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Abstract

This thesis introduces the tool Lovelace which is used to generate corpora of
semantic graphs to investigate which functionalities and design- as well as im-
plementation aspects that are important in a corpus generator. Lovelace uses the
graph grammar formalism graph extension grammar (GEG) to generate these
corpora. A GEG consists of two parts, regular tree grammar (RTG) and graph op-
erations. A tree generated by an RTG is used as an instruction of how the graph
operations are applied to create a semantic graph. Since Lovelace can express
variables as word classes the combination of semantic graphs and well-formed
word classes means that the corpus generated by Lovelace is well-formed. In ad-
dition, Lovelace enables the user to configure parameters to specify the corpus
generated. These corpora could be used as a tool to translate and process natural
language. The thesis ends with a discussion about which parts are missing and
what could be improved in the corpus generator, along with new insights into
which functionalities are important for a user of a corpus generator.
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1 Introduction

One way of representing natural language is by using formal graph language [1] to model
semantic graphs. This is because graph languages are both flexible and versatile when it
comes to representing the human language. In a semantic graph, the nodes represent concepts
and the edges represent relations between these concepts. An example of semantic graphs is
AMRs [1].

There is a multitude of graph grammar formalisms that can represent natural language,
each with its pros and cons. One of these graph grammars is graph extension grammar (GEG)
[2] which is able to create a corpus of semantic graphs through the use of trees generated by
a regular tree grammar in combination with graph operations. A corpus of semantic graphs
is a structured resource of semantic graphs.

The goal of this thesis is to answer two questions:

1. What would be useful functionalities in a semantic graph corpus generator?

2. What are the requisite design considerations that must be taken into account for the
successful implementation of a semantic graph corpus generator based on the graph
extension grammar formalism?

To investigate these questions this thesis presents an implementation of a program that
generates a corpus of semantic graphs by using GEG. The design decisions during the pro-
cess of implementing the program are documented in the thesis. These decisions make it
possible to analyze the pros and cons of the corpus-generating program. It also enables com-
puter scientists to question which decisions were made and if there are any improvements to
these decisions. The reason for creating the program is to create a tool that can automatically
generate a corpus of semantic graphs.

The program is called Lovelace and can automatically generate a corpus of semantic graphs
through the use of a GEG. Lovelace parses the trees into graphs by creating a graph for each
tree based on the graph operations the tree represents. Each node in the tree must represent
a graph operation in the given GEG grammar.

The idea is that Lovelace can enable the creation of semantic graph corpora researcher’s
field of interest which can assist them in solving natural language problems. It is also useful
since there is no earlier implementation of a corpus generator based on GEG it leads to valu-
able information for future researchers that want to implement a corpus generator based on
GEG.

Moving on to the structure of the thesis. Section 2 describes abstract meaning represen-
tation and explains the graph grammars HRG and CHRG which are closely related to GEG.
Section 3 has two parts which include preliminaries which are required to understand GEG
and a description of what GEG is. In Section 4 the implementation and design decisions of
Lovelace are described in, the section ends with an example run of Lovelace. The aspects of
implementing and designing Lovelace are discussed in Section 5 as well as a discussion of
what could be viable implementations in the future. The thesis ends with a summary of the
research question and how they were answered in Section 6.
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2 Related work

This chapter introduces articles that are related to natural language generation. Langkilde and
Knight [1] explain a specific type of semantic graph called abstract meaning representation
(AMR) while Drewes and Kreowski [3] and Drewes et al. [4] describe the graph grammarsHRG
and CHRG which can be used to generate semantic graphs to represent natural language.

Langkilde and Knight [1] describe that there are two main methods for generating natural
language, either using a natural language-generating template or a natural language genera-
tor (NLG). Templates are a static set of descriptions that are used to generate language objects
over a specific domain whileNLG can generate general-purpose and domain-independent nat-
ural language [1]. The advantage of templates is that they do not use any linguistic decision-
making and do not consider complex knowledge resources and processing. There is no need
for knowledge about gender, definiteness, tense, lexical items, etc [1]. The flaw with templates
is that they are limited in what they can generate since they do not provide the flexibility,
expressiveness, or scalability which is needed for a multitude of domains. Yet, before the in-
troduction of AMR (which is a labelled directed graph that is used to represent semantics),
templates were primarily used since the earlier NLGs were complex and required too many
parameters which meant that it was easier to use templates. The earlierNLGs required sophis-
ticated and large grammars, lexicons, ontologies, morphological tables, and collocation lists.
When Langkilde and Knight [1] introduced AMR there was no longer a need for the excessive
and extreme amount of knowledge that was required before the introduction of AMR. AMR
made it possible to take in a string expressed as a meaning and use a lexicon combined with
an AMR to generate a word lattice. Langkilde and Knight [1] also introduced their own NLG
called Nitrogen which used AMR, but it was the introduction of AMR that had a larger impact
on the field of natural language generation. The reason for this is that AMR made it possible
to handle a large range of linguistic phenomena in a less complex way than previously.

Drewes and Kreowski [3] introduce the formalism HRG which is able to generate graph
languages and thereby can handle AMR-based graph languages. As Drewes and Kreowski
[3] explain in their paper, a hyperedge is an edge that has a fixed number of tentacles. Each
tentacle connects to a node and therefore a hyperedge controls a sequence of nodes. These
hyperedges can have both terminal and nonterminal labels. The hyperedge is replaced by
a graph that matches the number of tentacles of the hyperedge. A graph that includes hy-
peredges is called a hypergraph. When no more nonterminals remain in the hypergraph the
graph is in the language. This is very similar to context-free grammar, Drewes and Kreowski
[3] provides a lemma to prove that HRG is context-free. This means that HRG is able to ex-
press context-free languages which are very powerful when it comes to natural language
processing/generating.

Jonsson [5] proves that HRG is unable to generate the complete set of AMRs 1 over a given
conceptual domain. Drewes and Jonsson [6] explains that the reason why HRG is unable to
generate every possible AMR for some graph languages is that a hyperedge controls a fixed
number of nodes (based on the number of tentacles) a derivation of a hyperedge leads to the

1The complete set of AMRs is every possible AMR that can be generated by the combinations of the concepts
in a specific domain.
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loss of control of the set of nodes any new hyperedge does not hang on to. When control of
a set of nodes is lost there is no way to reach these nodes again since productions in HRG
extend upon each other. Therefore Drewes et al. [4] presents a generalization of HRG called
contextual hyperedge replacement grammar (CHRG). The generalization is done by extending
context-free rules to contextual rules. The extension introduces the possibility of reaching
back to nodes that are no longer in the set of controlled nodes, this is done by the introduction
of contextual nodes. A contextual node is all nodes that are no longer in the set of controlled
nodes. With the introduction of contextual nodes, the graph which replaced the hyperedge is
able to nondeterministically choose any previously generated contextual node with a specific
label that does not have to be in the set of controlled nodes of the hyperedge. These contextual
nodes make it possible to represent all possible AMRs of a specific conceptual domain, it also
reduces the size of the grammar since the grammar is able to use more than just the external
nodes of the hyperedge when deriving the nonterminal of a hyperedge [4], thus increasing
the expressiveness of a rule in CHRG.
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3 Graph extension grammar

This section describes graph extension grammar which is a variant of the graph grammar
CHRG [2]. An advantage of GEG compared to CHRG is that all edges of a node are introduced
instantly when a node is created. Given the instant introduction of edges, it allows GEG to
parse in non-uniform polynomial time. As explained in Section 1 GEG has two parts, graph
operations and an RTG such as the one from Definition 3. An RTG is employed to construct
derivation trees, with each tree node encompassing a single graph operation. A bottom-up
traversal of the tree is executed to signify the sequence in which the graph operations are
executed. The derivation tree can be perceived as an instructional guide on which order the
graph operations should be applied. The result when the graph operations have been applied
is a graph within the language of GEG. To enable a correct description of GEG it is required
to explain some underlying concepts.

