Studio is more dependent
on high-performing methods to render plots of large data sets on the web. Currently,
the most common, demanding, and thereby relevant type of plot for this thesis, is the
trajectory plot. This thesis has the following goals,

• Main: Improve the performance of batch evolution time series plots by sampling
existing data points.

• Secondary: Investigate hardware accelerated rendering.

• Secondary: Implement data processing on a back-end server.

For the best results, the optimization should satisfy the following conditions,

• Important information such as trends, clusters, and outliers are not omitted.

• Initially excluded data points should still be accessible by zooming in towards a
smaller interval of points.

The implemented downsampling methods will then be compared to each other and
evaluated based on their time efficiency and correctness, where the latter corresponds
to how well the sampled data represent the unsampled data. What counts as a good
representation may vary depending on the use case and therefore, this evaluation will
be carried out through a survey. The survey will be directed towards data scientists
from Sartorius who are among the target audience and have experience with batched
time series data sets.

1.2 Project Boundaries

The primary limitation is to work within the existing User Interface (UI) components
environment in Studio, and make the necessary changes and additions in order to reduce
data prior to rendering them. If time allows for it, other methods such as hardware
accelerated rendering may be explored and tested within or outside of this environment.
The first step would be to test it within a standalone program, and then to try and
integrate it into Studio’s own trajectory plot component.

3

William Burwall Building High-performing Web Rendering of Large Data Sets

1.3 Outline

This thesis consists of three main parts that will be tackled in order: downsampling,
hardware acceleration, and back-end computation. Section 2 introduces all different
sampling methods used in this thesis and section 3 covers implementation-specific in-
formation about the components and the evaluation procedures. section 4 presents the
results of the thesis work, including evaluations of the sampling methods, as well as
how the thesis goals have improved the performance of the trajectory plots. Section 5
provides comments on the results and the project work, before section 6 concludes the
report.

4

William Burwall Building High-performing Web Rendering of Large Data Sets

2 Sampling Strategies

Since the data sets may include multiple batches, the algorithms presented in this
section are applied batch-wise. Specific information about how these were implemented
can be found in section 3.2.

2.1 Intuitive Strategies

The methods described in this section are intuitive and not based on theoretical foun-
dations, nor do they utilize any researched generalization techniques as opposed to the
methods described in section 2.2.

2.1.1 Nth-Point

The simplest way to reduce data is by sampling every nth point along the horizontal
axis, where n is determined by the ratio of the total number of data points and the max-
imum number of sampled points. This method has the benefit of being computationally
inexpensive, but it comes with the cost of completely disregarding the difference in im-
portance between points in the data set (Fig. 2). The Nth-point method is included to
act as a benchmark to compare how much the results can be improved by using more
robust algorithms that take more time to execute.

Figure 2: Schematic image of the Nth-point algorithm. Chosen points are uniformly
distributed with an equal number of points in between. The filled circles connected by
dashed lines highlight the selected points.

2.1.2 Mode-Median-Bucket

The Mode-Median-Bucket (MMB) algorithm was designed by employees at DataMar-
ket, a platform that distributes processed data sets [5]. The MMB algorithm was
presented by Sveinn Steinarsson in his master thesis about downsampling time series
for visual representation [6]. It works by splitting the data into a number of roughly
equally sized intervals, or buckets, from which one point is chosen to represent each
bucket. The leftmost point with the modal value within the bucket is prioritized. If no
value within the bucket is more frequent than the others, the leftmost median point is
selected. In addition to this, the first and last points of the data are guaranteed to be

5

William Burwall Building High-performing Web Rendering of Large Data Sets

included, as is the global peak and trough, unless they both lie in the same bucket. The
global peak and trough refer to the highest peak and lowest trough spanning across the
entire data set (Fig. 3 and Alg. 1).

Figure 3: Schematic image of the Mode-Median-Bucket algorithm. The vertical dotted
lines separate different buckets, and the straight horizontal lines show how points are
prioritized if multiple points within a bucket share the same value. The filled circles
connected by dashed lines highlight the selected points.

Algorithm 1 Mode-Median-Bucket

Require: data ▷ The data pertaining to a single batch
Require: maxPoints ▷ The maximum number of data points to be rendered from

this batch
1: Split data into an amount of buckets equal to maxPoints − 2, excluding the first

and last point of data as they are included separately
2: Add the first point of the batch
3: for each bucket do
4: if a global peak or trough is within the bucket then
5: Add that point
6: end if
7: if there is a single most frequent data value then
8: Add the leftmost point with that value
9: else

10: Add the leftmost median point within the bucket
11: end if
12: end for
13: Add the last point of the batch

Since this method opts to choose points with the most frequent values, it is prone to
exclude local peaks or troughs within each bucket, with the exception of the global
peak or trough. If the data values are floating point numbers, it is very unlikely to find
multiple points that share the same value. This means that the median point within
each bucket is chosen most of the time.

6

William Burwall Building High-performing Web Rendering of Large Data Sets

2.1.3 Largest-Vertical-Deviation

The Largest-Vertical-Deviation (LVD) algorithm was designed as part of this thesis and
it focuses on requiring few computations while still retaining deviations within the data.
Similar to the MMB algorithm, the data are split into roughly equally sized buckets.
The first and last points of each batch are always included, and the algorithm iterates
over the buckets and chooses the point that deviates the most in vertical placement
compared with the previously selected point (Fig. 4 and Alg. 2).

Figure 4: Schematic image of the Largest-Vertical-Deviation algorithm. The vertical
dotted lines separate different buckets, and the straight horizontal lines and arrow
lines show how points are selected based on their vertical displacement compared to
the previous selected point. The filled circles connected by dashed lines highlight the
selected points.

Algorithm 2 Largest-Vertical-Deviation

Require: data ▷ The data pertaining to a single batch
Require: maxPoints ▷ The maximum number of data points to be rendered from

this batch
1: Split data into an amount of buckets equal to maxPoints − 2, excluding the first

and last point of data as they are included separately
2: Add the first point of the batch
3: for each bucket do
4: if any points deviate vertically from the previously selected point then
5: Add the point with the greatest deviation
6: else
7: Add the leftmost median point within the bucket
8: end if
9: end for

10: Add the last point of the batch

2.2 Cartographic Strategies

A different approach is to adopt cartographic generalization in which large scale maps
are processed in order to derive smaller and simplified maps [7]. Although maps differ

7

William Burwall Building High-performing Web Rendering of Large Data Sets

from line plots, certain techniques within cartographic generalization are still applicable,
such as those involving polyline simplification.

