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Background: Temperature, precipitation, relative humidity (RH), and Normalized 
Different Vegetation Index (NDVI), influence malaria transmission dynamics. 
However, an understanding of interactions between socioeconomic indicators, 
environmental factors and malaria incidence can help design interventions to 
alleviate the high burden of malaria infections on vulnerable populations. Our 
study thus aimed to investigate the socioeconomic and climatological factors 
influencing spatial and temporal variability of malaria infections in Mozambique.

Methods: We used monthly malaria cases from 2016 to 2018 at the district level. 
We developed an hierarchical spatial–temporal model in a Bayesian framework. 
Monthly malaria cases were assumed to follow a negative binomial distribution. 
We  used integrated nested Laplace approximation (INLA) in R for Bayesian 
inference and distributed lag nonlinear modeling (DLNM) framework to explore 
exposure-response relationships between climate variables and risk of malaria 
infection in Mozambique, while adjusting for socioeconomic factors.

Results: A total of 19,948,295 malaria cases were reported between 2016 
and 2018  in Mozambique. Malaria risk increased with higher monthly mean 
temperatures between 20 and 29°C, at mean temperature of 25°C, the risk of 
malaria was 3.45 times higher (RR 3.45 [95%CI: 2.37–5.03]). Malaria risk was 
greatest for NDVI above 0.22. The risk of malaria was 1.34 times higher (1.34 
[1.01–1.79]) at monthly RH of 55%. Malaria risk reduced by 26.1%, for total monthly 
precipitation of 480 mm (0.739 [95%CI: 0.61–0.90]) at lag 2 months, while for 
lower total monthly precipitation of 10 mm, the risk of malaria was 1.87 times 
higher (1.87 [1.30–2.69]). After adjusting for climate variables, having lower level 
of education significantly increased malaria risk (1.034 [1.014–1.054]) and having 
electricity (0.979 [0.967–0.992]) and sharing toilet facilities (0.957 [0.924–0.991]) 
significantly reduced malaria risk.

Conclusion: Our current study identified lag patterns and association between 
climate variables and malaria incidence in Mozambique. Extremes in climate 
variables were associated with an increased risk of malaria transmission, peaks 
in transmission were varied. Our findings provide insights for designing early 
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warning, prevention, and control strategies to minimize seasonal malaria 
surges and associated infections in Mozambique a region where Malaria causes 
substantial burden from illness and deaths.

KEYWORDS

malaria vulnerability, DHS, Mozambique, INLA, Bayesian, climate variability, 

spatio-temporal, DLNM

1. Introduction

Malaria is a critical public health problem in sub-Saharan Africa 
causing significant morbidity and mortality (1), especially among 
children under 5 years (2, 3), pregnant women (4, 5), HIV infected 
individuals (6), low socioeconomic households (5, 7–13), households 
without access to Insecticide-treated nets (ITNs) (14) and 
non-compliant users of ITNs (5). Mozambique has high rates of 
under-five malaria mortality (7, 15) and is the fourth out of six 
countries that accounted for more than half of all malaria cases and 
deaths worldwide in 2019, corresponding to 4% of the global burden 
of cases and deaths (1). The country had the second highest prevalence 
of malaria in Eastern and Southern Africa, estimated at 17.2% in 2019 
(1). Malaria is endemic in Mozambique, and the entire population is 
at risk (16, 17). In 2020, Malaria was estimated to account for 
approximately 26% of all outpatient consultations with over 11 million 
cases diagnosed in public health facilities and communities (18). 
Frequent natural disasters have likely contributed to increases in 
malaria transmission in recent years (19).

Malaria cases are rising in Mozambique and regional differences 
exist. For example, Gaza province, Maputo province, and Maputo City 
have reported reductions in cases, in contrast to increases in Manica, 
Cabo Delgado, Zambezia, and Nampula provinces. The national 
malaria incidence was estimated at 368 cases per 1,000 population in 
2020 (18). Malaria prevalence in rural areas was double relative to 
urban areas (20). The 2018 Malaria Indicator Survey (MIS) showed 
considerable variation in average malaria prevalence among children 
under 5 years at the provincial and country wide levels at 1–57, and 
39%, respectively (21). Several factors affect malaria transmission 
dynamics, from climatic conditions to social-economic factors (8, 22, 
23). Climatic factors such as temperature and precipitation affect the 
life cycle and breeding of mosquito vectors that transmit malaria (22). 
The predominant malaria vector species are Anopheles gambiae and 
Anopheles funestus in Mozambique—accounting for 90% of all 
malarial infections (7). Malaria transmission varies significantly 
depending on the natural environment, climatic conditions, locally 
dominant malaria vector species, and structural vulnerability factors 
including behavioral, social, economic conditions and malaria control 
interventions (24).