3.1 Preliminaries

Preliminaries consist of basic definitions to enable the definition of GEG formalism. These
definitions are based on automata theory and discrete mathematics which are adapted from
the ones in Björklund et al. [2]’s and Stade [7]’s papers. The set of natural numbers (including
0) is denoted by N. The power set (a set of all subsets) of a set 𝑆 is denoted by ℘(𝑆). All finite
sequences of a set 𝑆 are denoted by 𝑆∗, and all finite sequences with no element of 𝑆 that occur
more than once are written as 𝑆⊛ . Both 𝑆∗ and 𝑆⊛ contains the empty sequence Y.

The canonical extensions of a function 𝑓 : 𝑆 → 𝑇 to ℘(𝑆) and 𝑆∗ are denoted by function
𝑓 . This means that 𝑓 (𝑠1 · · · 𝑠𝑛) = 𝑓 (𝑠1) · · · 𝑓 (𝑠𝑛) for 𝑠1, . . . , 𝑠𝑛 ∈ 𝑆 , and 𝑓 (𝑆 ′) = {𝑓 (𝑠) | 𝑠 ∈ 𝑆 ′}
for 𝑆 ′ ∈ ℘(𝑆) [2].

To be able to understand the description of GEG there is a need to define the graph, tree,
and the RTG used in this thesis.

Since graph grammars are based on the usage of graphs the first definition described is
the definition of a graph. The graph grammar that is explored in this thesis is based on graphs
that allow multiple edges (also known as multi-graphs), therefore the graphs defined in this
section are multi-graphs.

Definition 1 (Graph). A tuple L = ( ¤L, L̄) of two finite sets ¤L and L̄ containing labels is a
labelling alphabet. A graph over L is a quadruple 𝑔 = (𝑉 , 𝐸, 𝑙𝑎𝑏, 𝑝𝑜𝑟𝑡), where

• 𝑉 is a finite set of nodes,

• 𝐸 ⊆ 𝑉 × L̄ ×𝑉 is a set of finite edges,

• lab : 𝑉 → L is a labelling function for nodes, and

• 𝑝𝑜𝑟𝑡 ∈ 𝑉 ⊛ is a finite amount of specially marked nodes.

The definition requires a graph to have labelled nodes and labelled directed edges. In
addition to the labels, some nodes are marked as 𝑝𝑜𝑟𝑡 nodes. These marked nodes enable the
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graph operations, extension operation and disjoint union operation, which are explained in
Section 3.2.

Given that the set of nodes 𝑉 is finite, it implies that the alphabet L̄ is finite as well. If L̄
is finite then (by definition) the set of edges E is finite as well. A graph G has a type which
is defined by type(𝐺) = |port | and the type 𝜏 of a graph is denoted by G𝜏 . An empty graph
(Ø,Ø, 𝑙𝑎𝑏, Y) is denoted by Y.

Given a ranked alphabet 𝐴 = (Σ, 𝑟𝑘) where Σ is a set of finite symbols, 𝑟𝑘 = Σ → N.
There is a function used to apply a rank to every 𝑓 ∈ Σ, 𝑓 (𝑘 ) indicates rk(𝑓 ) = 𝑘 and keep rk
implicit we are able to define a tree.

Definition 2 (Tree). The set of all well-formed trees 𝑇Σ over the ranked alphabet Σ is the mini-
mum set of expressions such that for all 𝑓 (𝑘 ) ∈ Σ and every tree 𝑡1, . . . , 𝑡𝑘 ∈ TΣ we have:

• 𝑓 [𝑡1, . . . , 𝑡𝑘 ] ∈ TΣ and

• 𝑓 [] for 𝑘 = 0, which is abbreviated by 𝑓 ∈ TΣ.

Given the definition of trees, a set of trees can be defined with the help of a regular tree
grammar (RTG). Therefore RTG is defined.

Definition 3 (Regular tree grammar). A regular tree grammar (RTG) is defined as a tuple
(𝑁, Σ, 𝑃, 𝑆) and includes the following components:

• 𝑁 is a ranked alphabet of all symbols with rank 0, this alphabet is called nonterminals.

• Σ is a ranked alphabet which is disjoint with 𝑁 , this alphabet is called terminals.

• 𝑃 is a set of finite productions of the form 𝑅 → 𝑓 [𝑅1, . . . , 𝑅𝑘 ] where, for some values of
𝑘 ∈ N, 𝑓 (𝑘 ) ∈ Σ, and 𝑅, 𝑅1, . . . , 𝑅𝑘 ∈ 𝑁 .

• 𝑆 ∈ 𝑁 is the initial nonterminal of the RTG.

To show an example of how a tree can be built through the use of an RTG we use the RTG:

1 𝑠 → zs4(u)

2 𝑠 → sx

3 𝑢 → u(s’ s)

4 𝑠′ → s’x

The visualization of the generated tree is depicted in Figure 1
The symbol⇒𝑥 denotes the application of an RTG rule, where 𝑥 indicates the specific rule

that has been applied. The tree 𝑧𝑠4(𝑢 (𝑠′𝑥𝑠𝑥)) is derived in the following way:

𝑠 ⇒1 𝑧𝑠4(𝑢) ⇒3 𝑧𝑠4(𝑢 (𝑠′ 𝑠)) ⇒4 𝑧𝑠4(𝑢 (𝑠′𝑥 𝑠)) ⇒2 𝑧𝑠4(𝑢 (𝑠′𝑥 𝑠𝑥))

Given these definitions, we are able to express graph extension grammar.
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𝑢

𝑧𝑠4

𝑠′𝑥 𝑠𝑥

Figure 1: A visualization of a tree based on the tree string 𝑧𝑠4(𝑢 (𝑠′𝑥 𝑠𝑥)).

3.2 Description of graph extension grammar

To be able to extend the given graph 𝑔 = (𝑉 , 𝐸, 𝑙𝑎𝑏, 𝑝𝑜𝑟𝑡) by applying graph operations one
has to define an extension operation [2]. The extension operation is defined as a graph with
the additional component dockΦ: Let

Φ = (𝑉Φ, 𝐸Φ, labΦ, portΦ, dockΦ)

Before moving forward there is a need to introduce requirements for the extension operation.
The extension operation is required to extend ‘on top‘ of the underlying graph, similar to how
the rules in CHRG are applied. This is required since the graph is built bottom-up. This also
means that all nodes in the underlying graph are reachable from the ports. It also requires
that only ports in the extension operation can have outgoing edges, ports in the underlying
graph carry only receiving edges. This results in the following formal requirements [2]:

R1 When extending an underlying graph the source node of an edge has to be a new node
(which also is a port) and the target node has to already exist in the underlying graph
before the extension.

R2 The target node of an edge has to be a dock but can not be a port as well.

R1 ensures that all graphs generated by GEG are DAGs while R2 requires all nodes within
the graph to be reachable by the ports.

Given the graph Φ = (𝑉Φ, 𝐸Φ, labΦ, portΦ) representing the underlying graph of the exten-
sion operation Φ [2]. The addition of the component dockΦ transform Φ from a graph into
an extension operation since dockΦ makes it possible to connect the extension operation to a
graph 𝐺 = (𝑉 , 𝐸, 𝑙𝑎𝑏, 𝑝𝑜𝑟𝑡). To be able to apply an extension operation to an existing graph
G it requires 𝐺𝜏 = |dockΦ | [2]. This is because dockΦ are fused with port𝐺 . Fusing means that
the port nodes in 𝑝𝑜𝑟𝑡𝐺 take the position of the docks in dockΦ in the resulting graph. If the
dock node was both a dock- and port node the node in the resulting graph is a port node else
it is a node without a port or dock. The application of the extension operation Φ on the graph
𝐺 leads to a new graph:

G′ = (𝑉Φ ∪𝑉 , 𝐸Φ ∪ 𝐸, labΦ ∪ lab, portΦ)

There are also extension operations that fuse with contextual nodes, contextual nodes are
nodes in the underlying graph that does not have a port. Contextual nodes can be expressed
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as 𝐶 = 𝑉 /𝑝𝑜𝑟𝑡 . The way the fusing is done between contextual nodes in Φ and contextual
nodes in 𝐺 is by matching the node name. If a contextual node with the same node name as
the contextual node in Φ exists the nodes are fused. If multiple contextual nodes with that
specific node name exist the contextual node is chosen in a non-deterministic way. The fusing
between the contextual node inΦ and a contextual node is only possible if the contextual node
has a node name (which is not the case when docks fuse with ports) [2].

