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Abstract
Considering the growing prominence of production-level AI and the threat of adversarial 
attacks that can poison a machine learning model against a certain label, evade classifica-
tion, or reveal sensitive data about the model and training data to an attacker, adversar-
ies pose fundamental problems to machine learning systems. Furthermore, much research 
has focused on the inverse relationship between robustness and accuracy, raising problems 
for real-time and safety-critical systems particularly since they are governed by legal con-
straints in which software changes must be explainable and every change must be thor-
oughly tested. While many defenses have been proposed, they are often computationally 
expensive and tend to reduce model accuracy. We have therefore conducted a large survey 
of attacks and defenses and present a simple and practical framework for analyzing any 
machine-learning system from a safety-critical perspective using adversarial noise to find 
the upper bound of the failure rate. Using this method, we conclude that all tested configu-
rations of the ResNet architecture fail to meet any reasonable definition of ‘safety-critical’ 
when tested on even small-scale benchmark data. We examine state of the art defenses 
and attacks against computer vision systems with a focus on safety-critical applications in 
autonomous driving, industrial control, and healthcare. By testing a combination of attacks 
and defenses, their efficacy, and their run-time requirements, we provide substantial empir-
ical evidence that modern neural networks consistently fail to meet established safety-criti-
cal standards by a wide margin.
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1 Introduction

Vehicular accidents, medical mistakes, and industrial safety failures are among the leading 
causes of preventable death around the world  (The Organisation for Economic Co-oper-
ation and Development 2020; Makary and Daniel 2016; ICOH 2017). Technologies like 
image classification systems have shown to be more accurate than their human counter-
parts under strict laboratory conditions in these domains (NHTSA 2015; Pakdemirli 2019; 
Bernal et al. 2017). However, prior research has shown that machine learning systems often 
fail to correctly classify images after small perturbations to the original image. While these 
“adversarial attacks” (Chakraborty et al. 2018; Biggio et al. 2013), define a worst-case sce-
nario for a given data pipeline, imperfect data is a natural result of any sufficiently complex 
system  (Pearson 2005). In this work, we focus on intentional perturbations to the input 
space where the goal is to evade a classifier, but similar perturbations are a natural conse-
quence of modern neural network architectures and hardware setups (see Sect. 2.1). Prior 
research has shown that proper data sanitation, anomaly detection, and model retraining 
are effective ways to combat adversarial attacks (Chakraborty et al. 2018; Grigorescu et al. 
2020; Li et al. 2016; Wang et al. 2019). However, even state of the art defenses decrease 
the accuracy when compared to the un-defended (control) model, suggesting that the actual 
ability to generalize beyond laboratory test cases has been overestimated in the literature. 
This has been noted before (Biggio et al. 2013; Carlini et al. 2017; Wang et al. 2019; Li 
et al. 2016) and we confirm it below (see Sect. 7). Furthermore, recent research (Croce and 
Hein 2020) has shown that most defenses have worse performance against adversaries not 
tested at the time of publishing, arising from the tendency to only publish the ‘best’ results 
or better methods and hardware that become available to subsequent researchers.

Further questions about the feasibility of truly ‘safe’ artificial intelligence (AI) have 
been raised. For instance, it has been proven that no matter where we draw our boundary 
conditions, there exists an attack that will confuse any (non-perfect) discriminator or shift 
its boundary conditions (Dohmatob 2019). Additionally, while attacks are always possible 
on paper, a cost-aware analysis can reveal the feasibility of such attacks in practice. It is 
necessary for any safety-critical system to be robust to these attacks because, as we demon-
strate, many classes of attacks are reliable even when we restrict perturbations to a single 
byte (see Fig. 11).

While we are unable to demonstrate safety-critical computer vision models, there is 
some remaining optimism due to techniques like network pruning  (Sehwag and Wang 
2019; Cosentino 2019; Jian et  al. 2022), regularization  (Ross and Doshi-Velez 2018; 
Jakubovitz and Giryes 2018), genetically evolved neural network architectures (Sinn et al. 
2019), and FIRENETS (Colbrook 2021). However, the efficacy of these models is reported 
only with test-set accuracy numbers (see Eq. 1) that do not reflect the marginal computa-
tional cost of the techniques—which is consistently significant. In practical, real-time, and/
or embedded systems, this is could make the technique unusable. Therefore, for a practical 
analysis, we need a metric that encodes both the change in accuracy and the computa-
tional cost of that change. Furthermore, the already-existing regulatory requirements for 
safety-critical electro-mechanical systems (see: Sect. 2.5 and Sect. 5) require such a high 
degree of precision that traditional error estimation techniques (e.g. traditional test-train 
split methodology) would be impractical to evaluate for every software change, despite 
that evaluation being a legal necessity (see Sect. 2.5 and Sect. 5). Furthermore, in order to 
estimate the confidence region, one must evaluate the techniques across the set of feasible 
hyperparameters–an often neglected practice in the literature which is frequently centered 
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around marginal gains on benchmark data (Desislavov et  al. 2021). This should also 
include any signal pre-processing techniques (see Sect.  4.4), any output post-processing 
techniques (see Sect. 4.4.6), and any attacks (see Sect. 6), as well as the traditional model 
hyperparameter optimization.

As such, we evaluated a large suite of proposed attacks and defenses in the contexts 
of accuracy, worst-case failure rate, and computation time. We show that every model 
defense configuration reduces the accuracy on benign (unperturbed) data. We show that, 
even when a particular defense decreases the failure rate against a given attack, that that 
behavior is inconsistent across distance measures and attack types. Most importantly, by 
using adversarial attacks to estimate the upper bound of the failure rate (see Section 14), 
we conclude that each and every tested configuration fails to meet safety-critical standards 
by a wide margin.

1.1  Contributions

• We show that even state-of-the-art defenses fail to make models that meet safety criti-
cal standards even if they tend to marginally improve the failure rate.

• We apply time and cost analysis for both the attacks and the defenses, something rarely 
done in the literature.

• We provide new insight into the robustness versus accuracy problem.
• We establish a standards-based framework for testing safety-critical computer vision 

systems in a way that meets regulatory standards without needing an infeasible number 
of test images.

• We survey a large suite of attacks and defenses to examine how each defense fares 
against each attack, measuring accuracy, worst-case failure rate, and run-time require-
ments in the context of safety-critical systems.

2  Background

Machine learning, artificial intelligence, and automated data collection are increasingly 
used in safety-critical applications like autonomous vehicles (Grigorescu et al. 2020; Al-
Qizwini et al. 2017), medical imaging (Ching et al. 2017; Sahiner et al. 2019), and indus-
trial control  (Fukuda and Shibata 1992; Monmasson et  al. 2011). Convolutional neural 
networks (CNNs) have demonstrated unparalleled accuracy in image classification tasks; 
however, CNNs have been shown to be very fragile to adversarial attacks  (Miller et  al. 
2020; Finlayson et  al. 2018). Research points to societal trust in fully automated bank-
ing thanks to, among other things, verifiable transactions and guarantees from the issuing 
institution (Srinivas Acharyulu and Seetharamaiah 2015). However, when it comes to real-
time, safety-critical deep learning, models are rarely reproducible or verifiable  (Tsipras 
et al. 2019; Carlini et al. 2017). Despite the drawbacks of deep-learning, modern aviation 
relies on an array of sensors to make largely automated decisions, relying on a framework 
of component testing and simulation  (Rierson 2017). While similar test suites for adver-
sarial robustness have been proposed (Carlini et al. 2017; Chakraborty et al. 2018), they 
rely on de facto accuracy goals rather than a solid theoretical and legal framework. The 
problems with this are plentiful. Historically, marginal gains have relied on exponentially 
larger models to produce increasingly marginal gains (Desislavov et al. 2021). These mod-
els rely on increasingly larger datasets (Desislavov et al. 2021; Vapnik et al. 1994; Anselm 
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et  al. 1989), which increasingly come from fewer sources  (Koch et  al. 2021), leading to 
gender-biased models (Lu et al. 2020), racism (Buolamwini et al. 2018), and fatal design 
errors (Banks et al. 2018) This is a trend that goes back decades (Corsaro William 1982; 
Ramirez and McDevitt 2000; Buolamwini et  al. 2018), leading to, for example, signifi-
cantly higher fatality in car accidents for female-bodied people (Evans and Gerrish 2001) 
or neural networks that unintentionally encode racial information from medical imaging 
data alone (Gichoya et al. 2022). Furthermore, data collection can be expensive (Roh et al. 
2019), raises serious privacy concerns (Bloom et al 2017), increases time to market (Lam 
2004), and impedes development speed (Zirger and Hartley 1996). Furthermore, research 
is focused on metrics that tend to be optimistic at best (Madry and Makelov 2017).