Preventive measures including ITNs, prophylactic antimalarial 
drugs and indoor residual spraying (IRS) are used in Mozambique to 
curb malaria infections. Mozambique’s 2017–2021 National Malaria 
Strategic Plan aims to provide at least 85% of the population with 
adequate protection against malaria which includes provision of 
testing to all suspected cases, treatment to all confirmed cases 
according to existing national malaria treatment guidelines (21). 
Targets have been set for malaria elimination in areas of low and very 
low transmission through appropriate interventions (25).

Mozambique is geographically prone to natural disasters and 
highly vulnerable to climate change. Increased frequency and intensity 
of extreme weather events over the past 60 years has increased 
population susceptibility to malaria infection (26). The coolest months 
fall between June to August, and the dry season occurs between May 
to October (27, 28). The warmest and wettest months range from 
December to February, when malaria transmission is the highest (29, 
30). Precipitation anomalies occur on different spatial and temporal 
scales with varying intensity and frequency, providing suitable 
breeding sites for malaria vectors. Temperature affects the 
development of anopheles mosquitoes and their biting rates (22). 
Precipitation and temperature variation over the country are affected 
by weather patterns at the South Indian Convergence Zone (31), 
Intertropical Convergence Zone (30, 31), subtropical high-pressure 
systems, and semi-permanent anticyclones, namely the Mascarene 
High and St. Helena tropical cyclones (27, 32–34), El-Niño-Southern-
Oscillation (ENSO), and Indian Ocean Dipole (IOD) among others 
(35–37). These factors are associated with above or below normal 
precipitation or temperatures and affect malaria morbidity through 
effects on transmission dynamics (29, 30, 38–41).

Our current study investigated factors influencing the spatial and 
temporal variation in malaria transmission in Mozambique by 
leveraging socioeconomic, climatic and land use data. We sought to 
identify malaria vulnerability indicators, and the lag times between 
climate events and the highest risk of malaria transmission to inform 
development of a malaria early warning system in Mozambique.

2. Materials and methods

2.1. Setting

Mozambique is positioned at longitudes 30.12° and 40.51° East 
and latitudes 10.27° and 26.52° South (Figure 1) covering an area of 
783,000 km2 of which 4,500 km2 is designated as a maritime area with 
a coastline stretching 2,700 km (26).

Mozambique has a population of approximately 30 million people, 
with <60% living in coastal areas including lowlands with sandy beaches, 

Abbreviations: DHS, Demography Health Survey; INLA, Integrated nested Laplace 

approximation; NDVI, Normalized Different Vegetation Index; DLNM, Distributed 

lag nonlinear modeling; RH, Relative humidity; ITNs, Insecticide-treated nets; 

ENSO, El-Niño-Southern-Oscillation; IOD, Indian Ocean Dipole; IPCC, Climate 

change; MIS, Malaria Indicator Survey.
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estuaries, and mangroves (26). The AR6 Intergovernmental panel on 
climate change (IPCC), in its report assessed that climate change will 
adversely affect the health of people in coastal regions (42), owing to their 
dependence on local resources such as rain-fed farming and fishing.

2.2. Data and model

We used data on weekly malaria cases from the Mozambique 
Ministry of Health disease surveillance system (43), between 2016 and 
2018. Weekly malaria incidence data were first aggregated to monthly 
temporal resolution for 159 districts, and then combined. Socio-
economic data were extracted from the 2015 DHS and 2018 MIS- 
both nationally representative population-based household surveys 
(20). Variables from the MIS and DHS surveys with known association 
to malaria transmission were included considering their availability 
and the extent of missing values.

We included the following variables from DHS: wealth index 
derived from household asset ownership, number of children under 
five, type of residence, ITN use and ownership, indoor residual 
spraying, type of toilet facilities, radio, mobile and television 
ownership, housing conditions, number of sleeping rooms, sharing of 
toilet with other households, number of households sharing toilet, 
number of mosquito bed nets, mother’s education level, doctor to 
population ratio, and number of health facilities per population. DHS 
and MIS variables were aggregated from individual to district level by 
computing proportions of selected variable level 
(Supplementary Table S5).

We retrieved daily climate data including precipitation, minimum 
and maximum temperature (Tmin and Tmax), relative humidity (RH), 
and Normalized Different Vegetation Index (NDVI) from NCEP-
reanalysis II (44) with a spatial resolution of 0.25° × 0.25° (45) from 
2016 to 2018, and aggregated to monthly temporal resolution. Means 
were computed for Tmin, Tmax , RH, and NDVI, and cumulative totals 

FIGURE 1

The study area with three geopolitical zones (North, Central and South).
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for precipitation. We used gridded population data from WorldPop 
(46) as the denominator in computation of malaria incidence rates.

