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Positional games have been introduced by Hales and Jewett in 1963 and have been 
extensively investigated in the literature since then. These games are played on a 
hypergraph where two players alternately select an unclaimed vertex of it. In the Maker-
Breaker convention, if Maker manages to fully take a hyperedge, she wins, otherwise, 
Breaker is the winner. In the Maker-Maker convention, the first player to take a hyperedge 
wins, and if no one manages to do it, the game ends by a draw. In both cases, the game 
stops as soon as Maker has taken a hyperedge. By definition, this family of games does not 
handle scores and cannot represent games in which players want to maximize a quantity.
In this work, we introduce scoring positional games, that consist in playing on a 
hypergraph until all the vertices are claimed, and by defining the score as the number 
of hyperedges a player has fully taken. We focus here on Incidence, a scoring positional 
game played on a 2-uniform hypergraph, i.e. an undirected graph. In this game, two players 
alternately claim the vertices of a graph and score the number of edges for which they own 
both end vertices. In the Maker-Breaker version, Maker aims at maximizing the number 
of edges she owns, while Breaker aims at minimizing it. In the Maker-Maker version, both 
players try to take more edges than their opponent.
We first give some general results on scoring positional games such that their membership 
in Milnor’s universe and some general bounds on the score. We prove that, surprisingly, 
computing the score in the Maker-Breaker version of Incidence is PSPACE-complete 
whereas in the Maker-Maker convention, the relative score can be obtained in polynomial 
time. In addition, for the Maker-Breaker convention, we give a formula for the score on 
paths by using some equivalences due to Milnor’s universe. This result implies that the 
score on cycles can also be computed in polynomial time.
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1. Introduction

1.1. Positional games

Positional games have been introduced by Hales and Jewett in 1963 [15] and popularized by Erdős and Selfridge in 1973 
[10]. Interest in them has increased due to the large number of games they can handle.

In the standard definition of positional games, the board is a hypergraph on which two players alternately select an 
unclaimed vertex. In the Maker-Breaker convention, if Maker manages to claim all the vertices of a hyperedge, he wins, 
otherwise, Breaker is the winner. In the Maker-Maker convention, the first player, if any, who takes a hyperedge wins. If no 
player manages to claim all the vertices of a hyperedge, the game ends by a draw.

Maker-Maker games are often considered as harder than Maker-Breaker games, since the objective of trying to fill a 
hyperedge and controlling at the same time that the opponent does not win, is hard to meet.

Positional games are finite perfect information two-players games. As such, there exists a winning strategy for one of 
the players or both players can insure a draw. The main issue is then to compute, for a given hypergraph, which player has 
a winning strategy. This problem has been proven to be PSPACE-complete for both conventions, even if all the hyperedges 
have size at least 11 by Schaefer [26]. This result was recently improved to hypergraph with hyperedges of size at least 6 
by Rahman and Watson [25]. On the other side, Galliot et al. proved that the winner can be computed in polynomial time 
on 3-uniform hypergraphs [12].

In practice, positional games are studied in specific hypergraphs. Historically, they are almost always derived from hyper-
graphs built from a grid or a complete graph (see for example the reference books [2,16]). More recently, some positional 
games played on hypergraphs derived from general graphs have been studied. For such games, Maker aims at building a 
structure in a given graph, and Breaker aims at preventing him to do so. The structure could be, for example, a copy of a 
graph H (H-Game [17]) or a dominating set (Maker-Breaker domination game [8]).

1.2. Scoring games

In parallel to the study of positional games, scoring games have been introduced in the 1950 s by Milnor [21] and Hanner 
[13]. Their study was almost forgotten until the 2000 s, when different formalisms for such games have been introduced 
by Ettinger [11], Stewart [28], or Larsson, Nowakowski and Santos [20]. The survey paper [19] summarizes these different 
approaches.

In scoring games, two players, usually Left and Right, alternate moves with a score adjoined to the game. Each move of 
a player can modify this score, Left aims at maximizing the score at the end of the game, while Right tries to minimize 
it. Since scoring games are also finite perfect information games, if both players play optimally, the score at the end of the 
game is well-defined and only depends on who starts.

Despite the fact that scoring games were less studied, mainly due to the difficulty to build a general framework for 
them, particular scoring games on graphs have still been introduced recently. One can cite the game Influence introduced 
by Duchêne et al. in 2021 [7] which has been proven PSPACE-complete in 2022 [9], or the largest connected subgraph 
game, introduced by Bensmail et al., firstly as a scoring connection game [5], and then as a Maker-Breaker connection game 
[4]. In [19], there is a list of other particular scoring games on graphs that have been recently studied.

1.3. Scoring positional games and outline of the paper

In the current paper, we introduce a general scoring version of positional games. Left and Right alternately select vertices 
of a hypergraph until all the vertices are selected. Points are given when a hyperedge is fully selected by a player. In the 
Maker-Maker convention, both players get points and the score is the difference between the number of hyperedges taken 
by Left and Right. In the Maker-Breaker version, the score is only the number of hyperedges taken by Left.

Outline of the paper In Section 2, after giving a formal definition of these games, we provide some general results on them. 
In particular, we prove that they belong to Milnor’s universe and that determining the score is PSPACE-complete in the 
two conventions. In the rest of the paper, we explore the game Incidence that corresponds to the subcase of 2-uniform 
hypergraphs (or equivalently to graphs). In Section 3, we prove that, unlike for standard positional games, the Maker-Maker 
version of Incidence is the easiest one since computing the score is linear in this case. Then we focus on the Maker-
Breaker version of Incidence. In Section 4, we give some general bounds on the score as well as some nice properties 
to deal with twin vertices. This allows us to calculate the exact value of the score for complete binary trees. The next 
section shows that computing the score in Maker-Breaker convention is PSPACE-complete but fixed-parameter-tractable 
when parameterized by the neighborhood diversity of the graph (introduced in [18]), which implies in particular that it is 
also FPT when parameterized by vertex cover. The last section is dedicated to the study of paths and cycles. We prove some 
equivalence relations between paths, which lead to a closed formula for paths and cycles. In particular, we can compute 
exactly the score for a path of length n, which is equal to n/5 + c where c only depends on n mod 5.
2
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2. General results on scoring positional games

2.1. Definitions

Scoring positional games are played on hypergraphs by two players, Left and Right, with the same rules as for standard 
positional games. The only difference lies in the winning convention. In a scoring positional game, the game ends when all 
vertices have been claimed. The score of a player is then defined as the number of hyperedges he manages to take. In the 
Maker-Maker convention, each player tries to maximize his score. In the Maker-Breaker convention, Maker (identified as 
Left) tries to maximize her score while Breaker (identified as Right) aims at minimizing the score of Maker.

More formally, as for any scoring game, two scores are defined depending on which player starts. Let H = (V , E) be a 
hypergraph. We define the score of H as follows:

• in the Maker-Maker convention, Ls(H) (resp. Rs(H)) as the difference between the scores of Left and Right when Left 
starts (resp. when Right starts) and both players play optimally.

• in the Maker-Breaker convention, Ls(H) (resp. Rs(H)) as the score of Left when Left (resp. Right) starts and both players 
play optimally.

It is well-known in scoring game theory that these notions exist and are well-defined (by considering the game tree of 
all the possible moves). Note that in the Maker-Maker convention, by symmetry of the roles of both players, we have that 
Ls(H) = −Rs(H), so computing Ls(H) will be of sufficient interest. In the Maker-Breaker convention, we have that Ls(H)

and Rs(H) are nonnegative values by definition.
In addition, it will be helpful to consider the scores obtained after some vertices have been claimed. A position of 

a scoring positional game is a triplet P = (H, V L, V R) such that V L and V R are disjoint subsets of vertices. The set V L

corresponds to the vertices claimed by Left whereas V R correspond to the vertices claimed by Right. The set of remaining 
vertices will be generally denoted by V F . We have V F = V \ (V L ∪ V R). For both conventions, we will denote by Ls(P ) (resp. 
Rs(P )) the score of H if Left has already claimed the vertices of V L , and Right the vertices of V R , when Left (resp. Right) 
starts. When V F �= ∅, the scores at a position P can be recursively defined as follows:

Ls(P ) = max
x∈V F

Rs(H, V L ∪ {x}, V R)

Rs(P ) = min
x∈V F

Ls(H, V L, V R ∪ {x}).

When V F = ∅, the score depends on the convention. In Maker-Maker convention,

Ls(P ) = Rs(P ) = |{e ∈ E|e ⊆ V L}| − |{e ∈ E|e ⊆ V R}|
whereas in Maker-Breaker convention, we have

Ls(P ) = Rs(P ) = |{e ∈ E|e ⊆ V L}|.
In the literature, there are few games that can be seen as scoring positional games. The famous Dots and Boxes game [3], 

that has recently be proven PSPACE-complete by Buchin et al. [6], could be an example, with the additional constraint that 
a player is forced to move again each time he gets points. By removing this constraint, we get a pure example of the above 
definition (in the Maker-Maker convention), and the game is known as Picarête [1]. More recently, the Constructor-Blocker 
game introduced by Patkos et al. [23] in 2022, in which Constructor aims at maximizing the number of copies of a graph 
H with a forbidden graph F , can be seen as a scoring positional game when F is empty.

Incidence In most of this paper, we will mainly focus on an example of scoring positional game that is called Incidence. 
It corresponds to the game played on a hypergraph where all hyperedges are of size two. In other terms, this game can 
be defined as follows on a simple graph G = (V , E). Alternately, two players claim an unclaimed vertex of V . When all the 
vertices have been taken, the score of a player is defined as the number of edges in the subgraph of G induced by the 
vertices he claimed.

Hence, in both conventions, Left (that is always Maker) aims at collecting points by claiming the two extremities of an 
edge. The main difference concerns the role of Right, that aims at touching the maximum number of edges (hence prohibit-
ing a maximum number of points for Left) in the Maker-Breaker convention. See Fig. 1 for an example of computations of 
the score at the end of a game.

2.2. Milnor’s universe

In 1953 [21], Milnor introduced a universe of scoring games having nice properties. This universe is the one of dicotic 
nonzugzwang games:
3
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Fig. 1. An endgame of Incidence. In Maker-Maker convention the score of the position is 2 while it is 4 in Maker-Breaker convention.