2.1  Image classification systems

In general, an image classification system, K, attempts to parse some image input signal, x, 
and output one of k class labels, ŷ = K(x) , with ŷ ∈ {1,… , k} . Each image is represented 
as a multi-dimensional array of n × m pixels, with bit depth b and color depth c, such that 
they are of size m⋅n⋅b⋅c

8
 bytes. When the model is a neural network, the images are passed 

into a composition of ‘layers’, each layer typically performing an affine transformation fol-
lowed by a non-linear element-wise transformation (called an activation function). The free 
parameters of such a composition of layers (called an ‘architecture’) are found by mini-
mizing a loss function, L(y, K(x)), that penalises differences between a true label, y, and 
an estimate, ŷ . When the problem is a multi-class classification, the loss function could, 
for instance, be the categorical cross-entropy loss (Biggio et al. 2013; Tsipras et al. 2019; 
Croce and Hein 2020; Carlini et al. 2017).

Adversarial vs. Benign
The accuracy is measured as either benign or adversarial accuracy. The former refers 

to the model performance on the original dataset (denoted unperturbed/benign/ben.) and 
the latter refers to a dataset generated by an attacker crafted to fool the model (denoted per-
turbed/accelerated/adversarial/adv.). In general, electro-industrial safety systems are gov-
erned by the International Electrotechnical Commission, IEC 61508 (International Electro-
technical Commission 2010), and medical software in particular requires continuous failure 
rate testing adding a massive computational burden to the development phase as governed 
by IEC  62034  (International  Electrotechnical Commission 2006). In general, acceptable 
risk is expressed as a matrix (see Table 1) where these classes are known in the standard 
as the safety integrity level (SIL), which then corresponds to different failure modes for 
components that act on-demand (e.g., medical imaging) or ones that act continuously (e.g., 
object detection in autonomous cars). In general, for safety-critical systems, we aim for SIL 
levels III or IV, corresponding to failures that lead to injury or death respectively. Addition-
ally, SIL levels I or II are generally considered to be unacceptable. In the context of safety-
critical systems, whether the component be hardware or software, each component must 
meet the requirement in isolation, raising questions of legal compliance for any system that 
relies on proxy models, attack detection, or any other type of out-of-band component to 
ensure safety.

2.2  Adversaries

In general, an attacker seeks to maximize the loss against a given model rather than to 
minimize it. This is accomplished by perturbing samples from one class so that they fall 
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within the highly confident region of another, incorrect class. That is, attacks, by definition, 
are the worst-case perturbations of a given sample for a given model. While the literature 
focuses mainly on intentional adversaries, we posit that small perturbations of the input 
space are inevitable given the nature of real-world systems and that adversarial attacks sim-
ulate these failures. That is, things like calculation error, lens flare, lens aberration, dust, 
sensor failure, low-light conditions, and precipitation will all create noise that could inad-
vertently become adversarial. So, in an effort to measure and minimize these failures, we 
evaluate models against several possible attacks that attempt to induce different types of 
failures (see Sect. 3), each of which is subject to its own optimization criteria.

Figure 2 depicts a radial basis function support vector machine, classifying the points 
into orange (class 0) or blue (class 1). However, the red points indicate successfully gener-
ated adversarial examples. Figure 1 shows an example of a ‘7’ that has added adversarial 
noise such that the classifier sees it to be a ‘9’. In related surveys (Dohmatob 2019; Biggio 
et al. 2013; Bect et al. 2017; Chakraborty et al. 2018; Carlini et al. 2017; Croce and Hein 
2020), a model’s adversarial robustness is defined as its performance accuracy against a 

Fig. 1  A ‘7’ perturbed with 
adversarial noise such that the 
model perceives it to be a ‘2.’

Fig. 2  Orange (class 0) points, blue (class 1) points, and red (adversarial) points in a contour map for a 
radial basis function support vector classifier. The contours reflect the confidence levels for a given sample 
and class. The bright yellow regions indicate areas of strong positive confidence and the purple areas indi-
cate strong negative classification, and grey represents an uncertain classification. As we can see, it is rather 
trivial to shift the classification of a given sample towards the ambiguous regions (teal colored)
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given adversary. A thorough examination of such attacks are explored in Sect.  3 below, 
but, in general, an attacker perturbs an image such that the perturbation distance, d, is less 
than or equal to a threshold value, � , specified by the experimenter, under some concep-
tion of distance. The evaluations in this study examine both the �∞ and �2 norms for the 
gradient-based attacks and �1 in other contexts, which consider perturbations no larger than 
� , where �∞ and �2 allow for perturbations across the entire feature space, and �0 restricts 
the number of perturbed features. In our study, we restrict this perturbation distance to be 
1 byte, as is typical in the literature (Madry and Makelov 2017; Miller et al. 2020; Biggio 
et al. 2009, 2013).

Attack Strength Since adversarial perturbations, by definition, are the perturbations that 
maximizes the model loss through various methods, each approximates a different worst-
case scenario. The ‘strength’ of an attack is generally related to the magnitude of these 
perturbations (Carlini et al. 2017), and is measured by retrospective evaluations of model 
accuracy in which a ‘strong’ attack induces more loss. It is necessary to evaluate against 
the strongest possible attack for a given model and data set, but the strength of an attack is 
always contextual, since the magnitude of a perturbation must be measured with respect to 
some normed vector space, is specified in advance, and subject to real-world constraints. 
Additionally, we know that models optimized to prevent one attack do not necessarily gen-
eralize to other attacks (Carlini et al. 2017), especially across distance metrics.

2.3  Defenses

The attacks outlined above are capable of breaking state of the art image recognition mod-
els. However a variety of defenses have been proposed that act on the dataset or the model 
output. Those broadly fall into categories that seek to identify an attacker and isolate them 
from the model API, ones that seek to isolate tainted examples from the database, or ones 
that attempt to mitigate all potential attacks during run-time. Below, we outline a wide 
variety of defenses proposed over the last several years and measure their effect on the 
failure rate of various models. We have excluded model transformation defenses and sec-
ondary detection models since those sidestep the problem of making a given model more 
robust and do nothing for the IEC requirement that each electro-mechanical component 
meets the regulatory standard in isolation from each other component (see Sect. 5).

2.4  Attacker’s knowledge

While the general assumption is that an attacker has whitebox access to an entire pipe-
line (including data, model weights, and output), that does not necessarily need to be the 
case  (Chen et  al. 2020; Chakraborty et  al. 2018). While some attacks do need whitebox 
access, prior research (Chen et al. 2020; Blaine 2010) has shown that a surrogate model 
and data-set can be used to approximate K using a proxy model K̂ , built using the class 
labels provided by the model at test-time, that is sufficient for creating strong adversarial 
examples. Tramèr et al. Tramèr et al. (2016) examined popular machine learning as a ser-
vice platforms that return confidence values as well as class labels, showing that an attacker 
can build a proxy model by querying p + 1 random p−dimensional inputs for unknown 
p + 1 parameters. Further research (Fredrikson et al. 2015) was able to reverse engineer the 
training data-set through black-box attacks against a model that returns confidence levels, 
with the caveat that the inferred data might be a meta-prototypical example that does not 
appear in the original dataset.
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Fortunately for our attacker, such examples are still useful for determining the underly-
ing data distribution, even if they manage to preserve some of the privacy of the original 
dataset. Shokri et  al. Shokri et  al. (2017) presented a membership inference attack that 
determines whether a given data point belongs to the same distribution as the original 
training data using a set of proxy models. Below, we examine the efficacy of several attacks 
from the perspective of loss as well as the functional query bandwidth.

2.5  Metrics

The ISO standards (International Standards Organization 2018) define the Safety Inegrity 
Level (SIL) in failures/per hour, which we have converted to failures per second in Table 1. 
If assume that accidental adversarial errors are possible in real-world systems due to things 
like dust, lens flare, component failure, packet loss, etc., it naturally follows that the adver-
sarial failure rate is an estimate of the models behavior at the edge or in the ‘worst-case 
scenario’. That is, the adversarial failure rate is an estimate of the upper bound of the real-
world failure rate in adverse but otherwise mundane circumstances.

(a) Accuracy: The accuracy is defined as

where Total is the number of tested samples, False Classifications refers to the number of 
objects that were incorrectly categorized by a given model [, and � is the generalized error 
rate. In practice, � is generally assumed to be the accuracy on a ‘test set’, with samples from 
a distribution assumed to be identical to the training set. Elsewhere, we refer to this ‘test 
set’ accuracy as the ’benign’ accuracy or with the subscript ‘ben.’ such that the test accu-
racy is �ben. . In addition to this metric, we include metrics for a variety of signal processing 
techniques (see: Sect. 4) where the unaltered signal is designated as ‘control’. Finally, we 
include many sets of test sets specifically crafted to be ‘adversarial’ (see: Sect. 3), which 
are denoted with the subscript ‘adv.’.

However, due to the large number of samples required by regulatory standards and the 
strenuous testing requirements of safety-critical software (see Sect.  5), these evaluations 
become an infeasible way to verify that a model only fails once across the required num-
ber of samples (see Table  1), especially if we would like to be highly confident of that 
estimation.

