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Abstract
Aims/hypothesis Islet autoimmunity may progress to adult-onset diabetes. We investigated whether circulating odd-chain 
fatty acids (OCFA) 15:0 and 17:0, which are inversely associated with type 2 diabetes, interact with autoantibodies against 
GAD65 (GAD65Ab) on the incidence of adult-onset diabetes.
Methods We used the European EPIC-InterAct case–cohort study including 11,124 incident adult-onset diabetes cases and 
a subcohort of 14,866 randomly selected individuals. Adjusted Prentice-weighted Cox regression estimated HRs and 95% 
CIs of diabetes in relation to 1 SD lower plasma phospholipid 15:0 and/or 17:0 concentrations or their main contributor, 
dairy intake, among GAD65Ab-negative and -positive individuals. Interactions between tertiles of OCFA and GAD65Ab 
status were estimated by proportion attributable to interaction (AP).
Results Low concentrations of OCFA, particularly 17:0, were associated with a higher incidence of adult-onset diabetes in 
both GAD65Ab-negative (HR 1.55 [95% CI 1.48, 1.64]) and GAD65Ab-positive (HR 1.69 [95% CI 1.34, 2.13]) individu-
als. The combination of low 17:0 and high GAD65Ab positivity vs high 17:0 and GAD65Ab negativity conferred an HR 
of 7.51 (95% CI 4.83, 11.69), with evidence of additive interaction (AP 0.25 [95% CI 0.05, 0.45]). Low dairy intake was 
not associated with diabetes incidence in either GAD65Ab-negative (HR 0.98 [95% CI 0.94, 1.02]) or GAD65Ab-positive 
individuals (HR 0.97 [95% CI 0.79, 1.18]).
Conclusions/interpretation Low plasma phospholipid 17:0 concentrations may promote the progression from GAD65Ab 
positivity to adult-onset diabetes.
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Introduction

The presence of autoantibodies against one or more islet 
cell autoantigens is an indicator of destruction in the insu-
lin-producing beta cells and usually precedes the diagnosis 
of type 1 diabetes [1, 2]. Autoantibodies targeting GAD65 
(GAD65Ab) have additionally been linked to an increased 
incidence of adult-onset diabetes with no evident autoim-
mune phenotype [3]. Strategies for preventing or postponing 
progression from islet autoimmunity to overt diabetes are 
needed but, so far, risk factors are largely unknown [4].

Circulating odd-chain fatty acids (OCFA) pentadecanoic 
acid (15:0) and heptadecanoic acid (17:0) are associated with 
favourable metabolic properties [5] and a decreased risk of 
type 2 diabetes [6]. In line with these findings, intake of dairy 
products (the main contributor to OCFA concentrations [7]), 
particularly fermented products such as yoghurt, is linked to 
a reduced risk of type 2 diabetes [8]. On the other hand, a 
high intake of dairy products may increase the risk of type 
1 diabetes in children [4]. This is possibly attributed to the 
strong antigenicity of cow’s milk and the molecular mim-
icry between cow’s milk proteins and proteins in the islets of 
Langerhans [9]. Regarding the risk of autoimmune diabetes 
with adult-onset, such as type 1 diabetes or latent autoimmune 
diabetes in adults (LADA), a potential association with OCFA 
concentrations or dairy product intake has not been addressed.

Our aim was to examine whether plasma phospholipid 
concentrations of 15:0 and/or 17:0 or dairy product intake 
are associated with progression from GAD65Ab positivity 
to adult-onset diabetes and to evaluate the potential interac-
tion between these fatty acids and GAD65Ab status on the 
incidence of adult-onset diabetes.

Methods

Study population We used data from the EPIC-InterAct 
study, which is nested within eight of the ten participating 
countries of the European Prospective Investigation into Can-
cer and Nutrition (EPIC) study. EPIC-InterAct was created 
with the aim of studying risk factors for type 2 diabetes and 
has a prospective case–cohort design, previously described 
in detail [10]. Briefly, the EPIC study recruited 340,234 
individuals across 26 centres in Denmark, France, Germany, 
Italy, the Netherlands, Spain, Sweden and the UK, between 
1991 and 1998. The cohort was followed until 31 December 
2007, date of death or date of diabetes diagnosis, whichever 
occurred first. This generated 3.99 million person-years of 
follow-up (median 10.9 years), during which 12,403 incident 
cases of type 2 diabetes were verified and included as cases 
in the EPIC-InterAct case–cohort study. From the full cohort, 
a random, centre-stratified subcohort of 16,835 participants 
(4.9% of the entire cohort) was also assembled. After exclu-
sion of individuals with prevalent diabetes, unknown diabe-
tes status, or diabetes after censoring (n=681), 16,154 par-
ticipants remained in the subcohort and were included in the 
case–cohort. By design [10], 778 of these participants overlap 
with the incident type 2 diabetes cases. This is an efficient 
design as exposure information only needs to be assessed for 
the cases and the subcohort, while inferences can be drawn for 
the full cohort. From our analytical sample we excluded indi-
viduals without information on plasma phospholipid OCFA 
(n=483), GAD65Ab status (n=352) or important covariates 
(i.e. education, smoking, physical activity and BMI) (n=929) 
and excluded individuals in the top or bottom 1% of the ratio 
of energy intake to basal metabolic rate (n=717). This left 



1462 Diabetologia (2023) 66:1460–1471

1 3

11,124 cases and 14,866 subcohort participants, 692 of which 
were cases (electronic supplementary material [ESM] Fig. 1). 
All participants provided written informed consent, and the 
study was approved by the local ethics committee in the par-
ticipating countries and the Internal Review Board of the 
International Agency for Research on Cancer (IARC).