• a game is dicotic if at any moment of the game, if a player can play, the other player can also play.
• a game is nonzugzwang if at any moment of the game, both players have no interest in skipping their turn. In the 

context of scoring positional games, it means that for a hypergraph H , we have Ls(H, V L , V R) ≥ Rs(H, V L, V R) for any 
sets of vertices V L, V R claimed by Left and Right during the game.

Being in Milnor’s universe induces a couple of useful results concerning the sum operator and the equivalence of games. 
The disjunctive sum operator + applied to scoring (positional) games G1 and G2 defines the game G1 + G2 as the game in 
which a move consists in moving either in G1 or in G2. The game ends when the moves in both components of the sum are 
exhausted. See [9] for the formal definition. Note that the sum of two scoring positional games, with the same convention, 
is still a scoring positional game with hypergraph the disjoint union of the two hypergraphs. As game sums appear in many 
games when playing, one could expect to simplify them by replacing large games by smaller ones. This leads to the notion 
of equivalence of games:

Definition 1 (Milnor [21]). Two scoring games G1 and G2 are equivalent (write G1 ≡ G2) if for any game G, we have Ls(G + G1) =
Ls(G + G2) and Rs(G + G1) = Rs(G + G2).

In other terms, one can always exchange G1 and G2 in any sum of games if they are equivalent. In particular, games that 
are equivalent to the empty game can be removed from any sum of games.

Games belonging to Milnor’s universe form an Abelian group with the sum operator [21]. In particular, this implies that 
every game G in Milnor’s universe admits an inverse, i.e. a game G ′ such that G + G ′ ≡ 0 (where 0 is the empty game). 
More precisely, this inverse corresponds to the negative of G , i.e. the game where the roles of Left and Right are exchanged, 
together with their scores.

Moreover, proving equivalence in Milnor’s universe is greatly simplified, thanks to the next lemma.

Lemma 2 (Milnor [21]). For any games G and H that are dicotic nonzugzwang, we have: Ls(G − H) = Rs(G − H) = 0 if and only if G
and H are equivalent.

In addition, sums of games in Milnor’s universe can be bounded as follows:

Lemma 3 (Milnor [21]). Let G and H be two dicotic nonzugzwang games, we have

Rs(G) + Rs(H) ≤ Rs(G + H) ≤ Ls(G) + Rs(H) ≤ Ls(G + H) ≤ Ls(G) + Ls(H).

In what follows, we will show that scoring positional games belong to Milnor’s universe. Yet, the negative of a game 
cannot be defined in the Maker-Breaker convention, as the scores of Maker and Breaker can not be interchanged naturally, 
by asymmetry of the definition of the score. Therefore, we have decided to embed scoring positional games in a more gen-
eral family that will be called partisan scoring positional games. The term partisan is derived from standard combinatorial 
games [3], meaning that Left and Right may have different moves (and also different ways of scoring points).

A partisan scoring positional game is played on a hypergraph H whose hyperedges are either colored blue, red or green. 
The two players, Left and Right, alternatively claim vertices of H . The score of Left corresponds to the blue and green 
hyperedges she claimed, whereas the score of Right corresponds to the red and green ones. As previously, the score of the 
game (Ls(H) and Rs(H), depending on who starts) is the difference between the score of Left and Right.

Partisan scoring positional games include both Maker-Maker and Maker-Breaker scoring positional games. Even more, 
the convention can be omitted, as it is deduced by the colors of the hypergraph. Indeed, if all the hyperedges are green, it 
means that both players can win any hyperedge, which corresponds to the Maker-Maker version. If all the hyperedges are 
blue, it corresponds to the Maker-Breaker convention, as only Left can get points. According to this definition, the negative 
of a partisan scoring positional game is well-defined, as it suffices to exchange the colors blue and red in the hyperedges, 
as well as the vertices already chosen by Left and Right (if any).

We will now give several general results about partisan scoring positional games. By inclusion, these results will also 
concern scoring positional games. First, we will prove that they belong to Milnor’s universe and thus satisfy Lemma 2.
4
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Lemma 4. Partisan scoring positional games belong to Milnor’s universe.

Proof. Let H = (V , E) be a hypergraph with hyperedges colored blue, red and green, and V L, V R ⊂ V be vertices already 
claimed by Left and Right respectively such that V L ∩ V R = ∅.

A partisan scoring positional game is dicotic: if V L ∪ V R = V , then no moves are available, neither for Left nor for Right. 
Otherwise, let v ∈ V \ {V L ∪ V R}. Both Left and Right are allowed to play v as it is an unclaimed vertex. Therefore, the game 
is dicotic.

A partisan scoring positional game is nonzugzwang: We need to prove that Ls(H, V L, V R) ≥ Rs(H, V L, V R). Let k =
Rs(H, V L, V R) with V L, V R vertices already claimed in H by Left and Right respectively. If V L ∪ V R = V , we have 
Ls(H, V L, V R) = Rs(H, V L, V R) = k as there is no move available in H . Otherwise, let S be an optimal strategy for Left 
when Right starts. We define a strategy S ′ for Left when she starts as follows:

• Left considers an arbitrary unclaimed vertex v0 of the graph, and plays the vertex she would have played in S if Right 
plays v0.

• Whenever, Right plays a vertex w in V \ {v0}, she plays the vertex she would have played in S if Right has played w
in S after having played v0 on first move.

• If Right plays v0, she considers an arbitrary unclaimed vertex v1 in the graph, and continues this strategy by supposing 
that Right has played v1 instead of v0. More generally, when Right claims the vertex v� , she considers an unclaimed 
vertex v�+1 and considers that Right has claimed v�+1 instead.

• At the end, if she needs to consider that Right has played a vertex v� and no other vertex is available, she plays v� .

Following this strategy, all the vertices Left would have played in S if Right has played the vertices vi s she has consid-
ered, have been played in S ′ by Left. Similarly, the vertices that Right have played in S ′ are a subset of the one he would 
have played in S . Therefore, as S was an optimal strategy in H when Right starts, this strategy ensures that Left scores at 
least k = Rs(H, V L, V R). Finally, we have Ls(H, V L, V R) ≥ k = Rs(H, V L, V R), and the game is nonzugzwang.

As the game is nonzugzwang and dicotic, it belongs to Milnor’s universe. �
As a consequence, this result applies also to scoring positional games and, in particular, the game Incidence. We will use 

this result in Section 6 to solve Incidence on paths.

2.3. Algorithmic complexity

We now prove that computing the Left score of a scoring positional game is PSPACE-complete in both conventions. This 
result is a direct consequence of the PSPACE-complexity of (non-scoring) positional games.

Maker-Breaker Positional Game

Instance: A hypergraph H , P ∈ {Maker, Breaker}.
Output: True if Maker wins the Maker-Breaker positional game played on H with first player P .

Maker-Breaker Positional Game has been proved to be PSPACE-complete by Schaeffer [26] for 11-uniform hypergraphs 
(all the hyperedges have size 11). This result was recently improved to 6-uniform hypergraphs by Rahman and Watson [25].

Theorem 5 ([25]). Maker-Breaker Positional Game is PSPACE-complete even restricted to 6-uniform hypergraphs.

Maker-Breaker Positional Game can easily be reduced to the two following problems on scoring positional games.

Maker-Breaker Scoring Positional Game

Instance: A hypergraph H , an integer k, a first player P ∈ {Lef t, Right}.
Output: True if the P score in the scoring positional game played on H with Maker-Breaker convention is at least k, false 
otherwise.

Maker-Maker Scoring Positional Game

Instance: A hypergraph H , an integer k.
Output: True if the Left score in the scoring positional game played on H with Maker-Maker convention is at least k, false 
otherwise.

Corollary 6. Maker-Breaker Scoring Positional Game is PSPACE-complete even restricted to 6-uniform hypergraphs, P = Lef t
and k = 1.

Maker-Maker Scoring Positional Game is PSPACE-complete even restricted to 7-uniform hypergraphs and k = 1.

Proof. Since both games are played in |V (H)| turns, they belong to PSPACE according to Section 6.1 in [14].
5
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Fig. 2. A hypergraph satisfying Ls(H) = � �(H) + 1

2
� in Maker-Maker convention.

Let H be a 6-uniform hypergraph and assume Left is the first player. We have Ls(H) ≥ 1 in the Maker-Breaker convention 
if and only if Maker wins the Maker-Breaker positional game (without score) played on H with Maker as first player. Thus, 
by Theorem 5, Maker-Breaker Scoring Positional Game is PSPACE-complete even restricted to 6-uniform hypergraphs, 
k = 1 and P = Lef t .

Consider now H ′ the 7-uniform hypergraph obtained from H by adding a universal vertex v0: each hyperedge of H
is extended to contain v0. There exists an optimal strategy in the Maker-Maker convention that starts by claiming v0. 
Then the other player cannot score any point. Then, we have Ls(H ′) ≥ 1 if and only if Maker wins playing second in the 
Maker-Breaker positional game (without score) played on H . Thus, by Theorem 5, Maker-Maker Scoring Positional Game

is PSPACE-complete even restricted to 7-uniform hypergraphs and k = 1. �
We will complete the results of Corollary 6 in next sections by proving that Maker-Breaker Scoring Positional Game

is still PSPACE-complete for 2-uniform hypergraphs (Theorem 18). This will imply that Maker-Maker Scoring Positional 
Game is PSPACE-complete for 3-uniform hypergraphs. To complete the picture, we will give a linear algorithm to solve
Maker-Maker Scoring Positional Game in 2-uniform hypergraphs (Theorem 11).

2.4. Bounds in Maker-Maker convention

In this subsection, we give an easy bound on the score in Maker-Maker convention, using the maximal degree of the 
hypergraph. Let H be a hypergraph. The degree of a vertex v of H is the number of hyperedges containing v . We denote by 
�(H) the maximal degree of H .

Lemma 7. Let H be a hypergraph. In the Maker-Maker scoring positional game on H, we have −�(H) ≤ Rs(H) ≤ 0 ≤ Ls(H) ≤ �(H).

Proof. As noticed in Section 2.1, we have Ls(H) = −Rs(H) in the Maker-Maker convention since players have symmetric 
roles. Since the game is nonzugzwang, we also have Ls(H) ≥ Rs(H) which implies that Rs(H) ≤ 0 ≤ Ls(H).