The second operation is the disjoint union operation. This operation concatenates the port
sequences of the argument graphs 𝐺 and 𝐺 ′ [2]. Let the graphs 𝐺 and 𝐺 ′ have the types 𝜏
and 𝜏 ′ where 𝜏, 𝜏 ′ ∈ N. This gives 𝐺 ∈ G𝜏 and 𝐺 ′ ∈ G𝜏 ′ . A disjoint union operation over
these argument graphs ⊎𝜏𝜏 ′ (𝐺,𝐺 ′) results in the graph 𝐺𝜏+𝜏 ′ which is the result of making
the disjoint union of the graphs 𝐺 and 𝐺 ′. Although this sound simple there might occur
problems if the argument graphs have nodes with the same underlying name (unique node
number). How to handle this problem is discussed in Section 4.3.

The graphs𝐺 ∈ G𝜏 and𝐺 ′ ∈ G𝜏 ′ , ⊎𝜏𝜏 ′ (𝐺,𝐺 ′) yields the graph inG𝜏+𝜏 ′ obtained by making
the two graphs disjoint by a suitable renaming of nodes and taking their union [2].

An effect of the two types of graph operations is that the generated semantic graph does
not have any cycles. The reason for this is that the definition of the graph used in GEG has
directed edges combined with the fact that both the extension operation and disjoint union
operation are unable to create cycles. The extension operation is always applying outgoing
edges from the nodes in the operation to nodes in the underlying graph and the disjoint union
never introduces any new edges. Since there are no cycles and the edges are directed in the
generated graph the graph can be seen as a directed acyclic graph (DAG). Thus, all graphs
generated by GEG are DAGs.

By considering the graph operations and Definition 2, a formal definition of GEG is intro-
duced in Definition 4.

Definition 4 (Graph extension grammar). Given a tree grammar 𝑔 over an alphabetA where
every symbol corresponds to a graph operation we define GEG as a pair 𝐺 = (𝑔,A):

• A is an algebra of graph operations and

• 𝑔 generates well-formed trees over A.

• Every tree generated from 𝑔 is transformed into a graph by evaluation with respect to A.

• Every tree generated by 𝑔 is evaluated bottom-up.

In Figure 5 an example of a GEG is shown. The GEG is an example of anA combined with
the RTG depicted in Listing 4.1. Since the RTG include every possible graph operation in A,
A and 𝑔 are seen as a correct pairing.

To show a use case of GEG we combine the RTG used as an example in Definition 3 with
an A where the symbols represent the graph operations shown in Figure 2. Recall the tree
𝑧𝑠4(𝑢 (𝑠′𝑥 𝑠𝑥)) visualised in Figure 1. Since the tree was generated by the RTG it is in the
language of the RTG which enables the GEG to derive the tree into a graph. Note that every
operation used while deriving is in Figure 2 along with the name of the operation.

Since the evaluation of GEG is done bottom-up, the first operation applied is the extension
operation s’x. s’x creates a port node with the node name x and port number one. The port is
depicted by a number above the node (shown in Figure 2. When an operation is applied the
tree node representing the operation is removed. The remaining tree and graph from applying
s’x is shown in Figure 3(a). The second operation applied is another extension operation
called sx. This operation creates a new graph that is identical to the graph created by s’x. The

7



𝑢 : 𝑆 ′ ⊎11 𝑆

𝑠 : 𝑥

1

𝑠′𝑥 : 𝑥

1

𝑠𝑧4 :

𝑧

1

(1) (2)

ar
g0

arg1

Figure 2: An illustration of the graph operations s’x, sx, sz4 and u where the
variables are defined in the following way: 𝑥 ∈ {girl,boy} and 𝑧 ∈
{want,believe}. Making the GEG able to generate semantic graphs that could
for example express the sentence ´boy believes girl´. In the illustration one can see
the ports represented as numbers above the nodes while the docks are represented
under a port node on the format (< 𝑑𝑜𝑐𝑘 𝑛𝑢𝑚𝑏𝑒𝑟 >).

two graphs and the remaining tree is shown in Figure 3(b). The third operation applied is a
disjoint union operation u, which has the requirement of taking two underlying graphs in
the state of the nonterminals s’ and s depicted in Figure 2. Each argument graph is required
to have strictly one port each indicated by the numbers next to the symbol ⊎11 in Figure 2.
The u operation combines the two underlying graphs into a single graph which represents
the disjoint union of the graphs. In addition, all disjoint union operations concatenate the
ports and make them into a sequence of ports where each port number is unique. The result
of applying u to the underlying graph is depicted in Figure 4(a). The last operation is an
extension operation zs4 which is illustrated in Figure 2. The operation includes the port node
z with port number one which has two outgoing edges to two dock nodes. The outgoing edges
have the arguments arg0 and arg1. The dock nodes are illustrated as nodes without labels and a
number surrounded by parentheses that represent the dock number. The operation is applied
to the underlying graph and the port numbers of the underlying graph are fused with the
matching dock numbers in the extension operation. The result is shown in Figure 4(b). Given
the definitions of the variables in Figure 2 the semantic graph in Figure 4(b) could express the
sentence ’boy believes girl´. In addition, since the operations were able to connect their ports
with docks in a correct fashion this means that the semantic graph is in the language of the
GEG.
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𝑢

𝑧𝑠4

𝑠𝑥

𝑥

1

(a) First derivation step which applies the
graph operation s’x. Showing the remaining
tree with three nodes on the left side and the
resulting graph of the applied operation on
the right side.

𝑢

𝑧𝑠4

𝑥

1

𝑥

1

(b) Second derivation step applies the graph operation
sx. Showing the remaining tree with two nodes on the
left side, the graph from Figure 3(a) in the middle and
a new graph created by the operation sx on the right
side.

Figure 3: Visualization of the first and second derivation steps of the tree 𝑧𝑠4(𝑢 (𝑠′𝑥 𝑠𝑥)).

𝑧𝑠4

𝑥

1

𝑥

2

(a) Third derivation step applies the graph op-
eration u. Showing the remaining tree with
one node on the left side and a graph which
is the result of the disjoint union of the two
graphs depicted in Figure 3(b).

𝑧

1

𝑥 𝑥

arg1arg
0

(b) Fourth derivation step applies the fi-
nal graph operation sz4. This removes
the last node from the tree and creates a
new node in the graph called z. The op-
eration also creates two outgoing edges
from z to the x nodes with the labels
arg0 and arg1. The node z is also a port
node with port number one

Figure 4: A depiction of the third and final derivation step of the tree based on the tree
𝑧𝑠4(𝑢 (𝑠′𝑥 𝑠𝑥)).
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4 Generate corpus of semantic graphs with
graph extension grammar

This chapter includes the methods and aspects used when designing and implementing Lovelace.
The process of creating the program has six parts: Section 4 describes the creation of the

grammar files, Section 4.2 explains the parsing of input files, thereafter Section 4.3 exemplifies
and details how a graph is built. Section 4.4 applies definitions to the generated corpus, Section
4.5 introduces the tool Graphviz Online which is used to visualize the semantic graphs and
finally, Section 4.6 explain parameters to generate specific semantic graphs in the corpus.
After the process of creating Lovelace has been described the chapter ends with an example
run of Lovelace in Section 4.7.