Diabetes ascertainment Case verification was based on at 
least two sources, including self-report, linkage to primary 
care registers, secondary care registers, medication use 
(drug registers), hospital admissions and mortality data. In 
Denmark and Sweden, cases were identified through local 
and national diabetes and pharmaceutical registers. Some of 
the cases might meet the criteria for LADA, which include 
GAD65Ab positivity, onset ≥35 years and absence of insu-
lin requirement for 6–12 months following diagnosis [11]. 
This could not be verified since GAD65Ab was assessed at 
baseline and not at diagnosis. Thus, we will refer to the study 
outcome as adult-onset diabetes.

Baseline dietary and covariate assessment Information on 
habitual diet during the past year was collected through 
validated country/centre-specific questionnaires covering 
locally consumed foods [12, 13]. Total energy and nutrient 
intakes were calculated with the standardised EPIC Nutri-
ent Database [14]. The consumption of dairy products was 
assessed as intake of total dairy products (milk, milk bever-
ages, yoghurt, thick fermented milk, curd, cheese, cream 
desserts, milk-based puddings, dairy creams, milk for coffee 
and creamers), milk and fermented dairy products (yoghurt, 
thick fermented milk and cheese) in g/day.
Weight (kg), height (m) and waist circumference (cm) were 
measured by trained personnel in most centres, and self-
reported in some parts of the UK and France. In Umeå 
(Sweden), waist circumference was not measured (n=1620). 
Demographic, health and lifestyle characteristics were 
assessed by questionnaire [13]. Self-reported physical activ-
ity was categorised according to the Cambridge physical 
activity index as inactive, moderately inactive, moderately 
active or active [15].

Laboratory measurements Plasma samples were drawn at 
baseline and stored in liquid nitrogen at the IARC in France 
or at local biobanks at −196°C, except in the case of Den-
mark (−150°C) and Umeå (−80°C). Relative concentrations 
of plasma phospholipid fatty acids were analysed between 
2010 and 2012 at the Medical Research Council Human 
Nutrition Research (UK) using previously described meth-
ods [16]. Briefly, fatty acid methyl esters were obtained after 
hydrolysation and methylation of the fatty acids. Fatty acid 
identification was based on retention time in gas chromatog-
raphy (J&W HP-88, 30 m length, 0.25 mm internal diameter; 
Agilent Technologies, Santa Clara, CA, USA) equipped with 

flame ionisation detection (7890N GC; Agilent Technolo-
gies). The relative concentrations measured were expressed 
as a percentage of total phospholipid fatty acids (mol%).

Plasma GAD65Ab levels were measured in baseline sam-
ples from EPIC-InterAct participants, using a previously 
described radio-binding assay method [17], and expressed 
in relative units according to the WHO standard [18]. The 
cut-off for GAD65Ab positivity was set at ≥65 U/ml (99% 
specificity and 85% sensitivity [3]) and the median value 
among GAD65Ab-positive individuals (167.5 U/ml) was 
used as the cut-off for high GAD65Ab positivity, as previ-
ously done in this population [19].

Statistical analysis All analyses were performed with Stata 
Statistical Software Release 16 (StataCorp, College Station, 
TX, USA). Baseline characteristics of the case–cohort par-
ticipants were described as proportions for the categorical 
variables and as mean with SD or median with IQR for the 
continuous variables, stratified by GAD65Ab status within the 
subcohort and incident cases. These characteristics were com-
pared between GAD65Ab-positive and -negative individuals 
based on the p value obtained by χ2 test for proportions, the 
Student’s t test for means, and the Kruskal–Wallis H test for 
medians. Logistic regression was used to estimate the OR of 
GAD65Ab positivity and high positivity in relation to tertiles 
of and per 1 SD increase in 15:0 and/or 17:0 concentrations 
and dairy product intake. The tertiles and SDs of OCFA and 
intake of dairy products were calculated based on the distribu-
tion in the subcohort. Correlations between OCFA, intake of 
dairy products and other dietary factors were assessed with 
Spearman rank correlation coefficients within the subcohort.

