
Teleoperation of an Autonomous
Ground-Penetrating Radar for

Non-Destructive Surveying: Design and
Implementation

Master Thesis In Engineering Physics

Umeå University

Rasmus Beyer

June 26, 2023

Teleoperation of an Autonomous Ground-Penetrating Radar for Non-
Destructive Surveying: Design and Implementation

Author: Rasmus Beyer
Contact: rabe0018@student.umu.se
Supervisor UMU: Andrea Rosina
Supervisor: Anders Abrahamsson
Examiner: Magnus Andersson

Master Of Science In Engineering Physics, 30 Credits 2023
Copyright 2023, Rasmus Beyer

ii

Abstract
A lot of features that need to be scanned underground should not be disturbed, from water
lines to unmarked graves. A non-invasive way of probing underground is Ground-Penetrating
Radar (GPR). GPR finds differences in materials with radar waves. However, GPR is human-
operated and its position is generally determined with a GPS. In some cases, the presence of
a human operator can be dangerous, and in other cases, the GPS is not reliable (i.e. mines,
glaciers). Therefore there are situations where an autonomous and non-GPS-reliant solution
is preferable. The current state of the autonomous GPR system targeted in this work has a
non-intuitive GUI that requires an experienced hand to operate.

I present an updated hardware and software platform with an intuitive GUI. This up-
dated autonomous system continuously builds a map of its surroundings with Simultaneous
Mapping And Localization (SLAM). SLAM localizes itself within the map through sensor-fused
position estimates. After the survey is completed the positions are saved and integrated
with radar data to be visualized.

Robot Operating System 2 (ROS2) is the software I used that allows communications
between hardware components, software systems, and the GUI. The new hardware package
uses only one source of power and is built using quick connectors that allow for quick
removal from the GPR platform. This system allows for intuitive autonomous survey planning
and execution in any field paired with a simple way of visualizing data.

iii

Acknowledgment
First, I want to thank Ketill Hjartarson for being a huge help to me throughout this whole
project. I also want to thank Pontus Yngvesson and Anton Morian for keeping me company
in the office and giving me help and reassurance in stressful times. Thanks are also in order
to all the people at Guideline Geo who have helped me during this project by lending me
their time and knowledge. Finally, thank you to my girlfriend Maja Winnitski for all your love
and support.

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2

2 Architecture 3
2.1 Software . 3

2.1.1 Robot Operating System 2 . 3
2.1.2 Rosbridge . 4
2.1.3 SLAM . 5
2.1.4 Navigation 2 . 6
2.1.5 Planner . 6
2.1.6 Path following . 6
2.1.7 Robot localization . 7
2.1.8 Network & Ports . 8
2.1.9 GPR . 8
2.1.10 Teleoperation & GUI . 8

2.2 Hardware . 9
2.2.1 System design . 9
2.2.2 Computer . 11
2.2.3 Motor driver . 11
2.2.4 Batteries & Power delivery . 12
2.2.5 Navigation box . 12
2.2.6 Heat development . 12

3 Results 14
3.1 Graphical User Interface . 14
3.2 Data integration . 14
3.3 Navigation box & Platform . 14
3.4 Heat development . 14

4 Discussion & Suggestions 18
4.1 GPR data & Triggering . 18
4.2 Overheating components & Navigation Box . 19
4.3 Teleoperation of autonomous system . 19
4.4 GNSS . 20
4.5 Displacement . 20

5 Conclusion 22
5.1 Autonomous Ground Penetrating Radar . 22

Chapter 1

Introduction

1.1 Background

Getting an idea of what lies under the ground surface is important in many different applica-
tions, like finding the position of unmarked graves [1], searching autonomously for crevasses
in glaciers [2], and to map out ancient structures buried under a cathedral [3]. These ex-
amples are just a small taste of the different ways ground penetrating radar (GPR) can be
utilized, it can also be of use in more "standard" applications such as mapping out different
utility lines (water, gas, electrical, etc.). There are several advantages with GPR; surveying
the ground for hidden dangers (cutting a power line or driving into a crevasse can be deadly),
preserving old buildings, and simply getting good estimations of what lies below ground.

The standard GPR setup utilizes two antennas, with fixed positions about each other,
one transmitter that sends radar pulses into the ground, and one receiver that detects the
reflected waves [4, p.4]. When a pulse has been sent out by the transmitter, an encounter
with a boundary between materials can reflect and/or refract the signal, the resulting changes
in the signal can then be read by the receiver [4, p.13].

Right now the process of surveying is usually performed by a human operator that
pushes or pulls a GPR over the area. During a survey, the GPR data is continuously sent
to a handheld device with software that visualizes the data and may also have some way
of processing the data, i.e. by using filters. As I see it, the efficacy of surveying could be
improved upon through an autonomous solution in the following metrics; cost of surveys,
time consumption, and accuracy of the positioning where or when GPS is not available. If
the operator can create a survey entirely in a GUI, then the need for measuring and marking
out the survey, which is done to achieve somewhat straight lines, is removed. This would
enable companies to have multiple GPR:s simultaneously performing surveys that can be
defined by a single operator.

An autonomous solution on the GPR platform already exists, which was built by previous
master thesis students and is now in a working prototype state. Its software is built on
the Robot Operating System 2, ROS2 for short, libraries and communications paired with
Navigation2 as the basis for autonomous navigation. The hardware platform is non-modular
in a way such that no parts are easy to remove, it utilizes two Raspberry Pi´s as its brains,
and has three power sources which are at least one too many. This solution can plan a
survey in the shape of a grid given a square boundary, then execute the plan while avoiding
static obstacles. This plan is created in a Python script and requires a map as input to
function, when the map is inserted a survey area can then be defined on top of it. The
issues with this current platform are mainly; the hardware platform being non-modular and
having more power sources and computers than necessary, the mode of operation requiring
an already created map, and lastly the complexity of operating it.

1

1.2 Purpose

The purpose of this master thesis is to further develop the current solutions with the
following broad goals:

• Ease of use: It should be very easy to use for a person with little-to-no experience of
ROS2 or Linux. The current solution has many steps before a survey can be performed.

• Hardware Design: The focus of the design is to achieve as small a footprint as possible
without removing features. The base platform, non-autonomous, is waterproof so the
goal is that any additions should share this feature. Minimizing the number of power
sources and making it modular are other points of priority in the design.