2.2.1 Largest-Triangle-Three-Buckets

One polyline simplification technique is called the Visvalingam-Whyatt algorithm [8].
The algorithm ranks each point based on its ”effective area”, calculated as the area
between the point of interest and its adjacent points. The algorithm iteratively elimi-
nates low ranking points and recalculates the rank of the remaining ones until a cut-off
amount of points remains.

Steinarsson adapted the Visvaling-Whyatt algorithm to create three of his own, the
Largest-Triangle algorithms [6]. The most important modification made to the original
algorithm was to include splitting the data into buckets and select one point to repre-
sent each bucket, much like in the MMB algorithm. This was done in order to ensure
that parts of the plot do not become too simplified. Large sections within the data
containing small fluctuations would tend to be skipped over and become represented
by a straight line when using the Visvaling-Whyatt algorithm alone.

The first Largest-Triangle algorithm was the Largest-Triangle-One-Bucket that starts
by ranking all points based on their effective area calculated with each point’s im-
mediate neighbours. This is then followed by splitting the data into equally sized
buckets from which the highest ranking point within each bucket is chosen. The down-
side to this algorithm is its shortsightedness since points are ranked solely based on
their position relative to their immediate neighbours. This issue was addressed with
the most successful of the three Largest-Triangle algorithms according to Steinarsson,
the Largest-Triangle-Three-Buckets (LTTB). This algorithm attempts to be less short-
sighted by first dividing the data into buckets, then iterating over these and calculating
each point’s effective area together with a fixed point from each of the adjacent buck-
ets. The left one is the previous bucket’s chosen representative, and the right one is
calculated as the average of all points in the following bucket (Fig. 5 and Alg. 3).

Figure 5: Schematic image of the Largest-Triangle-Three-Bucket algorithm. The ver-
tical dotted lines outline a bucket from which the top point is selected due to forming
the largest triangle between itself, the previous selected point, and the dashed point
that is the average among all points in the following bucket.

8

William Burwall Building High-performing Web Rendering of Large Data Sets

Algorithm 3 Largest-Triangle-Three-Buckets

Require: data ▷ The data pertaining to a single batch
Require: maxPoints ▷ The maximum number of data points to be rendered from

this batch
1: Split data into an amount of buckets equal to maxPoints − 2, excluding the first

and last point of data as they are included separately
2: Add the first point of the batch
3: for each bucket do
4: if final bucket then
5: Set nextPoint as the last point of the batch
6: else
7: Set nextPoint as the average among all points in the next bucket
8: end if
9: if any points form a triangle with an area greater than zero between itself, the

previously selected point, and nextPoint then
10: Add the point with the greatest triangle area
11: else
12: Add the leftmost median point within the bucket
13: end if
14: end for
15: Add the last point of the batch

2.2.2 Longest-Perpendicular-Distance

The Douglas-Peucker algorithm is an older line simplification method that recursively
adds points that are placed with the greatest perpendicular distance, above a certain
threshold, away from a straight line between two end points of a given interval [9]. The
Longest-Perpendicular-Distance (LPD) algorithm is designed as part of this thesis and
is inspired by both the previously described LTTB, and the Douglas-Peucker algorithm.
Just like in LTTB, the batch data are split into roughly equally sized buckets. Average
points are calculated from the succeeding buckets, and are used as end points to imag-
inary lines. There is one line for each bucket, and the points that are placed furthest
away from these lines are chosen as the representatives (Fig. 6 and Alg. 4).

9

William Burwall Building High-performing Web Rendering of Large Data Sets

Figure 6: Schematic image of the Longest-Perpendicular-Distance algorithm. The ver-
tical dotted lines outline a bucket from which the chosen point is placed furthest away
from the line between the previously selected point, and the average among all points
in the following bucket.

Algorithm 4 Longest-Perpendicular-Distance

Require: data ▷ The data pertaining to a single batch
Require: maxPoints ▷ The maximum number of data points to be rendered from

this batch
1: Split data into an amount of buckets equal to maxPoints − 2, excluding the first

and last point of data as they are included separately
2: Add the first point of the batch
3: for each bucket do
4: if final bucket then
5: Set nextPoint as the last point of the batch
6: else
7: Set nextPoint as the average among all points in the next bucket
8: end if
9: if any points are placed away from the line formed between the previously

selected point and nextPoint then
10: Add the point furthest away from this line
11: else
12: Add the leftmost median point within the bucket
13: end if
14: end for
15: Add the last point of the batch

10

William Burwall Building High-performing Web Rendering of Large Data Sets

3 Components and Methods

3.1 D3 and Plot Component

Studio is built up using a microservice architecture. This means that it consists of
multiple loosely coupled services that can be developed and deployed independently
of each other [10]. One of these services is the UI-components environment, which is
the service that is relevant for this thesis, as specified in section 1.2. Among other
things, the UI-components environment contains code that pertains to the rendering of
different kinds of plots.

The Plots are implemented as Lit components, where Lit is a library for building con-
tained and reusable pieces of UI [11]. One of the strengths of Lit components is that
they are framework agnostic, meaning that they can be used together with a variety of
frameworks and libraries such as React, Angular, and Vue for example. This supports
the microservice architecture of Studio, where most of the front-end microservices are
written in React [12].

The specific plot elements themselves are built using D3, a JavaScript library for data
driven manipulation of Document Object Model (DOM) elements [13]. This library is
primarily used for producing dynamic and interactive data visualizations on the web in
a simple and efficient manner. It makes use of Scalable Vector Graphics (SVG), HTML
and CSS to render the data visualizations on the web page.

To test and debug these plot components, they are deployed on a debug app using
Vite, version 1.5.2, that can be hosted locally via the developer’s work computer. This
app contains code that loads local test data sets, and defines other variables and func-
tions that are used as input to the various plot components. The trajectory plot data
sets consist of arrays where each row corresponds to a data point, and each column
corresponds to a different variable. One of these columns contain batch ID’s in the
form of strings that are used to identify which points belong to what batches. Being
otherwise known as batched time series data sets, they typically also include a time
column displayed on the horizontal axis (Tab. 1).