Failure rate
Instead of evaluating every software change in our pipeline against the legally required 

[107, 1012) number of samples, we can measure the precise failure rate (elsewhere � ) with a 
much smaller number of samples if we measure it with

(1)Accuracy = 1 −
False Classif ications

Total
= 1 − �,

Table 1  Acceptable Failure 
Rates for different SIL levels in 
which a single death is possible, 
measured in failures per second

SIL On-demand operation Continuous operation

I [10−6, 10−5) [10−10, 10−9)

II [10−7, 10−6) [10−11, 10−10)

III [10−8, 10−7) [10−12, 10−11)

IV [10−9, 10−8) [10−13, 10−12)
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where False Classifications is the number of misclassified samples, and Total time refers to 
the total time it takes to classify all the samples.

2.6  Robustness

Robustness, then, is a measure of how well a model resists these induced failures. In this 
survey, we examine how several different model and data transformations (see Sect.  4) 
influence this property for a given model architecture and dataset. We measure the efficacy 
of a given model change, using the Percent Change in Accuracy ( %ΔACC):

where Acc refers to the accuracy as defined in Eq. 1 and Control refers to the performance 
of the unchanged model on the benign (Ben.) dataset. This measures the marginal risk of 
failure for a particular model change (defense) in the adversarial case when compared to 
the benign case. We also defined the the metric Relative Change in Failure Rate (Δ�):

where � refers to the failure rate, Control refers to the unchanged model. Taken together, 
these two metrics allow us to measure the marginal risk of a given defense in both the 
benign and adversarial circumstances. In both cases, a positive number indicates an 
improvement in relative risk and a negative number indicates a worsening of relative risk, 
Eq. 3 in the context of accuracy and Eq. 4 in the context of failure rate.

2.7  Hyperparameter selection

For many attacks, hyper-parameters such as the targeted false confidence threshold, step 
size, batch size, number of iterations, and distortion norm must be specified in advance by 
the attacker  (Carlini et  al. 2017). Furthermore, because many of these are drawn from a 
continuous (and therefore infinite) space, finding a strong attack is computationally expen-
sive and finding the strongest possible attack is at least NP-Hard (Carlini et al. 2017), with 
the problem exacerbated by the extreme non-linearity of CNNs. Even more concerning, 
there is not yet a mathematical foundation for what constitutes a ‘good’ attack, relying only 
on after-the-fact evaluations of model accuracy. By examining a large hyper-parameter 
space, we demonstrate how each defense generalizes across the feasible attack spectrum 
rather than relying on a single canonical evaluation metric.

2.8  Attack and defense cost analysis

Like in cryptography, the fundamental limit for an adversary has to do with computa-
tional cost (Hoffstein et al. 2010). For example, model inversion attacks become pointless 
if it is computationally more expensive to steal a model than it is to train one. Likewise, 
model defenses are only as useful insofar as they have the ability to be deployed in existing 

(2)Failure Rate =
False Classif ications

Total Time (s)
= �,

(3)%ΔACC =
Acc. − Control Acc

Control Acc
⋅ 100

(4)Δ� =
�control − �

�
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real-time systems. As such, we examine the cost of various defenses as well as the num-
ber of queries and query rate of various attacks. The best modern methods are limited to 
computationally expensive techniques like reject on negative impact (Blaine 2010), Bayes-
ian subset analysis (Bect et al. 2017), and model post-processing techniques that degrade 
accuracy with added computational cost (Athalye et al. 2018; Tramèr et al. 2017; Li et al. 
2016), making them unsuited for the task of improving our ability to reliably generalize. 
For most attacks, we tested the perfect knowledge scenario, but we have also included 
the ‘HopSkipJump’ attack (Chen et al. 2020) to model the worst case for an attacker that 
only has access to a standard machine learning application programming interfaces (APIs) 
which only exposes hard class labels.

3  Attacks

The following section outlines a variety of attacks, broken into three categories: gradient-
based attacks, gradient approximating attacks, and universal attacks. For the sake of the 
reader, a collection of generated adversarial samples follows the mathematical descriptions 
in the subsection following the aforementioned trio (see: Sec. 3.4).

3.1  Gradient‑based attacks

The seminal work on adversarial attacks in the context of modern neural networks was 
written by Madry et al. Madry and Makelov (2017) and an important follow up work was 
written by Carlini and Wagner Carlini et al. (2017). Both operate under the condition that 
the attacked model has a gradient that is known to the attacker. Each of these can be con-
sidered white-box attacks because they are given access to the model output and the model 
gradient.

3.1.1  FGM

The fast gradient sign method (FGM) (Goodfellow et al. 2014) is the most basic and fastest 
such attack. It is defined by the step,

where L is the loss function, as described above, ∇xL is the gradient of L with respect to the 
input x, the � is the maximum perturbation distance, sgn is the element-wise signum func-
tion, and x̃ denotes a generated adversarial sample. It is called ‘fast’ because it does not 
check the feasibility of the perturbation (if it is within a maximum distance, � , as is done in 
other methods, see e.g. PGD below).

As such, it may not be as successful as other methods, but operates very quickly. We 
tested several different step sizes and norms for this method, enumerated in Figs. 11 and 18.

3.1.2  PGD

Projected gradient descent (PGD) (Carlini et al. 2017) takes a gradient step to increase the 
loss, but also includes a projection step, Proj� , that enforces the constraint of a perturbation 

x̃ = x + � ⋅ sgn
(
∇xL

(
y,K(x)

))
,
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distance q of at most � with respect to some norm by projecting onto the feasible set (defined 
by the perturbation distance, � ). The iteration scheme of PGD is

where r is a step size, s is a sequence index, and x(S) denotes a generated adversarial sample 
after S steps. This iteration is repeated until a specified number of iterations, S, have been 
reached. The number of iterations is specified by the attacker, which ultimately determines 
the processing-time against a given model, scaling linearly with the number of iterations. 
We tested several different step sizes and norms for this method, enumerated in Figs. 11   
and 18.

3.1.3  Carlini–wagner

Carlini and Wagner (CW) (Carlini et al. 2017) devised an attack that minimizes the perturba-
tion distance subject to a distance constraint while maximizing the false confidence. The itera-
tion scheme is for some constant, C,

where the gj, gt are discriminant functions and the goal is to minimize the perturbance with 
a penalty for not changing it to the target class. It also generalizes beyond the squared �2 
norm. This method attempts to enforce attack quality by penalizing examples with low 
confidence and continuing to iterate on them until either a maximum number of iterations 
or the specified false confidence is reached. For our tests, we used the �∞ norm and a con-
fidence threshold of 99%.

3.2  Gradient‑approximating attacks

Further work sought to find attacks that did not rely on explicit gradient information. The 
Deepfool attack (Moosavi-Dezfooli et al. 2016) uses a quadratic approximation of the bound-
ary condition to generate a separating hyperplane, while Few-Pixel and Threshold  (Kotyan 
et  al. 2019) use a search algorithm known as differential evolution rather than relying on 
explicit gradient information. Each of these attacks can be considered grey-box attacks 
because they rely on un-categorized model output but use that output to approximate the gra-
dient, rather than rely on explicit access to the model weights.

3.2.1  DeepFool

The DeepFool attack (Moosavi–Dezfooli et al. 2016) seeks to find the smallest perturbation 
that causes a misclassification using a first-order Taylor approximation of the classifier. In 
essence, it seeks to find the minimal separating hyperplane between the target sample’s true 
class and another. It assumes that it has access to the entirety of the model, including the con-
fidence level (expressed as a logit) of all labels, the true label of a sample (x) and the model 
gradient. The iteration scheme is

x(s+1) = Proj�

(
x(s) + r ⋅ ∇x(s)L

(
y,K(x(s))

))
,

x(s+1) = argmin
x

‖x(s) − x‖2
2
+ Cmax

�
max
j≠t

gj(x) − gt(x) + C, 0
�

x(s+1) = argmin
x

‖x(s) − x‖2
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subject to

where ‖ ⋅ ‖2 is the �2 norm, and where f outputs the logits of K, such that K(x) = �(f (x)) , 
with output activation, � . Run-time is determined largely by the number of iterations, S, 
and the number of gradients w.r.t. L(x) used to estimate f(x), which we set to 10 such that 
the gradient was calculated for each class. The existence of any such attacks with a distance 
than or equal to some some specified robustness threshold ( � ≤ �critical ) should immediately 
cause concern.