4.1 Grammar creation

The first step of implementing Lovelace includes the creation of an RTG which was used to
generate trees through the use of BETTY 1. [8]. To be able to apply graph operation the deci-
sion was made to let each label of each tree node represent a production rule in the specific
input GEG. The GEG that the label of the tree nodes is based on is Björklund et al. [2]’s gram-
mar which is depicted in Figure 5. This GEG enable the creation of semantic graphs that can
express sentences such as ´boy persuaded the girl to believe the boy´. Note that the graph
operations in Figure 2 is a subset of the graph operations in Figure 5.

Each operation in theGEG shown in Figure 5 is translated into an operation name based on
the nonterminal on the left-hand side combined with the name of the root node. For example
the operation in Figure 6 would be given the operational name zs1’. This is because the root
node of the extension operation is z and the left-hand nonterminal. The number 1 represents
that it is the first occurrence of the combination of left-hand nonterminal and that specific
root node in the GEG.

The RTG is written in a text file and structured after the requirement of BETTY [8]. The
text file is shown in Listing 4.1.

1 s
2 s −> sx
3 s −> z s 1 ( s ’ )
4 s −> z s 2 ( s ’ )
5 s −> z s 3 ( s )
6 s −> z s 4 ( u )
7 s −> t r y s ( c )
8 s −> p e r s u a d e s ( c )
9 s −> p e r s u a d e s s ( u ’ )

10
11 c −> zc1 ( s ’ )

1BETTY is a tool that generates a tree corpus based on an RTG.
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Figure 5: A (graphical representation of a) label-matching graph extension grammar demon-

strating how to generate semantic graphs. Instead of having multiple produc-
tions that are the same except for the name of a node the decision was made to
use variables [2]. For this specific GEG the variables are defined in the following
way 𝑥 ∈ {girl,boy}, 𝑦 ∈ {girl,boy,want,believe,try,persuade}, and
𝑧 ∈ {want,believe}. Note that the graphs produced by the nonterminal 𝑆 al-
ways generate one port while the nonterminal 𝐶 always produce two ports.
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𝑆 →
𝑧

1

(1)
𝑦

ar
g0

arg1

 𝑆
′


Figure 6: A graphical representation of a production rule in a graph extension grammar

demonstrating how to generate semantic graphs

12 c −> zc2 ( s ’ )
13 c −> zc3 ( s )
14 c −> zc4 ( u )
15 c −> t r y c ( c )
16 c −> p e r s u a d e c ( c )
17 c −> p e r s u a d e c c ( u ’ )
18
19 u ’ −> u ’ ( s ’ c )
20 u −> u ( s ’ s )
21
22 s ’ −> s ’ x

Listing 4.1: An RTG based on the GEG in Figure 5 where each right hand side is represented
by an extension- or disjoint union operation. The first nonterminal in the file
represents the starting nonterminal. The union (u and u’) nonterminals are the
only nonterminals which include nonterminals that appear on the left and side
on the right-hand side.

The graph operation file is created by translating the graph operations in Figure 5 into a
text file which is made parsable by the use of the keywords that are defined in the following
way:

OPERATION is used to indicate the name of the operation. The name is translated in the
same way as the RTG file in Listing 4.1.

node is represented by an internal node number, followed by a label and a port number (if
the node has a port). If the node does not have a port it only has a label and if the node
has no name it is indicated by setting the name of the node to undef. An example of a
node with a port can be seen in Listing 4.1 on row number 2, while a node without a
port can be seen on row number 19 in the same Figure.

dock is represented by an internal node number followed by the specific dock number for
that dock. This can be seen on row 11 in Listing 4.1.

edge is depicted as an internal node number followed by an arrow pointing towards another
internal node number, thereafter the label of the edge is described. An example of an
edge is seen on row 13 in Listing 4.1.

Note that a node can have strictly one or zero ports or docks. A sample of the GEG file is
given in Listing 4.1.

1 OPERATION : sx {
2 0 [ l a b e l =” x ” , p o r t =1
3 }
4

12



5 OPERATION : s ’ x {
6 0 [ l a b e l =” x ” , p o r t =1]
7 }
8
9 OPERATION : z s 1 {

10 0 [ l a b e l =” z ” , p o r t =1]
11 1 [ dock =1]
12
13 0 −> 1 [ l a b e l =” arg0 ” ]
14 0 −> 1 [ l a b e l =” arg1 ” ]
15 }
16
17 OPERATION : z s 2 {
18 0 [ l a b e l =” z ” , p o r t =1]
19 1 [ l a b e l =” y ” ]
20 2 [ dock =1]
21
22 0 −> 1 [ l a b e l =” arg1 ” ]
23 0 −> 2 [ l a b e l =” arg0 ” ]
24 }
25
26
27 OPERATION : z s 3 {
28 0 [ l a b e l =” z ” , p o r t =1]
29 1 [ l a b e l =” x ” ]
30 2 [ dock =1]
31
32 0 −> 1 [ l a b e l =” arg0 ” ]
33 0 −> 2 [ l a b e l =” arg1 ” ]
34 }

Listing 4.2. A sample of the textual representation of graph operations. The complete
textual representation can be found in the Listing 6 in the appendix.

4.2 Parsing of input

In Lovelace there are two instances of parsing, the first one is when the graph operations
(depicted in Listing 4.1) are parsed into usable data. The second instance is when one or more
trees in the tree file that can be derived from the RTG in Listing 4.1 are parsed into tree objects.

The parsing of graph operations is done by traversing the text file in Listing 4.1. For
every occurrence of the keyword OPERATION, an object called Operation is created which
includes the nodes and edges specified in the text file. An example of the parsing of operation
zs3 (shown in Figure 7) is given in Figure 8.

As shown in Figure 8 for every occurrence of the word OPERATION a new operation is
created which includes an operation name, a list of nodes, and a list of edges. The nodes and
edges include their own attributes. Nodes include a node name, a node number (which is
unique for every node), a port number, and a list of docks where the node is going to create
an edge. Edges include the label of the edge, start- and endpoint of the edge.

A problem that has to be taken into consideration is the distinction between extension

13



OPERATION: zs3 {
0[label="z", port=1]
1[label="x"]
2[dock=1]

0 -> 1 [label="arg0"]
0 -> 2 [label="arg1"]

}

Figure 7: A textual representation of the graph operation zs3

1 Node{
2 nodeName = z
3 nodeNumber = 0
4 portNumber = 1
5 }
6 Node{
7 nodeName = x
8 nodeNumber = 1
9 }

10 Node{
11 nodeNumber = 2
12 dockNumber = 1
13 }
14
15 O p e r a t i o n {
16 operat ionName = z s 3
17 n o d e L i s t = [ 0 , 1 , 2 ]
18 e d g e L i s t = [{0 −> 1 arg0 } , {0 −> 2 arg1 } ]
19 }

Figure 8: A translation of the textual representation of the operation sz3 into usable data.
The translation is given as a pseudo-code.

14



𝑠′𝑥

𝑧𝑐1

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐

𝑡𝑟𝑦𝑠

Figure 9: A visualization of the resulting tree based on the tree string
𝑡𝑟𝑦𝑠 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑧𝑐1(𝑠′𝑥))))

operation and disjoint union operation. Section 3.2 describes that extension operations ex-
tend the underlying graph and are able to connect to contextual nodes while disjoint union
operations combine two argument graphs into one graph which is the disjoint union of two
argument graphs. If the program is unable to decide whether an operation is an extension
operation or a disjoint union operation it is not able to generate correct semantic graphs. This
problem is addressed during the parsing of the graph operation file by identifying that a row
in an operation that exclusively consists of two integers separated by a space (representing
the number of port nodes in each underlying graph) has to be a disjoint union operation since
that type of row is not allowed in the definition of an extension operation. If it is not a disjoint
union operation it is by default an extension operation.