Prentice-weighted Cox regression models with age as the 
underlying time scale [20] were used to estimate HRs and 95% 
CIs of adult-onset diabetes in relation to the following factors: 
(1) GAD65Ab status at baseline (positive [≥65 U/ml], posi-
tive-low [65 to <167.5 U/ml], or positive-high [≥167.5 U/ml] 
vs negative [<65 U/ml]); and (2) 1 SD lower 15:0 and/or 17:0 
or dairy product intake at baseline, stratified by GAD65Ab 
status. According to this method, subcohort participants con-
tributed person-years since baseline, while non-subcohort 
cases were adjusted to enter the study right before their failure 
time [20]. All models were adjusted for age (underlying time 
scale), sex, education (none, primary, technical/professional, 
secondary, tertiary), smoking (never, former, current), physi-
cal activity (inactive, moderately inactive, moderately active, 
active) and BMI (kg/m2). Analyses with OCFA concentra-
tions or dairy intake as exposure were additionally adjusted 
for total energy intake (kJ/day), and intake of alcohol, fruits, 
vegetables, cereal and cereal products, fish and shellfish, and 
red and processed meat (g/day). Baseline hazard was stratified 
by centre in Cox models [21]. Visual inspection of log (−log) 
plots for the main exposures suggested that the proportional 
hazards assumption was unviolated.
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Using the same Cox models, we estimated HRs of dia-
betes in relation to combinations of GAD65Ab status and 
tertiles of 15:0 and/or 17:0 concentration. The stratum that 
conferred the lowest risk when the two exposures were 
considered jointly was used as the reference group [22]. 
Additive interaction between GAD65Ab positivity or high 
positivity and the lowest tertile of OCFA concentrations 
was estimated by the proportion attributable to interaction 
(AP) with 95% CIs [23]. AP represents the proportion of 
cases among the doubly exposed that is attributable to the 
interaction between the two exposures and may help identify 
the population subgroups that could benefit more from a 
targeted intervention [24]. As a complement, we assessed 
interactions on the multiplicative scale, by fitting product 
terms for GAD65Ab status and tertiles of OCFA into the 
Cox models. Based on these models, we derived the HRs of 
diabetes in relation to the lowest vs highest tertiles of OCFA 
within strata of GAD65Ab status, and we present the p value 
for the coefficient of the product term between OCFA and 
GAD65Ab positivity or high positivity vs negativity. A p 
value of <0.05 reflects effect heterogeneity of low OCFA 
across strata of GAD65Ab status.

Sensitivity analyses We further adjusted the HRs for poten-
tial confounders that were not included in the main mod-
els and had a high proportion of missing data (i.e. waist 
circumference [7% missing] and family history of type 2 
diabetes [51% missing]), after restricting the sample to 
those with available information on these covariates. We 
also adjusted for additional dietary factors including bever-
ages in g/day (soft drinks, coffee, tea), nutrients in mg/day 
(calcium, magnesium) or μg/day (vitamin D) and relative 
concentrations of polyunsaturated plasma phospholipid fatty 
acids in mol%. The analyses of 15:0 and 17:0 were mutu-
ally adjusted. To avoid reverse causation, we excluded indi-
viduals diagnosed with diabetes during the first 2 years of 
follow-up (n=1010) or who had baseline  HbA1c ≥48 mmol/
mol (≥6.5%) (n=2106).

Post hoc analyses We additionally investigated whether 
potential contributors to OCFA, other than dairy product 
intake, are associated with progression to adult-onset diabe-
tes. Specifically, we used the same Cox models to estimate 
HRs of diabetes in relation to 1 SD lower fruit, vegetable 
and total dietary fibre intakes, stratified by GAD65Ab status. 
HRs were adjusted for age (underlying time scale), centre 
(stratified baseline hazard), sex, education level, smoking 
status, physical activity, BMI, total energy intake and intake 
of alcohol, dairy products, cereal and cereal products, fish 
and shellfish, and red and processed meat (g/day). The analy-
ses of fruit and vegetables were mutually adjusted.

Results

Baseline characteristics In total, 2.0% (n=297) of the subco-
hort and 3.5% (n=389) of the cases were GAD65Ab positive 
at baseline (Table 1). Baseline characteristics did not differ 
by GAD65Ab status in the subcohort. Cases with GAD65Ab 
positivity were more likely to be women and have lower 
BMI, smaller waist circumference, lower energy intake, 
lower intake of fish and red meat, and higher concentra-
tions of OCFA compared with GAD65Ab-negative cases. 
GAD65Ab positivity or high positivity was not associated 
with plasma phospholipid OCFA or dairy product intake in 
cross-sectional analyses (ESM Table 1).

Correlations between OCFA and dietary factors The sum 
of plasma phospholipid 15:0 and 17:0 was significantly but 
weakly correlated with total dairy (r=0.19 [95% CI 0.17, 
0.21]), milk (r=0.13 [95% CI 0.11, 0.14]) and fermented 
dairy (r=0.13 [95% CI 0.12, 0.15]) intakes (ESM Table 2). 
For 15:0, the strongest correlations were seen with total 
dairy (r=0.23 [95% CI 0.21, 0.24]), fermented dairy (r=0.24 
[95% CI 0.22, 0.25]) and fish and shellfish (r=−0.22 [95% 
CI −0.23, −0.20]) intakes. The strongest correlations for 
17:0 were with fruit (r=0.21 [95% CI 0.20, 0.23]) and veg-
etables (r=0.16 [95% CI 0.15, 0.18]) followed by total dairy 
(r=0.13 [95% CI 0.12, 0.15]), milk (r=0.12 [95% CI 0.11, 
0.14]) and total dietary fibre (r=0.10 [95% CI 0.08, 0.12]) 
intakes. The median intakes of dairy products and other die-
tary factors across concentrations of plasma phospholipid 
15:0 or 17:0 are presented in ESM Table 3. The groups with 
the highest concentrations of these OCFA had the highest 
intakes of total dairy products. In addition, those with the 
highest 17:0 concentrations had the highest intakes of fruit, 
vegetables and total dietary fibre.