To prove the upper bound with �(H), we just need to prove that Ls(H) ≤ �(H). Let v0 be the first vertex played in an 
optimal strategy. Consider the hypergraph H ′ obtained from H by removing v0 and all the hyperedges containing it. If the 
second player applies the optimal strategy for H ′ during the rest of the game, he will score at least Rs(H ′) ≤ 0 on it and 
the final score will be at most |{e|v0 ∈ e}| + Rs(H ′). Thus, we have Ls(H) ≤ deg(v0) + Rs(H ′) ≤ �(H). �

We do not think that the upper bound in Lemma 7 is tight if the hypergraph is simple (i.e. there are no two hyperedges 
that contain exactly the same vertices). Actually, the best example we know in this case is a hypergraph H having a universal 
vertex x, a hyperedge with x alone and � − 1 hyperedges of size 2 containing x and another unique vertex, see Fig. 2. For 
this hypergraph, Ls(H) = ��(H)+1

2 �. Besides, we will prove that for 2-uniform hypergraphs (i.e. graphs), the score is at most 
�(H)/2 (see Corollary 13. We believe that this bound remains true in any hypergraph.

Conjecture 8. Let H be a simple hypergraph. In the Maker-Maker scoring positional game on H, we have Ls(H) ≤ �(H) + 1

2
.

2.5. Bounds in Maker-Breaker

In Maker-Breaker convention, the bound from Lemma 7 is not valid anymore. Indeed, the score can actually be linear 
with the number of vertices of the hypergraph, even if the maximal degree is constant. Next, we derive a general tight 
bound, based on the same principle used to prove the Erdös-Selfridge criterion [10]. Some tight examples will be given in 
Section 4 for 2-uniform hypergraphs (see Corollary 14).

Theorem 9 (Erdős, Selfridge, 1973 [10]). Let H = (V , E) be a hypergraph. If 
∑
e∈E

2−|e| < 1, then Breaker wins on H when he starts. If ∑
e∈E

2−|e| < 1
2 , then Breaker wins on H when Maker starts.

The main idea to prove this theorem is that if the hyperedges are large enough, Breaker will have the time to play in 
all of them before Maker can fill one. A similar idea can be introduced when dealing with scores by computing how many 
6
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hyperedges Breaker can touch. The strategy used relies on a greedy strategy by introducing a potential function, as it was 
done by Erdős and Selfridge. Let H be a hypergraph. We denote by �(H) the maximum number of hyperedges that contain 
a fixed pair of vertices. More formally, �(H) = max

x,y∈V 2
|{e ∈ E|x, y ∈ e}|.

Theorem 10. Let H = (V , E) be a hypergraph. In the Maker-Breaker convention, we have Ls(H) ≥ ∑
e∈E

2−|e| − n�(H)
8 , and Rs(H) ≤∑

e∈E
2−|e| .

Proof. Let (H, V L, V R) be any position of a Maker-Breaker scoring positional game. We introduce the potential function:

P (H, V L, V R) =
∑

e∈E,e∩V R=∅
2−|e\V L |.

In this function, only hyperedges not played by Right are considered, and we only count the number of free vertices in the 
edge. Note that at the beginning of the game, P (H, ∅, ∅) = ∑

e∈E
2−|e| . At the end of the game, V = V L ∪V R and P (H, V L, V R) =

|{e ∈ E|e ∩ V R = ∅}| is the final score. Furthermore, when a vertex v is played by Maker (respectively Breaker), the potential 
is increasing (resp. decreasing) by the quantity

δP (H, V L, V R , v) =
∑

e|e∩V R=∅,v∈e

2−|e\V L |.

Let S be a strategy for Maker consisting in maximizing P at each move, i.e. Maker chooses the vertex v that maximizes 
δP (H, V L, V R , v). We prove that this strategy provides the desired bound. Suppose first that Maker starts. Suppose V L and 
V R have already been played by Maker and Breaker respectively. Let v L the vertex played by Maker according to S and 
v R the vertex played by Breaker after this move. As Maker has played v L and not v R , we have, before v L was played, 
δP (H, V L, V R , v L) ≥ δP (H, V L, V R , v R).

However, δP (H, V L ∪ {v L}, V R , v R) might be larger than δP (H, V L, V R , v R) after v L was played if there exist some hyper-
edges that contain both v L and v R . We actually have:

δP (H, V L ∪ {v L}, V R , v R) = δP (H, V L, V R , v R) +
∑

e∩V R=∅,v L ,v R∈e

2−|e\V L |

≤ δP (H, V L, V R , v R) + �(H)

4
.

Last inequality comes from the fact that e \ V L must contain v L and v R and thus has size at least 2. Therefore, we have

P (H, V L ∪ {v L}, V R ∪ {v R}) = P (H, V L, V R) + δP (H, V L, V R , v L) − δP (H, V L ∪ {v L}, V R , v R)

≥ P (H, V L, V R) − �(H)

4
.

As there is n moves in the game by applying this step n
2 times for each pair of moves (recall that we consider here that 

Maker starts), we have at the end of the game Ls(H) ≥ P (H, V L, V R) ≥ P (H, ∅, ∅) − n
2 × �(H)

4 , as required.
Suppose now that Breaker starts and considers this strategy for him (i.e. choosing the vertex v that maximizes 

δP (H, V L, V R , v)). Suppose V L and V R have already been played by Maker and Breaker respectively. Let v R be the 
vertex played by Breaker according to S and let v L be the vertex answered by Maker. We have δP (H, V L, V R , v R) ≥
δP (H, V L, V R , v L). Note that here, δP (H, V L, V R ∪ {v R}, v L) cannot increase after the move of Right, as it does not change 
the size of the hyperedges (it can only decrease if some edges containing v L also contain v R ). Therefore, after these two 
moves, we obtain P (G, V L ∪ {v L}, V R ∪ {v R}) ≤ P (G, V L, V R). By applying this result from V L = V R = ∅ to the end of the 
game, we obtain P (H, V L, V R) ≤ P (H, ∅, ∅) for any sets V L and V R obtained after Right applies S . In particular, when the 
game ends, this strategy ensures that Rs(H) ≤ P (H, ∅, ∅) = ∑

e∈H
2−|e| . �

From now on and until the end of the paper, we will focus on the game Incidence, i.e. the scoring positional game 
played on a graph.

3. MAKER-MAKER INCIDENCE is polynomial

In this section, we provide a linear time algorithm to compute the score of Maker-Maker Incidence. A natural idea, 
while playing Incidence, is that high degree vertices are interesting to play first, as they enable to score many points with 
7
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their multiple adjacent edges. Therefore, a simple strategy for both players would be to play greedily by always picking an 
available vertex of highest degree. We here prove that this strategy is optimal.

Later in Section 5, we will prove that Maker-Breaker Incidence is PSPACE-complete, which induces that Maker-Maker 
Scoring Positional Game is PSPACE-complete on 3-uniform hypergraphs.

Theorem 11. Let G be a graph with n vertices. Let d1 ≥ ... ≥ dn be the degree of the vertices in decreasing order. For the game Maker-

Maker Incidence played on G, we have

Ls(G) = 1

2

(∑
i odd

di −
∑

i even

di

)
.

In particular, the score can be computed in linear time.

Proof. Let G = (V , E) be a graph. Denote by v1, . . . , vn the vertices of G of degree d1, . . . , dn respectively, and arranged 
such that d1 ≥ d2 ≥ · · · ≥ dn . Denote by s = 1

2 (
∑

i odd
di − ∑

i even
di). We will prove that Ls(G) = s. Before proving the value of the 

score, we prove the following claim:

Claim. Denote by V L the vertices claimed by Left, and by V R the vertices claimed by Right at the end of a game played on 
G . The score obtained is 1

2 (
∑

vl∈V L

dl − ∑
vr∈V R

dr).

Proof. Denote by eL (resp. eR ) the number of edges where both endpoints were claimed by Left (resp. Right) and by e0 the 
number of edges which have one extremity claimed by each player.

By definition, the score is eL − eR . Now, by a double counting argument, we have 
∑

vl∈V L

dl = 2eL + e0, and 
∑

vr∈V R

dr =
2eR + e0. Therefore, the score of the game is eL − eR = 1

2 (
∑

v f ∈V L

dl − ∑
vr∈V R

dr). �

Now we provide a strategy for Left that proves that Ls(G) ≥ s. The same argument works for Right and leads to Ls(G) ≤ s. 
Consider that Left claims at each turn the free vertex of highest degree. During her first turn, she claims a vertex of degree 
d1, during the second turn, she claims either a vertex of degree d2 or d3, both having a value of at least d3, . . . , during here 
k-th turn, she will claim a vertex of degree dk, dk+1, . . . or d2k−1, each of them have a value of at least d2k−1. In the end, 
she will have played 

⌈ n
2

⌉
vertices, and the k-th of them will be of degree at least d2k−1. Reciprocally, the highest degree 

played by Right has value at most d2, the second highest has value at most d4 and so on. Therefore, by using the result of 
the claim, the score obtained by this strategy is at least s.

The above score can be computed in linear time because it does not require to sort the list of the vertices, but only to 
know the number of vertices of any degree, which is bounded by n − 1. �
Corollary 12. Let n ∈N . Denote by Pn the path of order n. In Maker-Maker Incidence, we have Ls(Pn) = −Rs(Pn) = 0 if n is even 
and Ls(Pn) = −Rs(Pn) = 1 if n is odd.

Proof. Pn has exactly n − 2 vertices of degree 2 and two vertices of degree 1. Therefore, if n is even, an optimal strategy 
gives n

2 − 1 vertices of degree two and one vertex of degree one to each player, which provides a draw. If n is odd, Left has 
one more vertex of degree 2 to play, and her score is then 1. �
Corollary 13. Let G be a graph of maximal degree �. In Maker-Maker Incidence, we have Ls(G) ≤ �

2 .

Proof. Let G be a graph of maximal degree �. Up to adding an isolated vertex, suppose it has an even number of vertices. 

Denote by d1, d2, . . . , d2n its degrees written in decreasing order. We have Ls(G) = 1
2

n∑
i=1

(d2i−1 − d2i) = �
2 −

n∑
i=1

(d2i − d2i+1), 

by setting d2n+1 = 0. For any 1 ≤ i ≤ n, we have d2i ≥ d2i+1. Hence, each term of the sum is nonnegative, and finally, we 
have Ls(G) ≤ �

2 . �
4. General results on MAKER-BREAKER INCIDENCE

In the rest of the paper, we focus on the Maker-Breaker version of Incidence. Contrary to the Maker-Maker version of 
this game, a greedy strategy is not always optimal. Thus, studying this game is much more challenging. In this section, 
we give some general results on this version. We start with a direct application of the bound given for general scoring 
positional games in Theorem 10.
8
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Corollary 14. Let G be a graph with n vertices and m edges. In the Maker-Breaker Incidence game, Ls(G) ≥ m
4 − n

8 , and Rs(G) ≤ m
4 .