• GUI functionality: The new GUI should have the ability to handle arbitrary shapes
for survey bounds, have effective waypoint planning and human operators should be
able to stop/pause surveys easily. The GUI should be usable on an arbitrary platform
and surveys should be plannable from the start, not after a map has been saved. This
coupled with improved visualization and intuitive planning makes for a considerable
upgrade.

2

Chapter 2

Architecture

2.1 Software

In this section I will walk you through the software, code, and theory that allowed this
autonomous vehicle to perform its surveys.

2.1.1 Robot Operating System 2

First, let’s talk about the reason for utilizing ROS2 in this project. Mainly it was chosen as
it was utilized on the already existing solution, but it is also the only software of this type
that I had any knowledge of. Lastly, since the purpose of this project was not to revamp the
whole software ecosystem, I decided it would take too much time to implement anything
else.

But what is ROS 2 then? It is open-source software designed to link hardware and soft-
ware components in robotics applications. The ROS software is divided into three distinct
categories starting with the Middleware, which is the communication between components.
Next, the Algorithms is used for many different tasks like planning paths. Finally, there is
Developer tools which includes visualization software like Rviz [6].

ROS utilizes a graph structure comprised of nodes. The nodes can communicate with
each other and have a singular purpose, like publishing positioning data [7]. These nodes have
three general ways of interacting with each other; through topics, services, and actions [8].
I will only describe topics and services here since this project did not utilize actions.

A topic is basically a gateway for inter-node communication, it has a specified message
type which is the only type it will accept. This communication through topics uses publishers
and subscribers, a publisher sends data to a topic which is then forwarded to all subscribers.
This way of interaction is mostly used for data that needs to be sent continuously, like sensor
data. A simple example of communication over topics is shown in Figure 2.1 where there
is one publisher sending positioning data to a topic. To this same topic, there are two
subscribers, one that uses the data for visualizing the position and one that utilizes the data
for navigation. [9].

A service is just another method for communication over ROS but only when it is called
upon, contrary to a topic which always conveys the information. Services use requests and
responses and are more suited to check the state of a system. A request can be sent to a
service that changes the Boolean value of a variable which would send the new Boolean
value as a response. [9].

Different hardware components have standardized formats in which their data is com-
municated in ROS. This means that a robotics system using ROS could upgrade to a new
sensor without having to change how it delivers its data. For example, a Lidar scan is usually
published to the topic /scan and is of the message type sensor_msgs/LaserScan. This mes-

3

Figure 2.1: An example diagram of the ROS publish and subscribe messaging structure. The green
position publisher sends a position to a topic, and the visualization and navigator that are subscribed
will receive the message.

sage contains general information about the specific Lidar, like maximum/minimum ranges
for the scan as well as the actual scanned distances.

In this project, ROS connects Lidar, IMU, localization, planning, and the executing of
routes under one umbrella, all systems are dependent on each other to work and through
ROS they are all able to communicate and exchange information. A simple overview of how
the system communicates internally is shown in Figure 2.2 where all the arrows represent
ROS messages sent between components.

Figure 2.2: This graph gives a simple indication on how ROS is used to convey information in the
system. Here, sensor data is fused to create a position estimate that is used for navigation, positioning
radar data, and placing the robot in the GUI. All arrows are ROS messages.

2.1.2 Rosbridge

Rosbridge_suite is a package that enables the communication between a web browser and
ROS through a web server using websockets [10]. The first step is through roslibjs which is

4

a Javascript library that uses Websockets (communication between browser and a server)
to connect to the rosbridge [11]. In the next step, the rosbridge_server passes received JSON
(a data format) messages to the rosbridge_library which translates the messages into ROS
and vice versa [10]. A graph over this procedure is shown in Figure 2.3

Figure 2.3: Graph of how the .HTML page communicates ROS messages through roslibjs, a ros-
bridge_server, and rosbridge_library.

This package is what allows the GUI to be operated from an arbitrary system (capable
of using .html files) with no requirements on a specific OS or even having ROS installed.
The rosbridge server is started on the robot PC, allowing the GUI to be started on a
second machine for operations. The communication highways are then open, the robot can
communicate its sensed surroundings via topics and utilize the GUI´s services specifying the
robot’s behavior.

2.1.3 SLAM

SLAM stands for Simultaneous Localization And Mapping and is, as the name suggests, a
method for a robot to create and continuously update a map of its surroundings while
also localizing itself within that context. With SLAM the movement of a robot inside a
map is generally estimated through the matching of point clouds which can then be used
to calculate approximately how far the robot has traveled [12]. Different versions exist for
different sensors but the one used in this project is Lidar SLAM together with IMU (Inertial
Measurement Unit) data and odometry from the wheel encoders. This is what gives the
robot its sense of position within the world, where the starting position of the robot is
chosen as the origin of the created map. The specific SLAM version used in this project is
SLAM_toolbox, which is a graph-based method. Its main advantage is being able to create
accurate maps out of large spaces in real-time [13].

SLAM_toolbox uses graphs where each node is a pose the unit has been in over its
runtime. A pose consists of a position and an orientation in space. The edges connecting the
nodes are constraints between said nodes, which can come in the form of odometry readings

5

from wheel encoders or observations of the surroundings. When the graph is constructed
the next step is to optimize it, which is done by estimating what arrangement of poses is
the likeliest, given the constraints [14].

2.1.4 Navigation 2

The reason for choosing Nav2 is that it was already in use, it´s built to function with ROS2,
and its ease of use. Nav2 is navigation software built for use with ROS2. It offers many
different must-haves for navigation; planning of the path, a controller that keeps the robot
on said path, costmaps of the environment, waypoint followers, and many more utilities.

So, on what basis is Nav2 built? Nav2 utilizes behavior trees, that are configurable by
the user, to perform the tasks described above [15]. A behavior tree consists of nodes that
are controlled by sending ticks (a signal to perform an action or check a condition) to child
nodes and reading the results which can be success, failure, or running [16]. There are two
types of nodes in a tree structure; control flow nodes that handle the flow in the tree, and
leaf nodes that handle the execution of behaviors and are at the very end of the branches.