Table 1: A basic example of a batched time series data set.
BatchID Time Glucose

’B0’ 1 0.2

’B0’ 2 0.5

’B0’ 3 0.3

’B1’ 1 0.52

’B1’ 2 0.6

’B1’ 3 0.7

A snapshot of the unmodified trajectory plot component inside the debug app, can be
seen in Fig. 7. To isolate the new and modified plot components worked on in this

11

William Burwall Building High-performing Web Rendering of Large Data Sets

thesis, I created a similar but separate custom debug app. This custom debug app
also displays some tracking variables detailing the number of points included, and the
execution times of different procedures.

Figure 7: Snapshot of the unmodified trajectory component inside the debug app,
plotting generated spectroscopy data from Sartorius.

3.2 Implementation of Sampling Methods

Since all points and lines of the plots are rendered with SVG, they are all represented
on the web page as unique DOM elements, making them easy to manipulate but more
demanding for the browser. This puts a limit on how many data points that can be
rendered simultaneously, especially when combined with lines as in the trajectory plot
[14]. A straightforward solution to this problem is to not render too many points, which
is the main motivator behind the idea of downsampling.

To reduce the amount of necessary tweaks inside the trajectory component itself, I
implemented sampling of data in the form of separate functions that are called within
the custom debug app. This means that data are always processed before being sent
to the trajectory component that will then only contain the sampled data.

When the debug app initiates, a full test data set is loaded and remains stored on the
computer’s random-access memory (RAM). Every time the plot is updated, the full
data set is passed by reference through two main functions. The first is an interval
filtering function that will loop through the full data set and insert all points that lie
within the current horizontal plot bounds, into a new empty array. This ensures that
points that lie outside of the horizontal bounds are not thrown into the plot component,
nor rendered. Points that lie outside the vertical plot bounds are kept in order for the

12

William Burwall Building High-performing Web Rendering of Large Data Sets

lines to not change trajectory when the plot is zoomed in. If the plot is already fully
zoomed out, this function will not be called.

The second function is the downsampler that operates on the filtered data (or the full
data if the filtering did not occur). The downsampler also receives a parameter known
as the sampling threshold, i.e. the maximum allowed number of included points. First,
the filtered data will pass through a function that loops through the data and returns
an array whose elements represent the number of points for each batch. This array will
then be used together with the filtered data in order to perform the sampling. The
sampling is applied batch-wise once the data are inside the chosen algorithm, which is
passed by reference to the downsampler.

The sampling algorithms were designed so that the filtered data are only iterated
through once during the sampling procedure. The different batches are distinguished
with the help of the batch size array. Most of the algorithms split each batch into a
certain amount of roughly equally sized buckets. The number of buckets depend on
the sampling threshold and the number of points within the batch relative to the total
amount of points within the filtered data set. These algorithms will always include the
first and last points of each batch, whereas the remaining points are divided into one
or more buckets, resulting in a minimum of three points per batch. Just like in the
filtering function, the points that are chosen are entered into a new empty array which
is the one used as input for the trajectory plot component. Figure 8 illustrates the
entire process.

Figure 8: Schematic image of how data are handled before being rendered within the
plot component.

3.2.1 Plot Component Modifications

To satisfy one of the conditions mentioned in section 1.1, I modified modifications the
existing trajectory plot component. The first step was to add new properties to the
component that store the horizontal and vertical bounds of the full unfiltered data set,
and the currently zoomed-in bounds. The full data set bounds are used so that the plot
can be zoomed-out past the bounds of the currently rendered points, until the full data

13

William Burwall Building High-performing Web Rendering of Large Data Sets

set bounds have been reached. The second step was to add a new event that triggers
after a delay upon zooming or panning the plot. This event causes the points within the
data set to be resampled based on the newly zoomed-in bounds. These modifications
allow the user to access more details and points that were not initially available due to
the sampling (Fig. 9).

(a) The modified trajectory component when fully zoomed out.

(b) The modified trajectory component when zoomed in.

Figure 9: Snapshot of the modified trajectory component inside the custom debug app,
plotting generated spectroscopy data from Sartorius sampled down to 600 points using
the Largest-Triangle-Three-Buckets algorithm. It shows one point being highlighted as
the user’s pointer hovers over it. As the user zooms in on the plot, a new set of 600
points is chosen within the new plot bounds.

14

William Burwall Building High-performing Web Rendering of Large Data Sets

3.3 Evaluation of Sampling Methods

As a part of the project goals, I conducted an evaluation of the implemented sampling
methods. The machine used for experiments was a MacBook Pro with macOS Ventura
version 13.1, 2.2 GHz 6-Core Intel Core i7 processor, and Radeon Pro 560X 4GB GPU.
All tests were performed on the Google Chrome browser, version 109.0.5414.87.

3.3.1 Data Acquisition

The test data used for the evaluation came from multiple sources. For the time efficiency
measurements, I used automatically generated data to compare the time complexity
between the different algorithms in a simple and controlled manner. For the correctness
evaluation, data sets were acquired both from within Sartorius as well as externally from
Federal Reserve Economic Data (FRED) [15]. The data sets used can be seen in Fig.
10. All plots shown in this section, and the plots used for the correctness evaluation,
were generated using a custom plot component which is described in section 3.4.1. The
units for all test data sets are arbitrary for this thesis.

15

William Burwall Building High-performing Web Rendering of Large Data Sets

(a) Generated spectroscopy data from Sarto-
rius. 1500 data points.

(b) Generated spectroscopy data from Sarto-
rius. 3401 data points per batch.

(c) Source: U.S. Census Bureau and U.S. De-
partment of Housing and Urban Development,
New Privately-Owned Housing Units Started:
Total Units (HOUST), retrieved from
FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/HOUST,
March 26, 2023. 770 data points.

(d) Source: U.S. Bureau of Eco-
nomic Analysis, Total Vehicle Sales
(TOTALSA), retrieved from FRED,
Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/TOTALSA,
March 26, 2023. 566 data points.

(e) Source: U.S. Energy Information Ad-
ministration, Crude Oil Prices: Brent -
Europe (DCOILBRENTEU), retrieved from
FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/DCOILBRENTEU,
March 27, 2023. 9096 data points.

Figure 10: Compilation of the data sets used for evaluating the correctness of the
sampling methods.