These bounds are tight.

Proof. This is a direct application of Theorem 10. Since the hypergraph is 2-uniform and simple, for each pair of vertices, 
there is at most one edge containing the two vertices. Thus we have �(G) = 1. Furthermore, each edge has size 2, thus ∑
e∈G

2−|e| = m
4 .

For tightness, consider first a graph G that is a complete graph of order 8k, with k ∈N . The lower bound gives Ls(G) ≥(8k
2

)
4

− k = (4k
2

)
. By playing randomly, Left takes 4k vertices and each pair of vertices scores one point. Thus Ls(G) = (4k

2

)
Consider the graph H made by a disjoint union of 2k paths on three vertices. Left playing second can take k central 

vertices and one leaf for each central vertex he has taken. This strategy gives at most k points to Left which is equal to the 
upper bound m

4 given in the statement. �
While playing Incidence, some moves are equivalent: playing one or the other will not change the final score. This is 

in particular the case when two vertices have the same neighborhood (up to the vertices already played). An interesting 
fact in this case is that, in Maker-Breaker convention, we can assume that each player will take exactly one of the two 
vertices. More formally, let G = (V , E) be a graph and P = (G, V L, V R) some position of the game on G . Let v1, v2 be two 
free vertices. Vertices v1, v2 are said to be equivalent in P if and only if we have N(v1) ∩ V F \ {v2} = N(v2) ∩ V F \ {v1} and 
|N(v1) ∩ V L | = |N(v2) ∩ V L |. Note that the first equality is a set equality, while the second one only is on cardinals.

Lemma 15. Let G = (V , E) be a graph and let P = (G, V L, V R) be a position of the game. Let v1, v2 be equivalent vertices in P . In
Maker-Breaker Incidence, we have Ls(P ) = Ls(G, V L ∪ {v1}, V R ∪ {v2}) and Rs(P ) = Rs(G, V L ∪ {v1}, V R ∪ {v2}).

Proof. We prove both results by induction on |V F | = |V \ (V L ∪ V R)|, the number of free vertices. The result is clear if 
there are only two free vertices v1 and v2 as each player will claim one of them, and they will have the same number of 
neighbors in V L at the end. Let P = (G, V L, V R) be a position with |V F | ≥ 3, and let v1, v2 ∈ V F be equivalent vertices in P .

We first prove that Ls(P ) = Ls(G, V L ∪ {v1}, V R ∪ {v2}). Let x be an optimal move for Left in P . If x ∈ {v1, v2}, we 
have Ls(P ) = Rs(G, V L ∪ {v1}, V R). Indeed, exchanging the roles of v1 and v2 is possible since they will score exactly the 
same number of points at the end. Using the recursive definition of the scores we have, Rs(G, V L ∪ {v1}, V R) ≤ Ls(G, V L ∪
{v1}, V R ∪ {v2}). Otherwise, we have Ls(P ) = Rs(G, V L ∪ {x}, V R). Vertices v1 and v2 are still equivalent in (G, V L ∪ {x}, V R). 
By induction, Rs(G, V L ∪ {x}, V R) = Rs(G, V L ∪ {v1, x}, V R ∪ {v2}). According to the recursive definition of the score, 
Ls(G, V L ∪ {v1}, V R ∪ {v2}) ≥ Rs(G, V L ∪ {v1, x}, V R ∪ {v2}). Finally, in both cases, Ls(P ) ≤ Ls(G, V L ∪ {v1}, V R ∪ {v2}).

We now prove the other inequality. Let x be an optimal move for Left in (G, V L ∪ {v1}, V R ∪ {v2}). We have Ls(G, V L ∪
{v1}, V R ∪ {v2}) = Rs(G, V L ∪ {v1, x}, V R ∪ {v2}). By induction, since v1 and v2 are still equivalent in (G, V L ∪ {x}, V R), we 
have Rs(G, V L ∪ {v1, x}, V R ∪ {v2}) = Rs(G, V L ∪ {x}, V R). Using the recursive definition of the score, Ls(P ) ≥ Rs(G, V L ∪
{x}, V R), which leads to Ls(P ) ≥ Ls(G, V L ∪ {v1}, V R ∪ {v2}). Finally, we have proved Ls(P ) = Ls(G, V L ∪ {v1}, V R ∪ {v2}).

We now turn to the proof of Rs(P ) = Rs(G, V L ∪ {v1}, V R ∪ {v2}). Let x be an optimal move for Right in P . If x ∈
{v1, v2}, we have Rs(P ) = Ls(G, V L, V R ∪ {v2}). Indeed, exchanging the roles of v1 and v2 is possible since they will score 
exactly the same number of points at the end. Using the recursive definition of the scores, we have Ls(G, V L , V R ∪ {v2}) ≥
Rs(G, V L ∪ {v1}, V R ∪ {v2}). Otherwise, we have Rs(P ) = Ls(G, V L, V R ∪ {x}). Vertices v1 and v2 are still equivalent in 
(G, V L, V R ∪{x}). By induction, Ls(G, V L, V R ∪{x}) = Ls(G, V L ∪{v1}, V R ∪{v2, x}). According to the recursive definition of the 
score, Rs(G, V L ∪ {v1}, V R ∪ {v2}) ≤ Ls(G, V L ∪ {v1}, V R ∪ {v2, x}). Finally, in both cases, Rs(P ) ≥ Rs(G, V L ∪ {v1}, V R ∪ {v2}).

We now prove the other inequality. Let x be an optimal move for Right in (G, V L ∪ {v1}, V R ∪ {v2}). We have Rs(G, V L ∪
{v1}, V R ∪{v2}) = Ls(G, V L ∪{v1}, V R ∪{v2, x}). By induction, since v1 and v2 are still equivalent in (G, V L, V R ∪{x}), we have 
Ls(G, V L ∪ {v1}, V R ∪ {v2, x}) = Ls(G, V L, V R ∪ {x}). Using the recursive definition of the score, Rs(P ) ≤ Ls(G, V L, V R ∪ {x}), 
which leads to Rs(P ) ≤ Rs(G, V L ∪ {v1}, V R ∪ {v2}).

Finally, we have proved Rs(P ) = Rs(G, V L ∪ {v1}, V R ∪ {v2}). �
Note that, this result is only true for equivalent vertices. In general, a good move for Left is not necessarily a good move 

for Right. For instance, in Fig. 3, if Left starts by playing u, the score is 4, and if she starts by playing any other vertex, the 
score is at most 3, thus her only optimal move is u. If Right starts by playing v , the score is 2, but if he starts by playing 
any other vertex, the score is at least 3. Hence, his only optimal move is v .

Lemma 15 is actually very useful to deal with similar vertices. We illustrate its power by computing the score for 
complete binary trees. A complete binary tree of depth k is a rooted tree such that each vertex at depth j < k has exactly 
two children (and by definition of the depth, each vertex at depth k is a leaf).

Corollary 16. Let Tk be a complete binary tree of depth k ≥ 1. The scores in Maker-Breaker Incidence are Ls(Tk) = 2k−1 and Rs(Tk) =
2k−1 − 1.
9
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u v

Fig. 3. A graph G for which Ls(G) = 4 with unique optimal move u and Rs(G) = 2 with unique optimal move v .

Proof. Let Tk be a complete binary tree of depth k. Its leaves are pairwise equivalent. By Lemma 15, we can assume that 
for any two leaves connected to a same vertex, one leaf can be given to Right, and the second one to Left. Then, the parents 
of the leaves have only one unclaimed neighbor and one neighbor claimed by Left. Therefore, any two parents of leaves 
with the same unclaimed neighbor have the same type. Thus, we can again apply Lemma 15 and assign one vertex of each 
pair to each player. By iterating this process from the leaves to the root, for any pair of vertices having the same parent, 
Maker and Breaker both get one of them. The game is then equivalent to the game where only the root is unclaimed, and 
thus the first player claims it. Finally, the number of edges taken by Maker satisfies Ls(Tk) = Ls(Tk−1) + Rs(Tk−1) + 1 (when 
Maker starts), and Rs(Tk) = Ls(Tk−1) + Rs(Tk−1) (when Breaker starts). Since Ls(T0) = Rs(T0) = 0, we get the result by 
induction. �
5. Complexity of MAKER-BREAKER INCIDENCE

In this section, we first prove that Maker-Breaker Incidence is PSPACE-complete. Then, we consider the parameter-
ized complexity of Maker-Breaker Incidence and prove that it is fixed parameter tractable when parameterized by the 
neighborhood diversity.

5.1. Maker-Breaker Incidence is PSPACE-complete

Reductions in (positional games) are often made from POS CNF (see for example [26,24,27,29]). In our cases, we need to 
deal with scores and not only a structure. To handle this problem, we use a quantified version of Max-2-SAT that we proved 
to be PSPACE-complete using 3-QBF.

Q-Max-2-SAT

Instance: A quantified boolean formula on the form ϕ = Q 1x1, . . . , Q nxn, ψ(x1, x2, ...xn), with Q i ∈ {∀, ∃} and ψ a 2-CNF 
formula on x1, ..., xn , an integer k
Output: True if at least k clauses of the formula are satisfied. False otherwise.

3-QBF

Instance: A quantified boolean formula � = Q 1x1, . . . , Q nxn, ψ(x1, x2, ...xn), with Q i ∈ {∀, ∃} and ψ a 3-CNF formula on 
x1, ..., xn

Output: True iff � is true.

Theorem 17. Q-Max-2-SAT is PSPACE-complete.

Proof. The proof of PSPACE-completeness of Q-Max-2-SAT is similar to the proof of NP-completeness of Max-2-SAT from 
Papadimitriou [22].

First, Q-Max-2-SAT is in PSPACE, as any valuation can be computed in polynomial space. Therefore, by a min-max 
argument, it is possible to compute the number of satisfied clauses in polynomial space.