Each climate variable was included as a non-linear term in the 
model. We computed crossbasis functions following the distributed 
lag non-linear methodology developed by Gasparrini et al. (47). This 
is a flexible approach that allows simultaneous modeling of the lag and 
exposure-response relationships of the variables. The cross-basis for 
the lag and nonlinear dimensions were modeled using natural cubic 
splines with equally spaced knots. We considered lags up to 6 months 
(48). Centering values were chosen through graphical analysis of 
exposure response relationship, and risk comparisons are based on 
these reference values. The chosen reference values for Tmean , NDVI, 
RH and Precipitation were 18°C, 0.2, 70% and 120 mm, respectively.

Using a Bayesian disease mapping approach, we accounted for 
spatial dependence among neighboring districts in Mozambique. The 
Bayesian model consisted of three components; the data model 
(distribution of data given the parameters), the process model 
(underlying spatial patterns), and the parameter model (prior 
specification of the model parameters) (49, 50). We assumed—in the 
data model—that malaria cases followed a negative binomial 
distribution, used to account for overdispersion in data (48).

We implemented the spatio-temporal extension of the spatial 
Besag-York-Mollie (BYM) model for the spatial process, which is the 
Conditional Auto-Regressive (CAR) convolution model with two 
random effects, one spatially structured and one unstructured random 
effect (51, 52).

2.3. Model selection

The DHS variables were included one at a time in the base 
model, controlling for spatial and temporal covariance. The 
significant variables based on the 95% credible interval were then 
included in a joint multivariate model. Backward elimination was 
used to select the DHS variables that were included in the 
final model.

Selected DHS variables were combined with environmental 
crossbasis terms as the final model specification (Equation 1). Relative 
risks (RR) were predicted for different values of climate variables.

 
log Y u v f X lagdf vardf Xi i i t j k k( ) = ∝ + + + + ( ) +γ β, ,

 (1)

 Y NBini ~

where Yt represents the malaria cases; ∝ the intercept; ui the spatially-
structured random effect (for smoothing among adjacent areas), the 
set of neighboring districts, and the number of neighboring districts 
for a specific district i; vi the unstructured random effect component, 
which was modeled using as a Gaussian process and which allowed 
for extra heterogeneity in malaria case counts due to unobserved 
(and spatially unstructured) risk factors; γ t the temporally structured 
effect of the month, was modeled dynamically using a random walk 
of order 1 (RW1) to capture the seasonal patterns; 
f X lagdf vardfj , ,( ) is the crossbasis function of climatic variable t 
and its lag dimension with vardf and lagdf degrees of freedom, 
respectively, controlling for the kth socio-demographic covariate, 
Xk with coefficient βk .

A Bayesian approach is attractive for modeling complex 
longitudinal count data but requires specification of the prior 
distributions for all the random elements of the model. In the case of 
hierarchical models, this involves choosing priors for the regression 
coefficients and the hyperparameters. Two classes of prior 
distributions, informative and non-informative, are typically used in 
Bayesian modeling. While informative prior distributions are used 
when substantial information on the model parameters is available 
from previous studies, non-informative prior distributions facilitate 
Bayesian inference when little is known about the parameters beyond 
the data included in the analysis (53). In this analysis, we used default 
prior specifications in INLA.

We used Integrated Nested Laplace Approximation (INLA) in R 
for Bayesian inference (50). INLA is a deterministic algorithm for 
Bayesian inference and designed for latent Gaussian models and 
spatial models. Bayesian estimation using the INLA methodology 
takes much less time than standard Bayesian computations methods 
using Markov Chain Monte Carlo Methods (MCMC) (54, 55).

3. Results

3.1. Malaria cases and environmental 
variables

A total of 19,948,295 malaria cases were reported in Mozambique 
between 2016 and 2018. The reported malaria incidence rates were 
189.3, 259.2, and 252.2 per 1,000 population in the years 2016, 2017, 
and 2018, respectively. The mean malaria caseload across the country 
was 554,119 per year over this period. The year 2018 had the highest 
national average of 614,083 cases per year, as shown in Table 1.

Over the study period, temperature varied slightly in the study 
area with a mean maximum temperature of 29°C and a mean 
minimum temperature of 19°C. The mean annual precipitation 
across the country were 827, 1,080, and 952 mm in the years 2016, 
2017, and 2018, respectively (Supplementary Table S1). The mean 
monthly concentration of green vegetation varied less across the 
years ranging from 0.23 to 0.25, with the highest mean monthly 
NDVI of 0.25 recorded in 2017 (Table 1).