3.3.2 Time Efficiency

As mentioned in section 3.3.1, time measurements were conducted using automatically
generated noise data with a controlled amount of points. The execution times were
calculated by inserting the static JavaScript method Date.now() before and after the
sampling step, returning the execution time measured in milliseconds [16]. Note that
this does not include the time taken to filter out any points that lie outside of the
currently zoomed-in bounds. The measurements were performed 10 times for each
sampling method from which the average was taken as the representative speed. Time
complexity was also compared by performing multiple measurements with increasing

16

William Burwall Building High-performing Web Rendering of Large Data Sets

amounts of data points, and different sampling thresholds.

3.3.3 Correctness

Correctness can be evaluated through different means. An alternative would be numer-
ical quantification of error through a few different means such as the sum of squared
differences and cosine similarity for example. However, since what counts as a good
representation of the full data may vary depending on the customer and the use case,
I decided to conduct a survey. This was aimed towards data scientists from Sartorius
in hopes of placing more weight on the preservation of distinct features that the target
audience care about.

The survey was created using Google Forms, and consists of 10 questions in which
respondents are asked to provide a score between one to four points to each of the
featured sampling algorithms based on provided comparative plots (Fig. 11) [17]. Two
questions are included for each data set shown in Fig. 10, where the two questions
compare the algorithms when the sampling threshold is set to 100 and 200 respectively.
The algorithms are anonymously labeled A, B, C, and D, and what algorithm they
represent is randomized for each question in order to reduce biased patterns in the
answers.

17

William Burwall Building High-performing Web Rendering of Large Data Sets

(a) Example of an evaluation plot. The orange line represents an unsampled batch of 1500 data points
while the blue line with dots represents the same batch but reduced to 200 data points using the
Largest-Triangle-Three-Buckets algorithm.

(b) Example of how scores are provided by the respondent. The selected scores are marked
with a dot, and are colored orange.

Figure 11: Example of an evaluation plot and question from the correctness survey.

3.4 Hardware Acceleration

Although the sampling on its own works rather well for few batches, the point density
quickly becomes scarce if the number of batches increases further. This is a severe
weakness of the solution thus far because the trajectory plot is supposed to work with
batched data sets. The problem is caused by points and lines being drawn as individ-
ual SVG elements. While this makes them very easy to style, transform and animate,

18

William Burwall Building High-performing Web Rendering of Large Data Sets

adding thousands of them will lead to very large DOM trees. This is problematic since
whenever the plot is interacted with, the browser has to recompute the positioning,
layout, and styling, of all the branches and nodes within the plot tree at least.

This is the main motivator behind the second part of this project which involves hard-
ware acceleration. The goal here becomes to replace parts of the SVG based rendering
with rendering based on the Web Graphics Library (WebGL). WebGL is a JavaScript
API made for high-performance interactive graphics on the web, thanks to it taking
advantage of hardware graphics acceleration provided by the user’s device [18]. This
increases the number of points that can be rendered simultaneously, thus addressing
the weakness mentioned before.

3.4.1 Custom Plot Component

The first step of this part was to find a suitable library and utilize WebGL in a stan-
dalone, custom React component in order to learn how it works, and test its capabilities.
For this purpose, I chose D3FC because it is open source, built on D3 just like the reg-
ular plot components, and contains support for WebGL [19].

The custom plot component accepts the same kind of input data as the regular tra-
jectory component. It binds the data to lines and points using the D3FC functions
seriesWebglLine() and seriesWebglPoint(). These points and lines, together with
zero axis baselines, are put together into one single multi series renderer using the
function seriesWebglMulti(). This renderer is also provided a mapping property in
order to separate the different batches into multiple lines. The plot itself is built on a
cartesian chart with the function chartCartesian(), and uses the multi series renderer
as input to its WebGL plot area. This means that the points and lines are drawn onto
a canvas that becomes the single HTML element associated with them. The canvas
element is used to draw graphics via JavaScript, and it is provided a WebGL rendering
context in order to take advantage of the WebGL API [20]. The custom plot component
also features axis ticks and a grid, and the points and lines are color coded the same
way as in the regular trajectory component. This was to make the two plot components
appear visually similar.

To test the performance of the custom plot component, I added a basic zoom and pan
feature, as well as a point hover feature. The latter was implemented with the external
annotation library for D3 made by Susie Lu [21]. When the plot is built, a spatial index
in the form of a D3 quadtree is constructed with the input data. The plot area is then
provided a pointer event that is invoked whenever the user’s cursor moves over said
plot area. To find the point that is closest to the cursor, the cursor’s location on the
plot is used as input to the quadtree’s find() method. This method returns the closest
data point that is used to construct an annotation element, which is rendered using
SVG. Originally, the find() method looks for the nearest point within a circle with a
given radius. However, if the axis scales are different, the hover area from the user’s
perspective becomes very skewed. For this reason, the quadtree is assigned a custom

19

William Burwall Building High-performing Web Rendering of Large Data Sets

find() method after being constructed. This custom variant searches for the nearest
point within a scaled ellipse, which from the user’s perspective will result in a circular
area that they must hover within. A snapshot of the custom plot component inside the
custom debug app, can be seen in Fig. 12.

Figure 12: Snapshot of the custom trajectory component inside the custom debug
app, plotting generated spectroscopy data from Sartorius. It shows one point being
highlighted as the user’s pointer hovers over it.

3.4.2 Updating the Trajectory Plot Rendering

The next step was to update the rendering for the regular trajectory component. In
order to simplify the task as much as possible, I only updated the trajectory plot com-
ponent specifically. This means that most things that are generated outside of said
component remain untouched. This includes the axis lines and their ticks, labels and
scroll bars, as well as any settings boxes that appear inside or outside of the plot.

The data lines and points, as well as the grid lines, which used to be rendered as
individual SVG elements, were replaced by a single canvas element with a WebGL
rendering context. The grid, and the data lines and points were all constructed using
seriesWebglLine() and seriesWebglPoint(). I combined them into two separate
multi series renderers using seriesWebglMulti(), similar to how it was done in the
custom plot component. However, chartCartesian() was not used since the axis lines,
ticks and labels, were already handled outside of the individual plot component. In-
stead, the multi series renderers are used directly inside of a draw event that is applied
on the canvas element, and triggered whenever the plot is re-rendered.