We provide a reduction from 3-QBF. Let φ = Q 1x1, . . . , Q nxn ψ(x1, x2, ...xn) be a 3-QBF formula on m clauses. For each 
clause ci = li

1 ∨ li
2 ∨ li

3 of ψ , we introduce a new variable di and construct a set Ci of 10 clauses C1
i , . . . , C10

i of at most 2:

Ci = {(l1), (l2), (l3), (di), (¬l1 ∨ ¬l2), (¬l1 ∨ ¬l3), (¬l2 ∨ ¬l3), (¬d1 ∨ l1), (¬d1 ∨ l2), (¬d1 ∨ l3)}

Claim. Given any valuation of the literals li ’s, if ci is satisfied, then there exists a valuation of di such that exactly seven 
clauses in Ci are satisfied. Otherwise, at most six clauses of Ci are satisfied for any valuation of di .

Proof. The proof of the claim is a case analysis depending on the number of literals li that are true in ci (since the literals 
play a symmetric role). The following tabular gives the number NC of clauses in Ci that are satisfied depending on the 
number NL of literals li that are true and the valuation of di .
10
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NL 0 0 1 1 2 2 3 3
di F T F T F T F T
NC 6 4 7 6 7 7 6 7

�

Let ϕ = Q 1x1, . . . , Q nxn, ∃d1, . . . , ∃dn, 
m∧

i=1

10∧
j=1

C j
i and let k = 7m.

If φ is true, then, for any valuation obtained by the Q i ’s that makes ψ true, there exists a valuation for each d j such 
that there are exactly seven clauses satisfied in each set C j . Thus, by taking this valuation for each d j , we have that k = 7m
clauses satisfied in ϕ .

Reciprocally, if φ is false, then for any valuation provided by the Q i s, there exists a clause C j that is not satisfied. 
Therefore, at most six clauses in C j are satisfied. For the other clauses, at most seven of them are satisfied. Thus the total 
number of satisfied clauses in ϕ is at most 7m − 1 = k − 1.

Finally, the formula ϕ of Q-Max-2-SAT has at least 7m clauses satisfied if and only if φ is True.
Up to adding a variable in all the clauses of size 1 and quantifying it with a ∀, we can suppose that all the clauses of ϕ

have size 2. �
We now turn to the main proof of this section - that is the proof of the complexity of Maker-Breaker Incidence.

Maker-Breaker Incidence

Instance: A graph G , an integer k, a player P ∈ {Left, Right}.
Output: True iff the P score of G is at least k.

Theorem 18. Maker-Breaker Incidence is PSPACE-complete.

The construction provided in the proof will require some tools to order the moves of both player. Let P = (G, V L, V R)

be a game position of Incidence. Let u and v be free vertices. We say that v dominates u in P and write v ≥P u if in 
any position obtained from P , it is always more interesting to play v than u. More formally, v ≥P u if for any V ′

L, V
′
R

such that V L ⊂ V ′
L and V R ⊂ V ′

R , V ′
L ∩ V ′

R = ∅ and u, v /∈ V ′
L ∪ V ′

R , we have Rs(G, V ′
L ∪ {u}, V ′

R) ≥ Rs(G, V ′
L ∪ {v}, V ′

R) and 
Ls(G, V ′

L ∪ {u}, V ′
R) ≤ Ls(G, V ′

L ∪ {v}, V ′
R).

Lemma 19. Let G = (V , E) be a graph and P = (G, V L, V R) a position of Maker-Breaker Incidence. Let u, v be two free vertices 
such that |N(v) ∩ V L | ≥ |N(u) ∩ V L | + |N(u) \ N(v) ∩ V F |. Then v ≥P u.

Proof. Let S be a strategy in (G, V L, V R) that plays u before v . We define a strategy S ′ that plays v before u as follows:

• While S wants to claim a vertex w �= u, claim w .
• If S wants to claim u while v is unclaimed, claim v instead, and still consider that u is claimed in S .
• When S wants to claim v , if it is already claimed, claim u instead. If the opponent has claimed u, consider that he has 

claimed v , and continue to follow S .

Following this strategy, according to the moves of the opponent, all the vertices claimed by S are claimed by S ′ , with 
only a difference on u and v if they are not claimed by the same player.

If S was a strategy for Left, by following S ′ , each edge that does not contain u nor v that was claimed by S is claimed 
by S ′ , and reciprocally. Concerning the edges containing u or v , Left has scored at most |N(u) ∩ V L | + |N(u) ∩ V F | points on 
them with S and |N(v) ∩ V L | + |N(v) ∩ V F | by following S ′ . Therefore, as |N(v) ∩ V L | ≥ |N(u) ∩ V L | + |N(u) \ N(v) ∩ V F |, 
Left has score at least the same number of edges following S ′ .

The same argument shows that Right will have more edges with a vertex claimed by him by playing v instead of u. �
Proof of Theorem 18. First, Maker-Breaker Incidence is in PSPACE as the game last at most |V | moves and the score is at 
most |E|. Thus, it can be computed in polynomial space, according to Section 6.1 in [14].

We prove that Maker-Breaker Incidence is PSPACE-complete by a reduction from Q-Max-2-SAT. In this proof, we con-
sider a quantified formula as a two-player game. We first assume that the formula has the form ∃x2n∀x2n−1∃x2n−2, . . .∀x1 ψ , 
i.e. that the quantifiers ∃, ∀ are alternating and starting with a quantifier ∃. This can be done for any quantified formulas 
by adding some vertices with the desired quantifier that are put in no clause, and thus that does not change the num-
ber of clauses that are satisfied. The first player, Satisfier, tries to satisfy the formula by choosing the values of the even 
variables x2k (i.e. that are quantified by an ∃-quantifier) while the second player, Falsifier, tries to spoil the formula and 
turn it to False by choosing the values of the odd variables x2k−1 (i.e. that are quantified by a ∀-quantifier). This classical 
technique to transform a quantified formula into a game has been used for instance by Rahman and Watson [25] to show 
the PSPACE-completeness of Maker-Breaker positional games.
11
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v4variable x4

positive

v4

negative

ṽ4

v3variable x3 v3 ṽ3

v2variable x2 v2 ṽ2

v1variable x1 v1 ṽ1

Fig. 4. Reduction of ∃x4∀x3∃x2∀x1(¬x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (¬x3 ∨ ¬x4).

Denote ψ =
m∧

j=1
(l j

1 ∨ l j
2) for l j

1, l j
2 some literals. We build a graph G = (V , E) as follows (see Fig. 4):

• For each variable xi , we create 6mi + 3 vertices. These vertices induce three stars of center vi , vi and ṽ i , and with 2mi
leaves each. We will denote by V i the set {vi, vi, ̃vi}.

• We consider a function f defined by f (xi) = vi and f (¬xi) = vi . For each clause C j = l j
1 ∨ l j

2, we add an edge e j =
( f (l j

1), f (l
j
2)).

The number of vertices outside sets V i (i.e. the number of leaves) is N = ∑2n
i=1 6mi = 6mn(2n +1). Thus the total number 

of vertices in G is N + 6n and the total number of edges is N + m, which is polynomial in the size of ϕ . An example of 
reduction is provided in Fig. 4 with m = 3 and n = 2.

Consider a game of Maker-Breaker Incidence on G with Right starting. Using Lemma 15, for every 1 ≤ i ≤ 2n, the leaves 
connected to vertices vi , vi and ṽ i respectively, are equivalent. Thus, half of them can be given to Left and the other half to 
Right. Since there are an even number of leaves for each star, the only free vertices after this operation are the 6n vertices 
in sets V i for 1 ≤ i ≤ n. Let P 0 = (G, V 0

L , V 0
R) be this position, and denote by V 0

F the set of free vertices in this position. By 
Lemma 15, we have Rs(G) = Rs(P0).

Now, if 1 ≤ j < i ≤ 2n, for any v∗
i ∈ V i and v∗

j ∈ V j , we have |N(v∗
i ) ∩ V 0

L | = mi, |N(v∗
j ) ∩ V 0

L | = mj and |N(v∗
j ) ∩ V 0

F | ≤ m. 
Therefore, by Lemma 19 we have v∗

i ≥P0 v∗
j . Moreover, as N(ṽ i) ∩ V 0

F = ∅, we also have vi ≥P0 ṽ i and vi ≥P0 ṽ i .
Hence, in any optimal strategy in P0 with Right starting, the vertices are played in n rounds, from round � = n to � = 1, 

with the following six steps in each round:

1. One vertex chosen by Right among {v2�, v2�}
2. The other vertex among {v2�, v2�} is taken by Left.
3. The vertex ṽ2� is taken by Right.
12
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4. One vertex among {v2�−1, v2�−1} is taken by Left.
5. The second vertex in {v2�−1, v2�−1} is taken by Right.
6. The vertex ṽ2�−1 is taken by Left.

This way, Left will obtain exactly N ′ = ∑n
�=1(2�m + 2(2� − 1)m) = 3mn(n + 1) − 2mn edges in the stars and maybe some 

other edges in the clause edges. Let k′ = N ′ + m − k + 1.
We will prove that Rs(G) ≥ k′ at Maker-Breaker Incidence if and only if Falsifier wins at Q-Max-2-SAT on (ϕ, k).

Claim. If Satisfier has a strategy to satisfy k clauses in ϕ , then Rs(G) < k′ .

Proof. We suppose that Satisfier has a winning strategy S in (ϕ, k). We consider that both Right and Left play optimally in 
G and thus we can assume that the game is played in P0 and respects the previous order.

Consider the following strategy for Right. At each round � from � = n to � = 1, Right takes a decision only at Step 1. If 
Satisfier would turn x2i to True in the game played on ϕ , then Right plays v2i , otherwise, he plays v2i . Then, Steps 2 and 
3 are determined. At Step 4, if Left plays v2i−1 then Right considers that Falsifier has turned x2i−1 to False, otherwise he 
considers she has turned it to True. Then again, Steps 5 and 6 are determined. By following this strategy, the underlying 
value obtained for ϕ is exactly the value that Satisfier would obtain by playing according to S . Thus, at least k clauses are 
satisfied in ϕ .

Note that for a literal l j , the vertex f (l j) is taken by Right if and only if l j is True in the game of Q-Max-2-SAT. Let 
C j = l j

1 ∨ l j
2 be a clause. If Left has claimed the two extremities of e j , it means that Left has played f (l j

1) and f (l j
2). 