During the study period between 2016 and 2018, annual mean 
maximum and minimum temperatures varied from 24.3 to 32°C, and 
14.5 to 22.7°C, respectively (Supplementary Table S1), while the 
annual monthly mean average temperature ranged between 19.5 and 
26.8°C (Supplementary Table S1). The annual average temperature 
steadily decreased from coastal areas into the inland. The coldest 
temperatures were observed in Manica and Niassa provinces 
(Figure 2), probably due to the prevailing winds of the western areas 
bringing cold air mass from the orographic areas during the warm 
half-year from November to April. The warmest temperatures were 
observed from December to March across the country with a peak in 
December (Supplementary Figures S2, S5–S7), while the coldest 
temperatures were recorded between June and July 
(Supplementary Figures S2, S5–S7).

As shown in Figure  2, the southern part of Mozambique 
received lower precipitation from 2016 to 2018 while the central 
and northern parts of the country averaged a higher annual 
precipitation. The monthly spatial climatology of precipitation over 
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FIGURE 2

Spatial distribution of malaria incidence rate per 1,000 population, Minimum temperature, Maximum temperature, Precipitation, Relative humidity, and 
Normalized difference vegetation index (NDVI) by district in Mozambique, 2016–2018.

TABLE 1 Summary of (annual monthly) malaria cases and environmental variables, Mozambique, 2016–2018.

Variables Year Mean (SD) Min Median Max

Malaria incidence rate (per 1,000 

population)

2016 15.77 (5.87) 5.461 14.746 24.296

2017 21.6 (5.43) 14.121 23.245 28.257

2018 21 (5.14) 14.061 21.838 30.278

Malaria cases 2016 434947.17 (162000.82) 150,600 406660.5 669,996

2017 613326.92 (154135.29) 400,947 660018.5 802,350

2018 614083.83 (150271.81) 411,075 638434.5 885,185

Min temperature 2016 18.99 (3.21) 14.593 19.503 22.746

2017 18.77 (2.62) 14.996 19.379 22.183

2018 18.75 (2.55) 14.91 18.664 21.94

Max temperature 2016 28.7 (2.6) 24.371 29.155 32.065

2017 28.67 (1.76) 26.044 28.827 31.006

2018 28.59 (1.89) 24.443 29.145 30.887

Relative humidity (%) 2016 74.07 (10.15) 58.862 74.371 88.113

2017 73.23 (9.76) 60.032 71.119 88.542

2018 73.57 (9.42) 61.292 73.305 88.336

Precipitation (mm) 2016 68.98 (88.9) 0.783 10.871 257.005

2017 90.07 (112.21) 1.445 21.045 294.725

2018 78.99 (94.52) 2.801 22.752 241.461

NDVI 2016 0.24 (0.05) 0.154 0.233 0.298

2017 0.25 (0.05) 0.154 0.251 0.336

2018 0.23 (0.07) 0.128 0.226 0.343

NDVI, normalized difference vegetation index; Min, minimum; Max, maximum; SD, standard deviation.
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Mozambique in 2018 showed that the highest amount of 
precipitation was recorded in January followed by February 
(Supplementary Figure S10). The driest months were June, July, and 
August during which the entire country received less than 
50 mm precipitation.

The monthly mean NDVI ranged from 0.13 to 0.34 between 2016 
and 2018 (Supplementary Table S1). In Figure 2, we observed that 
Central province and some parts of Inhambane, Gaza, and Nampula 
provinces had the highest NDVI, while the southern and northern 
parts of the country had the lowest NDVI. Manica and Sofala 
provinces were the greenest areas followed by Zambezia, Inhambane, 
and Tete provinces whereas the least green areas were Cabo Delgado, 
Niassa, Gaza, Maputo City, and Maputo provinces. The southwest 
corner of the country had an NDVI less than 0.2 between June and 
August and in the northeast part of the study area between September 
and October.

We also examined RH over Mozambique (Figure  2). In the 
southern, central, and northern parts of the country, RH was above 
74% in 2018, while in Niassa, Tete, Manica, and Gaza provinces, it was 
below 74%. Figure 2 shows that RH decreased from coastal areas to 
the inland. The monthly mean RH during the period from December 
to April was over 80% in most areas over the country 
(Supplementary Figure S8).