3.2.2  Few‑pixel

The few-pixel attack (Kotyan et al. 2019) (Pixel) attempts to maximize the loss by iteratively 
finding the least robust pixel set and perturbing it by less than some specified threshold, � . 
That is, this attack seeks to maximize false confidence while minimizing the number of per-
turbed pixels. The iteration scheme is

where r is the perturbation and � is the perturbation distance in pixels, typically of just 
one pixel. This attack uses differential evolution to simultaneously optimize for both loss 
and the number of perturbations. In our case, we limited this to a single perturbation, but 
did not restrict epsilon beyond the normal [0, 255] range. Since perturbation distance for 
a single pixel is not restricted, we restricted the number of distorted pixels to one of these: 
[1,  2,  4,  8,  16]. Unlike the aforementioned gradient-based attacks, this method general-
izes to classification systems that lack gradients (e.g., decision trees). This differs from the 
the Threshold and Adversarial Patch attack below by optimizing for the fewest number of 
changed pixels ( �0 norm) rather than the perturbation distance ( �2 or �∞).

3.2.3  Threshold

The threshold attack (Kotyan et al. 2019) is similar to the few-pixel attack (in that it uses dif-
ferential evolution as the optimization algorithm), but uses the �∞ norm rather than the �0 
distance. This method, like the Carlini Wagner (CW) method, attempts to generate examples 
that are both false and highly confident. However, it uses a complicated algorithm (differential 
evolution) rather than simple, linearized methods (as in CW). The iteration scheme is

where � is the targeted perturbation threshold of.03. Unlike the aforementioned gradient-
based attacks, this method generalizes to classification systems that lack gradients (e.g., 
decision trees). This differs from the the Few-Pixel and Adversarial Patch attack below 
by optimizing for largest change in loss ( �1 norm) rather than fewest number of pixels ( �0 
norm) or the perturbation distance ( �2 or �∞).

f (x(s)) + ∇x(s) f (x
(s))T (x(s) − x) = 0,

x(s+1) = argmax
r

L
�
y,K(x(s) + r)

�
subject to ‖r‖0 ≤ �,

x(s+1) = argmax
r

L
�
y,K(x(s) + r)

�
subject to ‖r‖∞ ≤ �
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3.3  Universal attacks

Even further work has sought to go beyond computationally-intensive approximations 
for each attacked sample or model query. The Adversarial Patch technique (Brown et al. 
2017) uses the aforementioned differential evolution algorithm to generate an additive 
noise sample that maximizes the loss for all samples and is considered a grey-box attack 
because it relies on un-categorized model outputs but not explicit access to the model 
weights. However, we include it here because the nominal image patches generated 
by this technique are meant to generalize to unseen data as the number of API queries 
increases, meaning that this can be trained using data wholly disconnected from the 
model-builder’s dataset. The HopSkipJump attack (Chen et al. 2020) has been shown to 
minimize the number of API queries required to break any model. As such, it is consid-
ered a black-box attack.

3.3.1  Adversarial patch

The Adversarial Patch attack (Brown et al. 2017) (Patch) uses the same differential evo-
lution algorithm as the Threshold Attack. However, instead of optimizing for a threshold 
or confidence level, it seeks to change each class into any other by applying an image 
patch that is not unique to a given image, but is universal for a given dataset. This sin-
gle generated image patch is added to each image and is intended to cause a generic 
misclassification, regardless of the original class. We know that these attacks are quite 
general for a given dataset and not specific to a given model (Brown et al. 2017; Xiao 
et  al. 2021), raising serious concerns about an attacker’s ability to generate universal 
and offline attacks for a given set of data. Like with the Pixel attack, the per-pixel distor-
tion is not restricted, so we restricted perturbation to a percentage of the benign image, 
using the hyper-parameters [.03, .1, .25, .5, 1.0]. Unlike the aforementioned gradient-
based attacks, this method generalizes to classification systems that lack gradients (e.g., 
decision trees). This differs from the the Threshold and Adversarial Patch attack below 
by optimizing a single perturbation that works for every image rather than minimizing 
the geometric perturbation distance ( �2 or �∞ norm) while minimizing the number of 
pixels required for said universal patch ( �0).

3.3.2  HopSkipJump

The HopSkipJump attack  (Chen et  al. 2020) (HSJ) is a query-cost-aware model that 
acts on hard class labels rather than confidence levels (i.e., a blackbox attack). It finds 
a point on the boundary (using binary search between the initial attacked point and a 
point on the other side of the decision boundary), and approximates the gradient at the 
boundary using Monte Carlo sampling in an offline manner. Then, a step is taken in the 
approximated gradient direction, the model is queried again with the new points, and 
the process is repeated. The procedure iterates the step,

x(s+1) = Proj�,x(0)

(
x(s) + r(s)

∇̃x(s)Q(x
(s))

‖‖∇̃x(s)Q(x
(s))‖‖2

)
,
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where x(s) is an adversarial sample, s a sequence index, Proj�,x(0) is an �2 projection of a 
point onto a sphere of radius � , centered at the initial point x(0) , and ∇̃xQ(x) is the Monte 
Carlo estimate of the gradient of Q at x, and

where Kc is the model output for class c, and c∗ is the class of the initial point, x(0) . This 
attack’s run-time is controlled by the number of (offline) gradient estimations, the number 
of random samples per (online) query, and the number of iterations of both parts of the 
algorithm. This attack finds an adversarial example that is close ( � ≤ �critical ) to the origi-
nal sample, but still causes a misclassification. This model is query efficient as it uses a 
small number of API queries to approximate the gradient and then uses this information to 
approximate the gradient near the class boundary and optimize the perturbation distance of 
the attacked sample. Also, because this attack approximates the gradient rather than relying 
on explicit whitebox access to it, it can be used to attack non-differentiable models (e.g. 
random forests). That is, this is one of the most universal black box attacks.

3.4  Attack samples

To aid the reader, we have visualized a single attack sample for each attack on the unde-
fended (control) model, depicted in Figs. 3, 4, 5, 6, 7, 8, 9, 10. Additionally, we have 
provided the failure rate, � , defined in Eq. 2, and tested on 100 samples from the MNIST 
dataset. For each attack, we also vary a distance parameter, determined by the optimi-
zation criteria for each attack outlined above. For the sake of clarity different distance 
metrics are denoted with a distance of epsilon subject to some norm, | ⋅ |n such that �2 
norm of � is |�|2

Q(x) = max
c≠c∗

Kc(x) − Kc∗ (x),

Fig. 3  The Fast Gradient Method (FGM) doesn’t enforce any kind of feasibility criteria, resulting in salt-
and-pepper noise as the �2 approaches the standard deviation of the normally distributed dataset

Fig. 4  The Projected Gradient Descent Attack (PGD) projects the adversarial example back onto a sphere 
of a fixed radius, yielding noise that more closely approximates handwritten digits
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Fig. 5  The Carlini-Wagner �∞ method includes an added confidence constraint that only returns an adver-
sarial example ⟺ L(xs+1) − L(x) ≥ C . Depicted here is the unperturbed 7 because this method was unable 
to find an adversarial example for these constraints. Despite this, we can see that for 10% of the samples are 
consistently misclassified with a high degree of false confidence

Fig. 6  The DeepFool Method, rather than constraining perturbations to an �-sphere around the sample, 
finds perturbations that extend beyond the approximated boundary by a distance of at least � . Regardless of 
the distance constraint, DeepFool is very effective

Fig. 7  The Pixel Attack (Pixel) seeks to maximize the loss while minimizing the number of perturbed pix-
els. Here we see that even a small perturbation in original image can lead nevertheless consistently induce 
failures. Here, �0 denotes the ratio of perturbed pixels to the total

Fig. 8  Rather than minimizing the number of pixels, the Threshold Attack (Thresh) optimizes for the small-
est perturbation possible. Here, �∞ denotes the ratio of the applied to noise to the maximum possible value 
(255)
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4  Defenses

4.1  Attacker identification

We must assume that at least some of the user inputs will ‘adversarial’, even if that 
adversary is sensor failure and not an intentional attack. Identifying and isolating this 
adverse input may not require a perfect anomaly detection system, but could draw 
from graph theoretical representations to identify and isolate networks of distributed 
attackers, allowing the model API provider to revoke access or otherwise isolate the 
attack effects from the models. While this has been done in the context of social net-
works  (Daya et  al. 2019), these techniques can easily be fooled with intermittent 
attacks (Park et al. 2018), distributed attacks (Aljuhani 2021), or something as simple as 
a quadratic approximation of the model (Chen et al. 2020). For web services more gen-
erally, legitimate users are often identified by using CAPTCHA (von Ahn et al. 2003), 
but that it not a solution for an API meant to be accessed by software. Furthermore, 
outsourcing this to a secondary component would run afoul of the IEC requirement that 
each component meet regulatory standards in isolation from all other components (see 
Sect. 5). However, even if we assume all samples are generated by legitimate users with 
guaranteed data integrity, we still cannot be confident that ‘adversarial’ noise will not be 
generated inadvertently by routine phenomena like sensor failure, dust, low-light condi-
tions, lens aberration, precipitation, or another mundane cause. One possible approach 
is to eliminate ‘bad’ samples at run-time.