2.1.5 Planner

The Nav2 planner used in this project was the NavFN planner plugin which uses Dijkstra’s
algorithm to find the shortest path between two nodes (positions). It was chosen since the
other ones tested simply did not function as well, the plans NavFN produced were generally
straighter. Dijkstra’s algorithm works in weighted graphs where a cost is assigned the edge
between two nodes [17].

The shortest (or lowest cost) path between two nodes is found by:

• From the current node, assign all connected nodes a tentative distance if they do not
already have one. The tentative distance is the shortest distance from the starting
node to the one in question. If a tentative distance is already assigned, check if the way
through the current node offers a shorter path, if so: update it. The tentative distance
may be updated at any time if a shorter one is found.

• When the neighboring nodes’ tentative distances have been controlled and the tentative
distances have been updated (through the current node), mark the current node as
visited and move to the next unvisited node with the smallest tentative distance and
repeat the previous step.

• If the goal node has been marked as visited then its tentative distance indicates the
shortest path possible from start to finish. This means that the algorithm is done and
this is the path chosen for the robot.

2.1.6 Path following

The choice of path following fell on the regulated pure pursuit controller (RPPC). It is a plugin
provided in the Nav2 stack and is focused mostly on following a given path as closely as
possible. The algorithm works like a donkey following a carrot, a point set at a specific
distance from the robot is moved along the path as the robot moves towards it [18].

The reason for choosing this specific controller was that the need for more exact path-
following superseded the need for dynamic obstacle avoidance, which is the trade-off made
when choosing the RPPC controller [19]. The standard controller plugin DWB was also tested
and while it performed well in obstacle avoidance it did not follow the path that well. This
might be an alternative if it can be tuned to follow the path more closely.

6

2.1.7 Robot localization

To get a good estimate of the robot’s pose in the world, sensor fusion of inputs from different
sources is needed and in ROS2 the package robot_localization performs this with an extended
Kalman filter (EKF). It was chosen since it is the standard sensor fusion package used in
ROS2 and had in the previous iteration given good results. In this project two input sensor
measurements are fused through the filter, the IMU readings (yaw heading and yaw velocity)
and the odometry (linear x-velocity and yaw velocity) readings.

A Kalman filter estimates the state of a system in two steps, first a prediction and then
a correction. The state of the system is predicted and the correction step uses the differ-
ence between the observed and predicted state to produce a weighted average as the final
estimation.

An EKF works on nonlinear systems in state space format which are defined as

xk = f(xk−1, uk−1) + wk−1,

yk = h(xk) + vk

where x is the state vector containing the values to be estimated, y is the output vector
which is what can be measured, u the input vector which contains sensor measurements, w
the process noise vector, v the measurements noise vector, f is the nonlinear state transition
function and h the nonlinear output function. The subscripts k − i indicate discrete time
steps. Jacobian matrices for the nonlinear functions f and h are needed to linearize the state
equations, this is calculated as

Fk =
∂f

∂x

∣∣∣
x̂k−1,

Hk =
∂h

∂x

∣∣∣
x̂k|k−1.

With the system described, it is time to look at the predictions starting with the state vector

x̂k|k−1 = f(x̂k−1, uk−1),

where the subscript k|k − 1 indicates the estimation at discrete time k given the previous
estimate at time k − 1. Since there is no previous estimate at the first time step, the xk−1

term is replaced with an initial state estimate x̂0. Next, the state error covariance matrix P
is estimated with

Pk|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1, (2.1)

where Pk−1 is replaced with an initial estimate P0 at the first time step and Q indicates
the process noise covariance matrix. With the predictions described we move on to the
corrections, starting with the Kalman gain matrix

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1

with Pk|k−1 from Equation 2.1 and R is the measurement noise covariance matrix. Now the
estimation of the state vector is corrected with

x̂k = x̂k|k−1 +Kk[zk − h(x̂k|k−1)]

where zk is the observations from sensors. Lastly, the state error covariance is also corrected
with the Kalman gain with

Pk = (I −KkHk)Pk|k−1

with I being an identity matrix [20].

7

These steps are then performed at each time step to update the estimation. To tune
this filter the main weapons are modifications to Q and R. If we increase Q that essentially
means that we trust less in the state equations and thereby lean more into correcting the
estimation towards the measurements. R works the other way around, an increase here
means we trust less in the measurements and more in the state estimation [20].

2.1.8 Network & Ports

To teleoperate the robot with the GUI both the onboard computer and the user unit needs
to be connected to the same local network, there is no need for an internet connection.
You could just use a Wi-Fi network available and connect both computers to that, but then
you have to manually enter the onboard computer with ssh (a way to remotely access a
computer) and get it to connect to the right network. There is also no certainty that a
network will be available out in the field. To solve this issue I opted for creating a local
hotspot on the onboard computer. This allows for access wherever you are without having
to change networks. The hotspot starts automatically on boot and is accessible through a
chosen password.

Since there are at least two USB ports that are in use at all times by the IMU and Arduino,
there was a need for them to always be recognized by the same port name. The issue is that
Ubuntu sometimes changes the name that a port can have, for example changing which unit
has the /dev/ttyUSB0 and the /dev/ttyUSB1 which is a real headache. This problem was
resolved by using the fact that the hardware USB ports have unique id:s, which can be used
to set so-called udev rules. These rules can be modified such that an arbitrary name (I used
/dev/IMU for the IMU) can be connected to the hardware port on the PC. So whenever the
IMU data is needed from a USB port the program can simply use the /dev/IMU port name
which will always give the right unit.

2.1.9 GPR

When performing a survey there are two ways to trigger radar measurements out-of-the-
box, the first one being by time. This method uses a set time interval as an indicator for
when a measurement should be taken, but for this to work the GPR needs a GPS lock to
have viable timestamps.

The other way to trigger the radar is by distance traveled. This is done by using the
wheel encoder installed on one of the GPR:s wheels. The distance traveled measured with
encoder ticks can be calculated by first using the circumference of the wheel, which is the
same as how long one rotation will move the wheel. If the number of encoder ticks for one
motor revolution is known then the distance traveled per tick can be calculated, which is
then used for estimating the distance traveled.

Using an external encoder of some sort is also possible by using the available wheel
encoder trigger input on the radar. The original encoder uses quadrature outputs, which
are two square waves sent out with a 90° phase delay [21]. This behavior is quite easy to
emulate with an Arduino by using 2 pins whose outputs are put to high and low sequentially.
This allows full control over when a measurement should be taken.