Naturally, all of the different events, interactions and transformations that used to
apply on the old SVG elements, did not carry over when the rendering was updated.

20

William Burwall Building High-performing Web Rendering of Large Data Sets

These would all have to be re-implemented to support this style of rendering. To
provide some placeholder features, the same hover interaction as seen in the custom
plot component was added, and the ability to change the point and line sizes through
the plot settings. The zoom, pan, and sampling features also remain functional. A
snapshot of the updated trajectory plot component inside of the custom debug app,
can be seen in Fig. 13.

Figure 13: Snapshot of the regular trajectory component with updated rendering, inside
the custom debug app, plotting generated spectroscopy data from Sartorius. It shows
one point being highlighted as the user’s pointer hovers over it. The size and width
of the points and lines respectively are adjusted using the appearance tab seen on the
right.

3.5 Back-End with Apache Arrow

Combining downsampling with hardware acceleration allows for visualization of larger
data sets than before, both with good performance and detail. However, the previous
implementation requires storing and processing the data on the client side. This puts
an upper limit on the allowed size for the data sets, depending on the user’s machine.
Exceeding this size would either cause stack memory limits to be reached, or cause the
sampling procedure to take too long to run smoothly, as the app cannot be interacted
with while data are being processed. This is the main motivator behind the third part
of this project. It involves moving the burden of storing and processing the data, away
from the client, and onto a back-end server.

Therefore, I implemented a basic HTTP server in Python, and hosted it on the machine
specified in section 3.3 [22]. The client communicates with this server by sending POST
requests with the Fetch API [23]. The idea is to send the necessary information to the

21

William Burwall Building High-performing Web Rendering of Large Data Sets

server in JSON-encoded format, receive the sampled data in return, and let the rest of
program run as normal.

The server utilizes Apache Arrow, a framework for efficient in-memory processing, and
transfer, of large columnar data [24]. It has a Python library called PyArrow that
enables easy access to Arrow’s in-memory columnar format, and methods. When the
client app initiates, it will send one POST request to the server, providing the file path
to either a comma-separated values (CSV) file, or a directory of CSV files. For the
latter, all files contained within the directory are combined into a single data set. Upon
receiving this request, the server creates a PyArrow data set object. Creating this
object does not begin reading the data itself. It only infers the data set’s schema, i.e.
the names and data types of each column, as well as any metadata required in order
to convert the data back to previous formats. If a directory path was provided, it will
also crawl through the directory to find all of the files. The server will then send back
information about the number of rows, column names, unique batch names, and outer
horizontal and vertical bounds of the data set, in byte format. The client then converts
the information back into a JSON object and saves it.

Each subsequent POST request from the client provides the sampling threshold, the
currently selected column index, the currently zoomed-in bounds, and the name of the
requested sampling algorithm. In the current implementation, only the Nth-point and
LTTB algorithms are available. The server will then iterate over the data set object
using its method to batches() that returns an iterator of a record batch, which is a
smaller subset of the data. The method is also provided a filter expression that excludes
all rows that do not lie inside the provided bounds. This iterative method for reading
data removes the size limit and allows for potentially infinitely large data sets, where
the only bottleneck is how fast the server is able to process the data. Selected rows are
written into an in-memory Arrow buffer stream called BufferOutputStream() that is
sent to the client who translates it back into a table format using tableFromIPC() from
Arrow’s JavaScript library (Fig. 14). An additional benefit is that even if it takes a
noticeable amount of time to process the data, the user may still interact with the plot
without lag while data is being processed on the back-end. Figure 15 shows generated
noise data with 10 million points being reduced and plotted within the custom debug
app. The figure shows that it takes little over a second between sending the request
and receiving the reduced data from the server when using the Nth-point algorithm.

22

William Burwall Building High-performing Web Rendering of Large Data Sets

Figure 14: Schematic image of how the client communicates with the server. The
metadata returned by the server’s initial response includes the number of rows, column
names, unique batch names, as well as outer horizontal and vertical bounds of the data
set.

Figure 15: Snapshot of the regular trajectory component with updated rendering and
server-side processing, inside the custom debug app, plotting automatically generated
noise data with 10 million points. It is downsampled using the Nth-point algorithm.

23

William Burwall Building High-performing Web Rendering of Large Data Sets

4 Results

4.1 Comparison between Sampling Methods

Following the procedure described in section 3.3.2, the execution time of the various
sampling algorithms was determined and compiled into Fig. 16. The results show
that in average, the Nth-point algorithm is the most time efficient, followed by LVD,
LTTB, LPD, and lastly MMB. The execution times of the algorithms featured in Fig.
16(a) increase linearly with larger data sets which implies that those algorithms have
a linear time complexity O(n), whereas Fig. 16(b) shows that the MMB algorithm has
a polynomial time complexity O(nα), α > 1. Increasing the sampling threshold caused
minor to no changes in execution time for most algorithms except for MMB, which
received vastly improved results.

0.4 0.6 0.8 1 1.2 1.4 1.6

Number of data points 10
6

0

10

20

30

40

50

60

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Nth-point

LVD

LTTB

LPD

Sampling threshold: 200

Sampling threshold: 2000

(a)

0.4 0.6 0.8 1 1.2 1.4 1.6

Number of data points 10
6

0

10

20

30

40

50

60

70

80

90

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MMB

Sampling threshold: 200

Sampling threshold: 2000

(b)

Figure 16: Average of 10 measurements of execution time of the different sampling
methods. The lines and what algorithm they represent, are distinguished through text
labels. The legend denotes the sampling thresholds used and the error bars highlight
the standard deviation.

The survey described in section 3.3.3 was answered by 7 individuals from Sartorius, all
of which are familiar with the type of data presented in the survey. The LPD algorithm
was omitted entirely from the survey due to producing near identical results to the
LTTB algorithm. The results from the survey show that the LVD and LTTB methods
generally scored the highest while the MMB and Nth-point methods scored noticeably
less (Fig. 17). The perceived correctness of each method was significantly higher when
the sampling threshold was raised from 100 to 200.