Therefore, the underlying values of l j
1 and of l j

2 are both False, and C j is not satisfied in ψ . Hence, Left claims at most m − k
edges e j . Finally, Left claimed at most k′ − 1 edges and we have Rs(G) < k′ . �

Claim. If Falsifier has a strategy such that at most k − 1 clauses are satisfied in φ, then Rs(G) ≥ k′ .

Proof We now suppose that Falsifier has a winning strategy S in (ϕ, k). We consider that both Right and Left play optimally 
in G and thus we can assume that the game is played in P0 and respects the previous order. Consider the following strategy 
for Left. At each round � from � = n to � = 1, Left takes a decision only at Step 4. At Step 1, if Right plays v2� then Left 
considers that Satisfier has turned x2� to True, otherwise she considers he has turned it to False. Then, Steps 2 and 3 are 
determined. At Step 4, if Falsifier would turn x2i−1 to False in the game played on ϕ , then Left plays v2i−1, otherwise, she 
plays v2i−1. Then again, Steps 5 and 6 are determined.

By following this strategy, the underlying value obtained for ϕ is exactly the value that Falsifier would obtain by playing 
according to S . Thus, it would satisfy at most k − 1 clauses in ϕ . As before, if a clause l j

1 ∨ l j
2 is not satisfied in ϕ it means 

that both vertices f (l j
1) and f (l j

2) are taken by Left and thus Left got the edge. Thus Left claims at least N ′ + m − k + 1
edges in the game G and Rs(G) ≥ k′ . � �
Remark 20. Note that, up to adding a useless variable in ϕ , ϕ could start by a ∀-quantifier, implying that Maker-Breaker 
Incidence is PSPACE-complete even if Left starts.

Corollary 21. 3-uniform Maker-Maker Scoring Positional Game is PSPACE-complete.

Proof. The proof is similar to the second part of the proof of Corollary 6. From a graph G = (V , E) of Maker-Breaker 
Incidence, we consider the instance of 3-uniform Maker-Maker Scoring Positional Game obtained by adding a universal 
vertex v0. Consider the hypergraph H = (V ∪ {v0}, {e ∪ {v0}|e ∈ E}). When Left starts, any optimal strategy starts by playing 
v0, otherwise Right plays it and the score will be at most 0. Then we are left to a Maker-Breaker position as Right cannot 
score any point, but starts. Finally the Left score of H in Maker-Maker convention is equal to the Right score of G in 
Maker-Breaker convention, which is PSPACE-complete to compute. �
5.2. Complexity parameterized by the neighborhood diversity

Neighborhood diversity is a graph parameter introduced by Lampis [18] to generalize FPT algorithms parameterized 
by vertex cover to larger classes of graphs. Let G be a graph. We say that two vertices u and v have the same type if 
N(v) \ {u} = N(u) \ {v}. The graph G has neighborhood diversity at most w if there exists a partition of V into at most w
sets such that the vertices in each set have all the same type. Note that each set must induce a clique or an independent 
set. Furthermore, if a graph has bounded vertex cover, then it has bounded neighborhood diversity.

A decision problem has a kernel for a parameter w , if for any parameterized instance (P , w) of the problem, there exists 
an instance (P ′, w ′) and a computable function f , such that P reduces to P ′ in polynomial time in (|P |, w) and such 
that |P ′|, |w ′| ≤ f (w). If f (w) = O (w3), the kernel is said to be cubic. If f (w) = O (w log(w)), the kernel is said to be 
quasilinear. Having a kernel implies that the problem is fixed-parameter tractable for this parameter.
13
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Theorem 22. Maker-Breaker Incidence parameterized by the neighborhood diversity w has a cubic kernel.

Proof. In this proof, we will consider as instances of Maker-Breaker Incidence triplets (P , k, Lef t) where P is a position of
Maker-Breaker Incidence played on G (i.e. some vertices are already played). Note that this does not change the complexity 
of the problem. Indeed, from any position P = (G, V L, V R) one can obtain a graph G ′ with no vertices played for which the 
games are equivalent. First remove all the vertices in V R of the graph. Then, duplicate each vertex in V L by creating a twin 
vertex having the same neighborhood and free the vertices in V L . By Lemma 15, one can assume that both players will take 
one vertex in each pair of twins.

Let G = (V , E) be a graph of neighborhood diversity w . Consider a partition (V 1, . . . , V w) of V such that the vertices 
in each part are all of the same type. We provide the following kernelization algorithm. Let I = ((G, ∅, ∅), k, P ) where 
P ∈ {Lef t, Right} be an instance of Maker-Breaker Incidence. An example of the different steps is provided in Fig. 5.

Step 1: While there exists a part V i , 1 ≤ i ≤ w such that there are at least two free vertices u, v ∈ V i , add u to V L and v
to V R . By Lemma 15, this transformation does not change the outcome of the game. At the end of Step 1, there are at most 
w free vertices in G . In Fig. 5(b), it consists in distributing vertices of same type between Left and Right.

Step 2: Remove all the edges included in V L and set k ← k − |e ⊂ V L |. Then remove from G all the vertices in V R that 
cannot count for any point. This transformation does not change the outcome of I . At this moment, G only contains free 
vertices or vertices claimed by Left, and any edge has at least one free extremity. In Fig. 5(c), it consists in removing the 16
edges on which the two endpoints are claimed by Left, and to remove the red vertices and their incident edges. Therefore, 
k is decreased from 30 to 14.

Step 3: Let r the number of free vertices in P , we have r ≤ w . Let v1, . . . , vr be these vertices. For 1 ≤ i ≤ r, let pi =
|N(vi) ∩ V L | and order the vertices such that p1 ≥ p2 ≥ · · · ≥ pr . While there exists an integer i such that pi > pi+1 + r
(with pr+1 = 0), by Lemma 19, there exists an optimal strategy in which the vertices v1, . . . , vi are played before the 
vertices vi+1, . . . , vr . On these vertices, Left will score at least pi at each Left move. Therefore, we can do the following 
transformation. Let s = pi − pi+1 − r for any 1 ≤ j ≤ i, set p j ← p j − s and set k ← k − s 

⌈
i
2

⌉
. Repeat Step 3 until we have 

pi ≤ pi+1 + r for all 1 ≤ i ≤ r. In particular, we have after these operations p1 ≤ r2. In Fig. 5(d), it happens only once, as 
p1 = 8, p2 = 3 and w ′ = 4. Therefore, we set p1 = 7 and k is decreased from 14 to 13.

Step 4: Let U = {u1, . . . , up1 } be p1 new vertices and transform (G, V L, ∅) into ((G \ V L) ∪ U , U , ∅), and, for 1 ≤ i ≤ r, 
connect the vertex vi to any pi vertices in U . This transformation does not change the outcome of the game, since only the 
number of neighbors in V L matters when a vertex is played. In Fig. 5(e), we have p1 = 7. Thus, U contains seven vertices 
and each remaining uncolored vertex vi is connected to pi of these seven vertices.

Finally, if k ≥ r3, as there are at most r3 edges in the final graph, we can just transform P into a trivial False instance 
like the empty graph with k = 1. Thus, we can assume that k ≤ r3.

The instance obtained has p1 + r ≤ r2 + r ≤ w2 + w vertices, at most r ∗ p1 ≤ r3 ≤ w3 edges, k ≤ r3 ≤ w3 and the 
same outcome as the input. Finally, this new instance has cubic size in w and thus Maker-Breaker Incidence has a cubic 
kernel. �
Corollary 23. Let G be a graph of order n and neighborhood diversity w. In Maker-Breaker Incidence Ls(G) and Rs(G) can be 
computed in time O (w2 w! + n2)

Proof. We can compute the kernel in time n2, and then try all the possible games by testing all the moves in time 
w2 w!. �

Note that the cubic size of the kernel is mostly due to the w2 vertices that are already claimed by Left. As these vertices 
cannot be played any longer, by giving weight to the vertices, it is possible to have a quasilinear kernel by storing only the 
number of neighbors of each vertex that are already claimed by Left instead of vertices themselves.

6. Paths and cycles

We here give the exact values of the score for Maker-Breaker Incidence played on paths and cycles. For that purpose, 
we will consider the equivalence properties of Milnor’s universe detailed in Section 2. In particular, the notion of negative 
will be required, implying to consider the partisan version of Incidence. More precisely, in this section, instances of Maker-

Breaker Incidence will correspond to paths or cycles where the edges are either colored all blue (i.e. only Left can get 
points) or all red (i.e. only Right can get points). The notations are defined as follows:

• P L
n : path of order n where all the edges are colored blue. We denote the vertices of P L

n by {v0, . . . , vn−1}
• P R

n : path of order n where all the edges are colored red. We denote the vertices of P R
n by {v ′

0, . . . , v
′
n−1}

By definition, we have that P L
n = −P R

n .
14
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(a) A graph to kernelize. Set k = 30. (b) Step 1, k = 30.

p1 = 8 p2 = 3

p4 = 2 p3 = 3

(c) Step 2, 16 edges removed, k = 30 − 16 = 14

p1 = 7 p2 = 3

p4 = 2 p3 = 3

(d) Step 3, p1 has decreased by 1. k = 13.

(e) Step 4, each vertex vi has pi blue neighbors.

Fig. 5. Example of a kernelization. Vertices in the same circle have same type. An edge between two circles means that all the edges between the vertices 
of the two circles are in the graph. Blue and red vertices are given to Left and Right respectively. We start with n = 22 and after Step 1 r = 4.

6.1. Equivalences of paths

We first give the main result about the equivalence between paths modulo 5. To present it, we introduce a usual notation 
in scoring game theory: for k ∈Z, we define by k the game with no option and where Left has a score of k points. Thus, in
Maker-Breaker Incidence, the game 1 is equivalent to P L

2 in which Left has claimed the two vertices and −1 is equivalent 
to P R

2 in which Right has claimed the two vertices. Note that for any game G and any integer k, we have G ≡ k if and only if 
Ls(G) = Rs(G) = k. The main theorem of this section states that paths of order at least 6 are equivalent to paths having five 
vertices less, with a difference of one in the score. This result remains true if an extremity of the path is already colored.

Theorem 24. Let n ≥ 1 be an integer. We have P L
n+5 ≡ P L

n + 1 and P R
n+5 ≡ P R

n − 1.