Incidence of diabetes in relation to GAD65Ab status, OCFA 
and dairy intake Being positive for GAD65Ab at baseline 
was associated with a higher incidence of diabetes (HR 1.83 
[95% CI 1.51, 2.22]), and the association was even more pro-
nounced in those with high GAD65Ab positivity (HR 3.05 
[95% CI 2.37, 3.93]) (Fig. 1). Regarding OCFA, there was an 
inverse association between 15:0 and/or 17:0 concentrations 
and diabetes incidence, both in GAD65Ab-positive individu-
als and GAD65Ab-negative individuals (Fig. 1, Table 2). 
The inverse association appeared more pronounced for 17:0 
than 15:0; in GAD65Ab-negative individuals the incidence 
of diabetes was 55% higher per 1 SD lower 17:0 (HR 1.55 
[95% CI 1.48, 1.64]) and 25% higher per 1 SD lower 15:0 
(HR 1.25 [95% CI 1.20, 1.32]) (Fig. 1). In GAD65Ab-pos-
itive individuals the incidence of diabetes was 69% higher 
per 1 SD lower 17:0 (HR 1.69 [95% CI 1.34, 2.13]) (Fig. 1) 
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and the HR for the lowest vs highest tertile was estimated 
to be 1.97 (95% CI 1.25, 3.11) (Table 2). Associations 
were weaker in individuals with high GAD65Ab positivity 
(Fig. 1, Table 2); the lowest vs highest tertile of 17:0 con-
centration was associated with higher diabetes incidence, 
whereas no significant associations were observed with 15:0 
or the sum of the OCFA. Intakes of total dairy products, milk 
or fermented dairy products were not associated with the 
incidence of diabetes in either GAD65Ab-negative individu-
als (HR 0.98 [95% CI 0.94, 1.02] per 1 SD lower total dairy 

intake) or GAD65Ab-positive individuals (HR 0.97 [95% 
CI 0.79, 1.18] per 1 SD lower total dairy intake) (Fig. 1).

Interaction between GAD65Ab status and OCFA Analyses of 
the incidence of diabetes in relation to the combined expo-
sure to GAD65Ab positivity and tertiles of OCFA revealed 
the highest HR in individuals with GAD65Ab positivity and 
low concentrations of 17:0 (HR 4.48 [95% CI 3.20, 6.26]) 
compared with those with GAD65Ab negativity and high 
concentrations of 17:0 (Table 2). However, there was no 

Table 1  Baseline characteristics by GAD65Ab status among all eligible subcohort and incident diabetes cases

Data are mean (SD), %, or median (IQR) unless otherwise indicated
a p value for the comparison between GAD65Ab positive and negative subcohort participants
b p value for the comparison between GAD65Ab positive and negative cases
c Of which 669 (4.6%) developed diabetes during follow-up
d Of which 23 (7.7%) developed diabetes during follow-up
e Waist circumference measurements missing for Umeå centre (n=1620) and for some individuals in other centres (n=90)
f Family history information available for 49.2% of the subcohort (47.5% for GAD65Ab positive) and 49.0% (53.7% for GAD65Ab positive) of 
incident diabetes cases

Characteristic Subcohort Incident diabetes cases

GAD65Ab negative GAD65Ab positive p  valuea GAD65Ab negative GAD65Ab positive p  valueb

Individuals, n 14,569c 297d 10,735 389
Follow-up, years 12 (2.3) 11.9 (2.4) 0.574 6.9 (3.3) 6.5 (3.5) 0.052
Age, years 52.2 (9.1) 52.8 (9.3) 0.330 55.5 (7.6) 55.0 (8.4) 0.213
Female sex 62.5 64.6 0.440 50.1 58.4 0.001
BMI, kg/m2 26.0 (4.2) 25.8 (4.2) 0.359 29.7 (4.7) 28.4 (5.1) <0.001
Waist circumference,  cme 86.3 (12.6) 86.2 (12.7) 0.902 97.7 (12.3) 93.8 (13.8) <0.001
Family history of type 2  diabetesf 19.0 13.5 0.097 36.3 31.1 0.124
High education 20.8 20.5 0.316 13.3 13.9 0.104
Smokers 25.8 23.2 0.459 27.8 28.0 0.513
Physically active 20.1 19.5 0.518 16.8 18.5 0.131
Energy intake, kJ/day 8941 (2653) 9012 (2774) 0.652 9121 (2820) 8632 (2531) <0.001
Alcohol intake, g/day 6.4 (0.9–18.4) 6.0 (1.5–17.8) 0.707 6.2 (0.6–20.4) 5.4 (0.6–15.2) 0.060
Food and drink consumption, g/