24

William Burwall Building High-performing Web Rendering of Large Data Sets

Total Average

1.87 ± 0.2

2.23 ± 0.24

2.76 ± 0.24
2.67 ± 0.23

Nth-point MMB LVD LTTB

Sampling algorithm

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 s

c
o
re

 (
1
-4

)

(a)

Sampling Threshold: 100

1.54 ± 0.22

1.8 ± 0.28

2.34 ± 0.32
2.17 ± 0.28

Nth-point MMB LVD LTTB

Sampling algorithm

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 s

c
o
re

 (
1
-4

)

(b)

Sampling Threshold: 200

2.2 ± 0.31

2.66 ± 0.33

3.17 ± 0.31 3.17 ± 0.26

Nth-point MMB LVD LTTB

Sampling algorithm

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 s

c
o
re

 (
1
-4

)

(c)

Figure 17: The results of the correctness survey. (a) shows the average score across all
10 questions whereas (b) and (c) show the average across all odd and even questions
respectively. All odd questions used a sampling threshold of 100 whereas the even
questions used a sampling threshold of 200. The error bars denote a 95% confidence
interval, assuming that the provided scores follow a normal distribution.

4.2 Effects of WebGL Rendering and Back-End Sampling

Using the hardware specifications and browser mentioned in section 3.3, the limit of
how many data points that could be included without noticeable lag when zooming
in on the regular trajectory plot, was around 200-300 when SVG rendering was used.
Rendering using D3FC with WebGL, either within the custom or the regular plot
component, increased this limit to about 80,000-100,000 points. Integrating back-end
sampling together with Apache Arrow removes the storage and processing limitations
set by the user’s machine and provides a smoother experience due to the removal of
non-interactive time while data is being reduced.

25

William Burwall Building High-performing Web Rendering of Large Data Sets

5 Discussion

5.1 Sampling Discussion

Although the different algorithms may be described as more or less correct than others
according to the survey results, the margin of error leaves room for the ”true” rankings
to be different.

5.1.1 Comments on Nth-point

As expected, the Nth-point method was both the fastest and the least correct algorithm.
An interesting outcome is that the Nth-point method’s average score when the sampling
threshold was set to 200, was almost higher than all of the other methods when the
sampling threshold was set to 100 (Fig. 17(b) and 17(c)). This implies that increasing
the sampling threshold can be just as, if not more significant for the quality of the
results than simply using a ”better” method. The impact of increasing the sampling
threshold is likely smaller at higher thresholds though.

5.1.2 Comments on Mode-Median-Bucket

As mentioned in section 2.1.2, the MMB method will most likely always resort to
choosing the median point of each bucket if the data set contains floating point numbers.
This was true for all test data sets which was unfavorable for this method, ranking it
below LVD and LTTB. It is likely its forced inclusion of the global peak and trough,
that gave it better scores than the Nth-point method. Furthermore, the MMB method
uses nested loops through buckets in order to count the number of occurrences of each
value. This is the cause behind its polynomial time complexity, rendering it unsuitable
to handle large data sets. Increasing the sampling threshold reduces the size of each
bucket, cutting down the impact of the nested loops, which shortens the execution time
(Fig. 16(b)).

5.1.3 Comments on Largest-Vertical-Deviation

LVD performed surprisingly well, being almost twice as fast as the LTTB and LPD
methods, while still outperforming them in the survey. This is likely due to it being
slightly better at prioritizing deviations, which was a highly valued attribute among
data scientists from Sartorius. With the two methods being so even however, it is very
possible that their placements could have been switched if different test data were used,
or if more individuals participated in the survey.

5.1.4 Comments on Largest-Triangle-Three-Buckets

It came as a surprise that this algorithm did not rank the highest on the correctness
survey, though this could be coincidental as discussed in section 5.1.3. Choosing points
based on which one generates the largest triangle can be interpreted as choosing which
point generates the largest error if excluded. If a numerical quantification of error was

26

William Burwall Building High-performing Web Rendering of Large Data Sets

conducted, it is likely that the LTTB method would triumph over the LVD method in
many cases.

5.1.5 Comments on Longest-Perpendicular-Distance

This algorithm was omitted entirely from the survey in order to not confuse respondents
since the downsampled plots generated with it looked identical to the ones generated
by using the LTTB method. The LTTB method was prioritized since it was slightly
faster on average compared to the LPD method (Fig. 16(a)). There does exist cases
where the point with the longest perpendicular distance does not necessarily form the
largest triangle, but these cases were not highlighted with the test data used. Because
of the similarities between the two methods, it can be assumed that LPD is on par with
LTTB in terms of correctness.

5.1.6 General Comments

Most of the algorithms implemented in this thesis use the same bucket dividing strat-
egy which comes with its own flaws. If multiple local outliers reside within the same
bucket, only one may be kept. Although this issue can be alleviated by increasing the
sampling threshold, it would be interesting to explore other solutions. For example,
Sveinn Steinarsson showcased a variant of the Largest-Triangle algorithm that utilizes
dynamic bucket sizes that increase over smooth sections, and grow smaller over rough
sections [6]. As expected however, this method was significantly more computationally
expensive than LTTB. Another example would be to use the original Visvaling-Whyatt
or Douglas-Peucker algorithms without splitting the data into buckets. However, this
would make it difficult to accurately control the number of included points while also
ensuring that they are spread out, i.e. not excluding large portions of the data. In
general, it would be a good idea to allow users to control the level of generalization
themselves through the settings tab if they want to fine-tune the thresholds for their
specific data.

Originally, the evaluation of correctness was supposed to include both a survey and
a numerical quantification of error. The plans for the latter were shelved early on in
order to save time for the other parts of the project. In retrospect, it could have been
a better idea to include the numerical quantification instead of the survey. This is due
to the small amount of participants in the survey, which led to large uncertainties in
the results.

5.2 Hardware Acceleration Discussion

Improving the rendering capabilities was an integral part of this project, allowing both
good performance with large data sets when combined with downsampling, as well as
high detail. It does come with a cost of additional development time though, not only
because it is more demanding to work with, but also because much of the code for the
plot components would have to be re-implemented. For the sake of this thesis, I put

27

William Burwall Building High-performing Web Rendering of Large Data Sets

little concern into making sure that the implementations made are as well integrated
as possible into the systems they are in. For example, there exists a base plot that is
inherited by the plot components, including the trajectory plot. To draw the WebGL
canvas without modifying the base class, its render method had to be overridden in
the trajectory class. This is because even the base plot class is built around drawing
the plots using SVG. Much like the rest of the work done in this thesis, the current
implementation is only intended as a proof of concept and only has a few select features
added to show that it can be done.