Let n ≥ 2 be an integer. We have (P L
n+5, {v0}, ∅) ≡ (P L

n, {v0}, ∅) + 1 and (P R
n+5, ∅, {v ′

0}) ≡ (P R
n , ∅, {v ′

0}) − 1.

The rest of this subsection will be dedicated to the proof of this theorem.

6.1.1. Strategy for Left when Right starts

Lemma 25. Let n ≥ 1 be an integer. In Maker-Breaker Incidence, we have Rs(P L
n+5 + P R

n ) ≥ 1.

Let n ≥ 2 be an integer. In Maker-Breaker Incidence, we have Rs(P L
n+5 + P R

n , {v0}, {v ′
0}) ≥ 1.

This proof will be done by induction. Therefore, to handle the small cases, the scores of first paths will be required. They 
are recorded in Fig. 6 and Fig. 7 and can be easily checked by hand.
15
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n 1 2 3 4 5 6 7 8 9 10

Ls(P L
n ) 0 0 1 1 1 1 1 2 2 2

Rs(P L
n ) 0 0 0 0 0 1 1 1 1 1

Fig. 6. First scores in short paths.

n 1 2 3 4 5 6 7 8 9 10 11

Ls((P L
n , {v0},∅)) 0 1 1 1 1 2 2 2 2 2 3

Rs((P L
n , {v0},∅)) 0 0 0 0 1 1 1 1 1 2 2

Fig. 7. First scores in short paths with an extremity claimed by Left.

Proof. In order to prove that Rs(P L
n+5 + P R

n ) ≥ 1 (Rs(P L
n+5 + P R

n , {v0}, {v ′
0}) ≥ 1 resp.), we provide a strategy for Left by 

induction. If 1 ≤ n ≤ 5 (2 ≤ n ≤ 6 resp.), a computation can verify that the result is true.
If n ≥ 6 (n ≥ 7 resp.), we consider the first move of Right:

• If Right plays a vertex v ′
i for 0 ≤ i ≤ n − 1 (1 ≤ i ≤ n − 1 resp.), Left answers by playing the vertex vi . The 

resulting position is (P L
n+5 + P R

n , {vi}, {v ′
i}) ((P L

n+5 + P R
n , {v0, vi}, {v ′

0, v
′
i}) resp.), which is equivalent to (P L

i+1 +
P R

i+1, {vi}, {v ′
i}) + (P L

n+5−i + P R
n−i, {v0}, {v ′

0}) ((P L
i+1 + P R

i+1, {v0, vi}, {v ′
0, v

′
i}) + (P L

n+5−i + P R
n−i, {v0}, {v ′

0}) resp.). As we 
have (P L

i+1 + P R
i+1, {vi}, {v ′

i}) ≡ 0 ((P L
i+1 + P R

i+1, {v0, vi}, {v ′
0, v

′
i}) ≡ 0 resp.) and (P L

n+5−i + P R
n−i, {v0}, {v ′

0}) satisfies the 
induction hypothesis, and therefore the score is at least one.

• If Right plays a vertex vi for 0 ≤ i ≤ n − 1 (1 ≤ i ≤ n − 1 resp.), Left answers by playing the vertex v ′
i . The resulting 

position is (P L
n+5 + P R

n , {v ′
i}, {vi}) ((P L

n+5 + P R
n , {v0, v ′

i}, {v ′
0, vi}) resp.), which is equivalent to (P L

i + P R
i ) + (P L

n+5−(i+1)
+

P R
n−(i+1)

) ((P L
i + P R

i , {v0}, {v ′
0}) + (P L

n+5−(i+1)
+ P R

n−(i+1)
) resp.). As we have (P L

i + P R
i ) ≡ 0 ((P L

i + P R
i , {v0}, {v ′

0}) ≡ 0

resp.) and (P L
n+5−(i+1)

+ P R
n−(i+1)

) satisfies the induction hypothesis, the score is at least one.
• If Right plays a vertex vi for n ≤ i ≤ n + 4. Left answers by playing v ′

i−5, which exists as n ≥ 6 (n ≥ 7 resp.). The 
resulting position is (P L

n+5 + P R
n , {v ′

i−5}, {vi}) ((P L
n+5 + P R

n , {v0, v ′
i−5}, {v ′

0, vi}) resp.), which is equivalent to (P L
i + P R

i−5) +
(P L

n−1−i + P R
n−1−i) ((P L

i + P R
i−5, {v0}, {v ′

0}) + (P L
n−1−i + P R

n−1−i). Here, we have (P L
n−1−i + P R

n−1−i) ≡ 0 and (P L
i + P R

i−5)

((P L
i + P R

i−5, {v0}, {v ′
0}) resp.) satisfies the induction hypothesis as n + 4 ≥ i ≥ n ≥ 6 (i ≥ n ≥ 7 resp.) and therefore the 

score is at least one.

This strategy ensures that Rs(P L
n+5 + P R

n ) ≥ 1 (Rs(P L
n+5 + P R

n , {v0}, {v ′
0}) ≥ 1 resp.). �

6.1.2. Strategy for Right when Left starts
When Left starts, the induction made in the previous proof cannot be applied. Indeed, from the position (P L

n+5 +
P R

n , {v0}, {v ′
0}), Left can in one move make the position be (P L

n+5 + P R
n , {v0, vn+3}, {v ′

0}) and no move of right can transform 
it into a position handled by the induction hypothesis. Therefore, another strategy is required. We will consider a strategy 
for Right that consists, for the leftmost vertices of both paths, in mimicking any move of Left on the other path, and that 
ensures some minimal properties on the moves played on the rightmost vertices. We introduce the following lemma to 
handle the rightmost vertices.

Lemma 26. Consider the graph G = P L
6 + {v ′

0}. Let v0 be an extremity of P L
6 . In Maker-Breaker Incidence, Right has a strategy, 

going second, such that Left claims either v0 and v ′
0 without any point, or at most one of {v0, v ′

0} and she scores at most one point 
on G.

Proof. Let G = P L
6 + {v ′

0}. Recall that v0, . . . , v5 are the vertices of P L
6 . We will describe a strategy for Right playing second 

such that Left scores no point or such that she does not claim both v0 and v ′
0 with at most one point.

• If Left plays v0, Right answers v1,
– if Left plays v ′

0, Right plays v3 and pairs v4 and v5. Left cannot score a point.
– If Left plays v2 (v5 resp.), Right plays v3 (v4 resp.) and pairs (v4, v5) ((v2, v3) resp.). This way, Left cannot score a 

point.
– If Left plays in v3 (v4 resp.), Right plays v4 (v3 resp.) and pairs v2 (v5 resp.) with v ′

0. Either Left scores a point or 
claims both v0 and v ′

0.
• If Left plays v1, Right answers v0. He has claimed one of (v0, v ′

0). He then pairs (v2, v3) and (v4, v5). With this pairing, 
Left can score at most one point.

• If Left plays v2, Right answers v3, He then pairs (v0, v1 and v4, v5). The only one edge outside the pairing (and 
therefore that can be claimed by Left) is v1, v2 but with this pairing, Right then plays v0 and claim one of v0, v ′

0. 
Otherwise, Left scores no point.
16
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• If Left plays v3 (v5 resp.), Right answers v4, he then pairs (v0, v ′
0) and (v1, v2). This way, Left scores at most one point 

on the edge (v2, v3) or (v0, v1) but she cannot take both. And Right will be able to take one of v0 or v ′
0.

• If Left plays v4, Right answers v3
– If Left plays v0, Right plays v1 and pairs v ′

0 with v5. Either Left claims v ′
0, and then by claiming v5, Right ensures 

that Left scores no point, or Left claims v5 and scores one point, but Right claims v ′
0 ∈ {v0, v ′

0}.
– If Left plays v1 (v2 resp.), Right plays v0 and pairs v2 (v1 resp.) and v5. By claiming one of them, Left scores one 

point but Right claims the second one, and therefore, Right ensures that Left scores only one point and does not 
claim both v0 and v ′

0.
– If Left plays v5 (v ′

0 resp.), Right plays v0 and pairs (v1, v2). Then, Left cannot score a second point (can score at most 
one point by playing v5 resp.), and Right has already claimed one of v0, v ′

0.
• If Left plays v ′

0, Right answers v0. He has already claimed one of v0, v ′
0, and the remaining graph is equivalent to P L

5
for which we already know that Left gets at most 1 when she starts. �

Lemma 27. Let n ≥ 1 be an integer. In Maker-Breaker Incidence, we have Ls(P L
n+5 + P R

n ) ≤ 1.

Let n ≥ 2 be an integer. In Maker-Breaker Incidence, we have Ls(P L
n+5 + P R

n , {v0}, {v ′
0}) ≤ 1.

Proof. The proof below holds for the two cases, i.e. if the vertices v0 and v ′
0 are already colored or not.

Recall that v0, . . . , vn+4 are the vertices of P L
n+5 and v ′

0, . . . , v
′
n−1 are the vertices of P R

n . We provide here a strategy for 
Right to ensure that the score is at most 1 as follows:

• If Left plays a vertex in a pair (vi , v ′
i) with 0 ≤ i ≤ n − 2, Right answers the second vertex of this pair.

• If Left plays another vertex, Right follows the strategy of Lemma 26 with P L
6 = {v0 = vn−1, . . . , vn+4} and v ′

0 = v ′
n−1.

According to this strategy, Right ensures that Left scores the same number of points as him on the subgraph induced by 
the vertices vi, v ′

i with 0 ≤ i ≤ n − 2. On the rest of the graph, from Lemma 26, either Left takes the two vertices v0, v ′
0 and 

gets no point, which can yield her overall at most one point with the edge (vn−2, vn−1) of P L
n+5. Otherwise, she takes v ′

0
or the extremity v0 of the P L

6 and scores one point. In this case, if this extremity corresponds to v ′
n−1 of P R

n she does not 
score a second point, and if this extremity is vn−1, she can score a point if she also takes vn−2. But in this case, Right has 
claimed both v ′

n−2 by the pairing strategy and v ′
n−1 as he has also claimed the other extremity. Thus, Right also scores one 

point. Finally, Right ensures that the score is at most 1 with this strategy, and we have Ls(P L
n+5 + P R

n ) ≤ 1. �
6.1.3. Proof of Theorem 24 and score on paths

Now we can prove Theorem 24.

Proof. By symmetry, as P L
n = −P R

n for any n, we only need to prove the result for P L
n .