After a survey is performed, two separate data sets are created, one with the radar data
and one with the autonomous systems positioning data. These data sets are then fused such
that they can be used to visualize the radar data with the path driven.

2.1.10 Teleoperation & GUI

To teleoperate the robot I created a GUI that allows the user to plan, visualize and perform a
survey of an arbitrary shape. It was implemented as a .html page and Javascript was used

8

for the back-end. The Rosbridge package presented in subsection 2.1.2 is the source of the
ROS communication between the local web page and the robot.

The GUI in its entirety is visible in Figure 2.4a where it is in its initial disconnected
state. The top part in dark gray houses the menu bar, and the grey square below that is
the canvas which is where the map will be shown. The process of planning a survey starts
with creating the boundaries of the survey. This is initiated with a press on the canvas,
which begins drawing a straight line from the clicked point to the place where the mouse
is hovering. This can be done as many times as wanted, each new click starts a new line.
To finish the plan, simply click in close vicinity to the first point and the last line will be
connected to the first point. A close-up of the canvas is shown in Figure 2.4b, the orange
circle is the robot’s position, and the red and green line indicates the x- and y-axis of the
canvas. When a survey plan has been made it is visualized as shown in Figure 2.4c, with
green circles indicating starting positions for the line and red circles as the endings. These
circles are connected to the survey boundaries.

A closer look at the menu bar is shown in Figure 2.4d Starting from the top-left of the
GUI there is the "Pause" button that is utilized as an emergency stop for the robot, it works
by sending a zero-velocity command to the robot which supersedes the command coming
from the navigation system. The "Resume" button simply stops sending the zero-velocity
command. The "Spacing" input field is used for changing the spacing between survey lines,
and "Rotation" is used for rotating the lines inside the survey area. The "Scale Map" field
is used to scale a received map since it might be too large to show on the screen or too
small to create a survey. The "Start Robot" button starts the ROS drivers of the robot’s
sensors, and the "Start Navigation" button launches the Nav2 system, both buttons change
color when the process is finished. The "Grid" drop-down settings allow the user to change
between doing surveys with lines or a grid, while the "Generate Path" button creates both
the visualization of the path in the GUI as well as the list of waypoints to be sent to the
robot. "Trigger GPR" is used with an external trigger to indicate when the system is ready
to start taking radar measurements. Finally, the "Start Survey" button sends the created list
of waypoints to the robot which initiates the survey.

2.2 Hardware

Here I will give some insight into the choices made for the hardware design of this robot
together with some considerations that were made. Some components were unchanged
from the previous autonomous platform; the GPR itself, the electric motors, the GNSS unit,
and the motor controller.

2.2.1 System design

To design a box for all navigation equipment a design of the system was needed, to have
a clear idea of where and how cables should be drawn. It is also a good way of verifying
that all components have been thought of and gives a way of estimating the needed size for
an enclosure. In Figure 2.5 a drawing of the design is shown, with boxes for components
and lines for cables with text next to them indicating their purpose. The reason for the
two Lidars in the design was that they should be interchangeable and thus I needed to
have a plan that could handle both setups. The dotted lines are indicators of the physical
separation of the components. Under the first dotted line are the components that sit under
the lid of the GPR. In between the dotted lines are the components that are positioned inside
the navigation box and lastly the components at the top are outside of the navigation box.
The figure also shows that the whole system is powered from a single source, the two 14.4
V batteries located in the navigation box. To balance the power consumption of the two

9

(a) In this figure, the base state of the GUI is shown. The empty grey canvas indicates that no map has been
received, which is the case since a connection has yet to be made.

(b) The canvas of the GUI is depicted here. The
orange circle indicates the robot´s position and
the green and red lines are the direction of the y-
and x-axis respectively. The orange circle moves
with the robot.

(c) A survey plan has been made in this figure, the
green circles indicate starting positions for each
line and the red the ending. The grid will change
with the map such that its size and position is
correct.

(d) Enlarged menu bar, showing the individual buttons. The "Pause" and "Resume" buttons allow the robot to
be temporarily stopped during surveys. The fields "Spacing", "Rotation", and "Scale map" are used for altering
surveys. "Start Robot" initializes the sensors and "Start Navigation" starts the Nav2 system. The "Grid" drop-
down changes the survey style. Finally, "Trigger GPR" starts radar measurements, and "Start Survey" sends
the survey plan to the autonomous system.

Figure 2.4: Figures giving an overall look as well as explanations and close-ups of important parts
of the GUI.

batteries a power delivery card was attached inside the box. This card gets its input from

10

Motors
Power

EncodersSerial

Motor Driver

Arduino

Batteries

14.4V

PC
14.4V

HUB
USB

Power/COM

DC/DC

14.4V

GNSS
Lidar #1
Interface

3.3V

USB
COM

Ethernet

Antenna CameraLidar #1 Lidar #2

Lidar #2
HUB

USB
COM

USB
Power

USB
COM

COM

IMU

USB
Power/COM

USB
Power/
COM

14.4V

COM

Figure 2.5: Drawing over the system design with lines indicating cables, the text next to lines indicates
what the cables are for and boxes are components. Parts below the bottom dotted line are placed
under the lid of the GPR together with the radar equipment. Components placed between the dotted
lines are positioned in the navigation box and at the top are to be placed outside of the navigation
box.

the battery docks inside the battery bay and then outputs power to the system.

2.2.2 Computer

The reason for choosing a single PC over two Raspberry Pi:s (RPi:s), which was used on the
previous platform was mostly for simplicity. The two RPi:s both needed to be accessed from
a third unit which added unneeded complexity to the system. They were also powered by
a power bank, separate from the rest of the system. The computer used in this iteration of
the robot was a desktop PC with an Intel Core i5 CPU and 16GB of RAM chosen for its small
size and large computational power in comparison with an RPi. However, even though the
form factor is small, it is still quite a bit larger than two RPi:S and also draws a lot more
power. The RPi needs a power supply graded for 5 V and 3 A, 15 W, while the PC has a
power adapter listed at 19 V and 6.32 A, 120 W. These values are not representations of the
actual power draw for these components but they certainly give an idea of the difference.