Fig. 9  This is one of the two most dangerous attacks as it can consistently find image patches (the noisy 
circle depicted above) from only a small number of samples ( n = 100 ) that can often fool the classifier, 
regardless of original image or class. Obviously, as we replace all of the pixels with adversarial noise, the 
classifier becomes mostly useless, but this attack is still concerningly effective when only a fraction of the 
image has the adversarial noise. Here, �0 denotes the ratio of perturbed pixels to the total

Fig. 10  The Hop Skip Jump Attack (HSJ) uses a second-order approximation of the classification boundary 
in an offline manner to find adversarial examples that first maximize loss then minimize for perturbation 
distance. This attack is uniquely concerning because it 1) works on any model and 2) is surprisingly effec-
tive even when our attacker is restricted to a small number of queries per batch (here, denoted as Q)
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4.2  Subset analysis

Subset analysis  (Paudice et  al. 2018) examines how a particular sample changes the 
model’s performance (Paudice et al. 2018). By exhaustively comparing the model accu-
racy on various subsets of data, it attempts to isolate adversarial samples by removing 
ones that lead to worse-performing models (i.e. the sample is ‘bad’). If the database 
is large, this becomes an incredibly expensive task. This method also assumes that all 
‘bad’ data is, in fact, adversarial and not a legitimate measurement of real world circum-
stances. Another method, called ‘Subset Scanning’  (Cintas et  al. 2020), examines the 
hidden layers of a neural network to ensure that a particular sample looks ‘typical’ as it 
passes through the models layers rather than just at the final layer. This comes with the 
added cost of tracking the model through each of these layers for each of these samples, 
which becomes infeasible in real-time systems due to the size and complexity of neural 
networks and their associated datasets.

Fig. 11  The percent change in adversarial accuracy of each attack against each defense for CIFAR-10. As 
we can plainly see, no defense was able to improve the failure rate across all tested attacks. Red indicates 
that defense made a model worse. Blue indicates an improvement. White indicates no change
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4.3  Attack mitigation

Rather than relying on a generic framework for detecting and preventing all attacks, 
as discussed above, there are mathematical foundations for avoiding the impacts of 
adversarial attacks during model creation. These are either ‘pre-processing’ defenses 
or ‘post-processing’ ones in which alter either the data (pre-processing) or the model 
output (post-processing) to mitigate the risk of an attack. In general, the goal of these 
defenses is to reduce the noise in the input, or to reduce the precision in the output, 
corresponding to the pre- and post- techniques. In this way, we seek to examine how 
modern neural architectures perform on the generalized 1-byte spherical perturbation 
that surrounds a true example of a given class, rather than rely on external components 
to identify and mitigate the attacker.

4.4  Pre‑processing

There are a variety of ways to change the data before training so that the resultant model is 
more robust to adversarial perturbations.

4.4.1  Gaussian augmentation

The most straight-forward defense (Gauss-In) is where random Gaussian noise is added to 
the input data and the model trained without modifying the class labels (Zantedeschi et al. 
2017). If we replace real samples with noisy ones, the processing time and space are mar-
ginal. We tested noise with standard deviations of .9, .99, and .999 on data that was zero-
centered and normalized.

4.4.2  Label smoothing

The label smoothing (denoted Label) defense (Warde-Farley and Goodfellow 2017) sets a 
cap on the confidence level for a given model output. If the output layer outputs a number 
higher than this cap, it uniformly distributes the difference across all classes. In this way, it 
obscures the model output, reducing the effective query rate for the attacker. In our experi-
ments, we set this threshold to be 99%, 99.9%, or 99.99% which itself is far below the regu-
latory standards outlined in Sect. 5.

4.4.3  Feature squeezing

The feature squeezing (FSQ) method  (Xu et al. 2017) reduces the bit depth of the input 
image to a specified value, treated as tunable parameter, which hopefully increases the 
signal to noise ratio. The initial processing time merely requires setting some bits to zero 
which can be vectorized and parallelized, and scales with image size. However, the result-
ing model can use smaller data-types and potentially operate faster and require less mem-
ory. We tested bit-depths of 32 and 16 (the control is 64 bit and the images are 8 bit).

4.4.4  Total variance minimization

Total variation minimization (TVM) is an image de-noising techniques that dates back dec-
ades  (Rudin et al. 1992). It exploits the fact that images with spurious details have high 
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total variation. This defence is effective at preserving edges within an image, and encour-
ages spatial homogeneity such that large jumps in intensity between neighboring pixels are 
penalized, leading to a smoother image, determined by some specified noise level. This 
minimization problem is non-trivial, and there are several specific and tailored algorithms 
for it Chambolle (2004); Hadj-Selem et al. (2018). Thus, we tested several combinations of 
the noise level (denoted ‘prob), enumerated in Figs. 11 and 18.

4.4.5  Adversarial re‑training

Adversarial retraining (Retrain) is a method proposed by Croce et al. Tsipras et al. (2019), 
that appends adversarial examples to the training set, labels them ‘adversarial’ and trains a 
classifier on the new (larger) dataset. The first problem with this method is that the training 
time increases linearly with the number of re-training epochs, with twenty retraining cycles 
being recommended in the original paper. Furthermore, ‘adversarial re-training’ must be 
conducted against each type of attack individually since the topological characteristics of 
attacks vary widely. An extension seeks to encode ambiguity between an adversarial exam-
ple and both the original and target class, called ‘confidence-calibration’ (Croce and Hein 
2020) by changing the class label from an integer to a float that decays with distance from 
the ’true’ image. While it offers improved results over other types of adversarial re-train-
ing, it optimizes against a particular type of failure which inherently degrades performance 
against others (Carlini et al. 2017).

4.4.6  Post‑processing

There are a variety of ways to change the the model outputs so that the user-exposed API 
reveals less information to the attacker.

Gaussian Noise This post-processing defense (Gauss-Out), like its pre-processing coun-
terpart adds Gaussian noise, but in this case, it applies it to the model outputs  (Lecuyer 
et al. 2019). Since it acts on a discrete output vector, the marginal cost is negligible in com-
parison to image processing. However, it’s efficacy is tied to reducing the accuracy of the 
API by an amount proportional to the variance of the added noise. That is, it reduces the 
number of useful output bits available to an attacker (as well as legitimate users).

High Confidence Thresholding Rather than decrease the precision of the output as in 
other techniques, this method (Confident) only returns model output if the confidence level 
exceeds some threshold specified by the model builder (Chen et al. 2021). While this does 
make it harder for an attacker to calculate a gradient step, the attacker can circumvent it by 
taking a step large enough to overcome the thresholding (i.e., by changing the model out-
put by more than twice the cut-off value, ensuring that the classification ‘jumps over’ the 
obscured boundary) HopSkipJump is a query efficient model for doing exactly this (Chen 
et al. 2020), but any other method could be effective by simply increasing the perturbation 
threshold such that perturbation extends beyond the ‘fuzzy’ class boundary. In our experi-
ments, we set this to be equal to 50%, casting the normal one vs. one problem into one vs. 
the sum of the rest, ensuring that the transformed model returns no classification if the 
confidence of the label does not exceed the total confidence of the other labels. To simulate 
scenarios in which low-confidence classifications are merely ignored (which, in practice, 
could mitigate an attacker as they generate their attack), we exclude all such samples from 
the accuracy calculations for this defence.
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Rounded Instead of obscuring the output data with noise or only reporting highly con-
fident answers, this method (Rounded) merely reduces the bit depth of all the reported 
confidence levels  (Zhang and Liang 2018). Instead of a 64-bit output vector, this might 
be reduced to an 8-bit vector reducing the effective attack query rate by a factor of four. 
However, this harms the legitimate user by the same degree by reducing the precision of 
their queries as well. For our study, we used several different numbers of decimals, reflect-
ing the number of base 10 digits in the set [0,  1] revealed by the API. enumerated in 
Figs. 11 and 18.

Reverse Sigmoid The Reverse Sigmoid (denoted Sigmoid) defense  (Lee et  al. 2018) 
changes the activation function from the rectified linear unit (ReLU) or the Weiserstrass 
� -function to a function that retains the approximately linear behavior when the confidence 
is near 0 but instead of asymptotic convergence, model confidence eventually decreases 
rather than converging to one. The Reverse Sigmoid activation function, A, is defined as,

where �, �, � are scaling parameters, specified as hyperparameters, yi is the class label of 
sample i, and � is the logistic sigmoid function. Run-time requirements are basically identi-
cal to other activation functions as the goal of the model builder is to remain more-or-less 
along the linear section of the function. This has the effect of preserving y = f (x) while 
ensuring that the class label, ŷ,≠ K(x) . In essence, this traps an attacker in a local mini-
mum that is in the opposite gradient direction of the global minimum. Even if this defense 
is known to an attacker, the non-bijective nature of this function makes the model non-
invertible (beyond specified thresholds) to gradient descent methods. Alpha is a scaling 
parameter that is determined by � and � , both of which must be positive. Both � and � were 
evaluated in a grid search of the set [.01, 1, 100] for each variable, yielding 9 combinations.