3.2. Descriptive summaries for DHS 
socio-economic indicators

The description of the household-level DHS indicators, which were 
aggregated to district level for the analysis, are given in 
Supplementary Table S6. About 78.0% of the households were located 
in rural areas within the districts. The mean proportion of households 
characterized as poor was 46.2% with some districts registering as high 
as 96.4% of households as poor. About 20.8 and 35.6% of the 
households had electricity and radio, respectively. However, mobile 
phone ownership was high at 62%. The average proportion of 
households reporting no education was low at 26.8%, though some 
districts reported as high as 92.3%. In terms of malaria control, 89.4% 
of the households reported having mosquito nets, although the 
proportion of dwellings sprayed in the last 12 months was low at 14.1%, 
with few children reported to be sleeping under ITNs at only 2%.

3.3. Model results

3.3.1. Temperature
Figure 3A displays the overall relationship between mean monthly 

temperature and malaria risk in Mozambique. We  observed an 

FIGURE 3

Overall effect and 3D Contour plots of Tmean (A,B), and NDVI (C,D) on malaria risk at lags 0–6  months in Mozambique, 2016–2018. The reference 
values for Tmean and NDVI, are 18°C and 0.2 respectively.
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elevated risk for temperatures values between 20 and 29°C compared 
to the reference of 18°C; for example, at temperature value of 25°C 
malaria risk was 3.45 times higher (RR 3.45 [95% CI: 2.37–5.03]) 
compared to the reference. At higher mean temperatures, malaria risk 
plummeted, and temperature even became protective; for example, at 
30°C, malaria infection risk reduced by up to 52% (RR 0.48 [95% CI: 
0.26–0.89]). We also observed an increasing relative risk of malaria for 
temperatures below the reference value. Figure 3B shows the contour 
plot depicting the lag-response relationship between mean 
temperature and relative risk of malaria. For temperature between 21 
and 26°C, the relative risk of malaria was higher at shorter lags of 
1–3 months. At a monthly mean temperature of 26°C, malaria risk was 
12.2% higher at a lag of 1 month (RR 1.12 [95% CI: 1.03–1.22]). The 
protective effect of higher temperatures occurred at much shorter lags.

3.3.2. Normalized difference vegetation index 
(NDVI)

Figure  3C shows the exposure-response relationship between 
NDVI and malaria risk. Compared to the reference value of 0.2, 
malaria risk was significantly higher for NDVI above 0.22. Specifically, 
at a monthly mean NDVI of 0.34, malaria risk was 28.0% higher (RR 
1.28 [95% CI: 1.02–1.60]), and at 0.42, it was 53.5% higher (RR 1.53 
[95% CI: 1.01–2.34]). Figure 3D shows the lag-response relationship 
between NDVI and malaria risk. At NDVI above 0.3, we observed 

significantly shorter lag patterns; for example, at NVDI of 0.49, 
malaria risk was the highest (19.9%) at one-month lag (RR 1.199 [95% 
CI: 1.02–1.41]). A significantly higher risk is observed at a lag of 
5 months for an NDVI of 0.32 (RR 1.04 [95% CI: 1.00–1.08]).

3.3.3. Relative humidity
In Figure 4A, the exposure-response relationship between RH and 

malaria risk is shown. In comparison to the reference value of 70.0% 
for RH, malaria risk was the highest (34.3%) at 55% (RR 1.34 [95% CI: 
1.01–1.79]). For RH greater than the reference value, we observed a 
decrease in risk though the association was not statistically significant. 
Figure 4B shows the contour 3D plot of exposure-lag response surface 
for RH and malaria risk. For RH between 50.0 and 60.0%, we observed 
much shorter lags but at lower RH, we saw much longer lags; for 
example, malaria risk increased by 30.1% at an RH of 38%, (RR 1.301 
[95%CI: 1.08–1.55]) at a lag of 6 months. Higher RH was found to 
be significantly protective at shorter lags; for example, at an RH of 
90%, malaria risk was decreased by 8.4%, (RR 0.916 [95% CI: 0.84–
0.99]) at a lag of 1 month.

3.3.4. Precipitation
Figure  4C shows the relationship between cumulative 

precipitation and malaria risk. The risk was significantly higher at 
precipitation less than 100 mm in reference to the relative risk at a 