As our game is in Milnor’s universe, according to Lemma 2, it is sufficient to prove that P L
n+5 − P L

n − 1 ≡ 0 ((P L
n+5 −

P L
n, {v0}, {v ′

0}) −1 ≡ 0 resp.), i.e. Ls(P L
n+5 + P R

n ) = Rs(P L
n+5 + P R

n ) = 1 (Ls(P L
n+5 + P R

n , {v0}, {v ′
0}) = Rs(P L

n+5 + P R
n , {v0}, {v ′

0}) =
1 resp.).

As the game is nonzugzwang, and according to Lemma 25 and Lemma 27, we have proven 1 ≥ Ls(P L
n+5 + P R

n ) ≥
Rs(P L

n+5 + P R
n ) ≥ 1 (1 ≥ Ls(P L

n+5 + P R
n , {v0}, {v ′

0}) ≥ Rs(P L
n+5 + P R

n , {v0}, {v ′
0}) ≥ 1 resp.), which corresponds to the desired 

result. �
From Theorem 24, and since the score on small paths is provided by Fig. 6, the score of any path can be computed as 

follows:

Corollary 28. Let n ≥ 1 be an integer. Denote by n = 5q + r with q and r the quotient and the rest of n divided by 5. In Maker-Breaker 
Incidence, on the one hand, we have Ls(P L

n) = −Rs(P R
n ) = q if 0 ≤ r ≤ 2, and Ls(P L

n) = −Rs(P R
n ) = q + 1 if 3 ≤ r ≤ 4. On the other 

hand, we have Rs(P L
n) = −Ls(P R

n ) = q − 1 if r = 0, Rs(P L
n) = −Ls(P R

n ) = q if 1 ≤ r ≤ 4.

6.2. Union of paths and cycles

We will denote cycles as follows:

• C L
n : cycle of length n where all the edges are colored blue.

• C R
n : cycle of length n where all the edges are colored red.

Now that the equivalences of paths are known, union of paths can easily be reduced to union of paths of order at most 
5. Yet, to deal with such unions, it is not sufficient in general to compute the score on them. The problem can be solved by 
considering new equivalences between small paths.
17



JID:DISC AID:113570 /FLA [m3G; v1.338] P.18 (1-20)

G. Bagan, Q. Deschamps, E. Duchêne et al. Discrete Mathematics ••• (••••) ••••••
Lemma 29. In Maker-Breaker Incidence, we have the following equivalences:

P L
1 ≡ P L

2 ≡ 0 (1)

2P L
3 ≡ 1 (2)

P L
4 ≡ P L

3 (3)

2P L
5 + P L

3 ≡ 2 (4)

Proof. Recall that given a graph G and an integer k, in order to prove that G ≡ k, it is sufficient to prove k ≥ Ls(G) and 
Rs(G) ≥ k.

1. We have Ls(P L
1) = Rs(P L

1) = 0 and Ls(P L
2) = Rs(P L

2) = 0 as in both games no edges are taken by a player. This proves, 
by Lemma 2, that P L

1 = P L
2 = 0

2. We prove Ls(2P L
3) = Rs(2P L

3) = 1. To do that, we just need to prove Ls(2P L
3) ≤ 1 and Rs(2P L

3) ≥ 1.
• Suppose Left starts. If she plays in one path P L

3 , Right claims the middle vertex of the other path and then plays at 
least one vertex in the P L

3 where Left started. This way, Left scores at most one.
• Suppose Right starts. He plays in one path P L

3 . By going first in the second path, Left can score one by playing the 
middle vertex and after that at least one of its two neighbors.

3. As −P L
3 = P R

3 , we will prove P L
4 + P R

3 = 0. Denote by (v0, v1, v2, v3) the vertices of P L
4 and by (v ′

0, v
′
1, v

′
2) the vertices 

of P R
3

• Suppose Left starts. If she plays in P R
3 , Right plays v1 and pairs (v2, v3) to ensure that Left cannot score an edge. If 

Left plays v0 or v1 (v2 or v3 resp.), Right plays v2 (v1 resp.) and pairs (v ′
0, v

′
2) and v ′

1 with the available vertex in 
{v0, v1} (in {v2, v3} resp.). This way, Left and Right scores the same number of edges and this proves Ls(P R

3 + P L
4) ≤ 0

• Suppose Right starts. Left considers the pairing (v0, v ′
0), (v1, v ′

1), (v2, v ′
2). This way, any point scored by Right is 

scored by Left. Therefore Rs(P L
4 + P R

3 ) ≥ 0.
4. Let G = 2P L

5 + P L
3 . Denote by v0, . . . , v4 and v ′

0, . . . , v
′
4 the vertices of the two copies of P L

5 and by (u0, u1, u2) the 
vertices of P L

3 . Let first prove Rs(G) ≥ 2. Up to consider only 3 vertices of one copy of P L
5 , we can suppose that the first 

move of Right is in a P L
5 and we will prove that Left scores 2 on P L

5 + P L
3 . Suppose Right has played a vertex v ′

i with 
0 ≤ i ≤ 4. Left plays v2 and continues as follows:
• If Right plays v0 or v1 (v3 or v4 resp.), Left plays v3 (v1 resp.) and pairs (v4, u1) ((v0, u1) resp.) and (u0, u2).
• If Right plays u0, u1 or u2, Left plays v1 and pairs (v0, v3).
In both cases, Left scores at least two points. Now we prove Ls(G) ≤ 2. After the first move of Left, at least one of the 
two copies of P L

5 has its 5 vertices available. Suppose it is v ′
0, . . . , v

′
4. Right plays v ′

2 and pairs (v ′
0, v

′
1) and (v ′

3, v
′
4), 

ensuring Left won’t score any point on this copy of P L
5 . Left plays a second move:

• If v2 has not been played yet, Right plays v2. Left plays a third move. If the three moves of Left are in P L
3 , Right pairs 

(v0, v1) and (v3, v4), ensuring Left does not score any other point. If at least one of them is not in P3, Right plays 
any vertex of P3, and know that at least one vertex of (v0, v1, v3, v4, u0, u1, u2) will be available for his next move. 
Thus, Left cannot score more than two points on the rest of them.

• If Left has played v2, at least one of v1 or v3 is available. Right plays it. By symmetry, suppose it is v1. After the next 
move of Left, at least one of v3, v4, u1 will be available. Right plays it, ensuring again that Left cannot score more 
than 2. �

We can now state the equivalence theorem for union of paths.

Corollary 30. Let P1, . . . , P N be paths of lengths n1, . . . , nN .
Let q1, . . . , qN be positive integers and 1 ≤ r1, . . . , rN ≤ 5 be integers such that for any 1 ≤ i ≤ N, we have ni = 5qi + ri .
Denote for 1 ≤ i ≤ 5 by Ni the number of r j equal to i. In Maker-Breaker Incidence, we have:

N∑
i=1

P L
5qi+ri

≡
N∑

i=1

qi +
⌊

N3 + N4

2

⌋
+ 3

⌊
N5

4

⌋
+ (N3 + N4 mod 2)P3 + (N5 mod 4)P5

Therefore, Ls(
N∑

i=1
Pi) and Rs(

N∑
i=1

Pi) are computable in linear time.

Proof. By Theorem 24, any path P L
5qi+ri

is equivalent to qi + Pri . Then, by Lemma 29, we have P3 ≡ P4, 2P3 ≡ 1, and 
2(2P5 + P3) ≡ 4P5 + 2P3 ≡ 4P5 + 1 ≡ 4. Thus 4P5 ≡ 3. Note that these computations are possible thanks to Milnor’s 
universe. �
18
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Note that we consider 1 ≤ ri ≤ 5 and not 0 ≤ ri ≤ 4, so qi and ri are not exactly the quotient and the rest of the size of 
the path by 5.

Corollary 31. Let n ≥ 1. In Maker-Breaker Incidence, there exists a linear time algorithm to compute Ls(C L
n) and Rs(C L

n).

Proof. First, note that Rs(C L
n ) = Ls(P L

n−1).
To compute Ls(C L

n), note that all the vertices are symmetric. Therefore, we can suppose that Left first plays any of them. 
The next move of Right will make the graph equivalent to (P L

k , {v0}, ∅) + (P L
k′ , {v ′

0}, ∅) with v0, v ′
0 extremities of P L

k and P L
k′

and with k + k′ = n. The score on these graphs can be computed in linear time by using Corollary 30, and therefore, Ls(C L
n)

too as, by Theorem 24, at most 5 values are to be considered for the pair (k, k′) according to the equivalences. �
7. Perspectives

In this paper, we introduced positional scoring games in a general framework and then focused on Incidence, which 
corresponds to the case of 2-uniform hypergraphs. To conclude this paper, we list some relevant open problems.

• We have solved Maker-Breaker Incidence on union of paths using game equivalences. Next step would be to study 
trees.

• What is the complexity of Maker-Breaker Incidence when restricted to the class of cographs? Equivalent vertices have 
an important role and can be easily simplified. This could be a starting point for the study of cographs.

• We proved that Maker-Breaker Incidence is fixed-parameter tractable using the neighborhood diversity. It would be 
interesting to find other parameters for which the problem is FPT. For example, is it FPT parameterized by the score?

• The same question applies when considering general hypergraphs. The answer is negative for 6-uniform hypergraphs as 
it is PSPACE even for k = 1. What about 3-uniform hypergraphs? Since Maker-Breaker Positional Game is polynomial 
for 3-uniform hypergraphs [12], the question makes sense.

• We have proved that Maker-Maker Scoring Positional Game is PSPACE-complete even for 3-uniform hypergraphs 
but provided a linear algorithm for 2-uniform hypergraphs. It might be interesting to look at particular 3-uniform 
hypergraphs. For example, is it possible to compute the score in the scoring version of the Triangle Game (where 
players choose edges of a graph and try to construct triangles)? The hypergraph of this game has the particularity 
to be linear (hyperedges cross on at most one vertex). A more general question would be to find the complexity of 
Maker-Maker Incidence on linear 3-uniform hypergraphs.

• In Section 2.2, we have introduced partisan scoring positional games to include the two conventions of scoring positional 
games in a more general definition. Maker-Maker convention corresponds to games with only green hyperedges whereas 
Maker-Breaker convention corresponds to games with only blue edges. It would be interesting to consider games with 
both red and blue edges but no green edge.
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