day
 Fruit 193.2 (103.2–316.4) 207.1 (115.4–325.2) 0.237 182.4 (96.1–316.4) 186.7 (100.4–301.1) 0.548
 Vegetables 155.7 (101.2–238.5) 151.8 (97.7–224.3) 0.758 149.1 (94.8–234.4) 147.5 (97.4–218.4) 0.418
 Cereal and cereal products 197.9 (140.8–273.6) 189.8 (134.4–271.2) 0.388 198.2 (138.3–273.7) 192.2 (131.4–266.4) 0.125
 Total dietary fibre 21.9 (17.4–27.1) 22.1 (17.3–28.2) 0.432 21.8 (17.1–27.3) 20.7 (16.5–26.3) 0.059
 Fish and shellfish 29.0 (15.1–51.9) 30.7 (16.3–53.7) 0.236 32.3 (16.4–55.8) 27.3 (14.1–46.9) 0.001
 Red and processed meat 74.4 (46.6–108.6) 75.1 (46.4–113.4) 0.604 84.5 (53.8–121.7) 73.9 (46.2–103.9) <0.001
 Total dairy 283.9 (165.0–451.4) 300.5 (197.7–458.4) 0.100 276.2 (155.1–459.2) 284.3 (186.0–479.3) 0.149
 Milk 160.0 (34.3–294.6) 182.6 (59.4–347.2) 0.054 160.0 (35.5–301.4) 191.2 (53.5–311.2) 0.054
 Fermented dairy 73.0 (33.9–138.6) 71.4 (34.6–143.0) 0.877 65.7 (27.6–129.8) 62.9 (27.6–127.8) 1.000
Sum of plasma phospholipid 15:0 

and 17:0, mol%
0.63 (0.13) 0.64 (0.12) 0.167 0.57 (0.13) 0.59 (0.13) <0.001

Plasma phospholipid 15:0, mol% 0.21 (0.06) 0.22 (0.06) 0.193 0.20 (0.06) 0.21 (0.06) 0.002
Plasma phospholipid 17:0, mol% 0.41 (0.09) 0.42 (0.08) 0.273 0.37 (0.09) 0.39 (0.09) 0.002



1465Diabetologia (2023) 66:1460–1471 

1 3

additive or multiplicative interaction between GAD65Ab 
positivity and OCFA concentrations (Table 2). Separate 
analyses for the combination of high GAD65Ab positivity 
and the lowest tertile of OCFA revealed a high incidence 
in individuals with low concentrations of 17:0 (HR 7.51 
[95% CI 4.83, 11.69]), with evidence of additive (syner-
gistic) interaction and AP estimated at 0.25 (95% CI 0.05, 
0.45) (Table 2, Fig. 2). This indicates that 25% of the risk 
among the doubly exposed could be attributed to this inter-
action. There was no significant additive interaction between 
high GAD65Ab positivity and 15:0 (Table  2, Fig.  2). 

Multiplicative interaction was only observed between high 
GAD65Ab positivity and 15:0 (Table 2).

Sensitivity analyses The inverse associations between 
plasma phospholipid OCFA and diabetes remained largely 
unchanged in sensitivity analyses among GAD65Ab-positive 
individuals (ESM Fig. 2). Estimates for the combined expo-
sure to high GAD65Ab positivity and the lowest tertile of 
17:0 were also similar across the different sensitivity analy-
ses (ESM Fig 3). Associations were weaker in the subsam-
ple with available information on family history of diabetes 

Fig. 1  HR (95% CI) of 
incident diabetes in relation 
to GAD65Ab positivity vs 
negativity and per 1 SD lower 
plasma phospholipid 15:0 and/
or 17:0 concentrations or dairy 
product intake, stratified by 
GAD65Ab status (GAD65Ab 
negative [n cases=10,735, n 
non-cases=13,900], GAD65Ab 
positive [n cases=389, n non-
cases=274] and GAD65Ab 
positive-high [n cases=223, 
n non-cases=104]. HRs were 
adjusted for age (underlying 
time scale), centre (stratified 
baseline hazard), sex, education 
level, smoking status, physical 
activity and BMI. HRs for fatty 
acids or intake of dairy products 
were additionally adjusted for 
total energy intake and intake 
of alcohol, fruits, vegetables, 
cereal and cereal products, 
fish and shellfish, and red and 
processed meat (g/day)

Positive (≥65 U/ml)

Positive-low (65- <167.5 U/ml)

Positive-high (≥167.5 U/ml)

GAD65Ab negative

GAD65Ab positive

GAD65Ab positive-high

GAD65Ab negative

GAD65Ab positive

GAD65Ab positive-high

GAD65Ab negative

GAD65Ab positive

GAD65Ab positive-high

GAD65Ab negative

GAD65Ab positive

GAD65Ab positive-high

GAD65Ab negative

GAD65Ab positive

GAD65Ab positive-high

GAD65Ab negative

GAD65Ab positive

GAD65Ab positive-high

GAD65Ab status

Plasma phospholipid 15:0 and 17:0 (per 1 SD lower)

Plasma phospholipid 15:0 (per 1 SD lower)

Plasma phospholipid 17:0 (per 1 SD lower)

Total dairy intake (per 1 SD lower)

Milk intake (per 1 SD lower)

Fermented dairy intake (per 1 SD lower)

1 20.5

HR [95% CI]

40.25

HR [95% CI]

1.83 [

1.19 [

3.05 [

1.49 [

1.66 [

1.22 [

1.25 [

1.52 [

1.02 [

1.55 [

1.69 [

1.32 [

0.98 [

0.97 [

0.87 [

0.97 [

0.96 [

0.84 [

1.04 [

0.90 [

0.82 [

1.51,

0.91,

2.37,

1.43,

1.35,

0.92,

1.20,

1.18,

0.78,

1.48,

1.34,

0.99,

0.94,

0.79,

0.67,

0.94,

0.80,

0.64,

1.00,

0.73,

0.59,

2.22]

1.56]

3.93]

1.53]

2.08]

1.64]

1.32]

1.96]

1.33]

1.64]

2.13]

1.75]

1.02]

1.18]

1.13]

1.01]

1.16]

1.10]

1.07]

1.11]

1.16]
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(49%). However, this does not seem to reflect confounding 
since the HRs estimated in this subsample were unaffected 
by adjustment for family history of diabetes (e.g. HR of 
diabetes per 1 SD lower 15:0 in GAD65Ab-positive indi-
viduals was 1.23 [95% CI 0.85, 1.79] before adjustment and 
1.23 [95% CI 0.90, 1.69] after adjustment). The association 

between 15:0 and diabetes was attenuated after adjustment 
for 17:0 concentrations (ESM Fig. 2).