FIGURE 4

Overall effect and 3D Contour plots of relative humidity (A,B), and precipitation (C,D) on malaria risk at lag times 0–6  months in Mozambique,  
2016–2018. The reference values for RH and Precipitation are 70% and 120 mm, respectively.
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monthly total precipitation of 120 mm. For example, at a monthly total 
precipitation of 10 mm, there was an 87% increase in risk compared 
to the reference rainfall (RR 1.87 [95% CI: 1.30–2.69]). The risk 
increased at higher precipitation levels from 100 mm to 300 mm and 
then plummeted but not significantly. At precipitation levels of 
400 mm and above, we observed a significant protective effect on 
malaria risk; for example, at a precipitation level of 490 mm, malaria 
risk reduced by 81.8% (RR 0.18 [95% CI: 0.07–0.45]). Figure  4D 
shows the exposure-lag response surface of monthly total precipitation 
and malaria risk at lags 0–6 months. We observed a shorter lag of 
1 month for a high monthly total precipitation between 300 and 
400 mm, and both shorter and longer lags over 3 months for lower 
total precipitation levels. For example, at a lag of 5 months, a total 
precipitation of 340 mm resulted in a 12.4% increase in malaria risk 
(RR 1.12 [95% CI: 1.01–1.25]) while at 50 mm of precipitation, the risk 
increased by 5.9% after 3 months (RR 1.06 [95% CI: 1.00–1.12]). The 
protective effect of a higher precipitation was also observed at much 
shorter lags, for example at a precipitation of 480 mm, malaria risk 
reduced by 26.1% (RR 0.739 [95% CI: 0.61–0.90]) at a lag of 2 months.

3.4. Socio-demographic factors

Table 2 shows the influence of socio-economic factors on malaria 
risk after controlling for the environmental factors. The districts with 
high proportion of households with electricity had significantly lower 
risk of malaria. Specifically, malaria risk decreased by 2.1% for every 
unit increase in the proportion of households with electricity (RR 
0.979 [95% CI: 0.97–0.99]). Similarly, malaria risk was lower in 
districts with low proportions of individuals who share a toilet facility 
(RR 0.957 [95% CI: 0.924–0.991]). Malaria risk increased by 3.4% for 
every unit increase in the proportion of uneducated population (RR 
1.034 [95% CI: 1.014–1.054]).

4. Discussion

In summary, in this study we identified temperatures of between 
25 and 29°C to be associated with high malaria risk with shorter 
lagged associations of 1 month. Higher NDVI values above 0.2 were 
also associated with elevated risk of malaria with lags ranging from  

1 to 5 months. The optimal relative humidity (RH) range for malaria 
risk was 50–60%, with shorter lags for lower RH and longer lags for 
RH within the optimal range. Lower monthly rainfall totals were 
associated with higher risks of malaria at lags of one to 3 months 
compared to wetter conditions associated with lowers risks with much 
shorter lags. We also showed that low educational level was associated 
with high risk of malaria, while owning a radio significantly lowered 
malaria risk.

We combined INLA Bayesian modeling and distributed lag 
nonlinear modeling approaches to explore the non-linear lagged 
exposure-response relationships between climate variables and risk of 
malaria infection in Mozambique controlling for socio-demographic 
factors and spatial–temporal covariance. The flexible DLNM approach 
allowed us to capture both the nonlinear exposure-response functions 
and their lag dimensions in assessing the relationship between climate 
variables and malaria incidence (56, 57). The INLA Bayesian approach 
has previously been used to investigate the association between 
malaria and climatic variables in other settings (50, 58–61).

From our findings, mean temperature was positively associated 
with malaria incidence, which is consistent with study done in 
Vietnam (62), China (63), and Thailand (64). At temperatures value 
above 20°C, malaria risk is higher at lags 4 to 6 months. At 
temperatures between 27 and 30°C, the risk is lower at shorter lags of 
0–2 months. In Western Kenya, temperatures above 28°C were 
observed to be positively associated with malaria risk after 2 months 
(22). In Swaziland, malaria transmission risk increased when 
temperature was above 25°C with the effect pronounced at a 2-month 
lag (61). The association between temperature and the incubation 
period of malaria parasites and malaria transmission are well-known 
(65). High temperatures increase the biting rate of malaria vectors and 
expand malaria transmission geographically and temporally (66). The 
optimal temperature for malaria transmission ranges between 20.9 
and 34.2°C (65–70), consistent with findings of this study which 
identified a range of 20–29°C. This temperature range favors parasite 
development and vector survival, resulting in increased malaria risk.

NDVI reflects the amount and the vigor of vegetation coverage 
over a certain area. Changes in the spatial distribution of NDVI can 
be primarily explained by geographical and climatic factors, such as 
precipitation. In areas with low precipitation, where water is a limiting 
factor for vegetation growth, seasonal NDVI is closely linked to 
precipitation. Overall, NDVI was found to be positively associated 
with malaria morbidity in our study. Similar observations were made 
in studies in Ivory Coast (71), Nigeria (72), and Uganda (56). Our 
findings showed that at an NVDI value of 0.49, malaria risk was higher 
after 1 month. In contrast, in Western Kenya (22), NDVI above 0.4 was 
found to be negatively associated with malaria.