A general concern with hardware acceleration is its level of support among users. When
it comes to WebGL and pure browser support, over 98% of global users are covered,
including users of both desktop and mobile devices [25]. However, WebGL is also
dependent on GPU support, which differs between both browsers and platforms. For
example, the Google Chrome browser on all versions of Windows, has WebGL disabled
on all graphics drivers older than January 1st, 2009 [26]. As long as the user does
not have a heavily outdated browser or graphics driver, they should most likely have
WebGL supported. For any cases where it is not, a simple but costly solution would
be to use SVG instead, but that would require development and maintenance of both
the SVG and WebGL alternatives.

5.3 Back-End Discussion

Conducting work outside of the UI components environment in Studio was originally
outside the scope of this project. This is why I originally implemented the downsam-
pling methods on the client-side, directly inside the debug app. Eventually, I made the
decision to include this part to take the burden away from the client. That would be
a necessary step if one wants to push the data set size limit beyond just a few million
points without putting significant hardware demands on the user.

However, due to the small amount of remaining time when starting with this part, it
ended up relatively underdeveloped compared to the previous two parts of this project.
The original idea was to write something that integrates cloud computations to some
capacity, but this was quickly reduced to simply developing a basic test server that could
be hosted via the work computer. While the current implementation fulfills the goal
of allowing infinitely sized data sets without memory issues, it is also disappointingly
slow. Sampling data with the Nth-point method takes more than 10 times as long when
done via the back-end server compared with the debug app. Aside from more optimal
use of the Apache Arrow library, the performance could potentially be improved by
implementing the server in a low-level language like C++ instead of Python. Another
improvement would be to integrate Apache Arrow Flight, which unfortunately was
excluded in the current implementation due to a lack of time.

28

William Burwall Building High-performing Web Rendering of Large Data Sets

6 Conclusion

My findings indicate that downsampling can effectively allow large datasets to be visual-
ized without rendering issues. According to the survey, LTTB and LVD were generally
the most popular. Combining downsampling with hardware acceleration allows for
much greater detail due to enabling a much higher number of rendered points. Process-
ing data on the back-end with Apache Arrow removes the limitations set by the user’s
device and allows for infinitely sized data sets without memory issues.

All solutions presented were developed and showcased as proof of concepts inside a
debug application. Therefore, additional development is required before they can be
incorporated into the data analysis software from Sartorius. If the development costs
for WebGL are deemed too great, I would propose using canvas without WebGL as an
intermediate solution.

29

William Burwall Building High-performing Web Rendering of Large Data Sets

References

[1] ”Multivariate Data Analysis Software That Turns Data Into Growth”,
Sartorius.com, Accessed: May 15, 2023. [Online]. Available: https:
//www.sartorius.com/en/products/process-analytical-technology/data-analytics-
software/mvda-software/simca

[2] ”What is Multivariate Data Analysis (MVDA)?”, Sartorius.com, Dec. 3, 2020.
Accessed: Jan. 26, 2023. [Online]. Available: https://www.sartorius.com/en/
knowledge/science-snippets/data-analytics-for-beginners-how-multivariate-data-
analysis-can-separate-the-players-from-the-gorillas-507202

[3] ”Umetrics® Studio Data Analytics Ecosystem”, Sartorius.com, Accessed: May
15, 2023. [Online]. Available: https://www.sartorius.com/en/products/process-
analytical-technology/data-analytics-software/umetrics-studio?utm source=
google&utm medium=cpc&utm campaign=ww en search Umetrics:Cell Insights&
gclid=EAIaIQobChMI4J2Iopz3 gIVGLnVCh3DgwwbEAAYASAAEgKX4PD
BwE#id-1184324

[4] P. Godfrey, J. Gryz and P. Lasek, ”Interactive Visualization of Large Data Sets,” in
IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 8, pp. 2142-
2157, Aug. 1, 2016. DOI: 10.1109/TKDE.2016.2557324.

[5] ”Frequently asked questions”, DataMarket. Accessed: May 24, 2023. [Online]. Avail-
able: https://en.datamarket.es/faq

[6] S. Steinarsson, ”Downsampling Time Series for Visual Representation”, M.Sc. the-
sis, Faculty of Industrial Engineering, Mechanical Engineering and Computer Sci-
ence., School of Engineering and Natural Sciences, University of Iceland, Reykjavik,
Jun. 2013.

[7] K. E. Brassel, R. Weibel, ”A review and conceptual framework of automated map
generalization”, International Journal of Geographical Information Systems, 2 (3):
229–244, 1988. DOI: 10.1080/02693798808927898.

[8] M. Visvalingam, J. D. Whyatt, ”Line generalisation by repeated elim-
ination of points”, Cartographic Journal, 30 (1): 46–51, 1993. DOI:
10.1179/000870493786962263

[9] D. H. Douglas, T. K. Peucker, ”Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature”, Carto- graphica: The
International Journal for Geographic Information and Geovisu- alization, 10 (2):
112–122, 1973.

[10] ”Microservice architectures: more than the sum of their parts?”, IONOS, Dig-
italguide. Accessed: Apr. 11, 2023. [Online]. Available: https://www.ionos.com/
digitalguide/websites/web-development/microservice-architecture/