Post hoc analyses Neither fruit nor vegetable intake was 
associated with progression from GAD65Ab positivity 
to adult-onset diabetes (ESM Fig. 4). The corresponding 

Table 2  Interaction between GAD65Ab positivity and the lowest tertile of plasma phospholipid 15:0 and/or 17:0 on the incidence of adult-onset 
diabetes

HRs adjusted for age (underlying time scale), centre (stratified baseline hazard), sex, education level, smoking status, physical activity, BMI, 
total energy intake and intake of alcohol, fruits, vegetables, cereal and cereal products, fish and shellfish, and red and processed meat (g/day)
a High concentration (mol%): ≥0.68 for sum of 15:0 and 17:0; ≥0.24 for 15:0; ≥0.45 for 17:0
b Moderate concentration (mol%): 0.58 to <0.68 for sum of 15:0 and 17:0; 0.19 to <0.24 for 15:0; 0.39 to <0.45 for 17:0
c Low concentration (mol%): >0 to <0.58 for sum of 15:0 and 17:0; >0 to <0.19 for 15:0; >0 to <0.39 for 17:0
d Measure of interaction on additive scale. AP (95% CI) for the combination of GAD65Ab positivity and the lowest tertile of 15:0 and 17:0 = 
0.10 (−0.08, 0.28), p=0.291; 15:0 = −0.12 (−0.36, 0.13), p=0.349; and 17:0= 0.13 (−0.03, 0.30), p=0.113. AP (95% CI) for the combination 
of high GAD65Ab positivity and the lowest tertile of 15:0 and 17:0 = 0.13 (−0.12, 0.38), p=0.301; 15:0 = −0.36 (−0.77, 0.05), p=0.088; and 
17:0 = 0.25 (0.05, 0.45), p=0.016. Measure of interaction on multiplicative scale: for the combination of GAD65Ab positivity and the lowest 
tertile of 15:0 and 17:0, p=0.092; 15:0, p=0.132; and 17:0, p=0.227. Measure of interaction on multiplicative scale: for the combination of high 
GAD65Ab positivity and the lowest tertile of 15:0 and 17:0, p=0.092; 15:0, p=0.041; and 17:0, p=0.283

GAD65Ab 
status

High OFCA  concentrationa Moderate OFCA  concentrationb Low OFCA  concentrationc Lowest vs highest 
tertile of OCFA 
concentrations 
within strata of 
GAD65Ab

N cases/non-
cases

HR (95% CI) N cases/non-
cases

HR (95% CI) N cases/non-
cases

HR (95% CI) HR (95% CI)

Sum of 15:0 
and 17:0

 Negative 1755/4679 1.00 (reference) 3231/4565 1.74
(1.60, 1.90)

5749/4656 2.52
(2.30, 2.75)

2.53
(2.32, 2.76)

 Positive 90/102 2.66
(1.97, 3.60)

124/101 2.79
(1.99, 3.91)

175/71 4.63
(3.33, 6.43)d

1.74
(1.12, 2.69)

 Positive-low 22/65 1.15
(0.69, 1.93)

52/61 1.77
(1.10, 2.84)

92/44 3.49
(2.27, 5.37)

3.06
(1.58, 5.94)

 Positive-high 68/37 4.64
(3.12, 6.91)

72/40 4.74
(3.07, 7.34)

83/27 6.90
(4.28, 11.11)d

1.49
(0.81, 2.75)

15:0
 Negative 2231/4561 1.00 (reference) 3658/4643 1.36

(1.25, 1.48)
4844/4696 1.65

(1.50, 1.80)
1.66
(1.51, 1.82)

 Positive 108/98 2.31
(1.60, 3.32)

122/90 2.57
(1.87, 3.52)

159/86 2.67
(1.95, 3.66)d

1.16
(0.72, 1.86)

 Positive-low 28/60 1.01
(0.55, 1.85)

54/55 1.68
(1.09, 2.60)

84/55 2.09
(1.38, 3.17)

2.10
(1.01, 4.35)

 Positive-high 80/38 4.21
(2.80, 6.34)

68/35 4.34
(2.82, 6.68)

75/31 3.65
(2.31, 5.76)d

0.88
(0.48, 1.61)

17:0
 Negative 1738/4434 1.00 (reference) 2710/4483 1.41

(1.29, 1.55)
6284/4983 2.61

(2.39, 2.85)
2.62
(2.39, 2.86)

 Positive 88/97 2.27
(1.64, 3.14)

98/93 2.75
(1.99, 3.79)

203/84 4.48
(3.20, 6.26)d

1.97
(1.25, 3.11)

 Positive-low 27/62 1.16
(0.68, 1.95)