5  Safety critical computer vision: a framework for robustness 
guarantees

5.1  Safety critical computer vision

Since the bulk of the literature focuses on image classification systems (Dohmatob 2019; 
Biggio et al. 2013; Bect et al. 2017; Chakraborty et al. 2018; Carlini et al. 2017; Croce and 
Hein 2020), we chose to stress test them in the contexts of autonomous vehicles, medical 
imaging, and industrial control which are each governed by pre-existing standards across 
the different domains. Safety-critical software is already widely deployed in other elec-
tro-mechanical systems like vehicular braking systems (Chae et al. 2017), aviation (Rier-
son 2017), and medical implants (e.g., pacemakers) (Tuan et al. 2010). The International 
Standards Organization provides a safety-threshold of 10−9 failures per second for any 
life-threatening situation  (International  Standards Organization 2018) and 10−6  (Interna-
tional Standards Organization 2018) for any risk of harm, required of any automotive or 
aviation system governed by ISO 26262 (International Standards Organization 2018). For 
an autonomous vehicle trying to classify objects on the road, a false negative classification 
of, for example, a cyclist could lead to death; whereas, a false positive detection of a cyclist 
would be more likely to cause braking-related injuries that are less severe. For medical 
imaging, a false negative classification could mean loss of life; whereas, a false positive 
is less likely to cause grievous harm (but likely to be lead to expensive and unnecessary 

A(yi) = �i(yi − �(�(��−1(yi) − 1∕2))),
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additional testing). Understandably, these correspond to the differing legal and technical 
requirements outlined in these international standards.

5.2  A framework for robustness guarantees

Since adversarial failure rate provides a worst-case estimate of the failure rate for a given 
context (see Sect. 2.5), we propose a safety critical testing framework that (1) evaluates the 
benign and adversarial failure rate across several attack metrics (as dicated by the safety-
requirements of the system) (2) repeats those evaluations across a feasible hyper-parameter 
space to estimate a confidence interval for the values in (1), and then (3) rejects any model 
that does not consistently meet the standards outlined in Table 1 as unsuitable for safety-
critical systems. The limitations of this approach are discussed below in Sect. 7.8.2.

Advantages Because of the relatively small run-time requirements of this approach 
(when compared to testing against massive in-distribution test sets), this method could, for 
example, act as a unit test in machine learning applications rather than relying on full-
system integration tests to evaluate changes to a single model, signal processing technique, 
data storage format, or API access mechanism. It could also be used to highlight error-
prone classes or other subsets of data to reduce error or create synthetic samples. Further-
more, by isolating changes and testing them as quickly as possible, it’s much easier to parse 
cause and effect when compared to full-system integration tests that could include many 
changes from many different development teams and require live and potentially dangerous 
systems (like cars or MRI machines) to effectively test. To further increase development 
velocity, we propose metrics Equ. 3 and 4 as standards for evaluating not only the efficacy 
of a given change, but as tools to quantify the marginal risk associated with each change, as 
dictated by the ISO 26262 standard (International Standards Organization 2018).

6  Experimental methods

In this study, we evaluated the accuracy (see: Sect. 1) and the failure rate (see: Equ. 2) for 
a variety of attacks (see: Sect. 3) and defenses (see: Sect. 4) using the methods discussed 
in detail in the previous section. In our experiments, we go beyond the in-distribution train/
test split typical in machine learning research (Equ. 1), which only highlights how a model 
will perform on the data we have already collected, rather than providing guarantees about 
future performance for the infinite and continuous space that is the real-world. For the lat-
ter, we measured the worst-case failure rate for a variety of different model defenses (see 
Sect. 4), using several attacks that define the ‘worst-case’ according to different contexts 
(see Sect.  3). We trained one model for each dataset using the ResNet  (He et  al. 2015) 
architecture provided by Madry et  al. as part of the “MNIST”1 and “CIFAR-10”2 chal-
lenges for each defense across several different hyperparameter combinations.

To generate confidence intervals, we varied both defense and attack parameters in an 
iterative grid search. Results across all tests are reported in Figures 4 and 8. Initial model 
weights and model architecture were taken from the survey by Madry et  al Madry and 
Makelov (2017). Like in that paper (and commonly throughout the literature), we used the 

1 https:// github. com/ Madry Lab/ mnist_ chall enge.
2 https:// github. com/ Madry Lab/ cifar 10_ chall enge.

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge
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MNIST and CIFAR-10 datasets so that our survey can be directly compared to the wider 
literature. For each experiment, we trained the model for 20 epochs on the entire training 
set, as defined by the Tensorflow version of the datasets. Attacks were given a small com-
putational budget of 10 iterations (100 samples, 10 iterations). For pre-processing defenses 
(see: Section ), this included data transformations that were distinct from the original train-
ing process and for post-processing defenses, the model output varied (see: Section V-B2) 
relative to the survey by Madry et al. Madry and Makelov (2017). The MNIST dataset was 
classified using a simple toy model and the CIFAR-10 dataset was classified using a modi-
fied version of ResNet, both taken from the survey of Madry et al. Madry and Makelov 
(2017). Model prediction and attack times were measured using Python’s ‘process-time’ 
due to the timing jitter associated with shared systems and operating system variability. 
The timing resolution was in milliseconds, far below the scale of training times and total 
attack times, making any noise negligible. After training, models were evaluated against 
the ten thousand unperturbed (benign) images available in the dataset according to both 
Equation 1 (accuracy) and Equation 2 (failure rate) in both the benign context. Each model 
was attacked using the same subset of 100 (disjoint) samples, randomly drawn from this 
set in an attempt to isolate model performance from coincidences associated with sam-
pling. Model accuracy on this set of perturbed data is denoted as the ‘adversarial accuracy’ 
below, with ‘benign accuracy’ referring to the model accuracy on the unperturbed data. All 
experiments were run on an Intel Xeon 4210 with 32GB of memory and with an Nvidia 
V100 GPU in a shared-kernel environment. We evaluated hundreds of combinations of 
attacks and defenses as illustrated and enumerated in Fig. 11.

7  Results and discussions

7.1  Benign vs adversarial accuracy

Figure 12 (left subplot) depicts the 95% confidence region of adversarial and benign accu-
racy, computed using Eq. 1. The blue bars represent the accuracy on unperturbed (benign) 
data and the red bars represent the accuracy on perturbed (adversarial) data. From this 
rather large region (see Fig. 12), we see that both attack and defense hyper-parameter tun-
ing have significant effects on the accuracy of a given method, since a small change in 
hyperparameters can drastically change the efficacy of a given attack or defense. Figure 11 
shows the percent change in accuracy between the adversarial and benign circumstances 

Fig. 12  The 95% confidence interval of adversarial (red) and benign (blue) accuracies for each defense 
(left) and each attack (right) for CIFAR-10. One trial was conducted for each hyper-parameter combination, 
and the confidence interval spans these trials
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for each defense and attack. We can plainly see that some techniques fool every model 
nearly every time while some attacks are weak and not likely to succeed under any con-
ditions. Since no tested configuration reliably exceeded the benign accuracy, this metric 
seems to only indicate a lower bound of the generalization error while the adversarial 
failure rate estimates the upper bound (see Sect. 2.5). That is, we can confidently claim 
that our true generalization error ( � ) falls somewhere between 10−4 failures per second 
(roughly indicated by the 99.96 % test-set, benign accuracy for MNIST or 99.83% accuracy 
for CIFAR10) and the worst-case adversarial failure rate (roughly 10−1 for MNIST and 102 
for CIFAR-10), which obviously falls below the safety-critical standards (see Table 1) by 
huge margins, indicating that neither architecture is safety-critical (see: Sect. 5).

7.2  Defences

In Fig. 12 we see that, for every defense (left subplot), that adversarial accuracy is lower 
than benign accuracy, adding more empirical evidence the accuracy vs.  robustness trade-
off discussed widely in the literature (e.g. there robustness and accuracy are at odds with 
each other). The tested defenses each attempt to strategically destroy, smooth, or average 
data in the original dataset or the output of the model, which results in a loss of preci-
sion that makes the benign accuracy worse than the Control (see: Fig. 12). Furthermore, 
when we examine the attacks in the right subplot of Fig. 12, we see that Deep, HSJ, CW, 
Pixel, Patch, and Thresh are all able to confuse the model more that half of the time. Fur-
thermore, variations in the defense performance (right side of Figs. 20 and 14) raise ques-
tions about the ability of these architectures to generalize since things like bit-depth (FSQ), 
training-noise (Gausss-In), label-noise (Gauss-out), and image resolution (SPS) greatly 
vary the failure rate. In the real-world, effective resolution will change between individuals 
(e.g. a medical scan) or while moving (e.g. an autonomous vehicle). Even random noise 
drawn from approximately the same distribution as the training set (Gauss) increases the 
benign failure rate by an order of magnitude or two (compare the gap between Gauss and 
Control in both Figs. 14 and 20).