The second parsing in Lovelace occurs when a tree based on the RTG in Listing 4.1 is
parsed. The parsing method is inspired by how BETTY [8] parses an RTG into multiple trees.
The parsing is done recursively starting from the bottom of a tree and traversing the tree until
the entire tree has been parsed into a tree object in Lovelace. The tree is completely parsed
when the root of the tree has been found. This means that the algorithm returns the root
of the tree object. The root has references to its children and the children have a reference
to their parent node. The references from parent to child are not important when the tree
object has been built therefore these references are not illustrated in any figure in this thesis.
The tree object is used to decide in which order each of the graph operations is applied. The
semantic graphs in Lovelace are built bottom-up by starting from a leaf node and applying
graph operations (based on the name of the current node) until the root operation is executed.
The entire algorithm of the tree building is depicted in Algorithm 1.

The depth of the tree is indicated by left- and right-handed parentheses. If a left-handed
parenthesis is encountered while traversing the tree the depth of the tree is incremented by
one and the other way around with a right-handed parenthesis. The example tree
𝑡𝑟𝑦𝑠 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑧𝑐1(𝑠′𝑥)))) is illustrated in Figure 9.

When the string representation of a tree has been parsed into a tree object the tree is used
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Algorithm 1 BuildTree
1: if !𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝑃𝑎𝑟𝑠𝑖𝑛𝑔𝑆𝑦𝑚𝑏𝑜𝑙 (𝑟ℎ𝑠) then
2: 𝑡𝑟𝑒𝑒 ← new TreeNode(rhs)
3: if !𝑇𝑟𝑒𝑒𝑁𝑜𝑑𝑒.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑡𝑟𝑒𝑒) then
4: 𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝑠.𝑎𝑑𝑑 (𝑡𝑟𝑒𝑒)
5: end if
6: return 𝑡𝑟𝑒𝑒

7: else
8: 𝑙𝑒𝑛𝑔𝑡ℎ ← length of 𝑟ℎ𝑠
9: 𝑝𝑎𝑟𝑆𝑡𝑎𝑐𝑘, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑟𝑖𝑛𝑔, 𝑡𝑟𝑒𝑒𝑆𝑡𝑟𝑖𝑛𝑔, 𝑐ℎ𝑖𝑙𝑑, 𝑡𝑟𝑒𝑒 ← empty

10: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← empty LinkedList of TreeNodes
11: for 𝑖 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ do
12: 𝑐 ← 𝑖th character of 𝑟ℎ𝑠
13: if 𝑐 = ’(’ then
14: 𝑡𝑟𝑒𝑒𝑆𝑡𝑟𝑖𝑛𝑔← substring of 𝑟ℎ𝑠 from 0 to 𝑖

15: 𝑑𝑜𝑛𝑒, 𝑝𝑎𝑟𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(𝑐) ← false
16: while not 𝑑𝑜𝑛𝑒 do
17: 𝑖, 𝑐 ← 𝑖 + 1, 𝑖th character of 𝑟ℎ𝑠
18: if 𝑐 = ’(’ then
19: 𝑝𝑎𝑟𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(𝑐)
20: if size of 𝑝𝑎𝑟𝑆𝑡𝑎𝑐𝑘 > maxDepth then
21: setMaxDepth(size of 𝑝𝑎𝑟𝑆𝑡𝑎𝑐𝑘)
22: end if
23: else if 𝑐 = ’)’ then
24: 𝑝𝑎𝑟𝑆𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ()
25: end if
26: if parStack.empty() or (𝑐 = ’ ’ and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑟𝑖𝑛𝑔 ≠ empty and size of 𝑝𝑎𝑟𝑆𝑡𝑎𝑐𝑘 =

1) then
27: 𝑡𝑒𝑚𝑝𝑇𝑟𝑒𝑒 ← buildTree(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑟𝑖𝑛𝑔, 0)
28: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑑𝑑𝐿𝑎𝑠𝑡 (𝑡𝑒𝑚𝑝𝑇𝑟𝑒𝑒), 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑟𝑖𝑛𝑔← empty
29: else
30: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑟𝑖𝑛𝑔← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑟𝑖𝑛𝑔 + 𝑐
31: end if
32: end while
33: end if
34: end for
35: 𝑠𝑖𝑧𝑒 ← size of 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑡𝑟𝑒𝑒 ← buildTree(𝑡𝑟𝑒𝑒𝑆𝑡𝑟𝑖𝑛𝑔, 𝑠𝑖𝑧𝑒)
36: while not 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 is empty do
37: 𝑡𝑟𝑒𝑒.ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 (𝑡𝑟𝑢𝑒)
38: 𝑐ℎ𝑖𝑙𝑑 ← first element of 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑟𝑒𝑚𝑜𝑣𝑒𝐹𝑖𝑟𝑠𝑡 ()
39: 𝑐ℎ𝑖𝑙𝑑.𝑠𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡 (𝑡𝑟𝑒𝑒), 𝑡𝑟𝑒𝑒.𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑 (𝑐ℎ𝑖𝑙𝑑)
40: end while
41: return 𝑡𝑟𝑒𝑒

42: end if
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to build the semantic graph.

4.3 Graph building

Graph building explains the process of applying graph operations in an order given by trees
such as the tree shown in Figure 9. To show the derivation from a tree to a semantic graph this
section includes a step-by-step derivation based on a tree with purely extension operations.
This Section also discusses which problems one can face when deriving a tree that includes
disjoint union operations. To make it more clear for the reader the decision was made to
remove a tree node from the tree in every derivation step. In the implementation the tree
nodes are never removed, they are merely traversed.

4.3.1 Derivation of extension tree

In Figure 10 the first two steps of the transition from tree to graph are depicted. In Figure
10(a) The graph operation s’x is removed from the tree and used to create a single port node x
with port number one. Figure 10(b) removes the node zc1 and applies its operation onto the
node x. When applying the operation zc1 the docks of the node z are connected to the port
of the node x which creates two edges with the labels arg0 and arg1. When the operation zc1
is applied two new ports are created, port one on node x and port two on node z. This means
that the next operation that is applied to the graph must have at least two docks with dock
numbers that are the same as the port numbers (given how GEG is defined).

𝑧𝑐1

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐

𝑡𝑟𝑦𝑠

𝑥

1

(a) First derivation step which
applies the graph operation s’x.
Showing the remaining tree on
the left side and the resulting
graph of the applied operation on
the right side.

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐

𝑡𝑟𝑦𝑠

𝑥

1

𝑧

2

arg0ar
g1

(b) Second derivation step, apply-
ing the graph operation zs1 on the
graph shown on the right side in Fig-
ure 10(a). This results in the remain-
ing tree with three nodes on the left-
hand side and the ensuing graph on
the right-hand side.

Figure 10: An illustration of the two first derivations steps of the tree
𝑡𝑟𝑦𝑠 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑧𝑐1(𝑠′𝑥)))). The tree is derived into a DAG by
applying graph operations. Each step removes a node from the tree and applies
the graph operation which is denoted in the removed tree node
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𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐

𝑡𝑟𝑦𝑠

𝑥𝑥

1
𝑧

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒

2

arg0

arg1

arg
0 arg2

ar
g1

(a) Third derivation step, applying the graph operation persuadec on
the graph shown on the right side in Figure 10(b). This results in the
remaining tree with two nodes on the left-hand side and the ensuing
graph on the right-hand side.

𝑡𝑟𝑦𝑠

𝑥 𝑧

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒

𝑥

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒

2

𝑥

1
arg0

arg1

arg
0 arg2

ar
g1arg

0

arg2

ar
g1

(b) Fourth derivation step, applying the graph operation persuadec on the graph shown on the
right side in Figure 11(a). This results in the remaining tree with one node on the left-hand
side and the ensuing graph on the right-hand side.