2.2.3 Motor driver

The new motor driver gave one distinct advantage; its pulse width modulation (PWM) fre-
quency is at 32 KHz which, according to [22] is outside of what a human can hear. The old
driver had a lower PWM frequency which gave off a high-pitched sound while driving. The
motors are now controlled by sending bytes of specific values over serial communication.
Values between 1-127 correspond to motor one and 128-255 correspond to motor two, 64
and 192 are zero velocity commands for each motor. So to move the motors forward a mes-
sage with byte values between 64-127 and 192-255 moves the robot forward, and between
1-64 and 128-192 moves it in reverse.

11

2.2.4 Batteries & Power delivery

The whole autonomous system is now powered by two batteries rated at 14.4 V and ≥6.8
Ah which gives us ≥ 97.92 Wh or a total of about 196 Wh to work with. In Table 2.1 a list
of approximate power consumption from the components is listed which amounts to 96.23
W with Lidar #1 and 85.98 W with Lidar #2 which should allow an operational time of at
least two hours for both variations.

Component Voltage V Current A Power W

PC 14.4 3.0 43.2

Lidar #1 14.4 0.83 12.0

Lidar #2 5.0 0.35 1.75

IMU 5.0 0.02 0.10

GNSS 3.3 0.13 0.43

Generic Camera 5.0 0.9 4.5

Motors (individual) 14.4 2.5 36.0

Table 2.1: Reported power draw from components powered by the onboard batteries.

2.2.5 Navigation box

The navigation box is the enclosure for the main components of the robot; the LIDAR,
the computer, the batteries, antenna, IMU and GNSS unit. As was mentioned before, the
main considerations for this box were for it to be as small as possible, keep it (somewhat)
waterproof, and for it to be modular meaning that it can be easily removed from the GPR
platform. It was 3D-printed in PLA+ filament which makes it more sturdy, the system design
presented in subsection 2.2.1 was used as the basis for the parts. A thermal pad was added
to the PC:s heat sink which is then attached directly to the bottom of the box which is made
of aluminum to act as a larger heat sink. The bottom of the box is elevated from the top
of the fitting to allow some airflow under it to further cool it down. It was designed to
be a closed system, the cables drawn through the box are equipped with rubber bushings,
and all lids were sealed with rubber gaskets. A front-facing picture of the navigation box is
shown in Figure 2.6.

2.2.6 Heat development

Since the navigation box is supposed to be a closed box, there is a risk that components
become overheated if the heat transfer with the outside does not work well enough. To
ensure no damage occurs in the parts, tests must be performed controlling the temperature of
both the PC and inside the box. This will be tested and verified such that the temperatures do
not exceed the operating temperature limits of the components. To control the temperatures
of the box two methods were used, the Ubuntu lm-sensors tool which reads some internal
temperatures of the PC, and a heat camera to measure the temperature inside the box and
on its surface.

12

Figure 2.6: The navigation box depicted from the front, the Lidar with its mount is visible at the top
and the battery dock is visible in front with the outward facing screw.

13

Chapter 3

Results

3.1 Graphical User Interface

The GUI can be used to plan and perform surveys, in Figure 3.1a a finished survey is shown.
The reported positions collected during the above survey are shown in Figure 3.1b. The
GUI lost connection to the robot at the start of the survey which is why there are fewer
horizontal lines than what is depicted in Figure 3.1a.

3.2 Data integration

Integration of positioning data with radar data was performed and an example of a finished
survey using external triggering is visible in Figure 3.2. The uppermost part of the figure
is the site map which shows the robot’s positions during the survey and the grey radar
view beneath that shows the radar data collected. The black dots on the radar view are
hyperbolas in the data which indicates that an object has been detected.

3.3 Navigation box & Platform

The whole new robot platform is depicted from the front in Figure 3.3a where the Lidar,
labeled "A", is mounted at the top of the navigation box labeled "B". The "C" label shows
the position of the battery dock containing the two 14.4 V batteries powering the entire
autonomous system. The navigation box is attached to a platform that slots into mounts that
are used for the original handle. The white lid indicated by "D" shows the GPR platform
with the radar and electronics situated underneath. The back of the robot is presented
in Figure 3.3b with "A" showing the battery dock for the GPR system, and "B" showing
the quick connections that provide power and communication with the motors. The on/off
button indicated with "C" is not connected to the autonomous system, instead, it is used for
starting and shutting down the GPR.

3.4 Heat development

The system was stress-tested for 10 minutes with the stress tool available on Linux, the tem-
peratures where then controlled. The measured CPU temperatures are visible in Figure 3.4,
where the average core temperature was measured to 82 °C.

The resulting thermal image of the outside, visible in Figure 3.5a, shows the bottom of the
box reaching a peak temperature of 50.8 °C at the position of the thermal pad between PC
and heat sink. The thermal image of the inside is shown in Figure 3.5b where the maximum
temperature measured was 61.4 °C at the top left.

14

(a) Screenshot of the GUI canvas during an outdoor survey performed in a parking lot. The white parts are
open space and the black portions are found obstacles. The rectangular shape in the map indicates the survey
bounds. Some extra black lines at the bottom right are artifacts created by IMU drift.

(b) Plot of the positions of the robot, estimated from all sensor data (IMU, odometry, LiDAR) with the SLAM
algorithm. The data is automatically flipped in the visualization software which is the reason for the diagonal
line being different here as compared to the screenshot of the GUI.

Figure 3.1: Figures showing how the GUI looks with a Lidar map and the positions that the robot’s
localization system has reported.

The system was also tested for heat development by doing regular surveys. After running
surveys indoors for 30 minutes, the PC:s temperatures were checked. The average core
temperature exceeded 90 °C and the Wi-Fi card reported a temperature of 94 °C.

15

Figure 3.2: The lower grey area is GPR trace captured with external-triggering visualized together
with the path driven above. The black dots indicate found hyperbolas which means that some object,
like the cross-section of a pipe, has been identified. The y-axis indicates the time in nanoseconds
that it took for the reflection to be read.

(a) The autonomous platform pictured from the
front. A: The Lidar is mounted at the top of the
navigation box. B: The navigation box itself, is
mounted on a plastic plate. C: The battery com-
partment for the autonomous system. D: The GPR
platform, the radar is mounted under the white
lid.

(b) The autonomous platform pictured from be-
hind. A: Indicates the battery compartment for
the radar. B: The quick connectors supply com-
ponents under the lid with power and commands.
C: The power button of the radar equipment with
an LED indicator.