Study done in Cameroon (73) found that RH is the most 
important climatic variable that determines the number of malaria 
cases. Other study showed a strong and significant effect of RH during 
the pre-transmission season on malaria burden in India and also 
indicates that RH is a critical factor in the spread of malaria (74). Our 
findings showed higher RH to be negatively associated with malaria 
morbidity, which is consistent with previous studies done in Korea 
(75), Indonesia (76). At RH values between 50 and 60%, the risk of 
malaria was higher at lags of 5–6 months and lower at lags of 1–4 
months. Study conducted in China found that for RH values between 
68.57 and 80.57 the risk of malaria was higher at lags of 1–5 months 

TABLE 2 The relative risks of malaria infections in relation to household 
socio-economic indicators and doctor to population ratio.

Variables RR 95% CI

Proportion sharing 

toilet (%)

0.957 0.924 0.991

Proportion with 

electricity (%)

0.979 0.967 0.992

Proportion with no 

education (%)

1.034 1.014 1.054

Number of doctors per 

1,000 pop

1.04 1.006 1.075

Proportion with 

mosquito net (%)

1.066 1.046 1.086

https://doi.org/10.3389/fpubh.2023.1162535
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Armando et al. 10.3389/fpubh.2023.1162535

Frontiers in Public Health 09 frontiersin.org

(77). In Iran, RH was also found to be the most important climatic 
driver of malaria infections (78). RH influences mosquito survival as 
insects are highly susceptible to desiccation. An increase in RH may 
be  associated with heavy precipitation when temperatures are 
increasing, since moisture evaporating from the land surface in warm 
conditions is prevented from escaping by the arrival of clouds. Near 
the land surface, high RH leads to an increase in mosquito survival 
and host-seeking behavior. These factors are associated with variation 
in RH and are linked to malaria morbidity within an optimum RH 
range of approximately 60–80% (38). Our results are within the 
optimum RH range to malaria transmission.

The results from this study showed that malaria transmission was 
significantly associated with precipitation over the study area at a 
one-month lag. Malaria risk was negatively associated with 
precipitation above 300 mm which could be associated with flooding 
which destroys the mosquito habitat. In South-West China, 
precipitation value of 26 mm found to be positively associated with 
malaria infection after 2–4 months (77). While for a study done in 
Brazil, Guyana and Venezuela showed that malaria infection decreased 
by 1.6% per 1 cm increase in 6 months lagged precipitation (79). In 
Indonesia, a 1 mm increase in precipitation was associated with a 
0.08% increase of malaria infection at lag of 3 months (76). 
Precipitation provides suitable habitats for mosquito breeding and is 
thus considered to be  a dominant factor in driving malaria 
transmission (38). Unsurprisingly, studies conducted in Senegal (80), 
Ethiopia (81), Paraguay and Argentina (82), and Equador (83) showed 
that precipitation was the major determinant of malaria transmission. 
This may be explained by geographical and topographic conditions of 
an area. In addition, heavy precipitation or storms may destroy the 
breeding grounds of mosquitoes and interfere with the development 
of mosquito eggs or larvae (84).

Our findings showed that there was a significant decrease in 
malaria infection in households with electricity, which is consistent 
with other studies (85). Some studies suggested that households who 
share a toilet have a greater risk of malaria (86, 87). We found that less 
educated individuals were more vulnerable to malaria infection, 
which is consistent with earlier studies (5, 12, 13). Interventions and 
prevention measures plays a crucial role in the management and 
control of malaria infections. We  only assessed ITNs and indoor 
residual spraying on the risk of malaria as these were the only control/
prevention measures in the DHS and MIS datasets used in this study. 
However we know that malaria infections can be managed by the use 
of antimalarial drugs and prevented through the use of protective 
measures against mosquito bites (88), e.g., use of repellants and treated 
mosquito nets (89–91).

Treatment of malaria with an effective antimalarial in endemic 
settings is one of the key strategies of malaria control and prevention 
(92, 93). Artemisinin-based combination therapy (ACT) has been the 
recommended by the World Health Organization for the treatment 
of uncomplicated malaria in Mozambique since 2006, with 
artemether-lumefantrine (AL) and amodiaquine–artesunate 
(AS-AQ) as the first option (94, 95). In Mozambique, antimalarial 
drugs such as artemether-lumefantrine (AL) were observed to have 
therapeutic efficacy of 97.9% (95% CI 95.6–99.2%) to malaria 
infection, while for amodiaquine-artesunate (AS-AQ) were observed 
to have therapeutic efficacy of 99.6% (95% CI 97.9–100%) to malaria 
infection (94). In Tanzania, AL were observed to have therapeutic 