Figure 11: Depicting the third and fourth steps of the derivation of the tree
𝑡𝑟𝑦𝑠 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑧𝑐1(𝑠′𝑥)))).
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𝑥 𝑧

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒

𝑥

𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒

𝑥

𝑡𝑟𝑦

1
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arg1

arg
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ar
g1arg

0

arg2

ar
g1

ar
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arg1

Figure 12: The resulting DAG after deriving the regular tree
𝑡𝑟𝑦𝑠 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑐 (𝑧𝑐1(𝑠′𝑥)))). The resulting DAG is created by
applying the graph operation trys on the graph shown on the right side in Figure
11(b).

Figure 11 represent step three and four of the derivation. In the third step, the node
persuadec is removed from the tree and the graph operation with the same name is applied.
The operation creates two new nodes called persuade and x. Persuade has three outgoing
edges, the first edge with the label arg0 connects to the newly created node x. The second edge
with label arg1 connects to node x since the port number matches the dock number. Lastly, the
third edge with label arg2 connects to node z and since the port number match with the dock
number. The operation persuadec introduces two ports, a port with port number two at the
node persuade and a port with port number one at the newly created node x. The resulting
graph is shown in Figure 11(a). The fourth derivation step removes another node with the
name persuadec, this means that the same operation is applied again but it is connected to
a different node since the port placement has changed. persuadec creates a new node called
persuade and x, where persuade has three outgoing edges. The node persuade creates an edge
to the newly created node x in the same way as the earlier usage of the operation persuadec.
The edge with label arg1 connects to the port with port number one in the underlying graph
and the edge with label arg2 connects to the port with port number two in the underlying
graph. Once again persuadec introduces two ports for the newly created nodes, port number
one at node x and port number two at node persuade.

The final graph is shown in Figure 12. This graph is the result of removing the last node
in the tree and applying the graph operation with the same name as the node to the graph in
Figure 11(b). The operation creates a new node called try which has two docks. These docks
create edges by fusing with the matching ports. This creates two outgoing edges, one to the
node persuade and one to node x. The operation also introduces a new port at the node try
with node number one.

4.3.2 Problems when applying disjoint union operations

Since a derivation of a tree including a disjoint union operation is already exemplified
in Section 3.2 we instead address important implementation details. One problem that has
to be addressed is how the renaming of nodes is handled when using the disjoint union op-
eration which was discussed in Section 3. The need to rename nodes is based on the idea
that the nodes do not have a unique id [2], however in the implementation of Lovelace ev-
ery node created from a graph operation is given a unique id. This means that there is no
need for renaming since every node is unique. Although the renaming problem does not af-
fect Lovelace there is another problem that the disjoint union creates. In Björklund et al. [2]
the concatenation automatically change the numbering of the ports in an incremental order.
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Since each operation in the graph grammar depicted in Figure 3 has internal port numbers a
problem arises when applying the disjoint union operation over two argument graphs with
the same port numbers. The solution that is used in Lovelace is to increment the port numbers
generated by the right-hand child of the union node in the tree. Let |𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑟𝑡𝑙ℎ𝑠 | represent
the number of ports generated by the left-hand child of the union node in the tree. Given
|𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑟𝑡𝑙ℎ𝑠 | the new port numbers for the ports generated by the right-hand child are cal-
culated by 𝑝𝑜𝑟𝑡𝑛𝑢𝑚𝑏𝑒𝑟𝑟ℎ𝑠 − |𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑟𝑡𝑙ℎ𝑠 | for each port in the right-hand side operation.

To make the DAG in Figure 11(b) understandable there is a need to define the variable x,
z, and the unused variable y.

4.4 Instantiating the generated corpus

There are two types of graphs described in this section, the graphs where the definitions have
not been applied are called uninstantiated graphs and the graphs where the definitions have
been applied are called instantiated graphs. Each variable needs one or more definitions.
Definitions are a set of words (preferably in the same word class) that replace the variable.

Before describing the way these variables are instantiated it is necessary to discuss why
they exist. The idea is that each variable is able to represent a word class in a semantic
word bank. An example of such a semantic word bank is Unified Verb Index [9] which is
a combination of the word banks VerbNet [10], PropBank [11], FrameNet [12] and OntoNotes
[13]. These word banks are able to identify different properties of words. The behaviour of a
word class is defined in a multitude of ways depending on how the word class is used. Take
the word class want-32.1-1-1 (defined in verbNet [10]) which includes the words {desire,
like, need, prefer, want}. It should be noted that a word can belong to multiple
word classes based on its usage. There are two entities used in the word class. The first one
is agent which represents the entity that has an impact on an entity, the second one is patent
which is the impacted entity. The word class want-32.1-1-1 is defined using four arguments
[11]:

Arg0-PAG Defines the agent.

Arg1-PPT Defines the patient.

Arg2-GOL used to represent the beneficiary in the word class want-32.1-1-1.

Arg3-PPT in-exchange-for, this argument explains that there is an exchange that the agent
has to do.

Arg4-DIR represents the argument from.

Given the defined arguments of a specific word or word class, one can build graph oper-
ations adapted for the specific behaviour of word classes. This leads to the ability to create
semantic graphs without ambiguity since a word can appear in multiple word classes depend-
ing on how it is used.

One thing to keep in mind is that Lovelace is not strictly bound by the English language.
If one would like to represent another language it would require the usage of semantic word
banks which are able to represent that specific language.

The way that Lovelace handles definitions is by the use of a text file that includes defi-
nitions for each variable. The definition file for the GEG in Figure 5 is represented in Figure
13.
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z = want believe
x = boy girl children boys girls they he she child
y = boy girl children boys girls they he she child want believe persuade try

Figure 13: Definitions of the variables z, x and y

These definitions are used to iterate over theDAG and create a new graph for each possible
combination of node definitions. Given the definitions in Figure 13 and an uninstantiatedDAG
with the variables z, z, x and y generates |𝑧 | · |𝑧 | · |𝑥 | · |𝑦 | = 2 · 2 · 9 · 13 = 468 instantiated
graphs.

One might think that these variables represent random letters but the idea is that each
variable represents different word classes.

4.5 Graph visualization

digraph G {
1 -> 0 [label="arg1"]
1 -> 0 [label="arg0"]
2 -> 0 [label="arg1"]
2 -> 1 [label="arg2"]
2 -> 0 [label="arg0"]
3 -> 0 [label="arg0"]
3 -> 2 [label="arg1"]

1 [label="want"]
0 [label="boy"]
2 [label="persuade"]
3 [label="try"]

}

Figure 14: A text file representing a DAG on a format that is able to generate a visual repre-
sentation of that DAG through the usage of Graphviz Online.

Each graph is represented as a text file, the text file has a specific format called Digraph
(depicted in Figure 14) which makes it possible to create an image of the graph through the use
of the toolGraphviz Online [14] 2. In the depiction, each node is represented by its unique node
number combined with a label. An edge is represented by the node number of the outgoing
node followed by an -> pointing at the node number of the receiving node. Thereafter the
label indicates which argument the edge represents.

When using the text file in Figure 14 to generate a visualization of the DAG the tool
Graphviz Online is used. The resulting graph can be seen in Figure 15. The reason for using
Graphviz Online to visualize the semantic graphs is quite simple. It is an easy-to-use tool that

2To use Graphviz Online one can follow the link https://dreampuf.github.io/GraphvizOnline/ and insert the
graph file on the left-hand side. After that Graphviz Online generates a visualization on the right-hand side.
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Figure 15: A visualisation of the file depicted in Figure 14. The visualization is a semantic
graph created using the tool Graphviz Online.

is able to generate every required attribute of the semantic graphs [14].