30

https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/knowledge/science-snippets/data-analytics-for-beginners-how-multivariate-data-analysis-can-separate-the-players-from-the-gorillas-507202
https://www.sartorius.com/en/knowledge/science-snippets/data-analytics-for-beginners-how-multivariate-data-analysis-can-separate-the-players-from-the-gorillas-507202
https://www.sartorius.com/en/knowledge/science-snippets/data-analytics-for-beginners-how-multivariate-data-analysis-can-separate-the-players-from-the-gorillas-507202
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/umetrics-studio?utm_source=google&utm_medium=cpc&utm_campaign=ww_en_search_Umetrics:Cell_Insights&gclid=EAIaIQobChMI4J2Iopz3_gIVGLnVCh3DgwwbEAAYASAAEgKX4PD_BwE#id-1184324
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/umetrics-studio?utm_source=google&utm_medium=cpc&utm_campaign=ww_en_search_Umetrics:Cell_Insights&gclid=EAIaIQobChMI4J2Iopz3_gIVGLnVCh3DgwwbEAAYASAAEgKX4PD_BwE#id-1184324
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/umetrics-studio?utm_source=google&utm_medium=cpc&utm_campaign=ww_en_search_Umetrics:Cell_Insights&gclid=EAIaIQobChMI4J2Iopz3_gIVGLnVCh3DgwwbEAAYASAAEgKX4PD_BwE#id-1184324
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/umetrics-studio?utm_source=google&utm_medium=cpc&utm_campaign=ww_en_search_Umetrics:Cell_Insights&gclid=EAIaIQobChMI4J2Iopz3_gIVGLnVCh3DgwwbEAAYASAAEgKX4PD_BwE#id-1184324
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/umetrics-studio?utm_source=google&utm_medium=cpc&utm_campaign=ww_en_search_Umetrics:Cell_Insights&gclid=EAIaIQobChMI4J2Iopz3_gIVGLnVCh3DgwwbEAAYASAAEgKX4PD_BwE#id-1184324
https://en.datamarket.es/faq
https://www.ionos.com/digitalguide/websites/web-development/microservice-architecture/
https://www.ionos.com/digitalguide/websites/web-development/microservice-architecture/

William Burwall Building High-performing Web Rendering of Large Data Sets

[11] ”What is Lit?”, Lit, lit.dev. Accessed: May 11, 2023. [Online]. Available: https:
//lit.dev/docs/

[12] ”Component”, React, react.dev. Accessed: Apr. 12, 2023. [Online]. Available:
https://react.dev/reference/react/Component

[13] M. Bostock, ”Data-Driven Documents”, D3, d3js.org, 2021. Accessed: Apr. 12,
2023. [Online]. Available: https://d3js.org/

[14] C. Eberhardt, ”Rendering One Million Datapoints with D3 and WebGL”, Scott
Logic, May 1, 2020. Accessed: Apr. 12, 2023. [Online]. Available: https://blog.
scottlogic.com/2020/05/01/rendering-one-million-points-with-d3.html

[15] ”FRED, federal reserve economic data”, St. Louis, MO: Federal Reserve Bank of
St. Louis, 1997. Software, E-Resource. Accessed: Mar. 24, 2023. [Online]. Available:
https://lccn.loc.gov/98802805https://lccn.loc.gov/98802805

[16] ”Date.now()”, Mozilla, MDN Web Docs, Feb. 28, 2023. Accessed: Mar. 29, 2023.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global Objects/Date/now

[17] ”Get insights quickly, with Google Forms”, Google Forms, google.com, Accessed:
Apr. 5, 2023. [Online]. Available: https://www.google.com/forms/about/

[18] ”WebGL: 2D and 3D graphics for the web”, Mozilla, MDN Web Docs, Feb. 23,
2023. Accessed: Apr. 17, 2023. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Web/API/WebGL API

[19] ”Components to rapidly build fast, highly customisable, interactive charts with
D3”, D3FC, Accessed: Apr. 14, 2023. [Online]. Available: https://d3fc.io/

[20] ”<canvas>: The Graphics Canvas element”, Mozilla, MDN Web Docs, Apr. 13,
2023. Accessed: Apr. 17, 2023. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Web/HTML/Element/canvas

[21] S. Lu, ”D3-ANNOTATION”, d3-annotation. Accessed: Apr. 17, 2023. [Online].
Available: https://d3-annotation.susielu.com/

[22] ”http.server — HTTP servers”, docs.python.org, Accessed: May 16, 2023. [Online].
Available: https://docs.python.org/3/library/http.server.html

[23] ”Using the Fetch API”, Mozilla, MDN Web Docs, Apr. 3, 2023. Accessed:
May 16, 2023. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
API/Fetch API/Using Fetch

[24] ”Apache Arrow”, arrow.apache.org, Accessed: May 16, 2023. [Online]. Available:
https://arrow.apache.org/docs/index.html

31

https://lit.dev/docs/
https://lit.dev/docs/
https://react.dev/reference/react/Component
https://d3js.org/
https://blog.scottlogic.com/2020/05/01/rendering-one-million-points-with-d3.html
https://blog.scottlogic.com/2020/05/01/rendering-one-million-points-with-d3.html
https://lccn.loc.gov/98802805https://lccn.loc.gov/98802805
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://www.google.com/forms/about/
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://d3fc.io/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://d3-annotation.susielu.com/
https://docs.python.org/3/library/http.server.html
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://arrow.apache.org/docs/index.html

William Burwall Building High-performing Web Rendering of Large Data Sets

[25] A. Deveria, [Website with browser support tables for modern web technologies],
caniuse.com, Accessed: May 22, 2023. [Online]. Available: https://caniuse.com/
?search=webgl

[26] ”BlacklistsAndWhitelists”, Khronos Group, khronos.org, Jun. 3, 2015. Ac-
cessed: May 22, 2023. [Online]. Available: https://www.khronos.org/webgl/wiki/
BlacklistsAndWhitelists

32

https://caniuse.com/?search=webgl
https://caniuse.com/?search=webgl
https://www.khronos.org/webgl/wiki/BlacklistsAndWhitelists
https://www.khronos.org/webgl/wiki/BlacklistsAndWhitelists

	Introduction
	Project Goals
	Project Boundaries
	Outline

	Sampling Strategies
	Intuitive Strategies
	Nth-Point
	Mode-Median-Bucket
	Largest-Vertical-Deviation

	Cartographic Strategies
	Largest-Triangle-Three-Buckets
	Longest-Perpendicular-Distance

	Components and Methods
	D3 and Plot Component
	Implementation of Sampling Methods
	Plot Component Modifications

	Evaluation of Sampling Methods
	Data Acquisition
	Time Efficiency
	Correctness

	Hardware Acceleration
	Custom Plot Component
	Updating the Trajectory Plot Rendering

	Back-End with Apache Arrow

	Results
	Comparison between Sampling Methods
	Effects of WebGL Rendering and Back-End Sampling

	Discussion
	Sampling Discussion
	Comments on Nth-point
	Comments on Mode-Median-Bucket
	Comments on Largest-Vertical-Deviation
	Comments on Largest-Triangle-Three-Buckets
	Comments on Longest-Perpendicular-Distance
	General Comments

	Hardware Acceleration Discussion
	Back-End Discussion

	Conclusion
	References