Figure 3.3: Both sides of the GPR platform are depicted with indications on positions of important
components.

16

Figure 3.4: Terminal windows showing reported temperatures from the system.

(a) Thermal image showing surface temperature
on the underside of the navigation box.

(b) Thermal image showing temperature on the
inside of the navigation box after performing a
survey.

Figure 3.5: Thermal images taken on the surface and inside the navigation box after stress-tests.

17

Chapter 4

Discussion & Suggestions

4.1 GPR data & Triggering

The radar measurements were initially triggered in set time intervals which works without
any additions to the system. To fuse the radar measurements collected with time-triggering,
all timestamps from when the measurement was taken are needed. This could then be
used as input together with the positioning data to a Python script that performed linear
interpolation on the positions to match them to the radar timestamps. Since the triggering
is done at set time intervals, the data is still being recorded even when the robot is at a
standstill or turning in place. This is problematic since the data measured at a standstill
does not give any useful information and makes it harder to find the data of interest in the
visualization. An example of visualization of a survey done with time-triggering is visible in
Figure 4.1 where the data visible in the middle is smudged due to the robot turning in place.

Figure 4.1: GPR trace captured with time-triggering showing the smudging effect, visible in the middle
of the picture, that occurs when at a standstill or when rotating in place.

Triggering by distance is preferable to doing it by time, mostly because it allows the
robot to turn in place without data being collected. However, the wheel encoder that was
originally mounted on the wheel had to be removed to make room for the engines. One
option would be to use the wheel encoders on the engines, but then you would still need
to store timestamps on both position and radar measurements to synchronize them.

To solve the problem with smudged data from time-triggering and to avoid having to
sync timestamps from two data sets, an external trigger that imitates the signals sent by

18

the wheel encoders was used. This external trigger is an Arduino that is attached to the
wheel trigger hardware port that would have been used by the standard wheel trigger. It
imitates the signals that a wheel trigger would have sent. The external trigger uses distance
traveled, which is calculated using the position estimate from the extended Kalman filter to
control if enough movement has been made. The distance traversed was calculated as an
Euclidean distance between the previous and current x- and y-positions, if the difference
was over 0.025 m the position was saved and the radar was triggered. The downside of
this solution is that it adds one more component which increases the complexity and power
draw of the system.

The usage of the Arduino card already in use in the system was thought of as a possible
source of external triggering. This should be possible, but for it to work I would need to
insert the logic of when triggering should happen into the code used for regulating velocities
and then parse the incoming values on the Arduino. But, the idea of imitating the wheel
encoders with an external trigger came very late in the project so I chose to simply add
another component for simplicity.

4.2 Overheating components & Navigation Box

The preliminary stress-testing gave strong indications that the PC:s temperature will get too
high for the closed box to be a viable option. This was made even more clear when doing
real surveys indoors when the CPU temperature went north of 90 °C. Sustained operation
at temperatures over 80 °C could lead to hardware damage and if it reaches over 90 °C it
would likely shorten the processor’s lifespan [23].

If the temperature gets too high it will also lead to thermal throttling which lowers clock
speeds and thereby the processing power [24]. This seems to have been the case during
testing since the responsiveness of the PC became more sluggish as the test went on.

These two factors made it unreasonable to have the navigation box entirely closed. The
solution to the heat issues was to drill two sets of holes, one set in the direction of the PC:s
air exhaust and one set to its side. After these changes, the core temperature has not risen
over 80 °C during any survey.

For a future iteration a closed box is still the goal, but to achieve that with no overheating
issues the PC would probably need to be changed as well as using a better heat sink
with flanges to increase heat flow with the environment. For this solution, a single-board
computer that is powerful enough with a lower power draw would be an option. This was
investigated when building the platform and some alternatives that could work were found,
the problem was the cost. Another benefit with a smaller single-board computer is that it
would allow for an even smaller navigation box while avoiding overheating problems due
to the lower power consumption. A change in box material could also help with redirecting
the heat outwards, but the 3D-printed version was chosen since it was fast to model, easy
to print, and cheap.

Apart from the overheating problems the box offers a lot of versatility, it is easy to remove
from the system, and considering how much it contains the size of it is still quite small.

4.3 Teleoperation of autonomous system

The GUI works as intended, it can handle arbitrarily shaped survey boundaries, and it can
plan a survey as soon as a map is received. However, it has some an issue that makes
the canvas blink when a new map is presented. This problem is most likely due to poorly
optimized code, when an update to the canvas is made it first clears the previous iteration

19

and redraws everything on top of it. This might be solved by simply optimizing the code
or by changing the way in which the canvas is drawn.

One goal of this new system was that it should be easily used by anyone. This was
achieved with the latest update that removed any need for connecting to the onboard PC
over the local network via a terminal. This basically means that all operation of the robot
is done through the GUI. The only reason a remote connection is needed is to retrieve the
positioning data file which is now saved locally on the onboard PC. The reason for saving
it locally instead of via the GUI is to avoid losing data if the network connection would
disappear momentarily.

This was entirely made possible since the Rosbridge server can be started on boot,
which opens the communication between PC:s. To start the sensor package and navigation
system you simply need to press two buttons on the GUI which sends requests to a Python
script running on start-up.

An issue discovered during testing is that the range and robustness of the hotspot created
by the onboard PC are a problem for surveys. The operator has to be in close vicinity to
the robot and even then you might lose connection to the hotspot. When the operator’s
unit loses connection to the shared network the GUI will stop updating, the survey will,
however, continue. The solution for this would be mounting an external Wi-Fi antenna on
top of the navigation box which should increase the range of the network.

4.4 GNSS

A GNSS module was planned to be integrated into the system but due to time constraints,
this part had to be dropped. It was planned to sit in the navigation box so the power it
needs and the communication path are ready for use, so it is "simply" a matter of integrating
it into the software system.

4.5 Displacement

To try out the complete solution with the GPR running I performed tests in a corridor at
the office that has floor beams that produce very distinct and clear hyperbolas in the radar
data. However, when this data was visualized I noticed quite a large displacement in the
hyperbolas the beams created. This can be seen in Figure 4.2, where the black points should
be aligned two and two. The first thought was that this must be because the position is
measured at the back of the robot while the radar measurements are done in the middle.
To test this hypothesis I transformed the position to be in the middle, but the data was still
displaced but not as much. Through testing, I found that moving the position measured circa
0.4 m ahead of the original led to the displacement being removed. But this solution is not
a solution either, the position measured is ahead of the robot.