4.6 Parameters

Lovelace has two obligatory parameters which are the flags -g and -t. The flag -g is used to
provide a grammar file with graph operations. The operations are in the same format as the
operations depicted in Figure 4.1. The flag -t provides the program with a file that includes
one or more regular trees which are used to derive DAGs. In addition to the obligatory flags,
there exist optional flags, these flags are defined in the following way:

-L <min num nodes> Set the minimum number of nodes in the tree. If L is set to 4 the
program is going to skip every tree that has less than 4 nodes.

-H <max num nodes> Set the maximum number of nodes in the tree. Similar function-
ality as L but sets an upper node bound instead of a lower one.

-d <definition file> This file include definitions of symbols such as x,y,z. An exam-
ple of a definition could be x = {boy, girl, them}.

-k <operation name> generates every graph which is based on a tree that includes that
specific operation name. An example of a key operation could be the persuadec.

These optional flags make it possible to filter out interesting trees from a large tree corpus.
One thing to keep in mind is that the usage of the d-flag drastically increases the workload of
the program since every generated graph creates a multitude of instantiated graphs depending
on how many undefined nodes are used in the graph. If the d-flag is not used the program
generates an uninstantiated graph with the variables instead of the definitions of the variables.
A problem with the usage of the d-flag is that the user is given every possible definition even
if the user is just interested in a few definitions. It is a problem since it leads to unnecessary
computations and an overflow of information which makes it difficult for the user to find
relevant information.
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4.7 Execution of Lovelace

Given the input of the operation file calledoperations.txt shown in 5, a tree filetree.txt
with a single tree 𝑝𝑒𝑟𝑠𝑢𝑎𝑑𝑒𝑠 (𝑠𝑧1(𝑠𝑥)), and a definition file definitions.txtwith the def-
initions x = {girl}, z = {believe} Lovelace is executed by the following command:
java lovelace.java -t tree.txt -g operations.txt -d definitions.txt.
The corpus created by the input is a single semantic graph shown in Figure 16 and can be
translated into the English sentence ”the girl persuaded herself to believe herself”.

Figure 16: The semantic graph created by the example run of Lovelace.
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5 Discussion

The aim of this thesis was to identify aspects that are important when designing a corpus gen-
erator based on GEG as well as identify important functionalities of a semantic graph corpus
generator. This chapter is partitioned into Section 5.1 and 5.2, where Section 5.1 discusses the
vital design- and implementation aspects in a semantic graph corpus generator and Section 5.2
discusses the functionality of Lovelace.

5.1 Design and implementation aspects

Starting with the grammar creation, since GEG consists of both trees and graph operations
both had to be specified. The choice to create an RTG to let BETTY [8] generate the trees for
the tree file that is used in the tree file enables the option to combine Lovelace and BETTY in
the future.

Since the generated trees include the name of graph operations (and their nonterminals)
an RTG and a file specifying the graph operations can be seen as a pair. The GEG would not
be able to translate the tree nodes into operations if either the RTG which was used when
generating trees or the graph operation file would be exchanged for another file (given that
the new RTG or operation file does not include the same operations). An idea to remove
the pairing of RTG and graph operations was explored. The idea included the addition of
nonterminals in the operation file which makes it possible to generate an RTG based on the
operation file, thus removing the requirement of an RTG file in the GEG. Although it is very
much possible to implement, it makes the operation file more complex since every pair of
nonterminals needs to be specified. In addition, one could argue that it is more intuitive with
a pairing of input files since GEG is defined as a pair of tree grammar and graph operations
according to the Definition 4.

The second aspect of implementing Lovelace is the parsing of input files. Since GEG every
tree in the tree file used as input is based on a specific RTG which match the graph operations
used in the operation file the operation file only has to be parsed once while each tree has
to be parsed into a tree object. Although this solution might seem logical it is inefficient in
some cases. An example of inefficiency is if a user of Lovelace wants to generate a semantic
graph based on a single tree including 3 or 4 graph operations it is inefficient to parse every
single graph operation. In such a scenario one could argue that it would be more efficient
to only parse graph operations included in the tree since that would lead to no unnecessary
parsing. On the other hand, a solution of only parsing necessary operations introduces the
requirement of checking if an operation has been parsed or not. This leads to an unnecessary
amount of checking if the tree file includes trees with overlapping graph operations. Since
the idea of Lovelace is to generate corpora independent of the number of trees in the input
file the file is most likely going to include trees with overlapping graph operations. Therefore
the solution of parsing every operation at once is the most suitable solution for the corpus
generator.

As described in Section 3, the edges of a node in GEG are instantly introduced when the
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node is created, this allows for GEG to decide its non-uniform membership problem1 in poly-
nomial time. It does however present the problem of not being able to create nodes with an
arbitrary number of edges which limit the amount of relations a node can have with other
nodes. Björklund et al. [2] solved this by adding a technique introduced by [15] known as
cloning to GEG. This technique enables the cloning of nodes which leads to nodes in a graph
generated by GEG being able to represent an arbitrary number of edges from a node. This as-
pect is not yet implemented in Lovelace which means that the extension operations are bound
by the number of edges declared in each operation. This reduces the expressiveness of the
graph operations in Lovelace, thus implementing cloning would be of interest to researchers.

Another limitation of Lovelace is that the only way for an extension operation to fuse with
a contextual node is by searching for a node with a specific node name. This means that there
is no way to base the contextual node on the semantic (other than the name of the node) in the
underlying graph. Björklund et al. [2] introduce logical expression in the extension operation
to enable the fusing with contextual nodes to be based on a logical expression representing
a specific semantic condition in the underlying graph. Much like cloning the introduction
of a logical expression for contextual nodes would increase the expressiveness of the graph
operations in Lovelace. Therefore it is an interesting subject for future work.

5.2 Important functionality of a semantic graph corpus generator

To be able to create a corpus of semantic graphs the nodes need meaning. One way of making
meaning is by using semantic word banks which are described in Section 4.4. Given that each
variable is defined as a word class it gives meaning to the node represented by the variable and
the outgoing edges from that specific node. These word classes enable the semantic graphs
generated by Lovelace to be correct for each word in a given word class since all words in a
word class have the same outgoing edge arguments (Section 4.4 for an example). It should
be noted that in order to construct an accurate semantic graph for each word within a word
class, it is imperative for the word class to be defined correctly. The usage of word classes
leads to fewer word definitions, thus fewer graph operations. Being able to generate more
semantic graphs with fewer graph operations (compared to if each word had its own graph
operation) is an advantage of using word classes. However, this is not the only advantage
of using word classes. The combination of well-defined word classes and semantic graphs
means that the semantic graphs generated by Lovelace are unambiguous since if a word has a
different semantic meaning the word is represented in more multiple word classes, therefore,
the semantic graphs are only representing one specific semantic behaviour. Escaping the
ambiguous nature of natural language is an important aspect when translating and processing
natural language.

Given that a corpus generator is expected to generate semantic graphs for an extensive
set of trees, the set may include trees that are not of relevance or interest. Hence, a crucial
function of a corpus generator lies in its capability to selectively exclude undesirable trees
from the set. An undesired tree refers to a tree that lacks a particular graph operation or
employs an insufficient or excessive number of graph operations Lovelace handle the filtering
of trees that lack a specific graph operation, has an insufficient or excessive number of graph
operations through the use of the optional parameters explained in Section 4.6 through the
use of the flags L, H, and k.

The only filtering capability that Lovelace lacks is the ability to filter based on specific
words. This form of filtering assumes significance when it is necessary for each semantic

1given that the graph is in the graph language
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graph in a corpus to incorporate a specific keyword. Some ideas for graph filtering are the
following:

1. Graph has to include a specific word.

2. Just allow words from a definition file to appear once in each graph.

3. Require each word from a word set to appear at least once in each graph.

4. Only allowing one word from a word set to define every variable representing that
specific word set.

All of these examples of filtering could be made into flags, using the same principle as in
tree filtering. The filtering of graphs would allow for further specification of which corpus a
user wants to generate which means that the relevance of the generated corpus increases.