7.3  Attack

Attacks Fig.  12 (right subplot) depicts the same confidence region as above, but broken 
down by attack rather than defense. It is obvious that the Deep, HSJ, and Patch reduce 
the accuracy the most often. PGD, FGM, and CW are less effective, but still able to suc-
cessfully perturb a significant portion of the samples. However, the Threshold and Pixel 
attacks are less consistent.Fig. 11 demonstrates how each attack fares against each defense 
by depicting the percent change in accuracy. The color gradient is centered at the benign 
failure rate, becoming a more intense red as the accuracy decreases, with a dark red indi-
cating substantially worse performance than with the undefended model and unperturbed 
data. Since no column is blue in Fig. 11, no single defense is able to consistently subvert 
a generalized attacker, while modest gains against a particular attack are possible. Tech-
niques like Adversarial Patch, DeepFool, and HopSkipJump consistently break models 
(see: Fig. 11). While some defenses do provide limited protection against more advanced 
techniques (indicated by the color blue in Fig. 11), their performance on unperturbed data 
tends to be reduced relative to the control (see: Fig. 12, left subplot) substantial empirical 
evidence that the normally discussed accuracy, from Eq. 1, is consistently more optimistic 
than what the adversarial analysis implies.
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7.4  Computational cost

In order to estimate computational cost, we measured each time as a process time, 
reducing the jitter due to operating system operations and shared kernel constraints. We 
see that defenses require between 1 and 100 s of training per success, broken down by 
defense in the left subplot of Fig.  13. However, attacks (see right subplot of Fig.  13) 
require as few as several milliseconds per sample in the worst case and 10 seconds in 
the best case, with the average attack time falling after around a half second per sample. 
Furthermore, we see that the Fig. 14, we see how various defenses manage the trade-
off between computational complexity and efficacy by measuring the failure rate as in 
Eq. 2. The Confident model had the best accuracy (see: Fig. 12) since it merely ignores 
queries below a certain confidence threshold, but even if we treat that as a null event 
(instead of a false classification), this increases the failure rate (see: Fig. 14) relative to 
the control since objects were not detected.

7.4.1  Failure rate

When we combine the information from the accuracy and time graphs in Eq.  2, we 
obtain Fig.  15, displaying the failure rate across attacks and defenses as well as their 
individualized performance.

Fig. 13  The 95% confidence interval of prediction times (blue) and attack times (red) for CIFAR-10, broken 
down by defense (left) and attack (right). One trial is depicted for each hyper-parameter combination. Accu-
racy on the benign (unperturbed) dataset is depicted in blue and accuracy on the adversarial (perturbed) 
dataset is depicted in red

Fig. 14  The 95% confidence interval of failure rates both benign (blue) and adversarial (red) for CIFAR-10, 
broken down by defense (left) and attack (right). This was computed using Eq. 2. The failure rate of the 
benign (unperturbed) dataset is depicted in blue and the failure rate of the adversarial (perturbed) dataset is 
depicted in red
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When we examine the average performance of a given defense (see: Fig.  15), we 
see that most defenses fail to meet safety critical standards (see: Table 1), even if the 
surveyed defenses tend to improve adversarial accuracy (see: Fig. 16). Total Variance 
Minimization produced particularly inaccurate models which led to particularly inaccu-
rate attacks. While some defenses do provide relief against some attacks, that behavior 
is inconsistent across different attacks, particularly in the case of the Patch and Pixel 
attacks which seem to be universally strong, even with mild perturbation constraints. 
Furthermore, those gains are marginal compared to the efficacy of the average attack 
(see: Fig. 16) and the order of magnitude required by regulations (see: Fig. 1).

7.5  Attack budget and attacker knowledge

When we examine the general performance characteristics of attacks, we see that the 
average attack takes a few seconds to induce a failure (see Figs. 20 and 14). This appears 
to be consistent across attacks and is remarkably effective with only a small computa-
tional budget of 100 iterations and a query budget of 1000 with a perturbation distance 
no greater than 1 byte. This is true for both whitebox attacks (everything but HSJ) and 
blackbox (HSJ) attacks. Most attacks take a few seconds per sample; however, the one 

Fig. 15  The adversarial failure rate for all attacks and defenses for CIFAR-10. Darker red means worse per-
formance and white indicates that no adversarial samples were found. This result is rather pessimistic, sug-
gesting that all configurations fail to meet industrial standards
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exception to this is the Adversarial Patch attack which takes only a few milliseconds to 
induce a failure (on average). Due to the universality of this attack against an entire data-
set (see Sect. 3) this failure rate would go to infinity as the sample size goes to infinity. 
In practice, a quadratic approximation of the boundary (HSJ) is roughly as effective as 
whitebox models, especially as the number of features scale (compare Fig. 11 and 18). 
However, there is a clear advantage when the attacker optimizes across a large sample of 
the test set (see Patch in Sect. 3), with the failure rate tending towards 0 as this sample 
size increases. Furthermore, by simulating a black-box attack (HSJ attack), regularizing 
generated examples for false confidence (CW attack), finding minimal separating planes 
(Deep attack), and using advanced optimization techniques to generate highly confident 
false examples (Thresh attack), we were able to consistently fool the models in mere 
milliseconds per sample. The simplest attacks, which Madry et  al.  proposed in 2017, 
remain effective (PGD, FGM). Furthermore, proper step-size tuning seems to compen-
sate for this simplicity. This is evidenced by right side of Figs. 14 and 20, suggesting 
that the gradient ascent attacks might be a ‘good enough’ estimator of the generalized 
failure rate, especially given the astronomical gap between current test-set accuracy and 
regulatory requirements.

Fig. 16  The relative change in failure rate for the adversarial case, centered at the benign failure rate for 
CIFAR-10. Blue indicates an improvement relative to the benign (unperturbed) case. Red indicates a wors-
ening of performance in the adversarial case compared to the benign case. White indicates no change. Note 
that the scale is logarithmic so that marginal gains and substantial losses can be seen clearly
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7.6  Percent change in accuracy

Figure  11 demonstrates how each attack fares against each defense. The color gradient 
starts at white, indicating the undefended model’s performance against unperturbed data, 
becoming a more intense red as the accuracy decreases, with blue indicating an increase in 
accuracy compared to the control model. As we can plainly see, no single defense is able to 
consistently subvert an attacker. While some defenses do provide limited protection against 

Fig. 17  The 95% confidence interval of adversarial and benign accuracies for each defense (left) and each 
attack (right) on the MNIST dataset, broken down by defense (left) and attack (right). One trial was con-
ducted for each hyper-parameter combination

Fig. 18  The adversarial accuracy of each attack against each defense on the MNIST dataset. Blue would 
indicate an improvement relative to the undefended model. Red indicates that defense made a model worse. 
White indicates no change. This was computed using Eq. 3
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more advanced techniques, their performance against gradient descent techniques is incon-
sistent at best. Furthermore, for DeepFool and HopSkipJump, we know that they could lead 
to even worse results for the defender, given a larger computational budget. While there is 
limited efficacy against gradient-based attacks for some defenses, advanced techniques like 
Adversarial Patch, DeepFool, and HopSkipJump consistently break models. That is, we 
provide substantial empirical evidence that the normally discussed accuracy from Eq. 1 is, 
at best, an optimistic estimate of the real-world failure rate.

7.7  Percent change in failure rate

Figure 16 depicts how each defense fares against each attack by comparing the change in 
failure rate when compared to the adversarial case on the undefended model. When we 
compare this plot to the one in Fig. 11, we see that, in many cases, the defenses were able 
to decrease the adversarial failure rate when compared to the undefended model, which 
is what these defenses intended to do. However, increased safety (depicted as blue in 
Fig. 16) is marginal at best—on the order of a few percent (see: Fig. 4) when measured 
rates are many orders of magnitude from regulatory standards (see: Table 1). Additionally, 
the potential downsides of a given defense are much larger (see: Fig. 11). This marginal 
improvement in the failure rate is driven largely by the marginal time cost (see: Fig. 13) 
rather than the accuracy (see: Fig. 12). That is, the defenses increase the adversarial accu-
racy, but also take significantly longer (see: Fig. 13).