41/58 1.81
(1.16, 2.82)

98/50 3.07
(1.96, 4.80)

2.68
(1.35, 5.29)

 Positive-high 61/35 3.98
(2.64, 5.99)

57/35 4.38
(2.72, 7.04)

105/34 7.51
(4.83, 11.69)d

1.89
(1.04, 3.42)
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HRs per 1 SD lower intake of these foods were 1.11 (95% 
CI 0.89, 1.39) and 1.11 (95% CI 0.91, 1.35), respectively. 
Low dietary fibre intake was associated with a higher risk 
of progressing from GAD65Ab positivity to diabetes (HR 
1.27 [95% CI 1.02, 1.56]), while the association was weaker 
among individuals with high GAD65Ab levels (HR 1.18 
[95% CI 0.83, 1.67]). None of these dietary items was asso-
ciated with diabetes incidence among GAD65Ab-negative 
individuals (ESM Fig. 4).

Discussion

Main findings We investigated whether plasma phospholipid 
concentrations of 15:0 and 17:0 or intake of dairy products 
were associated with progression to diabetes in adults with 
islet autoimmunity. The study results suggest that low 15:0 
and 17:0 concentrations in conjunction with GAD65Ab 
may convey a higher risk for developing diabetes, as people 
who tested positive for GAD65Ab had a greater chance of 
acquiring diabetes over an 11 year period if they had low 

concentrations of these OCFA, particularly 17:0. Further-
more, there was an additive interaction between high levels 
of autoantibodies and low concentrations of 17:0, suggesting 
that increased 17:0 may be especially beneficial for people 
who have more pronounced autoimmunity. On the contrary, 
intake of dairy products was not related to the risk of pro-
gressing to diabetes in people with islet autoimmunity. These 
findings add to the limited understanding of potentially modi-
fiable risk factors for adult-onset autoimmune diabetes.

Findings in relation to previous studies Our findings suggest 
that low concentrations of 15:0, and particularly 17:0, may 
increase the risk of progressing to diabetes in individuals 
with islet autoimmunity, while we found no support that low 
concentrations of these OCFA may trigger autoimmunity. 
Previous analyses based on EPIC-InterAct [25] and other 
prospective studies [6] show inverse associations between 
15:0 and 17:0 concentrations and incidence of type 2 diabe-
tes, whereas evidence is lacking with regard to type 1 diabe-
tes. A biological mechanism underlying these associations 
may be connected to the potential metabolic functions of 

Antagonistic interaction

Synergistic interaction

Low OCFA concentrations

GAD65Ab positive-high

Reference 

AP: 0.13 (-0.12, 0.38) AP: -0.36 (-0.77, 0.05) AP: 0.25 (0.05, 0.45)

a b c
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Fig. 2  HR (95% CI) of incident diabetes in relation to high 
GAD65Ab positivity (indicated by + −), the lowest tertile of 
concentrations of plasma phospholipid 15:0 plus 17:0 (a), 15:0 
alone (b) or 17:0 alone (c) (indicated by − +), or the combina-
tion of high GAD65Ab positivity and the lowest tertile of plasma 
phospholipid 15:0 and/or 17:0 concentrations (indicated by + +). 
The reference group is the combination of GAD65Ab negativity 

and the highest tertile of plasma phospholipid 15:0 and/or 17:0 
concentrations (indicated by − −). Analyses were adjusted for 
age (underlying time scale), centre (stratified baseline hazard), 
sex, education level, smoking status, physical activity, BMI, total 
energy intake and intake of alcohol, fruits, vegetables, cereal and 
cereal products, fish and shellfish, and red and processed meat 
(g/day)
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these OCFA. For example, cross-sectional evidence sug-
gests that higher concentrations of 15:0 and 17:0 may pre-
vent insulin resistance and preserve beta cell function [26, 
27]. Moreover, cross-sectional studies have reported inverse 
associations between these OCFA and adipokines related to 
type 2 diabetes risk, such as leptin and plasminogen activator 
inhibitor-1 [28, 29]. Regulation of adipokine levels may also 
exert beneficial effects on autoimmune diabetes incidence: a 
study of non-obese diabetic mice found accelerated beta cell 
destruction after injection of leptin [30]. Furthermore, 17:0 
has been inversely associated with chronic inflammation [5], 
which is a proposed mediator in the association between 
obesity and LADA [31].
Consumption of dairy products was not associated with pro-
gression from autoantibody positivity to adult-onset diabe-
tes. This contrasts with previous findings for type 1 diabe-
tes in children that suggested an elevated risk with a higher 
intake of cow’s milk products [4]. Although a biological 
mechanism linking dairy consumption to type 1 diabetes 
has yet to be discovered, it has been hypothesised that due 
to structural similarities with islet cell proteins, cow’s milk 
proteins, which are known dietary antigens, may promote 
autoimmune diabetes in susceptible individuals [9]. This 
might be particularly relevant in infancy and childhood when 
immune-mediated reactions to cow’s milk proteins are more 
common [32] and may explain why dairy intake was neither 
associated with GAD65Ab positivity at baseline nor with 
progression to adult-onset diabetes in our study.