efficacy of 98% which is the WHO recommended threshold and 
remain well tolerated in the country (96). The therapeutic efficacy of 
AL in Ethiopia was 98.6% (95% CI 92.3–100) for malaria infection, 
which suggests the continuation of AL as the first-line antimalarial 
drug for the treatment of uncomplicated plasmodium falciparum 
malaria in Ethiopia (97). Abacassamo et  al. assessed the clinical 
efficacy and parasitological response of Plasmodium falciparum to 
antimalarial drugs, he found that the therapeutic efficacy of 91.6% of 
amodiaquine (AQ) was better than that of 82.7% of sulphadoxine–
pyrimethamine (SP) and 47.1% of chloroquine (CQ) to malaria 
infection (98). The therapeutic efficacy of AL and CQ in Ethiopia was 
100% (95% CI 96–100) and 98%(95%CI: 95–100) for malaria 
infection, respectively, (99). Assessment of antimalarial therapeutic 
efficacy is needed to guide policies and practices (100, 101). The 
development of an effective malaria vaccine is, therefore, essential for 
mitigating malaria infections on vulnerable population. Currently, 
more than 2.3 million doses of malaria vaccine have been 
administered in three Sub-Sahara countries namely Ghana, Kenya 
and Malawi (102) though the efficacy is only at 39% (102).

The lagged association between environmental covariates and 
malaria incidence could aid in the development of a malaria early 
warning system to guide planning and control of malaria transmission. 
For example, precipitation and sea surface temperature monitoring 
has been used in issuing malaria early warnings in Botswana with 
great success in reducing malaria incidence (103). Similarly, a study in 
South Africa showed that seasonal climate forecasts could be used in 
a malaria early warning system with high prediction skill providing 
lead times of up to 16 weeks for planning (104).

In this study we showed that suitable temperatures of 21–26°C 
provided leads time of 1–3 months, higher rainfalls also provided 
shorter leads time of 1 month, but longer lead times for drier 
conditions of up to 6 months. Both Higher NDVI and relative 
humidity values also provided shorter lead time of 1 month. 
Combining all these lagged climatic covariates into an early warning 
system could provide lead times of 1–3 months for planning. Seasonal 
climate forecasts can potentially be utilized with this model to provide 
early warnings for malaria in Mozambique.

The major strength of this study is the combination of INLA 
Bayesian framework and DLNM framework to estimate the 
unbiased lag-exposure response functions between climatic factors 
and malaria risk by robustly adjusting for spatial–temporal 
covariance and socio-economic indicators. However, the study also 
had some limitations with the included socio-economic data. 
We only included the 2018 survey that covers the analysis period 
(2016–2018), assuming the values were similar in the previous years 
which may not be true. In addition, the aggregation of individual 
DHS covariates over large spatial units (the districts) may have 
masked the association between socio-economic indicators and 
malaria risk. Thus, interpretation should be  made considering 
these limitations.

5. Conclusion

This study indicates that climate and socioeconomic variables 
influence the incidence and distribution of malaria in Mozambique. 
Temperature,precipitation, NDVI, and RH play a role in influencing 
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malaria cases at specific lag periods. The results of the study support 
the need to identify malaria vulnerability indicators to further 
support malaria control and efforts including combining climate 
variables, environmental conditions, regional spatial stratification, 
socioeconomic factors, public health interventions related to malaria 
transmission, and also reinforces the applicability of the use of 
climate services for risk mapping of malaria in areas where climate 
data is not routinely available. Achieving the targeted reductions in 
malaria infections in Mozambique will require a multidisciplinary 
effort, innovative approaches for malaria prevention and sustained 
political commitment at national, province, and district levels, as well 
as continued investment in malaria control and elimination efforts.

Vulnerability mapping should be carried out to identify areas with 
high malaria risk using climate variables. Climate variables such as 
temperature, NDVI, RH and precipitation should be  used in 
identifying vulnerable areas. The identified lagged patterns can 
be used in the development of a climate-based early warning systems 
to strengthen malaria prevention in Mozambique. More research is 
needed to identify how to incorporate the identified vulnerability 
indicators and lagged associations into a malaria early warning system 
in Mozambique and assessing the forecast accuracies.

This study has relevance for achieving the Sustainable Development 
Goals (SDGs): (i) Ensuring healthy lives and wellbeing for all; on 
strengthening capacity for response to health risks (ii) Improving 
education, awareness-raising and human and institutional capacity on 
climate adaptation, impact reduction. Achieving the SDGs will require 
focusing on the poorest and most vulnerable populations as those are 
the most affected by malaria, ensuring no one is left behind. Ending 
malaria by 2030 requires a reference like the one presented here for 
planning, monitoring, and evaluation of malaria control efforts.
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