Fig. 19  The 95% confidence interval of prediction times (blue) and attack times (red) on the MNIST data-
set, broken down by defense (left) and attack (right). Note that adversarial times are identical in each image 
since fitting and predicting are the same step in this case. One trial is depicted for each hyper-parameter 
combination

Fig. 20  The 95% confidence interval of failure rates, both benign (blue) and adversarial (red) on the MNIST 
dataset, broken down by defense (left) and attack (right). Note that no defense was able to improve upon the 
benign failure rate. This was computed using Eq. 2
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7.8  MNIST vs. CIFAR‑10

 In addition to running these experiments on the CIFAR-10 dataset, we also ran them on 
the MNIST dataset using a simpler model provided by Madry et al. Madry and Makelov 
(2017). Figure 17 broadly verifies the behavior observed above on the CIFAR-10, wherein 
defenses tend to reduce model accuracy on the benign set, gradient-based attack efficacy is 
largely determined by hyperparameter tuning, and non-gradient-based attacks are still very 
effective. As with CIFAR-10, no defense was able to improve the benign (unperturbed) 
accuracy of the undefended model for every attack (see: Fig. 18). Despite a smaller model 
and lower run-time requirements (compare Fig. 19 to Fig. 13), we see that training time 
is more-or-less the same. When we compare Fig.  15 with Fig.  21, we see that some of 
the defenses were much more effective at preventing gradient-descent attacks. However, 
they failed against the more computational expensive techniques of Patch, HSJ, and Deep. 
Then, when we examine failure rate (Fig. 20), we see that despite being a different dataset 
and model architecture, we are still able to induce failures in only a few seconds, as with 
CIFAR-10. However, when we break this rate down into each attack and defense combina-
tion and measure a change in the failure rate (see: Fig. 22), there seems to be a fairly con-
sistent and marginal improvement driven by time (see: Fig. 19) rather than accuracy (see: 
Fig. 17), as with CIFAR-10. When we applied defenses to the simpler MNIST model and 
dataset (when compared to CIFAR-10), we found largely consistent results. However, we 

Fig. 21  The failure rate for the adversarial case on the MNIST dataset. A darker red indicates a worse per-
formance and white indicates 0 induced failures. Note that the scale is logarithmic so that marginal gains 
and substantial losses can be seen clearly. White indicates cases where the attack was never successful
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did find that there were more cases of failed adversarial attacks against MNIST, likely due 
to the significantly smaller dimensionality of both the dataset and model (Dohmatob 2019). 
However, we would expect real-world data to be significantly higher resolution and full-
color, unlike the black and white low-resolution images typical of MNIST, so those results 
probably underestimate the severity of the problem in real-world systems that use multiple 
multi-pixel RGB cameras to classify objects in real-time.

8  Limitations

8.1  True failure rate estimation

While it is true that real-world noise can inadvertently become adversarial, it is obvious 
that not every possible noise vector will increase the loss for a given sample. We can, how-
ever, confidently say that the true generalization error lies between the test-set accuracy 
(Eq. 1) and the adversarial failure rate. Further work remains regarding the gap between 
these two estimates, but falls outside the scope of this paper. However, as we show in the 
results (Sect. 7) this fact hardly matters in the context of modern computer vision models, 

Fig. 22  The change in failure rate between the benign and adversarial cases on the MNIST dataset. Blue 
indicates an improvement relative to the undefended model. Red indicates that defense made a model 
worse. White indicates no change. Note that the scale is logarithmic so that marginal gains and substantial 
losses can be seen clearly. This was computed using Eq. 4
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because both of these measures fail to meet safety-critical standards (see Table  1) by 
many orders of magnitude (see Fig. 20 and Fig. 14.)

8.2  On optimal attacks

Additionally, while these attacks are quite efficient, none are provably the fastest possible 
attack. So, at best, they underestimate the failure rate. In the case of our safety-critical anal-
ysis, this amplifies and does not diminish our claims, raising serious concerns about using 
in-distribution test data as an indicator of real-world performance. Therefore, because these 
attacks are not provably optimal, this failure rate should not be taken as an absolute meas-
ure of the true failure rate. However, it is still a reliable metric for comparing the efficacy 
of two models as evidenced by the relatively consistent failure rates across various defenses 
and hyperparameter configurations for a given attack (right side of Figs. 20 and 14).

8.3  Model selection

In general, we did not choose the model architecture, but relied on two reference models 
provided by Madry et  al. They have been tested and cited numerous times (Madry and 
Makelov 2017). The point of this work is not to chase state-of-the-art results, but to evalu-
ate robustness-maximizing techniques in a controlled manner while highlighting useful 
metrics and techniques for doing so. At the time of publishing, the authors are not aware 
of any architecture that meets safety critical standards when measured test-set accuracy 
sense (see Eq. 1) and there’s no demonstrated technique (to the knowledge of the authors) 
to reduce this in the adversarial sense without sacrificing accuracy or computational time 
in the benign case (see Equ. 2, Figs. 14 and 20 ). So the general conclusion about the real-
time safety-critical nature of modern neural networks would remain the same for any other 
architecture known to the authors.

8.4  On attacker’s knowledge

In this paper, we have tested white-box attacks (FGM, PGD, CW), attacks that need access 
to the model probability outputs (Deep, Pixel, Thresh, Patch), and a single black-box 
method (HSJ), outlined in Sect. 3. On one hand, it would seemingly be unfair to compare 
these methods under the same constraints. However, as we show in the results (Sect. 7), 
the apparent advantage of attackers with more knowledge of the model tends to disappear 
under the added computational burden. That is, the HSJ attack (Sect. 3 and Fig. 10), which 
only relies on hard class-labels and an offline model approximation, is consistently effec-
tive at fooling models while also outperforming attacks that have access to more informa-
tion (see: Figs 3, 4, 5, 6, 7, 8, 9). The interesting question, then, isn’t necessarily how good 
of an adversarial sample one can generate, but the rate at which any misclassification can 
be induced. This worst-case failure rate will define the feasible upper bound on a target 
hardware architecture. Since these attacks vary substantially in run-time and information 
requirements, current methods relying on accuracy measures do not distill the efficacy of a 
given attack or defence from the perspective of any model-builder or attacker with a fixed 
computational budget. However, by controlling for the number of queries and normalizing 
by CPU-time (see: Sect. 6), we are able to isolate the effect of defence techniques against 
a wide-variety of idealized attackers that optimize for different distance metrics and are 
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subject to very different constraints. By no means do we want to minimize the offline pos-
sibilities (see: Sect. 3.3) of attacks like "Adversarial Patch" and "Hop Skip Jump". Instead, 
we seek to highlight the computational triviality of these attacks and raise sincere ques-
tions about the safety of these models in general.

9  Conclusions

Neural networks are being deployed in a wide variety of industrial applications with real-
world safety considerations, that despite high accuracy scores, fail against a wide variety 
of attacks that overwhelmingly require fewer computational resources than building the 
original model. While ‘weak’ attacks are fast, they require hyper-parameter tuning and 
retrospective evaluations that make them less effective, but nonetheless cheap-enough to 
execute, requiring only a few seconds of CPU time. The efficacy of even single-byte or sin-
gle-pixel attacks against otherwise very accurate models raises questions not only about the 
intentional adversary, but also how a system will handle real-world, ‘legitimate’ anomalies 
like dust, lens aberration, and sensor failure.

When we consider the attack that finds the minimal class-separating distance, DeepFool, 
we see that 80% of all samples are corruptible under our meager one-byte distance con-
straint. When we remove this distance constraint, we find that nearly every sample can be 
fooled with the addition of an adversarial ‘patch’ on the original image (Fig. 11) even when 
we constrain an attack to a small number of iterations ( ≤ 10 ). That is, if we assume that 
our attacker has an unlimited budget, we cannot even hope to defend against these attacks. 
However, the relative ease of finding such adversarial examples suggests that these attacks 
provide an empirical estimate of a ‘worst case’ failure rate (see Eq. 2) in their respective 
contexts. Therefore, adversarial model analysis provides a computationally cheap way to 
analyze the worst case failure rate of a system without having to collect, label, perturb, and 
predict many thousands of test images.

Furthermore, since this failure rate is based on process time, it is obvious that more 
powerful hardware, without underlying changes to the model architecture, would result in 
a larger failure rate since we merely fail on more samples in the same amount of time. 
That is to say, these problems are inherent to the model and not something that we can 
solve with more processor cycles. Furthermore, even when we obscure everything from the 
user except model output, we can consistently break models in as few as ten queries to a 
hard class-label API (e.g., by using the HopSkipJump attack). We found that adding Gauss-
ian noise to the model outputs or training images, reducing the bit-depth of the numerical 
calculations to match the precision of the image, and setting a confidence threshold were 
marginally effective defenses when compared to the control model. However, none of these 
defenses reach the regulatory standards required for safety-critical systems—in fact, they 
fail by several orders of magnitude. Furthermore, any gains seen in the failure rate (Fig. 16) 
are inconsistent while universally reducing the accuracy on the original (unperturbed/
benign) data (Fig. 11). Improvements due to the defenses are rare and marginal, and they 
consistently make benign performance worse (see Figs. 11 and 18). We find this to be true 
across both datasets and model architectures. Since we know that model accuracy scales 
with O(1∕

√
n) (Vapnik et al. 1994) and attacks seem to run in constant time (see Figs. 13 

and 19) for a fixed computational and query budgets of a few seconds and 1000 queries 
respectively.
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Finally, due to the rate at which we can generate feasible misclassifications, we must 
question the real-world efficacy of any system that relies on these models to make predic-
tions that meet the legal standards that define ‘safe’. Despite this pessimism, adversarial 
model analysis proves to be a computationally efficient way to analyze and compare the 
out-of-distribution robustness of model architectures without the need to generate massive 
test sets from real world data.
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