Because OCFA 15:0 and 17:0 have been proposed as bio-
markers of dairy fat [7], these findings may appear counter-
intuitive. Notably, both our study and earlier studies [33, 34] 
found modest correlations between 17:0 and dairy product 
intake and, indeed, the utility of 17:0 as a biomarker of dairy 
intake has been questioned [35]. We found the strongest 
correlations between 17:0 and fruit and vegetable consump-
tion. Concentrations of 15:0, on the other hand, were more 
strongly linked to consumption of dairy products, particularly 
fermented items, consistent with previous research [33, 34]. 
Furthermore, it has been proposed that 15:0 and 17:0 can 
be synthesised endogenously from propionate, a short-chain 
fatty acid that is commonly produced in the intestine after 
the fermentation of dietary fibre [36]. A small experimen-
tal study that compared the concentrations of 15:0 and 17:0 
before and after a week of supplementation with non-fer-
mentable dietary fibre (cellulose), fermentable dietary fibre 
(inulin), or propionate found an increase in these OCFA in 
the inulin and propionate groups [37], suggesting that fer-
mentable dietary fibre sources like fruits, vegetables, beans 
and oats may contribute to higher concentrations of 15:0 and 
17:0. This implies that potential contributors to higher 15:0 
and 17:0 concentrations other than dairy products (e.g. fer-
mentable dietary fibre), may play a role on the incidence 
of autoimmune diabetes. In support hereof, we observed a 

higher risk of progressing from islet autoimmunity to adult-
onset diabetes in relation to low dietary fibre intakes. Inter-
estingly, the inverse association we observed with 15:0 was 
attenuated after adjusting for 17:0, but not vice versa. In line 
with this, interaction with GAD65Ab positivity on the risk 
of diabetes was only observed with low 17:0 and not 15:0 
concentrations, indicating that a possible beneficial effect 
may primarily be related to 17:0.

Strengths and limitations Strengths of this study include 
the prospective case–cohort design and the large number of 
participants recruited across multiple centres, representing 
a wide range of the European population. In addition, the 
diabetes diagnosis was verified from more than one source, 
which reduced the likelihood of false-positive diagnoses. 
Moreover, all GAD65Ab and plasma phospholipid fatty acid 
analyses took place at a laboratory in Seattle and Cambridge, 
respectively, by staff that were blinded to the outcome status, 
preventing measurement variation and the introduction of 
detection bias. Another strength was the use of country-spe-
cific questionnaires to assess diet, thus helping to capture the 
diverse intakes across populations. In addition, we adjusted 
for several potential confounders, including demographic, 
lifestyle and clinical characteristics.

Limitations include potential measurement errors that may 
have led to residual confounding or misclassification of the 
exposures. Due to the prospective study design, those are 
not likely to be differential between cases and non-cases and 
hence might have attenuated the associations. It should also be 
noted that there was a large proportion of missing values on 
important covariates, such as family history of type 2 diabetes, 
which could only be adjusted for in subsamples. Moreover, 
information on autoantibody status was not available at the 
time of diagnosis and thus it was not possible to verify whether 
people with GAD65Ab positivity at baseline were still positive 
at the time of diagnosis and thus met the criteria of LADA. It 
is also possible that some individuals had undiagnosed dia-
betes at baseline, although this is not likely to have affected 
our results, which remained largely unchanged after excluding 
individuals that had received a diabetes diagnosis during the 
first 2 years or had  HbA1c ≥48 mmol/mol (≥6.5%) at baseline. 
Moreover, autoantibody status, fatty acid concentrations and 
dietary intakes likely changed during the follow-up but it was 
not possible to account for such changes as all exposures were 
only assessed at baseline. Furthermore, even though there was 
sufficient statistical power to investigate interactions between 
GAD65Ab and OCFA concentrations, it was not possible to 
assess these within each country. Still, potential variations 
in the baseline hazard across the participating centres were 
accounted for in the analyses. We observed interaction on the 
additive scale but not on the multiplicative scale for 17:0. Addi-
tive interaction is more relevant for our objectives since it esti-
mates the proportion of people who would not have developed 
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the disease if just one of the analysed factors had been present 
[24] (e.g. high GAD65Ab positivity but not low 17:0 concen-
trations). Under the assumption of causality and the lack of 
measurement error, this interpretation holds. However, having 
interaction on both the additive and multiplicative scale has 
been considered the strongest kind of interaction [38], there-
fore, our observation should be regarded with caution and be 
used primarily to generate hypotheses.

Implications of the findings Our findings on the associa-
tion of high GAD65Ab levels with diabetes incidence when 
combined with 17:0 concentrations provide guidance for 
future interventions to prevent autoimmune diabetes in 
adults. Nonetheless, because these findings are novel and 
based on observational data, further evidence, especially 
from randomised controlled trials, is needed to test whether 
they are causative and generalisable to populations outside 
of Europe. It is also worth noting that identifying people with 
islet autoimmunity might be difficult because autoantibody 
measurements are not part of normal clinical assessment and 
are usually done after diabetes symptoms have arisen. How-
ever, if preventative factors for autoimmune diabetes become 
well-established, this may change.

In conclusion, we find that higher plasma phospholipid 
concentrations of the OCFA 17:0 are associated with a lower 
risk of progression to diabetes in individuals with islet auto-
immunity. Future investigations of modifiable risk factors for 
autoimmune diabetes should include exposures (apart from 
dairy products) that could influence 17:0 concentrations.
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