The impact that the development of Lovelace has on the field of Computing Science is that
it gives information about which design and implementation aspects are important when
implementing a corpus generator. From a linguistic point of view Lovelace enables the gen-
eration of corpora that are of interest when translating or processing natural language given
that the user is able to create a GEG suited for their linguistic interest.
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6 Conclusion

The purpose of this thesis is to answer what functionalities are useful in a semantic graph
corpus generator and which design considerations are vital for a successful implementation
of a corpus generator based on GEG. To answer these questions the corpus generator Lovelace
was implemented.

When it comes to the implementation and design aspects it was realized that dividing the
GEG into two input files is the more intuitive option since it enables the user to understand
that a GEG is a pairing of an RTG and graph operations. Furthermore, it was argued that
the best way of parsing the graph operations is by parsing all of them at the same time since
it means that there is no need to check whether an operation is parsed or not. It was also
argued that most graph operations are used since the corpus generator is supposed to handle
an unbound number of trees. The operations in Lovelace could be made more expressive if
cloning of nodes and a logical expression to connect to contextual nodes were implemented.
Therefore it is an interesting subject for future research as well as the combination of BETTY
and Lovelace.

When evaluating the useful functionalities of a corpus generator it is noted that the com-
bination of semantic graphs and well-defined word classes not only leads to fewer operations
(since a variable can represent a word class) but also generates unambiguous corpora. This
is because of the unambiguous nature of well-defined word classes. Another functionality
that has a linguistic implication is the optional variables which enable the filtering of trees
in Lovelace. This enables a user to more precisely specify the corpus that the user wants to
generate. However, there is no filtering of semantic graphs. An implementation of such fil-
tering would enable the user of Lovelace to further specify the corpus which leads to their
corpus being even more relevant for their interest area. This suggests that corpora generated
by Lovelace has the potential to serve as a valuable tool for natural language processing and
translation tasks.
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The appendix includes one listing which is the graph operation file used in Lovelace de-
picted in Listing 6. The operations are the operation in Figure 5 on a format parsable by
Lovelace.

1 OPERATION : sx {
2 0 [ l a b e l =” x ” , p o r t =1]
3 }
4
5 OPERATION : s ’ x {
6 0 [ l a b e l =” x ” , p o r t =1]
7 }
8
9 OPERATION : z s 1 {

10 0 [ l a b e l =” z ” , p o r t =1]
11 1 [ dock =1]
12
13 0 −> 1 [ l a b e l =” arg0 ” ]
14 0 −> 1 [ l a b e l =” arg1 ” ]
15 }
16
17 OPERATION : z s 2 {
18 0 [ l a b e l =” z ” , p o r t =1]
19 1 [ l a b e l =” y ” ]
20 2 [ dock =1]
21
22 0 −> 1 [ l a b e l =” arg1 ” ]
23 0 −> 2 [ l a b e l =” arg0 ” ]
24 }
25
26
27 OPERATION : z s 3 {
28 0 [ l a b e l =” z ” , p o r t =1]
29 1 [ l a b e l =” x ” ]
30 2 [ dock =1]
31
32 0 −> 1 [ l a b e l =” arg0 ” ]
33 0 −> 2 [ l a b e l =” arg1 ” ]
34 }
35
36 OPERATION : z s 4 {
37 0 [ l a b e l =” z ” , p o r t =1]
38 1 [ dock =1]
39 2 [ dock =2]
40
41 0 −> 1 [ l a b e l =” arg0 ” ]
42 0 −> 2 [ l a b e l =” arg1 ” ]
43 }
44
45 OPERATION : t r y s {
46 0 [ l a b e l =” t r y ” , p o r t =1]

47 1 [ dock =1]
48 2 [ dock =2]
49
50 0 −> 1 [ l a b e l =” arg0 ” ]
51 0 −> 2 [ l a b e l =” arg1 ” ]
52 }
53
54 OPERATION : p e r s u a d e s {
55 0 [ l a b e l =” p e r s u ad e ” , p o r t =1]
56 1 [ l a b e l =” x ” ]
57 2 [ dock =1]
58 3 [ dock =2]
59
60 0 −> 2 [ l a b e l =” arg1 ” ]
61 0 −> 3 [ l a b e l =” arg2 ” ]
62 0 −> 1 [ l a b e l =” arg0 ” ]
63 }
64
65 OPERATION : p e r s u a d e s s {
66 0 [ l a b e l =” p e r s u ad e ” , p o r t =1]
67 1 [ dock =1]
68 2 [ dock =2]
69 3 [ dock =3]
70
71 0 −> 1 [ l a b e l =” arg0 ” ]
72 0 −> 2 [ l a b e l =” arg1 ” ]
73 0 −> 3 [ l a b e l =” arg2 ” ]
74 }
75
76
77 OPERATION : zc1 {
78 0 [ l a b e l =” z ” , p o r t =2]
79 1 [ l a b e l =” undef ” , p o r t =1]
80 2 [ dock =1]
81
82 0 −> 2 [ l a b e l =” arg0 ” ]
83 0 −> 2 [ l a b e l =” arg1 ” ]
84 }
85
86 OPERATION : zc2 {
87 0 [ l a b e l =” z ” , p o r t =2]
88 1 [ l a b e l =” undef ” , p o r t =1]
89 2 [ l a b e l =” y ” ]
90 3 [ dock =1]
91
92 0 −> 3 [ l a b e l =” arg0 ” ]
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93 0 −> 2 [ l a b e l =” arg1 ” ]
94 }
95
96 OPERATION : zc3 {
97 0 [ l a b e l =” z ” , p o r t =2]
98 1 [ l a b e l =” x ” , p o r t =1]
99 2 [ dock =1]

100
101 0 −> 1 [ l a b e l =” arg0 ” ]
102 0 −> 2 [ l a b e l =” arg1 ” ]
103
104 }
105
106 OPERATION : zc4 {
107 0 [ l a b e l =” z ” , p o r t =2]
108 1 [ l a b e l =” undef ” , p o r t =1]
109 2 [ dock =1]
110 3 [ dock =2]
111
112 0 −> 2 [ l a b e l =” arg0 ” ]
113 0 −> 3 [ l a b e l =” arg1 ” ]
114
115 }
116
117 OPERATION : t r y c {
118 0 [ l a b e l =” t r y ” , p o r t =2]
119 1 [ l a b e l =” undef ” , p o r t =1]
120 2 [ dock =1]
121 3 [ dock =2]
122
123 0 −> 2 [ l a b e l =” arg0 ” ]
124 0 −> 3 [ l a b e l =” arg1 ” ]
125 }

126
127 OPERATION : p e r s u a d e c {
128 0 [ l a b e l =” p e r s u ad e ” , p o r t =2]
129 1 [ l a b e l =” x ” , p o r t =1]
130 2 [ dock =1]
131 3 [ dock =2]
132
133
134 0 −> 1 [ l a b e l =” arg0 ” ]
135 0 −> 2 [ l a b e l =” arg1 ” ]
136 0 −> 3 [ l a b e l =” arg2 ” ]
137 }
138
139 OPERATION : p e r s u a d e c c {
140 0 [ l a b e l =” p e r s u ad e ” , p o r t =2]
141 1 [ l a b e l =” undef ” , p o r t =1]
142 2 [ dock =1]
143 3 [ dock =2]
144 4 [ dock =3]
145
146 0 −> 2 [ l a b e l =” arg0 ” ]
147 0 −> 3 [ l a b e l =” arg1 ” ]
148 0 −> 4 [ l a b e l =” arg2 ” ]
149 }
150
151
152 OPERATION : u {
153 1 1
154 }
155
156 OPERATION : u ’ {
157 1 2
158 }

Listing 1. A complete textual representation of the graph extension grammar operations
depicted in Figure 5.
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