Figure 4.2: Position-data with black dots indicating hyperbolas found in the radar data. The mea-
surements were performed in a corridor where the floor beams gave very clear hyperbolas. The
displacement of points that should align vertically in the picture is approximately 0.5 m.

20

But when the triggering mode had been changed to using an external trigger it only
required a displacement of 0.17 m for the measured position to remove any apparent dis-
placement. This length is equal to the distance from the back wheels to the point where
radar measurements are taken. The result from this test is shown in Figure 4.3 which was
done in the same corridor as the test in Figure 4.2, only with a few detours added.

Figure 4.3: Position-data with black dots indicating hyperbolas found under the surface. Measurements
were performed in a corridor where the floor beams gave very clear hyperbolas. The points have
no discernible displacement.

21

Chapter 5

Conclusion

5.1 Autonomous Ground Penetrating Radar

This new autonomous platform GPR gives position estimates in areas where GPS is not
reliable to use, such as indoors, or even where it is not possible. Since the GPR positioning
is wholly reliant on the map created by the onboard sensors I show that a survey can always
be performed, even underground, as long as the internal communication between sensors
and computer is intact.

Moreover, I built and improved hardware with a modular navigation box and simplified
the usage through a more intuitive GUI. While there still are minor issues with ease of use,
the addition of external triggering automatically integrates with radar and might in the future
offer a simple way to implement the navigation package to an arbitrary GPR platform.

22

References

[1] M. Gollom. “How radar technology is used to discover unmarked graves at former resi-
dential schools.” CBC.ca. https://www.cbc.ca/news/canada/ground-radar-technolog
y-residential-school-remains-1.6049776 (accessed Jan. 19, 2023).

[2] J. H. Lever, A. J. Delaney, L. E. Ray, E. Trautmann, L. A. Barna and A. M Burzynski,
"Autonomous GPR surveys using the polar rover yeti," Journal of Field Robotics., vol
30, no, 2, pp. 194-205, Dec. 2012. Accessed: January, 20, 2023. [Online]. Available:
https://www.researchgate.net/publication/263059094_Autonomous_GPR_Surveys_
using_the_Polar_Rover, DOI: 10.1002/rob.21445.

[3] V.G. Gracia, et al. "GPR survey to confirm the location of ancient structures under the
Valencian Cathedral (Spain)," Journal of Applied Geophysics., vol 43, no 2–4, pp. 167-174,
Mar. 2000. Accessed: January, 20, 2023. [Online]. Available: https://www.sciencedirec
t.com/science/article/pii/S0926985199000567, DOI: 10.1016/S0926-9851(99)00056-
7.

[4] M.Jol. Harry, Ed. “Common-offset reflection survey,” in Ground Penetrating Radar: Theory
and Applications 1st edition. Amsterdam, The Netherlands; Elsevier (Science Publishing
Co.), 2009, ch. 1, sec. 5.3, p. 30.

[5] S. J. Radzevicius, J. J. Daniels, E. D. Guy and M. A. Vendl, A, "Significance Of Crossed-
Dipole Antennas For High Noise Environments," Symposium on the Application of Geo-
physics to Engineering and Environmental Problems Proceedings, pp. 407-413, 2000. Ac-
cessed: Jan. 23, 2023. [Online]. Available: https://www.researchgate.net/publicati
on/254225864_Significance_of_Crossed_Dipole_Antennas_for_High_Noise_Enviro
nments, DOI: 10.4133/1.2922770.

[6] S. Macenski, T. Foote, B. Gerkey, C. Lalancette and W. Woodall, “Robot Operating System
2: Design, architecture, and uses in the wild,” Science Robotics vol. 7, May 2022. Accessed:
Apr. 24, 2023. [Online]. Available: https://www.science.org/doi/10.1126/scirobotic
s.abm6074, DOI: 10.1126/scirobotics.abm6074.

[7] "Understanding nodes." docs.ros.org. https://docs.ros.org/en/humble/Tutorials/B
eginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
(accessed Jun. 8, 2023).

[8] "ROS2 Humble Concepts." docs.ros.org. https://docs.ros.org/en/humble/Concepts.
html (accessed May 24, 2023).

[9] "Topics vs Services vs Actions." docs.ros.org. https://docs.ros.org/en/humble/How-T
o-Guides/Topics-Services-Actions.html#actions (accessed May 24, 2023).

[10] J. Mace. "rosbridge_suite." wiki.ROS.org. http://wiki.ros.org/rosbridge_suite
(accessed Apr. 26, 2023).

[11] "roslibjs." wiki.ROS.org. http://wiki.ros.org/roslibjs (accessed May 29, 2023).

23

https://www.cbc.ca/news/canada/ground-radar-technology-residential-school-remains-1.6049776
https://www.cbc.ca/news/canada/ground-radar-technology-residential-school-remains-1.6049776
https://www.researchgate.net/publication/263059094_Autonomous_GPR_Surveys_using_the_Polar_Rover
https://www.researchgate.net/publication/263059094_Autonomous_GPR_Surveys_using_the_Polar_Rover
https://www.sciencedirect.com/science/article/pii/S0926985199000567
https://www.sciencedirect.com/science/article/pii/S0926985199000567
https://www.researchgate.net/publication/254225864_Significance_of_Crossed_Dipole_Antennas_for_High_Noise_Environments
https://www.researchgate.net/publication/254225864_Significance_of_Crossed_Dipole_Antennas_for_High_Noise_Environments
https://www.researchgate.net/publication/254225864_Significance_of_Crossed_Dipole_Antennas_for_High_Noise_Environments
https://www.science.org/doi/10.1126/scirobotics.abm6074
https://www.science.org/doi/10.1126/scirobotics.abm6074
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Concepts.html
https://docs.ros.org/en/humble/Concepts.html
https://docs.ros.org/en/humble/How-To-Guides/Topics-Services-Actions.html#actions
https://docs.ros.org/en/humble/How-To-Guides/Topics-Services-Actions.html#actions
http://wiki.ros.org/rosbridge_suite
http://wiki.ros.org/roslibjs

[12] MathWorks, "SLAM (Simultaneous Localization And Mapping)", Mathworks.com https:
//se.mathworks.com/discovery/slam.html#how-slam-works (accessed Apr. 26, 2023).

[13] S. Macenski and I. Jambrecic, "SLAM Toolbox: SLAM for the dynamic world." Journal
of Open Source Software, 6(61), 2783, 13 May 2021. Accessed: Apr. 26, 2023. [Online].
Available: https://doi.org/10.21105/joss.02783

[14] G. Giorgio, K. Rainer, S. Cyrill, B. Wolfram. "A tutorial on graph-based SLAM." IEEE
Transactions on Intelligent Transportation Systems Magazine. vol. 2, pp. 31-43, Dec. 2010.
Accessed: Apr. 28, 2023. [Online]. Available: https://www.researchgate.net/publica
tion/231575337_A_tutorial_on_graph-based_SLAM, DOI: 10.1109/MITS.2010.939925.

[15] S. Macenski, F. Martín, R. White and J. Ginés Clavero. "The Marathon 2: A Navigation
System." Feb. 2020. Accessed: Apr. 28, 2023. [Online]. Available: https://www.resear
chgate.net/publication/339642039_The_Marathon_2_A_Navigation_System

[16] S. Jeong, T. Ga, I. Jeong, and J. Choi. "Behavior Tree-Based Asynchronous Task Planning
for Multiple Mobile Robots using a Data Distribution Service." Jan. 2022. Accessed: Apr.
28, 2023. [Online]. Available: https://www.researchgate.net/publication/358142403
_Behavior_Tree-Based_Asynchronous_Task_Planning_for_Multiple_Mobile_Robots
_using_a_Data_Distribution_Service.

[17] A. Javaid. "Understanding Dijkstra Algorithm." SSRN Electronic Journal. Accessed: May.
29, 2023. [Online]. Available: https://www.researchgate.net/publication/273264449
_Understanding_Dijkstra_Algorithm, DOI: 10.2139/ssrn.2340905.

[18] "Pure Pursuit Controller" Mathworks.com. https://se.mathworks.com/help/nav/ug/p
ure-pursuit-controller.html (accessed May 5, 2023).

[19] "Tuning Guide, Controller Plugin Selection." Navigation.Ros.Org. https://navigation.r
os.org/tuning/index.html (accessed May 5, 2023).

[20] M. B. Rhudy, R. A. Salguero, and K. Holappa. "A Kalman Filtering Tutorial For Undergrad-
uate Students." International Journal of Computer Science & Engineering Survey (IJCSES),
Vol. 8, No. 1, pp. 1-18, Feb. 2017, DOI:10.5121/ijcses.2017.8101.

[21] "Quadrature Encoder Overview." Dynapar.com. https://www.dynapar.com/technolo
gy/encoder_basics/quadrature_encoder/ (accessed May 29, 2023)

[22] D. Purves, G.J. Augustine, D. Fitzpatrick, et al., Editors. Neuroscience: The Audible
Spectrum. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. [Online] Available:
https://www.ncbi.nlm.nih.gov/books/NBK10924/

[23] S. Villinger. "How to Check and Monitor Your CPU Temperature." Avast.com. https:
//www.avast.com/c-how-to-check-cpu-temperature#topic-5 (accessed May 15,
2023).

[24] K. Stealey. "What is thermal throttling and how does it impact gaming." In-
sight.Samsung.com https://insights.samsung.com/2022/08/23/what-is-thermal
-throttling-and-how-does-it-impact-gaming/ (accessed May 15, 2023).

24

https://se.mathworks.com/discovery/slam.html#how-slam-works
https://se.mathworks.com/discovery/slam.html#how-slam-works
https://doi.org/10.21105/joss.02783
https://www.researchgate.net/publication/231575337_A_tutorial_on_graph-based_SLAM
https://www.researchgate.net/publication/231575337_A_tutorial_on_graph-based_SLAM
https://www.researchgate.net/publication/339642039_The_Marathon_2_A_Navigation_System
https://www.researchgate.net/publication/339642039_The_Marathon_2_A_Navigation_System
https://www.researchgate.net/publication/358142403_Behavior_Tree-Based_Asynchronous_Task_Planning_for_Multiple_Mobile_Robots_using_a_Data_Distribution_Service
https://www.researchgate.net/publication/358142403_Behavior_Tree-Based_Asynchronous_Task_Planning_for_Multiple_Mobile_Robots_using_a_Data_Distribution_Service
https://www.researchgate.net/publication/358142403_Behavior_Tree-Based_Asynchronous_Task_Planning_for_Multiple_Mobile_Robots_using_a_Data_Distribution_Service
https://www.researchgate.net/publication/273264449_Understanding_Dijkstra_Algorithm
https://www.researchgate.net/publication/273264449_Understanding_Dijkstra_Algorithm
https://se.mathworks.com/help/nav/ug/pure-pursuit-controller.html
https://se.mathworks.com/help/nav/ug/pure-pursuit-controller.html
https://navigation.ros.org/tuning/index.html
https://navigation.ros.org/tuning/index.html
https://www.dynapar.com/technology/encoder_basics/quadrature_encoder/
https://www.dynapar.com/technology/encoder_basics/quadrature_encoder/
https://www.ncbi.nlm.nih.gov/books/NBK10924/
https://www.avast.com/c-how-to-check-cpu-temperature#topic-5
https://www.avast.com/c-how-to-check-cpu-temperature#topic-5
https://insights.samsung.com/2022/08/23/what-is-thermal-throttling-and-how-does-it-impact-gaming/
https://insights.samsung.com/2022/08/23/what-is-thermal-throttling-and-how-does-it-impact-gaming/

	Introduction
	Background
	Purpose

	Architecture
	Software
	Robot Operating System 2
	Rosbridge
	SLAM
	Navigation 2
	Planner
	Path following
	Robot localization
	Network & Ports
	GPR
	Teleoperation & GUI

	Hardware
	System design
	Computer
	Motor driver
	Batteries & Power delivery
	Navigation box
	Heat development

	Results
	Graphical User Interface
	Data integration
	Navigation box & Platform
	Heat development

	Discussion & Suggestions
	GPR data & Triggering
	Overheating components & Navigation Box
	Teleoperation of autonomous system
	GNSS
	Displacement

	Conclusion
	Autonomous Ground Penetrating Radar

